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Abstract

With the recent surge in the interest for the Internet of Things (IoT) and an
increased deployment of cyber-physical systems (CPS) in commercial and indus-
trial applications, distributed systems have gained a significance influence on
modern civilization and are performing increasingly complex tasks. Building
such platforms in a reliable manner is challenging, as they include concurrent
tasks on the application and the communication layers. As the majority of such
devices features a single processor, tasked with both communicating over the
network as well as sensing and computing, real-time scheduling conflicts arise as
the resource separation of the applications in software is difficult to manage.
To achieve such independence, we propose a platform consisting of dedicated
application (AP) and communication (CP) processors which are completely de-
coupled in terms of resource access, clock speeds and power management using
BOLT [1]. Leveraging this hardware separation, we then use the Distributed
Real-time Protocol (DRP) [2] to provably provide end-to-end real-time guaran-
tees for the communication between distributed applications over a multi-hop
wireless network. By establishing a set of contracts at run-time, DRP ensures
that all messages reaching their destination meet their hard deadline. To demon-
strate this, we implement the BLINK scheduler [3] directly on the AP and adapt
the LWB [4] round structure to use DRP as a control layer protocol. We show
that our system is capable of supporting several hundred simultaneous streams
and can respond to requests in maximally 3 stream periods over up to 10 hops.
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Chapter 1

Introduction

“We have a deep need and desire to connect. Everything in the
history of communication technology suggests we will take advantage

of every opportunity to connect more richly and deeply.”
— Peter Morville [5]

With the commercialisation of the Internet at the turn of the century, digitaliz-
ation and the cloud became buzzwords well-known to anyone reading the news
[6]. While in the past, existing providers mainly focused on centralized, out-
sourced offers, recent developments in embedded systems and wireless communic-
ation allowed companies to bring their services closer to the end-user. Suddenly,
everything ranging from your TV, the lights in your office up to the industrial
controller regulating the heating of your building is inter-connected and directly
accessible. An entirely new domain, the so-called Internet of Things, has been
created; software companies like Google have started developing dedicated oper-
ating systems and giants like Amazon and Verizon are contending for startups
in the field to position themselves for the expected coming surge in applications
and customers [7, 8]. In the past decade, this new concept awoke the interest of
the general public and kept on growing (see Figure 1.1).

Figure 1.1: Last month showed more interest (counted in Google search queries)
in IoT than ever before [9] (Scale is relative to its maximum popularity).
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1. Introduction 2

1.1 Cyber-physical systems

The Internet of Things (IoT) falls under the broader category of cyber-physical
systems (CPS). These “smart” systems generally describe the integration of in-
teracting networks, computational components and physical processes [10]. Ap-
plications range from traffic flow management and electric power generation &
delivery to emergency response systems and personalized health care. Espe-
cially in industrial environments, an input or feedback loop is a central part of
the concept and requires precise timing and bounded delays. Therefore, such
requirements must be tightly integrated into the general design layout. Due to
the devices distributed nature, centralized controlling is often difficult, inefficient
and not well scalable. In general, one can therefore define the following main
properties under consideration for a system’s performance:

• Scalability: The behaviour under an increasing number of participants or
computational load is a central aspect for any network-related tasks. To
leverage the distributed setting, nodes need to predominantly work in their
close surroundings and minimize far-reaching effects.

• Connectivity: As already described in the name IoT itself, devices must
be able to interact with each other. Important characteristics hereby are
the number of neighbouring nodes, the transmission range, link capacity
and resilience to failures.

• Power consumption: As CPS nodes often operate independently of a
stable power supply, supplementing techniques such as energy harvesting
and batteries have to be considered. By leveraging low-power components,
the period of application can be extended.

• Computation power: The load on the processor units can directly affect
timing behaviour and response times and should therefore be distributed
and in reasonable relation to the hardware properties.

• Costs: Depending on the field of application and budgetary considera-
tions, implementation costs strongly affect the spectrum of solutions.

• Reliability: The ability of the system to cope with erroneous messages,
network or command outage and delays in its communications is critical.
As external events can influence devices and alter their environment, it is
important to anticipate and mitigate damaging effects.
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Figure 1.2: A CPS consists both of a a physical domain representing real world
processes and a cyber part which includes transmission and processing of signals.

1.2 Motivation

“Reliability will be key. If such systems prove to be unreliable,
people will leave in droves. So that’s a primary requirement.” —

Vinton Cerf, Chief Internet Evangelist at Google [5]

As mentioned in section 1.1, reliability is one of the main concerns when design-
ing a cyber-physical system. CPS strongly depend on timely delivery of packets
as a signal for an industrial machine might be mission-critical and useless if it ar-
rives after the point in time where a certain action should have been performed.
Therefore a well-designed communication scheme is of great importance.
Real-time network functions such as scheduling are complex and the communic-
ation between sensing, actuation and computing elements often needs to comply
with given hard real-time constraints [2]. Guarantees can only be achieved by
designing a system consisting of both hardware and software which allows to limit
disruptions such as dependencies between components. Furthermore, it should
offer optimal performance to keep requirements well within feasible limits.

A first complete solution to this problem was proposed by Jacob et al. [11].
Employing the BLINK scheduler [3] on the network level to provide real-time
guarantees for wireless communication and leveraging the processor interconnect
BOLT [1] as hardware to separate the communication and application aspects,
the Distributed Real-time Protocol (DRP) provides end-to-end real-time guaran-
tees between interfaces of distributed applications and prevents buffer overflows
along the transmission chain.
Paired with LWB [4] as a transport protocol on multi-hop wireless networks,
DRP offers an API to distributed applications and relieves single nodes from the
complexity of transmission within given time bounds.
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1.3 Goals

This thesis aims to develop an implementation of DRP and deliver such guar-
antees using the methods described in the paper [2]. The entire functionality
should reside on the nodes themselves without dependencies on external infra-
structure and should allow dynamic registration and scheduling of real-world
traffic. Building on previous work from Walter [22] and an existing hardware
platform called Dual-Processor Platform, we designed and built a system which
minimizes dependencies between hardware and software components and offers
an adaptable platform for end-to-end communication in a distributed network.

The rest of this document is structured as follows: Chapter 2 Background offers
an overview of the underlying protocols and hardware components which were
employed during development. In chapter 3 System design, we present the sys-
tem design of our DRP implementation and detail influencing considerations.
Chapter 4 Implementation sketches the final product and gives an insight into
its technical aspects. Chapter 5 Evaluation describes how the system performs
under testing and which further experiments could be performed to ready the im-
plementation for practical applications. In chapter 6 Conclusion & future work,
we present our findings and show possible extensions of the concept.



Chapter 2

Background

In distributed networks, applications situated on different nodes aim to exchange
messages between each other. The end-to-end performance of the system de-
pends on the entire transmission chain, encompassing the application on the
source node, the communication on the distributed network and the timely re-
ception and reading of the internal queues at the receiver. In order to achieve a
reliable and assured service, we require robust components with bounded beha-
viour on all levels:

• Physical layer: The Low-power Wireless Bus (LWB) delivers messages
using energy-efficient flooding by applying Glossy. This stands in stark
contrast to traditional routing which directly or indirectly depends on the
links and number of hops between source and destination,.

• Network layer: Using TDMA to separate communication in the time
domain and only a small contention slot for non-deterministic access, we
then employ BLINK as a reliable and highly adaptive scheduler which
considers the hard real-time constraints of various streams.

• Hardware: To allow for concurrent and independent transmission and
application tasks such as sensing or calculations, we deploy the Dual-
Processor Platform (DPP) with separate processors for each aspect. Lever-
aging BOLT to decouple the processors, we can design the communication
and application sub-systems independently and control how they interact.

• Control plane: To guarantee correct and timely executions on the hard-
ware and networking levels, the Distributed Real-time Protocol (DRP) acts
as an additional layer and interconnects the different parts. By defining
timing behaviour such as network deadlines and update intervals, it man-
ages the underlying components and offers a simple API to the end-user.

This chapter presents these four fundamental components - LWB, BLINK, the
DPP and DRP - in more details and presents how they are interconnected.

5
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2.1 Low-power Wireless Bus

The Low-power Wireless Bus (LWB) is a communication scheme which turns a
multi-hop network into an infrastructure similar to a shared bus [4]. All nodes
are potential receivers and can send data in one-to-one or one-to-many broad-
casts at the same costs. The transmission pattern of LWB is based on Glossy,
a flooding protocol devoid of topology-dependent state which enables multi-hop
communication without routing. The concept was extended for improved all-to-
all communication in CHAOS [12].
LWB uses the concepts of real-time streams to request and distribute trans-
mission opportunities for interested nodes. Such streams contain information
about the inter-packet interval (IPI) and starting time as well as intended recip-
ients. All transmissions in LWB occur during given slots which are detailed by a
schedule computed and communicated at run-time. The allocated data slots use
time-division multiple access (TDMA) to guarantee an uncontended channel for
messages and therefore do not interfere with each other.

2.1.1 Glossy

The underlying transport scheme of LWB is Glossy [13]. In stark contrast to
traditional link-state based routing protocols, Glossy transmits packets without
considering surrounding neighbours lists or link parameters. It does so by glob-
ally scheduling synchronous floods through a logically centralized controller, also
called host. The broadcasts are precisely synchronized in time to guarantee sim-
ultaneous transmission of the same data packet. As nodes again broadcast and
therefore relay any message they received, the packets of different senders will
be superimposed. Due to constructive interference, the resulting signal-to-noise
ratio (SNR) is still strong enough to be received successfully by neighbouring
nodes and the packet can continue to propagate through the system. This al-
lows for low-power transmission on the nodes despite agnostic flooding.
Glossy defines a very simple communication behaviour for all nodes: Whenever
a device receives a given message for the first time, it chooses between two op-
tions. If the node itself is the single intended target, it will transfer the packet
to its internal input queue. In any other case, it will broadcast the packet and
therefore flood the network so that the packet further propagates to its intended
recipients (see Figure 2.1).

This method offers two properties which are central for LWB: Due to the syn-
chronized transmission, Glossy provides accurate global time synchronization
which can be leveraged to schedule the communication rounds and clearly define
round durations and wake-up times.
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Furthermore, it is by nature independent of the volatile network state. Because
transmission is independent of the node’s neighbours, communication is much
more resilient to interference, node failures and mobility. Thanks to this prop-
erty, LWB was shown to outperform comparable schemes and provide a reliability
higher than 99.9% [13].

