
 

Automated program analysis for predicting 
memory access collisions 

Semester Thesis 

 

Joel René Büsser 

jbuesser@ethz.ch 

 

Computer Engineering and Networks Laboratory 

Department of Information Technology and Electrical Engineering 

ETH Zürich 

 

 

 

 

 

 

Supervisors: 

Andreas Tretter 

Stefan Draskovic 

Prof. Dr. Lothar Thiele 

 

January 15, 2018

mailto:jbuesser@ethz.ch


 

i 

 

Acknowledgements 
 

My thanks go to my supervisors, Andreas and Stefan, who guided me through 

this thesis. It has been a diverse learning experience for me. They earn my 

gratitude for their patience, their clear communication, and for sharing their 

knowledge and experience at any time. 

I also thank Professor Thiele and his fellow researchers for the positive 

atmosphere at the institute. Thanks to him I had the opportunity to work in an 

up-to-date research area. 



 

ii 

 

Abstract 
 

Parallelization is one of the buzzwords in computer architectures. Along with 

more cores, or more processors, come new challenges for the memory. Often, 

multi-core systems share memory between several cores. The partition of the 

shared memory into memory banks to allow parallel accesses boosts the 

performance. Still, if two cores access data located in the same memory bank, the 

requests cannot be served at the same time. An access conflict occurs. To resolve 

this, the memory bank serves the requests one after the other. Thus, one core does 

not immediately get the data it needs for the execution of the thread. 

Consequently, the thread’s execution time increases because it cannot proceed 

the execution until the memory bank has delivered the necessary data. 

In this thesis, we analyze how memory access conflicts affect the execution time 

of a thread. We achieve this by measuring the execution time of the thread 

without any access conflict. Also, we analyze the number of memory accesses the 

thread performs. These figures serve as inputs to a probabilistic model which 

returns the expected increase of the execution time due to access conflicts. To 

answer the initial question, we verify the model. 

We confirm that memory accesses and the increase of the execution time are 

related, although our model proves to be too inaccurate. We see the main reason 

for this in the small set of verification data. In general, we are on the right track, 

but further research for the model and the memory access analysis – like how the 

thread accesses memory over time – is necessary. 
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Chapter  1 
Introduction 

 

Over the course of hardware development history, there have been significant 

advances in parallelization. Mainly processors have gone through major 

development steps. Multi-core or even multi-processor systems are common 

architectures found in today’s systems. Other hardware components, like the 

memory, adapt to these more complex concepts, too: Memory components are 

often shared between cores. 

 

Figure 1.1 Single cluster of the Kalray MPPA-256 many-core CPU 
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In this thesis, we work with a multi-core system where several cores share 

memory. Figure 1.1 relates the theoretic concept to a concrete architecture. A 

phenomenon observed in this kind of architecture are access conflicts. 

1.1 Access conflicts 

The shared memory is partitioned into memory banks. Each bank can serve one 

request at a time. Thus, an access conflicts occurs whenever two (or more) cores 

access data stored on the same memory bank at the same time. To resolve the 

access conflict, the memory bank serves the requests one after the other. 

Consequently, lacking the requested data, the execution on the core that is served 

later is temporarily halted, hence increasing the execution time of the thread 

running on that core.  

We want to model the increase of the execution time by relating the execution 

time without access conflicts to the number of memory accesses of a thread. 

1.2 Goal of this thesis 

To find out about the relation between the execution time without access conflicts 

and the number of memory accesses, we require a model which takes the 

execution time of a function and its memory accesses as inputs. 

As there are no tools known to us which allow to analyze the memory accesses of 

a function, three steps are necessary: 

1. Develop a tool that analyzes the memory accesses of a function. 

2. Develop a model that predicts the average increase of the execution time. 

3. Verify the model developed in step 2 by running tests on the Kalray 

MPPA-256 (MPPA). 

Provided the number of memory accesses of a function, the model developed in 

step two, according to our statement, should provide accurate predictions. We 

verify the accuracy of the model by running tests on the MPPA. The MPPA is a 

suitable platform because of its determinism: the execution time of a program is 

the same whenever it is invoked with the same parameters. 
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1.3 Thesis outline 

In Chapter  2, we introduce the LLVM compiler architecture which will help us 

developing the tool to determine the memory accesses of a function. In the same 

chapter, we discuss a related work which is relevant for the development of our 

model. In Chapter  3, we explain the problems we have to solve in greater detail. 

