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Abstract

With the widely used smartphones and growth in popularity of other wearable devices such
as smartwatches, nearly every user becomes a possible participant in a mobile crowdsensing
project. As these possible participants are no experts in taking measurements, every data point
has a context attached to it, defined by the activity of the participant during the measurement.
In this thesis we conduct our own mobile crowdsensing measurements with different environ-
mental sensors in various popular user contexts. With the results of the measurements we can
observe that there exists a relationship between context and data quality. We test a variety of
learning algorithms to estimate the ground truth from our measurement data. The results of our
evaluation are mixed. While some algorithms are able to remove the influence of the context on
the data others are not suited for this task. We also test a truth finding algorithm, which turns
out to not be able to recognize the relationship between context an data quality.
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Chapter 1

Introduction

1.1 Motivation

Nowadays smartphones are widely used and other wearable devices (i.e. smartwatches) get
more and more popular. All these devices are shipped with a big selection of sensors equipped.
This makes nearly everyone able to collect sensor data and therefore possible participants in
crowdsourcing projects [7]. Participants of such projects are by no means experts in collecting
data, which leads to the question how good the quality of the collected data really is. One can
imagine that not all participants behave the same way as they collect the data. A collected data
point has therefore a context attached to it, given by the activity of the participant during the
measurement. It is, to our knowledge, currently little known how these contexts influence the
quality of crowedsourced data.
In this thesis we want to investigate the potential influence of different contexts on data quality
and how we can possibly invalidate this influence. To get data from mobile sensors in specific
contexts, we conduct our own measurements which we perform in different contexts. From the
collected data we try to answer the question how the contexts influence the data quality. In a last
step we develop and evaluate algorithms to invalidate the effects of the contexts on the data.

1.2 Related Work

We consider the following listed papers as related to this thesis. They either served us as an
inspiration and motivation or they helped us to build part of this thesis based on their results.

Context-Aware Data Quality Estimation in Mobile Crowdsensing The authors in [1] are
one of the first to consider the influence of context on data quality in mobile crowdsensing.
They were able to improve the data quality by developing an algorithm which takes the contexts
attached to the data into account. They used their algorithm to guide user recruitment in mobile
crowdsensing in an online manner.
Their observation of context corresponding to data quality builds the basis for this thesis. We
want to improve this paper in two points. First we want to consider more than just temperature
data and secondly we want to consider the context in our data from the beginning to the end of
our ground truth estimation.

A Survey on Truth Discovery The work in [2] serves as a great overview of different truth
discovery methods. Each of these methods is summarized from different aspects and for each
of them it is listed on which kind of data sets they are usable.
This paper helps us to pick a suitable truth discovery method for our data set. Then we test this
method on how it can deal with different contexts. This method also serves us as a comparison
to our own method to tackle the problem of contexts having an influence on data quality.

Participatory Sensing or Participatory Nonsense? - Mitigating the Effect of Human Error
on Data Quality in Citizen Science The work in [3] sees crowdsensing as an alternative to

13



14 CHAPTER 1. INTRODUCTION

traditionally conducted measurements by trained personnel. The authors of this paper worry
about the errors in the data due to measurements performed by non-experts as it is usual for
crowdsensing projects. In the first part of the paper the authors did a study on the errors and
behaviors of non-experts performing measurements. They were able to observe a huge variety
of different behaviors and errors. In the second part of the paper they tested how technical
measures and instructions can prevent unwanted behavior and errors during measurements.
The first part of this paper serves us as a proof for that every data point of a crowdsensing
project has a context attached to it which could potentially lead to errors in the data.

Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sen-
sors The authors in [4] show that it is possible to accurately recognize an activity with a
smartphone in the pocket and with additional motion sensors worn at the wrist in a smartwatch
like fashion. They are also able to show that the combination of the smartphone together with
the additional motion sensors at the wrist outperforms the activity recognition of using only the
smartphone or the motion sensors at the wrist exclusively.
This paper allows us to assume that activity recognition is a solved problem. Therefore, we can
work with different activities/contexts without worrying how to recognize them by ourself.

1.3 Report Structure

In chapter 2 we describe our own mobile crowdsensing measurements. In section 2.1 we ex-
plain different decisions regarding the hardware we use, the context and sensor types we con-
sider and what software we use. Section 2.2 describes in detail how the measurements were
performed. In section 2.3 we analyze the data from the measurements and investigate the rela-
tionship between context and data quality.
In chapter 3 we describe how we tackle the problem of ground truth estimation. First we ex-
plain what the goal of ground truth estimation is (section 3.1). Then we describe the different
algorithms we use for the ground truth estimation, what their input is and how we score their
performance (section 3.2). In the last part of this chapter we introduce a truth finding algorithm
as comparison to the ground truth estimation (section 3.3).
Chapter 4 evaluates the results of chapter 3. First we discuss the performance of the different
algorithms used for the ground truth estimation in section 4.1. The performance of the truth find-
ing algorithm is then discussed in section 4.2 as well as how it deals with the different contexts.
Lastly, in chapter 5 we conclude this thesis. We summarize the findings of this thesis in section
5.1. In section 5.2 we discuss what and how a possible future work can improve this thesis. Sec-
tion 5.3 is dedicated to take-away messages for someone handling data coming from a mobile
crowdsensing context.