Figure 2.1: A packet, originating from a single node, travels throughout the
network. Notice that the intervals between the communication rounds depends
on the scheduler and might vary. [13]

2.1.2 Round structure & scheduler

LWB transmissions are structured into rounds of clearly defined segments. The
execution of each segment is time-triggered and synchronized throughout the
network by leveraging Glossy’s accurate time synchronization.
Rounds can be split into two periods: during the active phase (the communica-
tion round shown in Figure 2.1) at the beginning of the round, nodes exchange
messages such as data packets and scheduling information. Afterwards, the
nodes determine their own operations during the following inactive phase and
are allowed to sleep. The length of the active phase is fixed and depends on the
maximum number of data slots which are allowed to be scheduled. Depending
on the calculations of the host, the start of the next round will be delayed as
much as possible to minimize energy consumption.

Figure 2.2: During a communication round, the schedule is sent twice to prevent
energy-inefficient listening operations during failures [13]. Notice that a long
schedule computation on the host prevents the entire network from going into
sleep mode and conserving energy.
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A communication round consists of the following segments (see Figure 2.2):

• Schedule Si: The first schedule received during a communication round
is a repetition of the schedule sent at the end of the previous round. It is
primarily used for better synchronization and resilience to interference, as
a node is only allowed to send during a round if it has successfully received
the corresponding schedule [4].

• Data: In each slot, the node specified by the schedule is allowed to trigger a
flood of the network with its own package. Packets will then be transmitted
according to Glossy (see section 2.1.1 Glossy).

• Contention: The contention slot is only used under non steady-state
conditions. It is the sole slot which is not clearly allocated to any specific
node and offers random access. Nodes which intend to register a new
stream can try to do so during this period; however, no assurances are
given from the host that it will receive it [14].1

• Schedule computation: During this segment, only the host is active and
computes the schedule for the next round, based on the state from previous
rounds and possibly information gathered during the contention slot.2

• Schedule Si+1: The new schedule, including the start of the next round,
is announced by the host.

2.2 BLINK

LWB provides highly reliable communication but does not include the notion of
real-time traffic. Furthermore, its standard scheduler is limited in functionality
and therefore offers room for improvement. BLINK is a real-time scheduler which
is adaptive to changes in network state and application requirements [3]. Unlike
previous approaches [15, 16], it is agnostic to the current network state as it relies
on LWB [4] for providing the underlying communication scheme. Its global view
on the real-time traffic requirements of requested streams allows for centralized
control while still meeting all hard real-time constraints.

BLINK employs Earliest-Deadline-First (EDF) [17] strategies to both guarantee
optimal energy consumption and allow all admitted streams to provably meet
their deadlines. With its online schedule computation based on the traffic metrics
of source nodes, it is highly adaptive to dynamic changes and can quickly react
to changing network states and node failures.

1We will see that in DRP, contention is redundant and therefore excluded from the round.
2In the implementation of DRP, the schedule is already pre-computed and is simply fetched.
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2.2.1 Concept

In stark contrast to the standard LWB scheduler which does not take real-time
traffic requirements into considerations and only tries to minimize energy con-
sumption [4], BLINK verifies viable scheduling before admitting a stream [3].
The calculations are based on stream requests from the source nodes detailing
their behaviour and include the following parameters:

• Inter-packet interval (IPI): This interval specifies the elapsed time
between the periodic release of two packets at the source. The source
stream must have at least one opportunity to transmit during the IPI.

• Deadline: As CPS contain hard real-time constraints to deliver packets,
such requirements must be modelled. BLINK assumes that the relative
deadline is always smaller or equals to the IPI so that one stream only has
at most one packet available at any time [17].

• Start time: This parameter defines the release time of the earliest packet
and indicates the beginning of the stream.

Scheduling principle

As Glossy-based flows allow the network to appear like a one-hop neighbourhood
[13] for the scheduler, the transmission durations are independent of the actual
receivers and can be regarded as atomic [3]. Therefore, BLINK simply schedules
according to EDF [17] and always allocates the stream with the nearest deadline.

Starting a round induces fixed costs such as the two schedules which have to be
sent regardless of the number of scheduled slots (see Figure 2.2). Therefore, this
additional cost is minimized if it is spread over a maximal number of data packet
transmissions. This is achieved by delaying the start of the next round as much
as possible while preventing any deadline misses. As the earliest packet deadline
requires a communication round and compels the host to send schedules in either
case, it is energy optimal to additionally schedule as many streams as possible.
Note that it might be possible that such a full round could have been achieved
before as enough streams were already released; however, this could potentially
lead to reduced efficiency in the long run [3].

BLINK leverages efficient data structures using priority queues to reduce com-
putational and memory demands on the executing hardware. This is necessary,
as previous works did not apply EDF despite its proved realtime-optimality due
to a large run-time overhead [3]. As CPS often consist of embedded systems with
limited resources, an inefficient implementation reduces the algorithm’s benefits.
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2.2.2 Construction

Figure 2.3: BLINK uses a chain of algorithms to process requests and schedule
them according to EDF [3].

Every stream request will first pass a test called admission control which guar-
antees that admitting the additional stream does not result in missed deadlines
in the future, i.e. that the new set of streams will never require a larger band-
width than available. After the request has been processed, BLINK computes
the start time of the next round; as described above, this should be delayed as
much as possible to preserve energy while still allowing all streams to meet their
deadlines. When this time is known, the algorithm can check which streams
already possess released packets at that moment and will start allocating slots
according to their deadline. In case the system is in steady-state and no stream
requests arrive, the first two procedures can be skipped as seen in Figure 2.3.

Synchronous busy period

The admission control guarantees that including the new stream will at no point
in time lead to a time interval where the required bandwidth exceeds the avail-
able one. One approach to achieve this is by artificially creating an interval of
maximum demand by releasing all streams at the same time. It can be shown
that if such an extreme situation does not result in a missed deadline, then it is
safe to allow the request [3].
Furthermore, we can bound the time horizon which we have to check into the fu-
ture by determining the so-called synchronous busy period. This duration spans
from the point in time where the maximum demand is created to the first idle
period where no more streams have a pending packet. If no violation of any
requirements occurred up to this point, we can conclude that the stream set is
schedulable; the worst situation one could experience afterwards would be an-
other maximum demand. As this case is simply a repetition of the pattern which
was just checked, the possibility of a missed deadline is eliminated even beyond
this time interval.
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Admission control

After having determined the maximal length of time which needs to be checked
to assure that a given stream request can be handled by the system, we then
start the actual testing. Following the exact same considerations as for the
synchronous busy period, we do so by deliberately generating maximal demand at
the start of the sequence. By continuously proceeding according to the allocation
rules of EDF [17], we schedule streams as long as no deadline miss occurs. If the
scheduling succeeds up to the end of the synchronous busy period, the request
is accepted and will be included in the following computations. If however the
additional requirements would result in a violation of previous guarantees and
the test should fail, the request will be rejected.

Computation of the start time

While continuous scheduling (CS), starting one round right after its predecessor,
and greedy scheduling (GS), starting a round as soon as any packet can be
sent, are realtime-optimal and never miss deadlines as long as the stream set
is schedulable, they can result in poor energy efficiency. This comes from the
fact that in some situations, it would be favourable to further delay the start of
the round and fully utilize all data slots. This intuitive idea of delaying the next
round “as long as we possibly can” is the underlying reasoning of the realtime-
and energy-optimal lazy scheduling (LS) [3].
It is obvious that there are limits as to how much delay is feasible until we might
artificially create an interval of excessive bandwidth requirements which would
result in missed deadlines. LS uses the notion of future demand to forecast the
required bandwidth and deduces the resulting minimal slack time before the
next LWB round must be scheduled.

Slot Allocation

As previously argued, maximizing the number of used slots inside a given round
spreads the energy overhead of the schedules over the most goodput and therefore
results in maximum energy efficiency. As delaying a stream even if it were already
available can only result in equal or even worse schedulability, we will always try
to maximize the number of streams per round [3].
The scheduling itself then happens according to the afore mentioned earliest-
deadline-first (EDF) principle by always prioritizing the available packet with
the earliest absolute deadline. As EDF is provably realtime-optimal [17] and
computes the schedule during run-time while integrating changes on the fly, it is
perfectly suited for our task [2].
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2.3 Dual-Processor Platform & BOLT

Up to now now, we mainly considered the networking aspect. However, for the
end-user, it is primarily the application tasks such as sensing and computation
which determine usability. In the original LWB paper [4], the authors recommend
using the time in-between two communication rounds to execute processes which
are not networking related.
DRP does not rely on a separation in time, but leverages the Dual-Processor
Platform (DPP) to completely eliminate dependencies between application and
networking tasks and separate them spatially by using two dedicated processors.

2.3.1 DPP

Traditional platforms with a system-on-chip offering a single processor struggle
to achieve the high timing precision and availability of requested resources to
execute both communication and computation in a way which satisfies require-
ments. This feat is challenging, as application tasks are often event-triggered
and require access to shared resources [1]. As most real-time wireless systems
rely on TDMA to communicate with a deterministic channel access to guarantee
throughput, communication occurs at clearly defined time slots and interrupts
other tasks such as sensing. With a single core, no set of processes can truly
run concurrently and requires a threaded environment which introduces timing
uncertainties.
The Dual-Processor Platform (DPP) solves this inherent predicament of single-
core systems by introducing two processors and a deterministic interface in-
between.3 Each processor has its clearly defined task set and is capable of
operating independently by only asynchronously exchanging messages with its
counterpart.

Figure 2.4: On the DPP, BOLT [1] interconnects the application processor and
communication processor and uses its internal memory to simulate FIFO queues
to decouple the message passing [2].

3The technical specifications of the below-mentioned processors can be found in section 7.1
Technical specifications.
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Communication Processor

The communication processor (CP) is responsible for all communication proced-
ures and includes the entire LWB processing stack. To preserve energy, it is
primarily run in low-power mode during the inactive phase.
The CC430 [26] is a system-on-chip providing a low-power 16bit processor which
offers limited memory and computational capabilities. Through its integrated
RF transceiver in the sub-1-GHz range, it can transmit up to 500’000 symbols
per second while offering minimal energy consumption when idle.