Chapter  4 describes how we solve steps one and two of the goals listed in section 

1.2. It guides through the development of the access analysis tool and explains 

the different models we develop. In Chapter  5, we verify how well the prediction 

models developed in Chapter  4 match. Finally, Chapter  6 concludes the findings 

of the thesis and summarizes remaining and new questions. 
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Chapter  2 
Background 

 

This chapter discusses methods and techniques contributed by others which this 

work relies on. This includes an introduction to the LLVM compiler 

infrastructure in section 2.1. Why and how we use it follows in Chapter  3 and 

Chapter  4.  

As for the theory, the results of the paper “On the Meaning of pWCET 

Distributions and their use in Schedulability Analysis” by Robert I. Davis, Alan 

Burns and David Griffin are relevant to us. The details are elaborated in section 

2.2. 

2.1 An introduction to LLVM 

The term “LLVM” refers to a wide range of subprojects and has little to do with 

its original name, Low-Level Virtual Machine [1]. In our thesis, we refer to LLVM 

as the compiler we use and extend. 

Classic compilers have three major stages, called frontend, middle end, and 

backend. The frontend as the first stage is language-specific, i.e. for different 

source code languages, a different frontend is to be used. [2] The task of the 

middle end is to optimize the code on a higher level than the backend optimizer 

which focuses on producing efficient code for the respective target platform. As 

the middle end optimizer is the only optimizer we consider, we henceforth use 

the term “optimizer” instead. The frontend translates the source code to the 

optimizer’s language representation. To improve the code’s runtime, the 

optimizer then performs a variety of transformations. Finally, the backend maps 

the code produced by the optimizer to the target instruction set. 
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Figure 2.1 LLVM’s modular architecture 
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operates on a single type of code representation. Hence, the optimizer supports 

any frontend that can compile to the code the optimizer uses, and so it does any 

backend that can compile from the optimizer’s code. The code the optimizer uses 

and produces is called the intermediate representation (IR). [2] 

The Clang frontend, which was developed as part of the LLVM project, can be 

used to produce LLVM IR code from C and C++ source code. 

2.1.1 IR code structure 

The IR of the LLVM optimizer is mostly a three-address code which fulfils the 

Static Single Assignment (SSA) form property [3, p. 15f.]. A three-address 

operation takes one or two operands and produces a single result, therefore 

resembling an assembly language. The SSA property means that every operation 

that computes a new value stores this value to a new virtual register. 

If we take a single operation – which, in LLVM, is called an instruction – as the 

smallest element in the IR code, the basic block is the next bigger, see Figure 2.2.  

 

Figure 2.2 Internal structure of the intermediate code 
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A basic block, by definition, has a single entry and a single exit point [4, p. 231]. 

This implies that all instructions between the entry and exit point are executed 

once, if the basic block is entered. 

A function, then, consists of one or more basic blocks and, possibly, of function 

arguments. Note that, although we are describing the LLVM IR, this matches with 

the concept of a function, or method, in a programming language like C++ or Java. 

For the lack of dedicated terms and the fact that a function in the source file is a 

function in the IR, we do not distinguish the two contexts. 

Finally, all functions together with global variables (as known from the source 

code) are packed into a module. The IR code we will analyze contains a single 

module. If we view this from the source code perspective, the module includes 

all the functions and variables. Thus, we permit ourselves to use the less abstract 

term “program” instead of module. 

We know by now that the IR is what the optimizer works with. Next, we discuss 

how it does so. 

2.1.2 The LLVM optimizer 

Optimizations are implemented as passes. A pass is source code that traverses a 

certain portion of a program’s code. Analysis passes compute information which 

either serves visualization purposes (e.g. print a control flow graph) or are used 

by transform passes. Transform passes mutate the program to improve its 

execution time (ET), memory usage, or other measures. Finally, there are utility 

passes which, for example, write a module to bitcode. They neither fit the 

categorization of analysis nor transform passes. 