Chapter 2

Measurements and Observations

In this Chapter we discuss how we set up our own mobile crowdsensing measurements. In
section 2.1.1 we first describe which context we have chosen and why. Section 2.1.2 describes
the hardware we used and why we have decided us for it. Section 2.1.3 lists the sensor types
we focus on in this thesis. In Section 2.1.4 we describe the complementary software we used
and how we had to adapt existing ones.
In Section 2.2 we describe our mobile crowdsensing approach. We first describe, in section
2.2.1, how we compared the multiple sensor board with each other. Section 2.2.2 goes into
details how we performed the mobile crowdsensing measurements in context.
In section 2.3 we list our observations from the two measurements described in section 2.2.

2.1 Measurement Tools

2.1.1 Contexts

One can think of a lot of possible contexts in which a person can take a measurement. We
surely can not consider all of them. Instead we lay focus on a selection of contexts.
We have chosen standing still, walking, running and office work as our contexts. The contexts
are explained in table 2.1. The chosen contexts are proven to be recognizable by motion
sensors in [4].
We further decided to distinguish whether a measurement is performed outdoors or indoors.
Outdoor and indoor provide two totally different environments, which can have different
influences on the measurements. The contexts standing still and walking are used outdoors as
well as indoors. Running is only used outdoors, because we think it is rather unusual having
a person conduct a measurement indoors while running. A person who is running or jogging
outdoors and taking some measurements is more likely. For the office work context it is quite
similar. Usually a person is doing some office work within a building, therefore we use the
context office work only indoors.

2.1.2 Hardware

We were looking for a sensor board or sensor platform that resembles typical wearable devices
that include a wide range of sensors such as the current apple watch [5] or an advanced fitness
tracker [6]. The hardware solution has also to support sensors commonly used in crowdsensing
projects.
As the hardware resembles typical wearable devices, the price is also a factor to consider.
Wearable devices cost very little up to a moderate price. This factor has to be reflected in our
hardware choice as well.
Currently a big price span can be observed when looking at the different air quality sensors. The
professional air quality sensors are priced in the thousands of US dollars. These professional air
quality sensors are also meant to be installed stationary and not to be carried around. Luckily
for us, there exist some affordable air quality sensors which are also considerably smaller. The

15



16 CHAPTER 2. MEASUREMENTS AND OBSERVATIONS

Context Description Indoor/Outdoor Activities

Standing
Still

Low physical activity
with nearly no move-
ment of the arms.

Indoor and out-
door

Standing still, sitting
still with no movement
of the arms.

Walking Walking with normal
speed, medium phys-
ical activity, natural
movement of the
arms.

Indoor and out-
door

Walking around, using
smaller stairs.

Running Any form of running,
high physical activity.

Outdoor Running and jogging.

Office Work Every kind of activity
that is possible at an
office desk.

Indoor Typing, sorting papers,
opening letters or hav-
ing a drink.

Table 2.1: Context description with example activities and used environments

big price span indicates that the quality of the affordable air quality sensors is unfortunately not
comparable to the good quality of a cheap temperature sensor.

Thunderboard We use the Thunderboard from Silicon Labs, a small sensor board with a
large variety of sensors on it. The available sensors range from temperature, humidity, pres-
sure, ambient light and UV to motion, acceleration, sound level and air quality (Figure 2.1).
The Thunderboard features sensors used in crowdsensing projects such as Noisetube [7] or
OpenSense 2 [8].
The sensor board features a micro USB connection through which the board can be powered.
It is also possible to run the Thunderboard in battery mode via a coin cell battery. In this mode
the air quality sensor is disabled due to its high energy consumption.
There are two possible ways to read out the sensor values. One way is via the official Thun-
derboard app (for iOS and Android) connected via Bluetooth. The other way is via the USB
port. The standard output of the firmware is linked to the serial port and the sensor values can
be written to it by altering the firmware running on the sensor board. Silicon Labs provides the
source code of the firmware within their development environment Simplicity Studio [9].

Figure 2.1: Front and back view of a Thunderboard from Silicon Labs
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Android Phone We use a Samsung Galaxy Note 4 running Android 6.0.1 to connect to the
sensor board via the official Thunderboard app.
This combination of sensor board and phone allows us to have the Thunderboard carried around
by a person and extracting sensor values from it at the same time. The sensor data from the
Thunderboard is stored on the phone’s internal memory and is later transfered to a computer
for further evaluations.

2.1.3 Sensors

Based on our hardware decision we focus on five sensor metrics. These five metrics are tem-
perature, humidity, sound level, CO2 concentration and the concentration of total volatile organic
compounds (TVOC). CO2 and TVOC are used to determine the indoor air quality.
The five metrics provide a good indication of the surrounding environment’s quality.

2.1.4 Software

With just the hardware it is not possible to store the sensor values from the Thunderboard.
Therefore, the use and modification of additional software is necessary.