Application Processor

The application processor (AP) handles the actual processes the embedded sys-
tem is designed for. While only periodically polling its incoming queue to read
packets from the network, it can sense and compute without interruption and
therefore offers the ideal platform for time-critical applications such as feedback
control of industrial processes and safety systems. For BLINK, the host lever-
ages the extensive computational power to calculate the schedule and manage
its state (see section 3.3.1 Task distribution).
Predominantly designed for application tasks, the MSP432 [27] offers much more
powerful hardware to store more than ten times as much data as the CP, execute
tasks with an increased rate and process floating points with a dedicated FPU.

2.3.2 BOLT

BOLT serves as an interface to separate the two previous processors in time,
power and clock domains [1]. A stateful processor itself, it offers its internal
memory to emulate two virtual First-In-First-Out (FIFO) queues for the com-
munication between AP and CP in non-volatile memory.
As long as the queue is not yet filled, a processor can write into the queue in a
non-blocking manner and pass messages on to its counterpart while the latter
does not have to immediately accept it and might even be in sleep mode. Both
parties can choose when reading and writing best fits into their individual sched-
ules and only have to take their previously guaranteed flush times into account.

While BOLT functions are prompt and have predictable timing characteristics
[1], they further allow the processors to choose how to access the queues indi-
vidually. Whereas interrupt-driven delivery can decrease the response time for
time-insensitive tasks such as the stream request processing of a BLINK host,
concepts such as the atomic slot of LWB require undisturbed execution and
therefore strongly favour polling to read outgoing packets at the CP.
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2.4 Distributed Real-time Protocol

2.4.1 Concept

In contrast to the afore mentioned concepts which target specific parts of the
transmission chain between distributed applications, the Distributed Real-time
Protocol (DRP) builds upon all previously discussed techniques. It offers a simple
API for applications and provably guarantees to meet real-time traffic require-
ments and deliver packets to their recipients. While BOLT decouples networking
from application, DRP again sees to correct functioning so that AP and CP act
according to mediated contracts [2]. These contracts have to be accepted by
all involved parties (source, network scheduler & destination) and contain the
following parameters:

• Source & Destination node: For the standard BLINK protocol, only
the node requesting resources is relevant. In contrast, DRP only allows one-
to-one communication to guarantee that all parties can actually check and
fulfil the requirements and therefore requires destinations to be explicitly
defined.

• Minimum message interval Ti: This metric is very similar to the inter-
packet interval of BLINK and LWB. However, we lessen the restriction
on a strictly periodic appearance of packets and simply define a minimal
interval between packets which might possibly be larger in practice.

• Jitter Ji: DRP simulates that the message release is sporadic with jitter.
This way, BLINK can still assume a periodic release and does not depend
on the initial phase or start time [2].

• End-to-end deadline Di: This deadline extends the concept of BLINK’s
deadline to include the entire transmission chain from the API on the
source AP to the API on the destination AP.

2.4.2 Device level

DRP leverages the DPP to reserve a dedicated processor (CP) exclusively to net-
work related tasks and another, more powerful processor (AP) for the remaining
work. This separation avoids possible access conflicts on shared resources and
prevents an unpredictability of the involved execution times. The included BOLT
interface therefore decouples communication and application and allows the sys-
tem designer to customize the platform and compose it according to specific
application requirements.
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Figure 2.5: Before a request is accepted, it has to traverse multiple stages on
source, network scheduler and destination [2].

2.4.3 System level

By building an additional layer on top of an adaptable scheduler such as BLINK
and utilizing the reliability and simplicity of LWB, DRP provably guarantees that
real-time traffic requirements are met for all messages received at the application
interface. Source nodes use predefined control flows which are dedicated one-to-
one streams to the host to send new stream requests and receive responses. As
those flows provide assigned time intervals for nodes to communicate with the
host, this renders random access methods superfluous. Therefore, DRP does not
include the contention slot of the original LWB round [4] anymore.

Figure 2.5 gives an overview over the different steps of a stream request, starting
at the source node and ending at the destination. It is important to notice that
for DRP, the host must be one of the directly involved parties, i.e. either the
source or the destination of any given stream. The DRP concepts may possible
extend to any type of traffic as the network scheduler is logically independent
from the stream, but the currently provided guarantees [2] hold only for host-to-
source and source-to-host streams.

A contract contains information which needs to be checked on the source and
the destination node as well as by the network scheduler:

• Buffers: Each processor in the chain verifies that enough space is avail-
able in its internal memory and that it is capable of flushing the BOLT
queue sufficiently often to prevent congestion. These tests guarantee that
no message buffers along the transmission chain overflow at any point in
time and no packets are lost during transmission. Furthermore, the min-
imal flush time assures that packets are available for the application when
promised and do not still reside in a buffer. This could otherwise cause sig-
nificant differences, as a complete flush of the BOLT queue takes multiple
milliseconds [1].
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• Network: The admission test in BLINK on the network scheduler assures
that all network deadlines are met and energy consumption is minimized.4

By having a global view on the requirements of the network, such a sched-
uler could even enforces policies such as limited bandwidth for single nodes
or minimal deadline requirements to lessen the stress on the system.

After the destination has accepted the new stream and agreed to reserving corres-
ponding resources, a DRP Response packet will be sent in the opposite direction.
This message again uses allocated control flows and notifies all entities in the pro-
cessing chain of the result.
If one of the entities conducting the tests realizes that it cannot fulfil the re-
quirements detailed in the request, a NACK (Negative-Acknowledgement) will
be returned via a DRP Response and no further parties along the path are con-
tacted.

The end-to-end deadline consists of the network deadline and the sum of the
flush intervals of the different buffers. A successfully requested stream must
guarantee that the requested deadline is larger than the sum of the upper bound
on the latency of all sub components. With the tests on the buffers and on the
network, we verify that sufficient capacity is available before scheduling a flow.
Therefore, we can guarantee that in case a packet does arrive at the destination
API, it will have met its deadline and is received on time.5

4Due to the concept of checking an artificial period of maximal demand (see section 2.2
BLINK), it might be that streams are rejected which could in practice be scheduled. However,
such a conservative approach guarantees that no false positives might occur which are accepted
despite an unschedulability of the resulting stream set.

5No protocol can absolutely guarantee that packets will be delivered successfully, as envir-
onmental factors can prevent physical communication even under the most robust schemes.



Chapter 3

System design

In the following sections, we specify the problem setting and detail how the final
system was designed to optimize performance while still providing a modifiable
platform. This chapter further explains the reasoning behind our design decisions
and the considerations under which they were taken.

3.1 Problem setting

The primary focus of DRP lies in guaranteeing that packets are delivered from
one endpoint to another according to real-time traffic requirements. As described
in section 1.2 Motivation, CPS require such temporally bounded delivery for
feedback loop stability and to describe the behaviour of physical processors with
maximal precision [2].

In a general setting such as for wireless sensor networks [18], the network consists
of multiple source nodes and a centralized controller on a host node. While
former are primarily occupied with gathering sensor data and relaying messages,
the network manager orchestrates communication and often features improved
hardware for more extensive calculations and post-processing. Furthermore, the
host can act as a gateway for the network and is often connected to a backbone
infrastructure for accessibility over the Internet.

To coordinate transmissions and mediate access to the wireless bus, each node
notifies the controller of its needs using a Request packet. This message contains
information about the stream such as source & destination node, the minimum
message interval, the maximal amount of jitter which might occur between re-
leases as well as the end-to-end deadline relative to the release of a packet. After
processing the request, the host then returns a Response packet, informing the
node about its decision on whether it will integrate the stream and schedule it
in future rounds.

17
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3.2 Design considerations

One of the core principles of DRP is to decouple the individual components
and allow them to schedule and execute tasks independently. As previous work
already guarantees reliable communication (section 2.1 Low-power Wireless Bus)
and provides suitable hardware (section 2.3 Dual-Processor Platform & BOLT),
this thesis focuses on the implementation of the DRP protocol itself and aims
to:

i) leverage the decoupled processors to simultaneously communicate and ex-
ecute the protocol & application tasks.

ii) at any time provide an up-to-date schedule including recent requests in a
time-efficient manner.

Our design completely decouples the round management and the schedule com-
putation and therefore frees the application processor from any synchronisation
constraints with other parties. By leveraging the DPP to concurrently process
streams & compute schedules on the AP and communicate with other nodes over
the network using the CP, we optimally support the core ideas of DRP.

3.3 System overview

3.3.1 Task distribution

The DPP was designed to specialize processors and allow them to exclusively
focus on their respective primary purpose. By respecting this separation and
using it as a design principle, we split the range of operations of nodes into two
parts. The entire application-specific functionality, including the DRP-related
functions, has been concentrated on the AP to reduce implementation complexity
and dependencies on other processors. This left the CP with the simple task of
transmitting packets without any packet inspection or other extensive analysis.

Figure 3.1: CP and AP both have separate responsibilities and are not synchron-
ized with each other; the CP however is strictly timed by the LWB round.



3. System design 19

There are three major processing steps for any DRP request (see Figure 2.5):

• Source test: The node which intends to send a request first makes sure
that its internal (BOLT) queues have enough memory left to receive ad-
ditional packets. Additionally, it checks that both involved processors, AP
as well as CP, are able to handle the increased traffic.

• Network test: The network scheduler verifies that the traffic require-
ments comply with given restrictions [2] and that the network can manage
further traffic. Note that this part is always executed on the host node, as
it runs the scheduler locally.

• Destination test: Similar to the first test, the recipient of the stream
ensures that no packets will be dropped internally due to memory overflows
and that necessary flushing times are respected.

Following our design paradigm, these verifications along with all other DRP
functionality are executed on the AP of either a source or host node. Notice that
during the first and third test, the AP also examines the admissibility in regard
to CP performance. As those tests are logically independent of the execution
location and only require state which is available on the AP, the AP also assumes
this role for ease of implementation. This further reduces the required changes
in the code base of the CP and preserves the resemblance to the legacy code for
improved maintainability.

Application processor

The processes which are running on the AP depend on the role of the node in the
network.1 For a source node, the primary intention of the application processor
is to fulfil its purpose inside a larger system and e.g. monitor the environment
or process data. While the specifics depend on the implementation, each such
node will have to be able to request DRP streams and process responses from
the host whenever it intends to change its traffic requirements.

A host node on the other hand is primarily focused on handling data flows inside
the network and processing DRP requests. The host’s AP provides the CP with
the schedule upon query and can read & handle DRP-related packets from BOLT
or generate new requests itself.