For the different levels of the code structure in Figure 2.2, there are respective 

passes to match the abstraction level on which analysis or transformations are 

performed (module, function, or basic block pass). For specific constructs - 

functions may include loops, for instance – LLVM provides also corresponding 

passes. 

2.2 The access conflict prediction model 

In section 1.2, we explained that we use the MPPA as our test platform because 

of its deterministic behavior. However, a deterministic model would involve 
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knowing all states of all cores and memory banks. In short, today’s processor 

architectures are complex, and it is infeasible to understand every detail about it. 

This has consequences since precise ETs of a program cannot be calculated [5, p. 

3]. 

Because we are not going to analyze the hardware on which we run the test 

programs, we face epistemic uncertainty. Epistemic uncertainty results from the 

lack of knowledge about the system. If measurements are based only on a subset 

of possible inputs and states, we cannot be absolutely confident that the resulting 

estimate we derive is correct [5, p. 3]. 

The paper by Davis, Burn, and Griffin [5] discusses this and concludes that a 

probabilistic approach can be taken. Applied to our problem, this means that the 

prediction model must be probabilistic. 
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Chapter  3 
Problem to solve 

 

A function, referring to code operating on inputs and output arguments, is to be 

analyzed. For some given source code of a function or a program comprising 

several functions, we are given the ET without any interference. We call this the 

“individual” or “sequential” ET. We are also given the number of memory 

accesses of every function and, hence, also of the program. Based on these two 

figures, we develop a model which predicts the average increase of the ET due to 

memory access conflicts. The increase refers to the difference between the 

“combined” or “parallel1” ET, which is the ET with access conflicts, and the 

individual ET. 

3.1 Model 

As we are interested in the memory access conflicts, we base our analysis on the 

number of memory accesses of the function of interest, subscript 𝑘, and on other 

functions running in parallel, subscript 𝑖 (and others): 

 Δ𝑡𝑘 = 𝑡𝑘,𝑐𝑜𝑚𝑏 − 𝑡𝑘,𝑖𝑛𝑑 = 𝑓(𝑡𝑘,𝑖𝑛𝑑 , 𝑁𝑘 , 𝑡𝑖,𝑖𝑛𝑑 , 𝑁𝑖 , … ) (3.1) 

Here, 𝑡𝑘,𝑖𝑛𝑑 indicates the sequential ET of function 𝑘. 𝑁𝑘 refers to the number of 

memory accesses of function 𝑘. The parallel ET is denoted as 𝑡𝑘,𝑐𝑜𝑚𝑏. The figures 

with the subscript 𝑖 refer to another function being executed on another core at 

the same time. 

                                                      
1 Defined in section 1.1, an access conflict only occurs when two or more threads run in 

parallel on different cores. 
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Hence, according to equation (3.1), we need the individual ETs and the number 

of memory accesses of functions 𝑘, 𝑖, and all others being executed at the same 

time to predict the parallel ET of a function 𝑘. These numbers serve as inputs to 

the model, currently referred to as a blackbox function 𝑓. 

While determining the ET 𝑡𝑘,𝑖𝑛𝑑 is possible with existing tools, a tool to detect 

memory accesses is to be developed. 

3.2 Tool 

The tool reports how often every variable in a program is read from and written 

to. Read and write operations are summarized as (memory) access. We group 

variables roughly into global variables, function arguments, and local variables. 

Though we are interested in all of them, we focus on global variables and function 

arguments. For now, this is sufficient2.  

For the first analysis and verification process, we limit the tool to report the total 

number of memory accesses (the sum of all reading and writing accesses to every 

variable considered) of each function of a program, 𝑁𝑘 in equation (3.1). The 

model and the tool are targeted towards the analysis of individual functions; 

knowing the memory accesses and the prediction of every function, we can also 

draw conclusions for the entire program. 

                                                      
2 We make sure that the programs we test our pass on mainly operates on function 

arguments and global variables. 
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Chapter  4 
Development 

 

We split the entire problem into two parts in Chapter  3. Part one involves the 

development of a tool which analyzes the memory accesses of a function. Part 

two is the model which, according to our findings in section 2.2, is a probabilistic 

model. 