1We will see in Chapter 4 Implementation that the role of the node is defined by the node
ID. This ID identifies the node and is compared against a hard-coded Host ID.
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Communication processor

The CP contains only a low level of sophistication. Its primary function is to
send & receive packets on the network and relay them to the BOLT interface. It
therefore acts as an intermediary between AP and the network and connects the
application to other nodes. The processor is further responsible for round man-
agement (behaving according to the timing specifications of LWB) and therefore
stores the schedule. The saved schedule is also used on the host node for send-
ing feedback about the activity of other scheduled nodes to the controller (see
treatment of unused slots in [22]).

It is important to note that apart from sending & receiving the schedule, the
functionality of the CP does not differ for source and host node. This demon-
strates once more that the CP simply serves as an interface and does not contain
state or functionality depending on the role of the node in the bigger picture.

3.3.2 Round structure

The round layout for communication adopts its general structure from the ori-
ginal LWB [4]. As discussed in section 2.4 Distributed Real-time Protocol, the
usage of control flows to send DRP requests and responses renders both the con-
tention and the stream acknowledge slot redundant. Source nodes now possess a
deterministic way of interacting with the network scheduler and therefore do not
require such random access methods anymore. Hence, the round simply consists
of a transmission of the schedule, subsequent data slots and the distribution of
the schedule for the next round as shown in Figure 3.2.

This new round structure is only directly influencing the communication pro-
cessor. The highly time sensitive nature of Glossy [13] requires tight synchroniz-
ation between CPs and therefore requires precisely controlled and deterministic
executions.

Figure 3.2: Compared to Figure 2.2, the contention slot was discarded and the
schedule computation time was reduced by simply fetching a new schedule from
the AP instead of calculating one from scratch.
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The behaviour of the AP on the other hand has been designed to be as obli-
vious to the external network as possible. This decouples the execution on the
processors and makes the design much simpler and less error-prone. The applic-
ation processor does not have to follow a strictly timed or fixed schedule, but
runs independently of other entities and simply reacts to messages received from
the CP.

While there are no messages in the incoming BOLT queue, the host’s AP pro-
cesses its internal request queue & calculates an updated schedule after dispatch-
ing each request.2 In the case of incoming messages from the CP, BOLT will
trigger an interrupt on the AP, whose handler quickly returns with the requested
result. Because the cycle on the AP runs independent of the network, the tasks
on the AP are not relying on tight synchronization with any other, possibly time-
triggered process and can therefore run irrespective of the state of other nodes.
Furthermore, it is oblivious to the point in time when the schedule is fetched;
this trait can be exploited as we will see in section 3.4.2.

A central feature is the pre-computation of a valid schedule. This guarantees
that a schedule request via interrupt can be handled immediately by the AP.
Furthermore, the time required to fetch a schedule from the AP is completely
independent of any other parameters such as the size of the data structure, the
number of streams or the actual traffic parameters. Even though those factors
strongly influence the time required to calculate a schedule, all calculations are
performed before the request was received and do not depend on the actual
timing of the interrupt. This further allows complete decoupling of CP and AP,
as both can process their tasks independently and simply communicate when
required. As this happens over BOLT with a non-blocking write, the CP must
not wait for the response and can continue normal execution.
Reducing the effective schedule computation (or rather fetch) time for the CP
achieves both increased energy efficiency and additional network bandwidth. As
source nodes need to wait for the schedule and cannot conduct other operations
such as sleeping, waiting for a single point in the network otherwise reduces
the scalability of the system. Furthermore, for a given fixed round length [4],
decreasing the schedule computation time improves the available bandwidth by
increasing the maximal number of data slots schedulable in one round [3].

3.3.3 Inter-process communication

BOLT provides both options to either deliver packets using interrupts or let
the connected processors poll the queues at their leisure. Interrupts provide the
fastest access time [22] and only require resources when a message is actually

2See section 4.3.2 State machine for a more detailed description of the involved state machine.
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present. However, one needs to be careful not to disrupt time-critical phases
such as the active transmission and reception between nodes. Therefore, care
has to be taken when designing the message passing between the two processors.

CP → AP

The AP on a source node is not obligated to read the BOLT queue at given
points in time. As a destination node of a stream, it merely guaranteed to flush
the queue at a given minimal frequency in its DRP contracts. However, it is not
further bound in its reaction time and can therefore decide individually when it
is best suited to poll the incoming BOLT queue; this can be scheduled to limit
the disturbance on its application process. Therefore, interrupt-driven delivery is
not required in such a case, but still offers a viable option for a system designer.

Figure 3.3: For the standard implementation, the schedule is fetched at the usual
LWB location. As the absolute point in time of the request is not relevant for
the AP, this can be adapted to specific application requirements.
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For the AP on a host node, we leverage interrupts to achieve a schedule fetch re-
quiring minimal latency. As previously mentioned, the schedule is pre-computed
and simply has to be fetched. This interrupt routine returns promptly and only
temporarily halts normal AP executions. However, it is important that the
design preserves a correct internal state and prevents the interrupt routine from
directly accessing temporal data and corrupting the data structures.
Our design achieves this using an alternating buffer which stores the most re-
cent schedule. While such a structure allows interrupts at any time without
any impact on the current calculations, it also serves as an indirection layer to
prevent direct (and possibly violating) access to the underlying data structures.
Furthermore, as the schedule is directly available in the AP’s cache and does not
require any further computations, the look-up is highly efficient [27].

Figure 3.4: The Host’s AP stores incoming DRP requests in a request queue and
processes them according to its independent state machine. After the request
has been dispatched, the updated schedule is written into an alternating buffer.
This buffer can directly answer a subsequent schedule fetch request from the CP.

A similar concept has been chosen for processing DRP requests. An incoming
interrupt simply adds the request to a request queue to keep the duration of in-
terrupt routines to a minimum. This method always keeps the incoming BOLT
queues flushed and leaves the timing of the dispatch up to the AP. The AP can
then process them one after the other during its normal application loop, re-
specting their order of arrival and preserving the guarantee that a valid schedule
will be available at any time (see Figure 3.3).

AP → CP

As the CP’s communication is highly time-sensitive and does not tolerate any
delay, it is of outmost importance to prohibit any interruption during the active
phase. Therefore, interrupts are disabled during the transmission of the schedule
and while data slots are scheduled.
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During the inactive phase of the round (see section 2.1.2), the CP is in sleep mode
and wakes up to read pending messages out of the outgoing BOLT queue. This
guarantees that the processor is only awake when data is available (improving
energy-efficiency) and that the BOLT queue is empty at the beginning of the
round, as all messages have been read as soon as they arrived.

If the schedule is fetched at its standard location during the active phase (see
Figure 3.3), it is important to be aware of the fact that the BOLT queue might
already be partially filled. As the AP can produce new messages while the CP
is communicating, the response to the schedule request might not be the only
packet in the queue. Therefore, for the subsequent schedule fetch, the CP needs
to send the request and immediately start flushing the BOLT queue. In the case
of numerous messages, fetching the schedule may involve a limited delay larger
than the round-trip time itself.

As the host is mainly concerned with receiving data, the possible number of
outgoing messages is highly limited and primarily consist of responses to DRP
requests. Those responses are upper-bounded by the maximal number of slots in
the previous round and the number of scheduled control flows, limiting the actual
delays. Furthermore, requests are usually processed directly after receiving them
in the inactive phase and are in practise mostly already dispatched. Nevertheless,
if fast responses are of prime importance, the schedule can already be fetched
before the start of the round where the BOLT queue is constantly read and
therefore cannot build up queuing delays.

3.4 Design choices

During the project, various choices had to be considered and evaluated. In this
section, we highlight the underlying reasons behind some of the mechanisms men-
tioned above and show how the protocol can be adapted for specific installations
by a system designer.

3.4.1 Task distribution

During the processing of a DRP request on the source and destination nodes,
both AP and CP are involved according to the original paper [2]. However,
this separation comes into conflict with the principal idea of the DPP that the
CP’s sole purpose is communication. As DRP is a control protocol and therefore
resides in the application layer, this task is better suited for the AP due to its
superior processing power and memory. Performing the test on the CP would
require application-layer dependent state and state management which shifts the
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focus of the processor and might corrupt the tight time synchronization required
on that platform.
Therefore, we decided to directly calculate all test on the AP as proposed by the
DPP. As the AP must already keep state for the DRP protocol and requires the
exact same amount of memory for both CP and AP tests, this additional test
adds only a negligible overhead. Furthermore, as the host is always one of the
involved party in any stream and the host AP’s primary function is the execution
of DRP protocol in any case, such checks are precisely what the application pro-
cessor is designed for. Due to its reduced energy consumption during execution
compared to the CP, such a task distribution also minimizes the required power
(see section 7.1 Technical specifications).

3.4.2 Round structure

Due to the basic principle of DRP to rely on control flows instead of conten-
tion access to send requests, the contention and stream-acknowledge slots of the
original LWB are redundant. This further implies that the schedule sent at the
end of the round does not depend on a stream request sent during the round
and can therefore already be pre-computed. As the maximal number of new
stream requests is directly proportional to the number of slots in a round, the
total processing scales with the round length. To prohibit such a coupling, the
straight-forward approach to dispatch requests as soon as they arrive (i.e. during
the active phase) was dismissed.

Fetching the schedule from the AP occurs via an interrupt as described in sec-
tion 3.3.3 Inter-process communication. This does not require synchronous clocks
on both processors and allows the AP to process as many requests as possible
and then immediately and timely deliver the required schedule to the CP when it
needs it. The AP will write all arriving requests into a circular request buffer and
leave the interrupt routine. If the request queue is not empty after the interrupt
routine, the AP will start processing requests and calculates the new schedule
using the altered stream set. After the calculation, it will write the resulting up-
dated schedule into an alternating buffer; this procedure prevents any corruption
of the internal state. Such an incident might otherwise happen in cases where
the AP writes into its internal buffer during processing and therefore temporary
alters the properties of the streams while an interrupt routine for fetching the
schedule arrives and has to be served based on inconsistent data.

The pre-computation renders the design independent of the actual point in time
where the schedule will be fetched by the CP. After a schedule fetch request has
been served at the AP, the next schedule is directly computed and updated in
the buffer. Therefore, the AP ensures that the CP is always able to fetch a valid
schedule, even if it might not yet have been able to process all recent requests.
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This makes it possible for the CP to freely choose the exact moment when it
would like to receive the schedule of the next round:

• Start of round: As the schedule will never include requests which are
received during the present round as discussed above, all the necessary
information for the computation of schedule Si+1 is already available at
the start of round i. Hence, it is possible to fetch the schedule immediately
before the round starts as visualized in Figure 3.5. Because the schedule is
at hand on the CP, it can be sent directly without waiting for a packet from
the AP. This reduces the time of the active phase for the entire network
and can therefore improve energy efficiency. Furthermore, it is possible to
send only a single schedule at the beginning which already includes the
current round duration so that the second schedule (see Figure 3.2) can
be omitted. This further enhances the energy per data bit and allows a
higher data rate for a given active phase length [3]. Such a condensation
does however come at the cost of reduced reliability, as the redundancy of
the original design (Figure 2.2) was stripped away.

• End of round: The distribution of DRP request occurrences is also a
crucial factor. If one expects burst behaviour with many requests arriv-
ing simultaneously and demands to process them as quickly as possible, it
might be favourable to fetch the schedule at the standard implementation
(see Figure 3.3). The delayed fetch gives the AP more time to process
newly arrived requests concurrently with the ongoing communication and
will therefore result in a schedule which already includes more recent in-
formation. This additional computation time increases linearly with the
maximal number of slots per round. In case the active phase is severely
restricted, the gain would be negligible and the first option might be prefer-
able due to its improved efficiency.

The indifference of the AP to the point in time when the fetch occurs allows for
a large amount of flexibility for a system designer employing DRP, as he can
choose whether to prioritise small active round lengths delivering high efficiency
or more up-to-date information by providing longer computation time. If the
host should perform further services than merely as a network scheduler, it is
advised to use the first option (fetch before the round), as this guarantees that
the BOLT queue is empty and the requested schedule can be received without
further delays. Otherwise, one would have to delay the entire active round period
by a complete BOLT flush time as the interrupt handling of the Bolt queue on
the CP side is disabled during communication. This can lead to an accumulated
queue which might contain other messages such as data packets.3

3In the current implementation, we decided to use the general case of a limited host which
only serves as a network scheduler and fetches the schedule at the end of the round. This only
required minor changes as it conforms with the existing LWB implementation.
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Figure 3.5: If energy consumption is an absolute priority, the schedule can also
be fetched at the start of the round as opposed to at its end (compare with Figure
3.3). However, this might result in delayed request processing, as the AP has
less time in-between receiving new requests and the fetch of the next schedule.

3.4.3 Interrupt handling

DRP requires flushing at regular intervals and determines such minimal periods
during contract mediation. In our design, we opted for interrupt-driven message
passing on the CP and the host AP, as both entities are exclusively used for
executing the DRP protocol and intend to primarily limit energy consumption
otherwise.
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The communication processor is solely responsible for sending and receiving
messages over the network. As it must not be disturbed during such actions,
neither interrupts nor polling must occur during this period. Outside of the
active phase, it would in principle be possible to employ a polling mechanism.
As such constant “busy polling” prevents the system from going into sleep mode
and would therefore force it to remain awake even during the entire inactive
phase, such an implementation is extremely inefficient. Therefore, we chose to
simply disable interrupts during critical periods, i.e. during communication, and
otherwise enable them for quick and efficient flushing of the incoming queue.

The application processor on the host is currently only tasked with schedul-
ing and exclusively reserved for DRP. As a timely and efficient interaction with
the CP is therefore its main goal, interrupts provide an optimal way of immedi-
ately reacting to requests. In principle however, the AP could also perform other
tasks; nevertheless, as schedule computation must always remain a priority, the
schedule fetch would still have to be handled by means of an interrupt routine.

The application processor on a source node should in general use polling
to limit interference between the processing of DRP packets and its normal func-
tionality. As its tasks are very application-dependent and therefore require ad-
aptations to the specific circumstances and scheduling requirements, the internal
scheduling of the AP is not controlled by DRP. The control logic of DRP does not
depend on either interrupt or polling and timing behaviour has to be examined
and guaranteed in regard to the specific application.4

4At present, the implementation provides both code for polling and interrupt-based reading.
For the proof-of-concept, we employed interrupt-driven delivery for all APs to simplify the code
structure.
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Implementation

While the abstract system design has been detailed in the previous chapter,
the following sections present the proof-of-concept implementation on physical
hardware and demonstrate some of the practical aspects of DRP.
First, we identify the tools and platforms used to build an implementation which
allows us to achieve the aims of DRP. The later sections treat the communication
scheme and the internal components such as the state machine and employed
data structures.

4.1 Means & methods

To implement the design on physical hardware and build a proof-of-concept
system, we employed the Dual-Processor Platform developed at the TEC group
of ETH Zurich [19]. The first-generation DPP features a TI MSP432P401R as an
application processor and a TI CC430F5147 for the communication processor.
The platform uses Contiki 2.7 [20] as an operating system and was forged from
the LWB-DPP branch on Github [21]. The programming code has been written
in the C programming language and builds upon previous work by Walter [22]
for communication aspects and Acevedo [23] for the BLINK implementation.

Figure 4.1: The DPP consists of a CP (left), BOLT (middle) and an AP (right)
which are all placed on the same circuit board.

29
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For the networking aspects, we used the FlockLab testbed [24] run by the TEC
group [19] which consists of 30 observers and can be accessed over the Internet
[25]. It provides GPIO tracing and actuation tools and offers highly precise
timing information in the low microsecond range [24].

4.2 Communication structure

The communication structure and its implementation is based on work by Walter
[22]. We redefined the message header definitions and grouped them for improved
readability (see section 7.1 Technical specifications).

As described in the previous chapter, CP and AP have their own, independent
task cycles. The only directly coupled interaction between the two processors
happens on the host node during the fetching of the schedule. Using BOLT, this
could still be achieved as an asynchronous message-passing scheme. Neverthe-
less, due to the importance of the packet, the CP cannot proceed without it and
will postpone further execution by going into a low-power mode while it waits
for a response.
To prevent the CP from being stuck in case the packet gets dropped due to
malfunctioning of BOLT or because the AP behaves erroneously, it will auto-
matically wake up and continue executions after a fixed time. The CP will then
transmit an empty schedule with period 0, as it did not receive a valid one from
the AP. For this case and as a fall-back if the scheduler should otherwise misbe-
have, any CP validates its received period. Such a check is critical, as a period of
zero will cause the CP to set a timer whose wake-up time lies already in the past
before going to sleep during the inactive phase. As this would provoke indefinite
sleeping, all communication would be halted and the system could never recover
from such a missed schedule. Therefore, if such an anomaly is detected, the node
will automatically overwrite the period with a hard-coded duration of 2 seconds.
With this identical procedure on both source and host nodes, the network still
preserves its synchronization and can cope with faulty or missed packets.

4.2.1 Bootstrapping

Whereas the dependency of the CP on the AP was discussed above, we wanted to
avoid any direct coupling of events in the other direction. This was deliberately
avoided to prevent any preemption of user applications happening on the AP
and run them asynchronously from the network and other applications. For
synchronization purposes however, the AP holds its execution and waits for
the HEADER INIT packet during bootstrapping. This initial information is
required, as its content determines the actual function of the node in the network:
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Depending on the ID defined at compile time or allocated by FlockLab, the node
either initializes itself as the host or becomes a normal source node. For this
distinction, the received ID is compared to a hard-coded host ID.

During initialization, the memory buffers for all control streams are allocated in
advance. For source nodes, this only concerns two streams with outgoing and
incoming control information, respectively. The host node on the other side re-
quires knowledge of the precise count and IDs of source nodes in the network
and will allocate two streams for each of them. To achieve this, the list of source
nodes is currently hard-coded just as the host ID (see section 6.2 Future work
for suggested adaptations).
The maximum number of streams needs to be known in advance, as dynamic
memory allocation can cause issues on the application processor and is not sup-
ported in the current implementation. Currently, 40 concurrent streams are
supported and can be stored by the CP of any node. As all streams have the
host node as one of their end-points in the current design of DRP (see section 2.4
Distributed Real-time Protocol), the host node experiences the maximal load and
limits the scalability of the system (see section 5.1.1 Scalability for more details).

Before the host can allocate memory for each control stream, it needs to first
check their schedulability. As these streams are treated by BLINK just as any
other ordinary one, neglecting this test could cause a corrupted internal state
from the beginning. However, if the control streams are not schedulable, DRP
cannot function properly. Therefore, making sure that at the least scheduling all
control streams is feasible is a necessary condition before any system deployment.

4.2.2 Packet types

In this section, we briefly introduce the different packets and their functionality.
For a more detailed description of different header types and their corresponding
definitions, see section 7.1 Technical specifications.1

All packets are defined by their type and have a fixed length, an exception being
the SCHEDULE packet which varies according to the number of scheduled slots.
For transmission between APs, the type as well as the correct length are stored in
a prepended HEADER part which is only stripped away at the end-point. Notice
that this header is also necessary for all BOLT communication, as BOLT might
append bytes due to its SPI characteristics and return an excessive number of
bytes. This given length parameter however is always correct and therefore offers
more accurate information.

1All packets belonging to BLINK and DRP are implemented; however, packet types specific
to BLINK which are not used for the implementation of DRP are in the following omitted
to enhance the readability and are available in the original implementation paper of the first
outsourced scheduler [22].
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Figure 4.2: The HEADER, consisting of a prefix containing type & length of
the packet as well as a suffix, is used for all communication between APs and is
wrapped around any of the following payload packets.

Figure 4.3: The INIT packet simply transfers knowledge about the current ID
of the node from the CP to the AP. This information is critical, as it further
defines whether a node is a host or source node at run-time.

Figure 4.4: The SCHEDULE REQUEST packet is a feature of the outsourced
scheduler and exclusively contains debug information. Its arrival however is
important, as it triggers a reply in the form of a schedule which is sent to the
CP to be distributed throughout the network.

Figure 4.5: The SCHEDULE packet is the only one with variable length, as
the number of bytes depends on the number of scheduled slots. For backward
compatibility with BLINK, the stream and host-stream acknowledgements are
still sent correctly.

Figure 4.6: The DRP REQUEST packet contains all information included in the
contract. Note that only the end-to-end deadline is sent, as the network deadline
can be calculated deterministically from the given values.
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Figure 4.7: The DRP RESPONSE packet sends either an ACK or NACK back
to the source of the request along the same path as the request. Notice that it
might be that this packet arrives after the new stream was already scheduled.