The question remains how to implement part one. We certainly need to analyze 

the source code of the function of interest. Ideally, we inspect the bitcode because 

it exactly describes what the hardware does. Especially, it contains load and store 

instructions, both of which are a memory access. The LLVM optimizer (section 

2.1) is made to analyze and even modify bitcode. Hence, a possible and suitable 

way of implementing the tool, is to write an analysis pass as part of the LLVM 

optimizer. 

4.1 Tool implemented as a compiler pass 

We explained in section 2.1 what a compiler pass in LLVM is and what it can do. 

For the subsequent implementation of the tool – which we synonymously refer 

to as “pass” from now on – we follow a bottom-up approach. This means that we 

start by analyzing the instructions themselves. In a second step, we want to know 

how often the instruction is executed. Finally, we connect this information to 

obtain the number of memory accesses, 𝑛𝑖 in formula (3.1).  

This procedure corresponds to a start at the most detailed level as depicted in 

Figure 2.2. 
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4.1.1 Basic instruction analysis 

In a first step, we detect memory accesses in the IR of the program we analyze. In 

LLVM, there are two instructions which access memory: load and store. By 

iterating through all instructions of a function (and through all functions in a 

program), we identify these. The important information is which variable is read 

or written. For variables holding a single value, this is easy to determine. 

Problematic are arrays and other indexed data structures. By indexing arrays, 

LLVM obtains a new address derived from the array base address. Since, 

however, this is accomplished with the “Get Element Pointer” (GEP) instruction, 

we can track the indexing back to the base address. 

This first approach analyzes every instruction exactly once. That is, each load or 

store instruction increases the memory access count by exactly one. It could 

happen, though, that a function is never called or that there are loops. In any case, 

to get a true memory access count, it is crucial to obtain information about how 

often a basic block – and therefore the instructions therein – is executed. 

4.1.2 Determine block execution count 

We first think about what influences the execution count of a basic block. A 

coarse-grain number is how often the function to which the basic block belongs 

is called. In detail, we must know what the specific basic block is: Is it part of a 

loop or is it one of several basic blocks out of which only a few are executed, 

depending on the specific conditions (i.e. branches)? 

Let us first consider loops. The loop count states how often a loop is executed. 

Clearly, the loop count, therefore, determines how often basic blocks which are 

part of a loop are executed. In LLVM, there are analysis passes which aid 

determining the loop count. However, the condition is that the code has been 

optimized before already. Specifically, scalar evolution analysis, induction 

variable simplifications and loop rotation are necessary. According to the LLVM 

documentation, “[the] ScalarEvolution analysis can be used to analyze and 

categorize scalar expressions in loops. […] Given this analysis, trip counts of 

loops and other important properties can be obtained.” [6] This is precisely what 

we need. 

Branch analysis is a complex topic by itself. Often, it is impossible to safely detect 

the branch that is executed. Like branch prediction algorithms in hardware, we, 
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too, needed to make assumptions. Branch prediction in compiler design, being an 

ongoing research topic [7], is beyond the scope of this thesis. Therefore, for 

simplicity reasons, we think of a rule we apply to all branches to avoid branch 

prediction. Such a rule could be to calculate the average number of memory 

accesses of all branches or to always pick the branch with the most memory 

accesses. In any case, this simplification affects the accuracy of the prediction 

model because we no longer obtain an exact memory access count. We choose to 

consider the worst-case branch. If the functions the pass will analyze do not have 

heavily unbalanced conditional branches – that is, one branch has many memory 

accesses while the other has none – the simplification still provides reasonable 

results.  

The branch analysis is not implemented in our pass; for now, we are satisfied 

with an accurate loop analysis. 

A last number the pass analyzes – again, this is not implemented in our pass – is 

how often each function is called. This requires analyzing of the call instruction. 

A construct to consider separately is recursion, i.e. when a function calls itself. 

The LLVM transform pass “Tail Call Elimination” [6] transforms recursive calls 

to loops. These loops can then be analyzed as described before. 

Lastly, we must put together the instruction analysis of section 4.1.1 and the block 

execution count analysis of section 4.1.2 to obtain the memory access count. 