4.2.3 DRP Request & Response

The original DRP paper [2] introduced the notion of requests which are sent
from source over the network manager to the destination (see Figure 2.5). As
the network manager resides physically on the host node which is always one of
the two end-points of a stream, the request packet (see Figure 4.6) only visits
two physical nodes and is always only sent directly from source to destination.

After the request has been dispatched by the destination node, the knowledge
about the agreement of source, network controller & destination to accept the
stream needs to spread to all involved parties. For this purpose, a response packet
(see Figure 4.7) is sent back, following the reverse path of its corresponding
request to reach all involved components. Those components will then fulfil their
contractual obligation by setting flush times accordingly and allocating memory.
In practice, it is beneficial to execute such a step already before receiving a
definite answer, as this makes sure that all guarantees can already be kept for
the very first packet.
In the case of a negative decision, such a definite response can already occur at
an earlier stage as soon as it is rejected and does not have to propagate through
all stages required for acceptance, i.e. up to the destination node.

If the network manager happens to reside at the destination, it is the first one to
know about an accepted stream and might already start scheduling it before the
corresponding control stream could transport the response packet to the source
node. Therefore, a stream is already implicitly acknowledged when it is included
in a schedule and the source node will react just as if it already received the
response.

Important: Network deadlines which are included in a request must be a mul-
tiple of the round time in order to use BLINK. Otherwise, BLINK’s assumptions
[3] are violated and scheduling can result in erroneous behaviour, as the given
guarantees cannot be kept anymore. Therefore, the network scheduler will always
floor the calculated network deadline to a multiple of the round time.
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4.3 Embedded Systems programming

As platforms in embedded systems possess only limited processing power and
memory, it is important to design the system under the given constraints and
keep implementations efficient. In our case, it was especially important to op-
timize the potentially time-consuming tasks such as the schedule computation
and the admission test. As LWB is time-triggered (see section 2.1 Low-power
Wireless Bus), those functions need to return within given bounds as the com-
putations underlie internal hard real-time constraints and are useless if they do
not finish in a given time.

4.3.1 Data structure

For the implementation of the BLINK scheduler, we employed bucket queues
as proposed in the original paper [3] for efficient calculations of the schedule
and the admission test. To avoid a complete deep copy of the state and decrease
memory requirements, the notion of truncated streams was taken from an existing
implementation of BLINK [23] to allow temporary alterations of state data.

Size of storage

While the CP relies on a 16bit SoC [26], the processor on the AP is based on
a 32bit architecture [27]. Therefore, most local variables are defined as 32bit
integer values for fast computation; for any other size (even smaller ones), the
processor needs to convert them first internally to 32bit values before executing
the instructions, resulting in very inefficient computations. As those variables
have a limited scope and are only used directly during the function execution on
the stack, the involved memory overhead is negligible.

For the storage of non-volatile data such as the internal state of the scheduler
and the involved streams, memory is the main constraint on the scalability of
the system. Thus, we optimized the implementation towards efficient memory
usage and only allocated the actually required variable sizes. To keep the timing
accuracy of the design high, we opted for 16bit integers to store relative tim-
ing information in milliseconds. As such a memory block can only store up to
65535 different values, all periods, deadlines and jitter parameters have to be
kept strictly shorter than this maximal value to prevent buffer overflows (i.e. in
numbers less than 65’000 milliseconds). Notice that for absolute timing inform-
ation such as the start time of a round, we require the higher capacity of 32bits,
as such values can easily exceed 65535 if the application duration exceeds one
minute.
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The packets (see section 4.2.2 Packet types) are designed to preserve this accuracy
even when sending values over the network. While we utilize similar packets as
in [22] where the storage was overdimensioned for seconds precision, we now use
the full potential of 16bit integers and send information with a high accuracy in
the milliseconds scale. This preservation further facilitates the implementation
and makes it less prone to programming mishaps, as the same time scale is used
throughout the system. If parameters with a duration of over a minute should at
some time be required or the packet should be shortened, one can switch back to
seconds precision for the transmission over the network at the cost of accuracy.

All state-related memory allocation occurs during the initialization and cannot
utilize dynamic memory allocation, as such an option is not supported on the
current hardware. Therefore, the maximal number of streams, buckets and con-
current incoming requests needs to be known at compile time and is fixed.
While all incoming requests are added to a queue of fixed size and therefore al-
low multiple simultaneous requests, each node only possesses maximally a single
pending outgoing request. This also counts for the host node and therefore does
not require separate memory allocations depending on the role of the node. As a
host only rarely requests new outgoing streams due to its function as a gateway
for all source nodes (see section 3.1 Problem setting), it is not necessary to in-
clude the option of sending multiple requests simultaneously from host to source
nodes at any given time.

State conservation / transparency

The BLINK scheduler (see section 2.2 BLINK) does not integrate the concept
of schedule pre-computation in the original design. Therefore, the internal state
of the scheduler is permanently affected each time such a schedule is assembled
and time counters are iterated by the calculated period. This effects both global
variables such as the start of the round as well as local ones such as each scheduled
stream because their release times are altered.

In DRP, multiple schedules for the same round may be calculated when the
stream requests are processed, as each such request may alter the demands on
the current round and changes the stream set. Therefore, the schedule is updated
to prevent stale data in the buffer. After each DRP request is processed, a
new schedule is written into the alternating buffer (see Figure 3.4). During the
allocation of the slots, the bucket queue and the state of the stream set are
altered for scheduled slots as their release times have been modified. Because
this schedule might not actually be fetched from the CP and the subsequent
requests require to see the same state as before to maintain transparency, those
changes must be reverted immediately to prohibit lasting inconsistencies.
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A simple and save implementation to achieve such transparency is the creation of
a deep copy of the entire bucket queue and the stream states before each request
is processed. As this method is not scalable for large numbers of streams and
performs poorly in terms of memory efficiency and processing power, we opted
to use an alternative variant.
By leveraging that only the streams which are scheduled see a change in their
permanent properties (as all other changes during admission tests and schedul-
ing occur on the temporary, truncated data structures), we use the produced
schedule itself to revert the transformation. By retracting the shifted release
time and restoring its place in the bucket queue accordingly, every stream will
again take its former place. Therefore, for subsequent stream requests, the entire
state seems just as before the current processing took place.

Care has to be taken when a valid schedule is finally fetched by the communic-
ation processor. As any changes which occurred during the calculations were
reverted as described above, the state of the actually scheduled streams must
now again be updated. Therefore, the previously reverted changes have to be
re-applied to take effect. While this might seem redundant, such a process is
necessary to preserve uncorrupted state information as the application processor
is completely oblivious to the point in time when the next fetch will occur.
To prevent concurrency issues from happening, the interrupt routine will simply
store the fetched schedule locally and notify the application processor to handle
the changes after it has finished with a potential request handling. Any schedule
computed during the schedule fetching for the old round might still contain in-
valid (as stale) data and will therefore be discarded upon completion in any case.
The handling of the state adjustment outside of the interrupt routine further-
more guarantees that the schedule fetch can return without any delays dependent
on the current situation on the application processor.

The above mentioned techniques guarantee that state is preserved at all times
and cannot be corrupted. They additionally enable the timely execution of the
communication rounds, independent of any platform parameters such as the
length of the bucket queue which affect the duration of the state corrections.
As mentioned in section 3.3.2 Round structure, this keeps the active part of the
round as short as possible and minimizes energy requirements.

Array handling

In the current design of DRP, it is not possible to revoke a stream and release its
resources. However, the implementation presented in this thesis already incor-
porates the required functions fur such an extension and allows for the deletion
of streams both in the DRP and the BLINK stream state. As the stream set is
stored in an array of fixed length (and not e.g. a linked list), deletion will result
in “holes” in the used part of the array where streams were previously stored.
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An array can be managed in two fundamentally different way:

• Always preserve a cohesive data part without any gaps and separate, sub-
sequent free space where new streams can be added. Such an implement-
ation guarantees that every array cell in the data part contains a valid
stream and simplifies iterating through the stream set. However, it re-
quires that every time a stream should be deleted from the memory, the
last used element of the array must be copied to its place in order to keep
consistency. Furthermore, as the bucket queue relates to absolute addresses
inside the array, it might be that pointers at various locations will point to
wrong stream entries after an unexpected “delete” operation, which further
increases the system complexity and requires extensive state corrections.

• Keep filling the array and adjusting a pointer to the next free cell accord-
ingly (pointer free stream id). With this second implementation, we have
to potentially iterate through the entire array in order to find a given stream
as streams can be spread throughout the address space. To prevent this,
the method is optimized to only search maximally until all valid entries
were visited and then abort. As deletions will only occur rarely and there-
fore data is still rather cohesive, such a search will not perform significantly
worse than the first proposition. Nevertheless, as such stream searches have
to be performed once every schedule computation and an additional two
times for a potential admission test, those operations can be rather expens-
ive. Furthermore, they have to be executed every round, whereas former
implementation only involves a one-time investment of copying the data.

We chose to use the latter option due to memory write issues. On certain hard-
ware, writing into memory takes orders of magnitude longer than reading (see
[23] on SRAM). As deletions are currently not used and we do not expect a large
number of occurrences in future projects, such an implementation is simpler
and does not require the error-prone alteration of various pointers distributed
throughout the bucket queue.

4.3.2 State machine

While the CP follows a time-triggered schedule according to the LWB round (see
section 3.3.2 Round structure), the AP is decoupled from the communication.
On the AP of a host node, a state machine defines the task routine and current
calculations. Its primary function is to guarantee that a pre-computed schedule
is always available and that the request queue is processed if enough time is
available. Due to its reliance on states, each event such as interrupts triggers
clearly defined functions depending on the current situation.
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Figure 4.8: The state machine on the application processor consists of four
primary states which are passed one after the other in a cyclic fashion.

As can be seen in Figure 4.8, the system is primarily in either one of four states:

• WAITING: Residence in this state indicates that no valid schedule has
yet been computed. This might be either because the system just started
or signals that a schedule was just fetched for the previous round and a
new round has started. It is of outmost importance that the processor
only resides in this state for a short time (e.g. to finish up ongoing request
dispatching) and immediately starts the computation of the schedule for
the next round.

• PROCESSING: This state signals that the processor is currently cal-
culating a new schedule, but did not yet finish a valid scheduling for the
current round. It is mainly used for debugging purposes, as an interrupt for
schedule fetching arriving in this state indicates that schedule computation
either started too late or exceeded the maximal computation time.