4.1.3 Tree construction 

There are multiple ways to obtain a result of the memory access analysis for every 

function. One is to use metadata in LLVM [8] [9]. This directly includes the 

information into the IR. Because it requires modifying and then reading the IR, it 

is conceptually a larger effort than the second solution we propose.  

A more generic approach is to build a tree structure for each function. The tree 

consists of three different node types: Leave nodes represent a basic block and 

contain the number of memory accesses of that basic block, obtained by the steps 

described in sections 4.1.1 and 4.1.2. For loops in the function, “loop nodes” are 

created and conditional branches are children, of the “if-else node”. 

Figure 4.1 shows the control flow graph (CFG) of a sample function. Based on the 

CFG, we construct a tree. For the evaluation, every leaf node of that tree 

determines the memory accesses of the basic block this leaf node represents. 
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Figure 4.1 Control flow graph (top) and resulting tree ready for memory access 

evaluation (below) of a sample function 
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If one or several leaves are child nodes of a loop node, the loop node multiplies 

the values by the loop count of the corresponding loop. According to the 

simplification made in section 4.1.2, the if-else node, if it were implemented in 

our pass, takes the larger memory access count of the two branches. 

Now that we have a tool which analyzes the memory accesses, we proceed to the 

development of the probabilistic model. 

4.2 Model 

Throughout the development of the model, we assume that there is a dependency 

between the number of memory accesses and the increase of the ET Δ𝑡 due to 

access conflicts. 

We start with a model that is independent of the function’s memory accesses, see 

equation (4.1). The reasoning for this model is that, based on a set of 

measurements, the average increase 𝑐1 is valid for every program in any setup.  

(4.1) expresses the expected increase of thread 𝑘. 𝑐1 is the constant we train before 

using it on other data. 𝑇 represents the number of threads3 running in parallel, 

i.e. (𝑇 − 1) is the number of threads which thread 𝑘 could collide with. 

 Δ𝑡𝑘 ≜ 𝑡𝑘,𝑝𝑎𝑟 − 𝑡𝑘,𝑠𝑒𝑞 = 𝑐1 ∙ (𝑇 − 1) ∙ 𝑡𝑘,𝑠𝑒𝑞 (4.1) 

As we state that the memory access count is relevant to compute the increase in 

the ET, we next derive a model which directly relates these two quantities, see 

equation (4.2). 𝑐2 is, again, the constant we obtain by training. 

 Δ𝑡𝑘 = 𝑐2 ∙ (𝑇 − 1) ∙ 𝑁𝑘 (4.2) 

However, (4.2) does not consider the time span during which the memory 

accesses occur, i.e. the prediction is independent of 𝑡𝑘,𝑠𝑒𝑞. 

We consider the sequential ET again for the last model. We assume a linear 

distribution of the memory accesses in time. Thus, we model the probability that 

thread 𝑘 accesses memory at any cycle during its execution by 

                                                      
3 Refers to the function we analyze being executed on a core. 
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𝑁𝑘
𝑡𝑘,𝑠𝑒𝑞

. 

For the other functions, the distribution is analogue. We use this distribution to 

calculate the probability of an access conflict, i.e. the probability that thread 𝑘 

accesses memory at the same time as any of the other threads running. Because 

we assume the threads to access memory independently of each other, the 

probability of an access conflict is 𝑝𝑐, the sum of the joint probabilities. The 

formula for this model is given in equation (4.3). 

 
Δ𝑡𝑘 = 𝑐3 ∙ 𝑡𝑘,𝑠𝑒𝑞 ∙ 𝑝𝑐 = 𝑐3 ∙ 𝑡𝑘,𝑠𝑒𝑞 ∙ (

𝑁𝑘 ∙ 𝑁1
𝑡𝑘,𝑠𝑒𝑞 ∙ 𝑡1,𝑠𝑒𝑞

+⋯+
𝑁𝑘 ∙ 𝑁𝑛

𝑡𝑘,𝑠𝑒𝑞 ∙ 𝑡𝑛,𝑠𝑒𝑞
)

= 𝑐3 ∙ 𝑁𝑘 ∙∑
𝑁𝑖
𝑡𝑖,𝑠𝑒𝑞

𝑛

𝑖=1
𝑖≠𝑘

 
(4.3) 

Now that we proposed three prediction models, we conclude section 4.2 by 

informally stating how well we expect them to correlate with the actual 

measurements. The actual results are discussed in section 5.2. 