• READY: While there already exists at least one valid schedule which is
available in the alternating buffer, it might be that the request queue is
still filled and multiple stream requests are waiting to be processed. The
AP simply dispatches them one after another as long as the pre-computed
schedule is not fetched yet. At the end of each dispatch, i.e. after writing
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the updated schedule into the buffer, it will check whether it still resides
in the READY state; if an interrupt occurred in the meantime, the state
will have switched to WAITING. If no such interrupt emerges, the system
eventually signals a completely empty queue by continuing to the next
state.2

• DONE: Similarly to PROCESSING, this state primarily serves for debug-
ging and is only observable by the interrupt handler. It is the final state
of any round and symbolizes that all requests were dispatched and the
schedule for the next round is readily available in the buffer. As there are
no more actions to be conducted in this state, the processor will go into
a low-power mode and wait for the interrupt handler to wake it up again
when new information arrives.

The transition between states can occur either due to processor-internal events
(e.g. the start of the first schedule computation between WAITING and PRO-
CESSING) or is triggered through external events signalled by an interrupt (e.g.
that a schedule was fetched by the CP for the transition from DONE to WAIT-
ING). Nevertheless, such outside parties will never directly affect computation
with immediate effect, but simply serve as input to the state machine which
controls the behaviour of the AP. Therefore, the AP remains in full control of
its actions and preserves its asynchrony.

2While the state machine will return to WAITING after a schedule was fetched, it does so
without preempting the on-going admission test of a request to prevent state corruption. If
the admission tests should take an unexpected long time due to a complex stream set, it might
be advisable to implement immediate preemption directly from the interrupt handler of the
schedule fetch.



Chapter 5

Evaluation

To analyse the real-world performance of the developed system, we tested the
implementation on the hardware platform as described in section 4.1 Means &
methods. In the following, we present both local evaluations directly measured
at the physical node and tests over an extensive network called FlockLab [24].
Our investigation shows that DRP can keep all its guarantees and scales well. We
demonstrate that even under high loads, the system delivers all packets according
to their deadlines and provides quick responses to stream requests.

5.1 Local tests

While the main performance parameters are only observable over a network of
multiple nodes, it is still important to consider the capabilities of the individual
nodes and detect possible hardware limitations. For this, we investigate the
maximal number of streams which can be stored on the processors and inspect
the duration of a schedule computation on the AP.

5.1.1 Scalability

The number of streams which can be stored is limited by available memory.
As the memory is allocated during initialization and cannot be dynamically
requested, the current hardware does not enable us to redistribute memory space
on the fly and adapt to the current circumstances. This would be especially
favourable on the AP, as both the array for storing the state of the streams and
the request queue are contending for memory.

The sizes of buffer queues and array cells used for an individual stream or stream
request varies for both CP and AP, as they store different data. While the AP
conserves the streams properties previously received through a contract, the CP

40
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Memory size
Communication
Processor (CP)

Application
Processor (AP)

Total RAM 4000 64000

Available RAM 2400 45000

Used per stream 23 + packetSize 45

Used per request 0 15

Table 5.1: The amount of available memory was directly retrieved from the
image which is uploaded to the processors and is given in bytes. The number
of streams which can be stored on a node strongly depends on the size of the
packets and the required request queue length.

only prepares an outgoing buffer so that packets read in serial from BOLT are
available in parallel for sending over the network [22].

We observe in Figure 5.1 that the AP can be strained without major restrictions
even for large networks and hundreds of streams. The number of streams on
the CP however drops below ten if the maximal BOLT packet size of 256 bytes
is fully utilized. By extending the available RAM using external memory of
128 kBytes, this restriction on the CP can be avoided. Therefore, the current
hardware generation is already capable of multiple hundreds of streams even
when sending packets with maximal length.

Figure 5.1: On the left, we see that the AP is only marginally influenced by
the size of its request queue in the number of supported streams. On the right,
it becomes clear that the current implementation (blue) can only store fewer
than 40 streams for reasonably sized packets, whereas an extension (green) lifts
this limitation. The red horizontal line represents the current design parameters
(32B messages, resulting in a maximum of 40 streams).
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5.1.2 Blink scheduling

The duration of the slot allocation is highly deterministic and does not depend
on the traffic requirements of the streams, but only their number. However, the
computation of the start time of the next round is complex, as it must compute
the minimal slack time available for the system (see section 2.2 BLINK).

The length of the schedule computation is not directly influencing system per-
formance, as we decouple the computation and the fetching of the schedule (see
section 3.3.2 Round structure). The buffering of the schedule does however only
function if the scheduler is already pre-computed and readily available. There-
fore, keeping the computation time below the duration of a round is critical for
correct functioning and for guaranteeing that deadlines are met.

The computation time of the schedule strongly depends on the given stream set.
Due to the underlying concept of the minSlack computation, even a large number
of streams with a similar period can take only a small time to compute, as the
synchronous busy period is small; however, if one uses a small number of streams
with periods consisting of differing prime factors, this can increase exponentially
[3]. The companion report to the original BLINK paper [3] offers a detailed test
setup and includes a reasonable stream set. Therefore, such a stress test of the
scheduler needs to be performed with care in order to yield meaningful results
and must include various streams of different periods.

We have striven to measure the duration of the schedule computation under
various levels of utilization. For this, we simulated a fixed number of admitted
streams and adjusted their periods so that they would total in the desired total
utilization. The stress testing is fully implemented, readily available in the code
base and can be easily adjusted for the number of streams and the step size
in-between utilization levels. However, due to an issue with using more than
a certain percentage of the AP’s memory on the current platform, it was not
possible to observe the desired measurements.

5.1.3 DRP Request processing

In contrast to the duration of the schedule computation, the local processing
time of a stream request is only of minor importance as the AP can take its time
and does not have to be finished within a certain deadline. In theory, such a
computation could even occur over multiple rounds for extremely complicated
stream sets. In practice however, we measured a maximal computation time of
130ms for a stream set of 30 streams used later-on in the networking tests (Table
5.2). With a minimum processing time of 30ms and a median time of 54ms, we
are however clearly below that value for most computations.
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To obtain numbers representing the actual responsiveness experienced by the
source nodes, we must consider the entire process of sending the request over the
network using the control streams and then receiving a reply from the host in the
returning stream as done below instead of only focusing on the local performance.

5.2 FlockLab

5.2.1 Setup

Our DRP implementation was tested on FlockLab [24]. We employed 11 nodes
distributed over an area of 1’000 square meters (see Figure 5.2). The nodes
consist of multiple first-generation DPPs and can be accessed and configured
over the website [25]. Both Serial output and GPIO traces can be observed and
stored for post-processing and analysis of the experiments.

The Serial output includes a timestamp created by the infrastructure itself which
offers highly precise timing accuracy in the range of microseconds [24]. We
leverage these records to generate exact and tightly synchronized measurements
of run-time latencies and round-trip times.

Figure 5.2: The FlockLab nodes are distributed throughout the ETZ building of
ETH Zurich. On the left, we see the host (red) and the 10 source nodes (blue).
The right figure shows a single node with the DPP framed in red.
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5.2.2 DRP Protocol

As traffic demands change and source nodes need to adapt their streams, it is
important to investigate the responsiveness of the host to such requests. While
control streams should be scheduled as often as possible to decrease the involved
latency, the control overhead and therefore resulting utilization drop for data
packets results in a trade-off between efficiency and responsiveness.

Processing time

The processing time of the request itself on the host’s AP is negligible in com-
parison to the network delay, as can be seen by comparing Table 5.2 and Table
5.3. It is interesting to see though that the processing time is rather stable
when using the tested stream set and only varies by a factor of maximally four.
Therefore, a source node can reliably reckon when its processed request should
again be available for the returning trip through the network and estimate the
resulting latency.

Low util Medium util High util

Utilization 41% 60% 92%

Median time 78.1 75.8 54.5

Minimum time 29.8 32.2 30.0

Maximum time 126.4 130.7 113.2

Table 5.2: Characteristics of the processing time of DRP requests on the host
AP in milliseconds.

Response time

The most significant figure for any control application is the latency between
action and reaction. For DRP, it is crucial to provide a minimal time span
between sending a request from a source node and receiving the definite reply
from the host. This is of particular importance for wireless networks, as network
links fluctuate and interference with other signals can vary strongly over time.
Only by delivering control information on time and adapt the control streams
to the environment can a feedback loop in a CPS (see section 1.2 Motivation)
remain stable and be used in an industrial setting.
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The management information in the control streams also requires resources and
allocated slots which will not be available for sending data traffic over the net-
work. Therefore, a trade-off between quick stream registration and high data
rates needs to be considered. We wish to minimize the interference of the con-
trol streams with the data streams by slightly prioritizing the data streams.
One way to achieve this while still guaranteeing all deadlines is by setting the
end-to-end deadline of a control stream particularly high while still keeping a
reasonable period. This gives the scheduler the freedom to fill up schedules in-
cluding unused slots with control streams by leveraging the high network dead-
line without additional energy overhead or occupying slots which could have been
used for data. Furthermore, we can capitalize on the shorter period of the data
streams to send control streams long before their own deadline is reached. There-
fore, we can even have round-trip times shorter than one end-to-end deadline
without paying any extra costs.

Empirically, we observe that as seen in Table 5.3, the maximal latency between
sending and receiving a packet is around three times the period of the control
streams for the given stream set. We also find that the return trip time from Host
to Source can be very fast if the incoming and outgoing streams are correctly
aligned to quickly send the response after it has been computed without having
to wait for another period (see section 5.3 Further testing).

Low util Medium util High util

Utilization 41% 60% 92%

Network S-H min 18.27 18.25 17.21

Network S-H max 34.27 33.21 33.17

Network H-S min 4.26 1.02 1.05

Network H-S max 14.87 14.87 15.96

Total min 23.58 23.60 23.58

Total max 47.09 34.29 34.27

Total max / period 3.14 x 2.29 x 2.28 x

Table 5.3: Characteristics of the latency on the network between sending and
receiving requests and responses in seconds. “S-H” represents the Source to
Host path and “H-S” the one from Host to Source.
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5.2.3 Packet delivery

To measure the arrival of data packets and compare the delivery time with the
corresponding end-to-end deadline, we sent 150 packets from each of the ten
source nodes to the host. During transmission, we experienced a common drop
rate of below 5%; for the formidable reliability of 99.9% arrival rate promised in
the Glossy paper [13], we would require a denser network and higher transmission
power. However, we also noticed very bursty packet drops. If packets were lost,
we observed a high probability that following packets were also affected. This can
happen due to temporal external influences and represents the typical behaviour
of wireless packets which are usually correlated over time [28].