4.2.1 Expected results of the models 

The simplest model (equation (4.1)) is expected to behave well for data that is 

similar to the training data. However, we expect it to be the least accurate of the 

three models with new data. 

Because model two (equation (4.2)) takes additional parameters, namely the 

memory accesses, into account, we expect it performs better than the first model 

on new data. However, since the memory access count is unrelated to the 

individual ET, we still suppose that it fails in cases that differ from the training 

data. 

Lastly, we assume the third model (equation (4.3)) to be the most accurate. The 

reasoning is that it includes a probability measure for the access conflicts 

depending on the other tasks running in parallel. 

We verify the models and discuss the results obtained in Chapter  5. 
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Chapter  5 
Verification and results 

 

The general procedure to verify our prediction models developed in section 4.2 

is as follows: First, we gather sequential and parallel ETs as well as the memory 

access count (using the pass developed in section 4.1) for different configurations 

of a program. We execute the program for each configuration with two, three, 

and four threads. The set of measurements of one thread setting serves as training 

data for the models. The other thread settings are then used for the verification of 

the model. 

5.1 Obtain execution time 

More precisely, we run a matrix multiplication on the MPPA. The crucial part is 

the use of the memory banks. For now, we limit the program to use only one 

bank, such as to force access conflicts. Because we want to find out about the 

relation between access conflicts and the ET, this is not a limitation per se. 

However, further tests with different memory configurations should be 

considered at a later stage.  

The test program mainly runs two functions: The first generates two matrices 

(matrix generation function), the second multiplies the two matrices (matrix 

multiplication function). Increasing the number of threads running in parallel 

spawns more threads to be generated and multiplied (rather than splitting the 

functions themselves). We map the different threads – and thus the two functions 

– to the same core to obtain the sequential ETs and to different cores to obtain the 

parallel ETs. 

Before we present and discuss the results of these measurements, we define the 

following figures in addition to the ones introduced previously: 
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▪ The relative increase of the ET: Δ𝑡𝑘/𝑡𝑘,𝑠𝑒𝑞. 

▪ The absolute increase of the ET predicted by model 𝑗 for function 𝑘: Δ𝑡𝑘
𝑗
, 𝑗 ∈

{1,2,3}. 

5.2 Discussion of the results 

We first take a general look at the measurements before applying our models. 

Figure 5.1 includes all measurement points of the matrix generation function. Due 

to the smaller sized matrices for three and four threads – recall that every thread 

creates two matrices – there is a clear reduction of the sequential ET. We also 

recognize that, for two threads running in parallel (red points), there is hardly 

any difference between the parallel and sequential ET. Despite this, we clearly 

observe different correlations for two, three, and four threads. That is, the points 

are aligned along three distinctly sloped lines. The exception are a few 

measurements obtained with four threads (blue dots), which, again, follow 

another (steeper) slope. 

 

Figure 5.1 ET measurements of the matrix generation function 
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For the second function of the test program, the matrix multiplication, the 

measurements exhibit some interesting behavior, see Figure 5.2. Firstly, many 

configurations, according to the measurement data, perform better when running 

in parallel with other threads. This is surprising because the code running is the 

same; since, however, the functions running in parallel access the same memory 

bank, there probably are memory access conflicts, thus increasing the execution 

time. Hence, we certainly do not expect to observe a decrease of the function’s 

ET. 

 

Figure 5.2 ET measurements of the matrix multiplication function 

From these two plots, and especially from Figure 5.2, we conclude that there are 

phenomena other than access collisions taking place on the MPPA which we are 

neither aware of nor are they modeled by any of our prediction models. Since, 

however, the measurements of the matrix generation function, especially for 

three and four threads, exhibit a behavior which suggests a relation between 
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access conflicts and the parallel ET, we henceforth apply our models only to that 

function. 

5.2.1 Applying the first model 

Recalling equation (4.1), we now train the constant 𝑐1 using the measurement 

points of the matrix generation function with three threads (green dots in Figure 

5.1). Solving for 𝑐1, we get 

𝑐1 =
Δ𝑡𝑘

(𝑇 − 1) ∙ 𝑡𝑘,𝑠𝑒𝑞
=

𝑡𝑘,𝑝𝑎𝑟 − 𝑡𝑘,𝑠𝑒𝑞
(𝑇 − 1) ∙ 𝑡𝑘,𝑠𝑒𝑞

. 

We use the data from three threads, thus 𝑇 = 3. For simplicity reasons, we take 

the median value, i.e. the horizontal line which partitions the points in Figure 5.3 

into two equally sized sets. Noting the range on which the measurements are 

distributed, calculating the median value yields a coefficient which is not accurate 

for many points and, thus, also results in a bad prediction. 

 

Figure 5.3 Training data for 𝑐1 
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However, a different approach, like calculating a regression line, is not feasible 

either for the same reason. Nevertheless, we proceed and apply the constant to 

the data for two and four threads to find out whether our concerns are true, see 

Figure 5.4, which shows how accurate the prediction model works. Along the 

ordinate (y-axis), Figure 5.4 shows the difference between the measured and the 

predicted increase of the ET, i.e. Δ𝑡𝑘 − Δ𝑡𝑘
1. 

 

Figure 5.4 First model applied to the matrix generation function with two and 

four threads 

Because our model directly relates the sequential ET with the increase in parallel 

execution, and because the matrix generation function with two threads does not 

exhibit the expected behavior, the model is too pessimistic about the parallel ET 

for two threads. For four threads, however, it is too pessimistic. 

As it is the simplest of the models, we did not expect accurate results. For the 

derivation of the results of models two and three (equations (4.2) and (4.3), 

respectively) the steps we go through are the same, thus we refer the reader to 

the Appendix  A, where all plots are shown. 
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5.2.2 Applying the second and third model 

Also, we omit the data from two threads as we are aware that the models do not 

work because of the insubstantial additional ET for parallel execution.  

Unlike the first model, the second and third are plotted against the number of 

memory accesses, because the main contributor to the model is no longer the 

sequential ET but the memory access count. As can be seen in Figure A.7 and 

Figure A.10, we again face the issue that the median value results in a bad 

prediction. Therefore, we again see inaccurate predictions of the increase of the 

parallel ET, though the range of both, Δ𝑡𝑘 − Δ𝑡𝑘
2 and Δ𝑡𝑘 − Δ𝑡𝑘

3, is smaller and 

closer to the objective value zero than that of Δ𝑡𝑘 − Δ𝑡𝑘
1. Hence, compared to the 

first model, we do see an improvement of the prediction models which consider 

memory accesses. 

 

Figure 5.5 Second model applied to the matrix generation function with four 

threads 

Comparing Figure 5.5 with Figure 5.6, it is difficult to state which model provides 

“better” results; the range of error is almost the same, both models almost equally 

pessimistic. However, we draw the attention to one detail: The data points in 



 

23 

 

Figure 5.5 seem to correlate along certain lines with different slopes. A few points 

– the ones to the left and below – are disconnected from most of the 

measurements. In the third model, that is, in Figure 5.6, these points are 

indistinguishable from all others. Furthermore, the predicted number of access 

collisions and the execution time prediction error clearly correlate along an 

individual line. We conclude from this that the third model manages to explain 

some effects the other two models do not; what is missing is a linear coefficient 

which would correct the prediction error. As the difference between the 

equations lies solely in how we predict the access conflicts, we are optimistic that 

the general approach is valid. 

 

Figure 5.6 Third model applied to the matrix generation function with four 

threads 
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Chapter  6 
Conclusions 

 

The goal of this thesis was to find means and ways to determine the execution 

time of a function running in parallel based on its execution time without any 

interference. We identified three steps that are necessary, and which are likely 

needed to be performed more than once. That is, in case the verification of the 

model is not satisfactory, we return to step one to improve the tool, implemented 

as a compiler pass and, in step two, develop new probabilistic models. With the 

results presented in Chapter  5, this is undoubtedly necessary. 