Low util Medium util High util

Packets sent 1200 1200 1500

Packets received 1146 1142 1464

Packets dropped 54 56 36

Drop rate 4.5% 4.8% 2.4%

Table 5.4: All source nodes generated 150 packets each to send to the host.
The discrepancy in the first two tests leads from a (different) pair of nodes
whose request got either dropped on the path to the host or whose response was
dropped on the way back.

End-to-end deadline comparison

We observe that all of the nearly 4000 packets which arrived at the destination
were delivered before their deadlines and therefore met their traffic requirements.
In fact, they only used a maximal percentage of 65% of the end-to-end deadline
as seen in Table 5.5 which shows that the worst-case assumption of DRP is overly
pessimistic in the general case. However, performance can only be guaranteed if
the protocol is still successful even under the most severe circumstances.

The grouping of the packet arrival times at the beginning of the histograms in
Figures 5.3 can be explained with the short period of the data streams compared
to their end-to-end deadline. As the network deadline is maximally as long as the
period and local delays between AP and CP are generally small, the packets can
be delivered early most of the time. Furthermore, it might be that the control
streams trigger the scheduling of a round, which can then be filled with already
available data packets and therefore lowers the latency of the packets.
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Low util Medium util High util

Utilization 41% 60% 92%

Mean latency 13.7% 8.4% 4.4%

Median latency 14.7% 7.4% 4.1%

Minimum latency 1.1% 1.1% 1.1%

Maximum latency 58.2% 65.4% 40.7%

Table 5.5: Characteristics of the end-to-end latency of the data packets in per-
centage of the analytic bound.

5.3 Further testing

In this thesis, we address all primary objectives and demonstrate that the im-
plementation works as expected. Nevertheless, there is still room for further
investigations. For future work, we propose to analyse the following matters:

• Alignment of control streams: It would be interesting to test how
separating the start times of control streams from Source to Host and the
ones in the reverse direction impact and possibly benefit the round-trip
time. By scheduling the streams from Host to Source in a manner such
that the control stream with the request just arrived in the round before
and could deliver a potential request, we can return with the response as
fast as possible and therefore reduce latency.

• Scalability: Large stream sets can dramatically increase computation
time for both DRP request processing and the BLINK schedule compu-
tation. This needs to be analysed so that suggestions for appropriate LWB
round times can be given for a fixed maximal amount of streams (e.g. by
showing that a set of Z streams can maximally result in a schedule compu-
tation time of X, wherefore a minimal round time of X + Y is required).
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Figure 5.3: Low (top), medium (middle) and highest (bottom) utilization res-
ults in different packet distributions. For the presented figures, we exclusively
regarded the data packets and did not include the control packets.



Chapter 6

Conclusion & future work

After presenting the underlying system design in Chapter 3 and detailing the
construction of the implementation in Chapter 4, we then showed in Chapter 5
using networking tests on FlockLab that the implementation is sound and meets
all end-to-end deadlines. In this chapter, we conclude the thesis and give some
outlines on how one could extend the functionality of DRP in the future.

6.1 Findings

In this thesis, we implement the Distributed Real-Time Protocol (DRP) [2] on
a custom platform called Dual-Processor Platform (DPP). We alter the round
structure of LWB [4] and constrict the entire communication to deterministic
TDMA access. Furthermore, we leverage BOLT [1] to decouple communication
and application tasks. By using an internal request queue for DRP requests and
pre-computing the round schedule in advance, we reduce the interference of the
communication on the network scheduler to a minimum and therefore separate
the scheduler from the network.
Our tests show that DRP guarantees that all packets which arrive at the des-
tination meet their end-to-end deadlines. The network manager can respond
quickly to DRP requests and can serve up-to-date responses with a total max-
imal latency of three periods of the control streams. Even under a very high
utilization of up to 92%, the system performs well and delivers packets on time.
Furthermore, the system can easily scale to larger networks. The host node,
bearing the maximal load, is capable of sustaining multiple hundred streams in
its memory and can act as a centralized controller, as it possesses an overview
over the entire state of the network.
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6.2 Future work

Currently, information about unused slots is received at the application processor
in a special packet but is not further used for exclusion of admitted streams.
Implementing this would require a DRP Cancel mechanism to notify the source
that its stream will be cancelled due to inactivity. Furthermore, the specifications
currently allow a source node to maximally send at a given rate but do not enforce
a minimal frequency in order to reduce energy consumption if there is no data to
be sent. Therefore, the contracts in-between devices would have to be extended
to allow for one- or both-sided deregistration of a given stream, voluntarily or
enforced by the host. For the deregistration, functions for deleting streams at
the DRP and Blink layer are already implemented.

Another extension of DRP could include the reduction of restrictions on the role
of the host. While in the current design (as detailed in section 2.4.3 System
level), the host must be one of the directly involved parties, scalability could be
improved by allowing source nodes to communicate directly with one another
and skip the host as a relay node. As the network scheduler does not have
to be on the path between source and destination and is logically completely
decoupled from the network, this should be feasible but requires modifications
in the registration mechanism.

Because the round structure decouples the application and communication pro-
cessor, it is possible to adapt and extend the APs functionality. As an example,
it might be preferable to send specifically urgent DRP requests before fetch-
ing the schedule so that those streams might already be scheduled in the next
round. Such requests could simply be inserted at the beginning of the processing
queue and could trigger an automatic Bolt write after admission and schedule
computation, thus requiring only minor changes.

One shortcoming of DRP is its limitation to a fixed set of nodes known at compile
time. This restriction could be lifted by integrating a bootstrapping phase where
nodes might register themselves using a contention slot. Furthermore, it would
be useful to allow such slots at regular intervals to further increase the flexibility
and allow nodes to join the network even during steady-state communication.



Chapter 7

Appendix

7.1 Technical specifications

7.1.1 Hardware

We used the Dual-processor platform (DPP) developed at the TEC group of
ETH Zurich. It contains an MSP432 [27] as an application processor, a CC430
[26] as a communication processor and BOLT [1] as an interconnection to enable
asynchronous message passing as described in section 2.3.2 BOLT.

Communication
Processor (CP)

Application
Processor (AP)

SoC Name TI CC430F5147 TI MSP432P401R

Processor Type
ARM 16bit

Cortex M0 (RISC)
ARM 32bit
Cortex M4F

Max frequency 20 MHz 48 MHz

SRAM 4 kB 64 kB

Flash 32 kB 256 kB

Active energy
consumption

160 uA/MHz 80 uA/MHz

Sleep mode
consumption

1 uA 25 nA

Additional features Low-power wireless communication Floating-point unit (FPU)

Table 7.1: Technical specifications of the two processors used for the thesis.
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BOLT

SoC Name TI MSP430FR5969

Processor Type
ARM 32bit
Cortex M4

Max frequency 8 MHz

FRAM 64 kB

Inactive energy
consumption 430 nA

Throughput 1.5 - 3.3 Mbps

Message length 16 - 128 bytes

Table 7.2: The BOLT interface sitting between AP and CP is responsible for
asynchronous message passing.

7.1.2 Existing code bases

The algorithms for Blink are built as described in the original paper [3]. The
code in “blink.c” and “blink.h” is inspired by a previous implementation of Blink
on CC430 sensor nodes [23]. Unlike the CC430, the MSP432 used in this thesis
offers a much larger internal memory and does not require access of additional,
external memory units.

The communication is built upon previous work by Walter [22]. He intro-
duced the notion of multiple streams of a single node onto the platform and
extended the original LWB structure by fetching the schedule from an external
scheduler. However, in his works, the application processor is solely respons-
ible for relaying the request to a Matlab scheduler on an external computer.
“stream centered output buffer.*”, “defines outsource sched.h” and
“sched-outsource.c” as well as multiple changes in “lwb.c” have been used and
adapted in the present thesis.

7.1.3 Header types

In structure.h, the different header types and their corresponding packet struc-
ture are described in detail. The table below lists the header types and their
corresponding MACRO definitions.
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Decimal Abbreviation Byte size

1 HEADER INIT 1

2 HEADER DATA X

10 HEADER BLINK REQUEST SCHED 4

11 HEADER BLINK REQUEST STREAM 13

12 HEADER BLINK REQUEST HOST 9

13 HEADER BLINK DELETE STREAM 3

14 HEADER BLINK UNUSED SLOTS X

15 HEADER BLINK SCHEDULE X

20 HEADER DRP REQUEST 11

21 HEADER DRP RESPONSE 6

Table 7.3: Header types and their length (X: size varies)

7.2 Detailed code structure

On the application processor, the central file is “structure.c” which covers
all interactions between BOLT and the applications and further includes testing
and debugging functions. “drp ap.c” provides all DRP features and stores the
entire state. “blink.c” is used both directly from structure.c for legacy reasons
to access BLINK functions and as a sub-component of drp ap.c.

The communication processor runs its main application from “drp cp.c”
which then calls “lwb.c”. The entire scheduling-related tasks are handled in
“scheduler outsourced.c”.

7.2.1 Debugging information

Functions for testing the entire chain are available both at CP and AP. At CP,
“drp cp.c” offers the option to emulate both DRP requests and responses which
can then either be sent over the network or directly to its local AP. The AP
features this functionality in “structure.c” and offers a function for testing every
single packet functionality (locally), a test of DRP request and response over
the network and code to produce data packets for checking the compliance with
deadline guarantees.

It might occur that the Debugger on the AP is stuck right after launching and will
never display the code. One way to solve this problem is to “Disconnect” and
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“Reconnect” again (inside Code Composer Studio). Afterwards, the debugger
will work correctly. Known causes for such behaviour is the allocation of arrays
at run-time (so-called Variable Length Arrays (VLAs)) and the initialization of
arrays directly at the definition (uint8_t arrayname[] = { 0 };).

If the debugger is “jumping around” and appears to not execute lines according
to the specified order, it is strongly adviced to disable multi-line macros (the
most prominent one being DEBUG PRINT ) so that the pre-processor does not
change the line numbers before compiling. Furthermore, it is adviced to disable
“Optimization” in the project properties or set it to a low level (e.g. “0 - Re-
gister Optimizations”). The lower optimization level is furthermore helpful if
multiple variables are changed simulaneously, as they might be mapped to the
same memory register.
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