Furthermore, we clearly compromised on every step: 

▪ The compiler pass generally provides useful and correct results for the 

programs we analyzed. However, it lacks the implementation of conditional 

branch analysis and the analysis how often every function is called. These two 

limitations need to be addressed, otherwise the code to analyze is implicitly 

assumed to be free of constructs the pass would fail on (like recursion or 

conditional branches).  

We laid the foundations on top of which further analyses can be performed. 

The concept to create a tree structure to determine the memory access count is 

a generic approach and allows extensions to be implemented without the need 

to redesign existing parts of the pass. 

▪ We proposed three models, of which the third is the most advanced and 

promising. Nevertheless, even the third model did not provide accurate 

predictions. One reason is certainly the amount of training data we used, 

which is too little. Realizing that the parallel execution time of a single function 

is sometimes shorter than the sequential, and that there is fundamentally 

different behavior between different number of threads running in parallel, 

this suggests that there are many processes more we do not understand. 
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However, it must not be the goal to find this out yet. As a next step, we propose 

to stick to the derived models, and to collect data with more threads, hoping 

to find more correlations of the kind the matrix generation function with three 

and four parallel threads exhibits. If this is the case, we can make a clearer 

statement about the practicability of the models. Because the training data is 

rather uncorrelated, we question the approach how we train the model 

parameters. This is, of course, also an indicator that the models we derived are 

impractical. In case of the third model, we propose to consider a different 

probabilistic distribution of the memory accesses (or to derive a fourth model). 

Possibly, it helps to extend the analysis pass such that information about how 

memory accesses are distributed over time are obtained, or to find, at least, 

parts in programs where there are many memory accesses in few lines (burst 

detection). 

▪ Lastly, we also simplified the verification process. We mentioned already that 

more training data is necessary for the models. Additionally, the models must 

be applied to other programs. This also helps to locate, for instance, the source 

of the behavior of the matrix multiplication function; the more measurements 

we get, the less is the impact of odd behavior. 

Despite these compromises, we can draw a positive overall conclusion. Partly, 

because the access analysis tool is stable and working and partly, because the 

verification of the third model hints at an essentially correct approach. Also, we 

were aware that we need to go through the steps presented in section 1.2 several 

times to achieve an accurate and reliable prediction. The results obtained so far 

emphasize this need. 
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Appendix  A 
Result data 

 

On the following pages is every plot relevant for the evaluation of the 

probabilistic models we derived in section 4.2. For each function in a thread, there 

are 660 different measurements, i.e. 660 different matrix configurations. 

A.1 Measurements for matrix multiplication and matrix 
generation functions with two, three and four threads 

 

Figure A.1 Execution times for the matrix multiplication function 
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Figure A.2 Execution times for the matrix generation function 

 

Figure A.3 Relative increase in the execution time for the matrix generation 

function 
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A.2 First model 

From (4.1), 

𝑐1 =
Δ𝑡𝑘

(𝑇 − 1) ∙ 𝑡𝑘,𝑠𝑒𝑞
. 

𝑘 is a placeholder for all configurations of every function of all threads. 

 

Figure A.4 Training data for model one 
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Figure A.5 Model one applied to functions with two and four of them running 

in parallel 

 

Figure A.6 Model one applied to functions with four of them running in parallel 
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A.3 Second model 

From (4.2), 

c2 =
Δ𝑡𝑘

(𝑇 − 1) ∙ 𝑁𝑘
. 

𝑘 is a placeholder for all configurations of every function of all threads. 

 

Figure A.7 Training data for model two 
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Figure A.8 Model two applied to functions with two and four of them running 

in parallel 

 

Figure A.9 Model two applied to functions with four of them running in parallel 
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A.4 Third model 

From (4.3), 

𝑐3 =
Δ𝑡𝑘

𝑁𝑘 ∙ ∑
𝑁𝑖
𝑡𝑖,𝑠𝑒𝑞

𝑛
𝑖=1
𝑖≠𝑘

. 

𝑘 is a placeholder for all configurations of every function of all threads. 

 

Figure A.10 Training data for model three 
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Figure A.11 Model three applied to functions with two and four of them 

running in parallel 

 

Figure A.12 Model three applied to functions with four of them running in 

parallel 
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