Thunderboard App Silicon Labs provides the source code of the Thunderboard app for both
the Android version as well as for the iOS version [10]. We downloaded the Android version and
added a new section to it. In this new section it is possible to start a measurement for a specific
context (Figure 2.2).
When a measurement is started, the app logs all sensor values from the Thunderboard and
stores them in a csv file on the phone.

Figure 2.2: Added section to the Android app with running measurement in walking context

Thunderboard Firmware To be able to read the sensor values directly from the Thunder-
board’s serial port, we modified its firmware. Silicon Labs provides the source code for the
firmware via their development environment Simplicity Studio [9].
The modified firmware collects the sensor values and writes them to the standard output, which
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is linked to the serial port. A further modification prevents the Thunderboard to enter power safe
mode, if no Bluethooth connection is established.

Script for Reading from the Serial Port To read the sensor values from the Thunderboar’s
serial port and storing them on a computer, we had to write a small Python script. The script
connects to a serial port of a computer and filters out the sensor values from the Thunderboard’s
standard output. The sensor values are stored in a csv file on the computer.

2.2 Measurement Approach

2.2.1 Overnight Measurement

The goal of the first measurement is to compare three Thunderboards to each other. This allows
us to see if their measurements correspond to each other or if there are differences between
them. If the quality of two sensors is too bad, their values would differ widely from each other. If
values of a sensor always show a constant offset, the sensor itself is not calibrated correctly.
For this measurement, we connected three Thunderboards to a computer and placed them next
to each other on a desk located indoors. All three Thunderboards collected data over night in a
two second interval for about nine and a half hours.

2.2.2 Measurements in Context

The main reason why we do our own measurements is to get sensor values which where taken
in a specific context.
Two Thunderboards are needed per measurement. One serves as a provider for the ground
truths (we assume these values to be the true ones). This Thunderboard is connected to a
notebook and is static during the measurement, hence we also refer to it as static sensor. The
other sensor board is worn by a person at the wrist position, like a smart watch. This person
also carries around the Android phone to which the Thunderboard is connected to. We refer to
this Thunderboard as mobile sensor. During a measurement, the person acts according to the
context the measurement is desired to be in (i.e. walking). Both Thunderboards log their data in
a frequency of two seconds and each measurement is around two minutes long.
Rather to take long measurements we keep them short but perform multiple of them. The idea
behind this is to get more variance in our data, otherwise it is possible that one moment (= one
measurement) is represented strongly in our data.
The outdoor measurements were performed during the late fall (mid to end of November) which
means that they were performed during rather cold weather with very little sunshine.
Some sensors need a startup time before they give legit values. To prevent having corrupted
values in our data we remove the ten first sensor value of each measurement. We further smooth
our data by aggregating it. We define a window with a width of ten sensor values. All sensor
values within the window get averaged (average of temperature values, average of humidity
values, etc). The window slides over the data by a step size of five sensor values, which results
in a window overlap of 50%. Instead of only using the average in the window we also use the
median. We are later able to see if one is superior over the other (section 2.3.2).

2.3 Observations

2.3.1 Observations from the Overnight Measurement

Looking at the sensor values of the three Thunderboards we ran over night, we see that they
show similar values to each other. As seen from the sensor value graphs (Figures 2.3, 2.4, 2.5,
2.6) the curves of the values all follow the same overall path. We also see that the sensor values
are not exactly the same. The difference is more or less a constant offset. One Thunderboard
for example has always a lower temperature value than the other two Thunderboards but the
curve of this sensor moves in a similar way to the other two. This constant offset indicates a
bad calibration of the different sensors on the Thunderboards. Overall the measurements of the
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three Thunderboards are in sufficient agreement for our purposes.
Worth mentioning is the fact that the air quality sensor has much more noise in its data. They
do not always have a constant offset to each other. Further inspection shows that the air quality
sensor reacts very sensitive but also very slowly. Touching the air quality sensor gives a huge
peak in the data. It also takes some time until the data is back to normal. As already suspected
in the hardware section (2.1.2), this indicates that the quality of the air quality sensor is not as
desired.

Figure 2.3: Overnight measurement of three Thunderboards, temperature and humidity values,
The numbers 8, 9 and 11 correspond to the port to which the Thunderboards connect to

Figure 2.4: Overnight measurement of three Thunderboards, sound level values,
The numbers 8, 9 and 11 correspond to the port to which the Thunderboards connect to
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Figure 2.5: Overnight measurement of three Thunderboards, CO2 concentration values,
The numbers 8, 9 and 11 correspond to the port to which the Thunderboards connect to

Figure 2.6: Overnight measurement of three Thunderboards, TVOC concentration values,
The numbers 8, 9 and 11 correspond to the port to which the Thunderboards connect to
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2.3.2 Observations from the Measurements in Context

We can see that the different contexts have an influence on the quality of the different sensor
values. The context is not the only influence on the data quality. There is also a visible difference
in data quality between the outdoor and indoor measurements (Table 2.2).
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Mean vs. Median Calculating the relative errors (equation 2.1) between the mobile and the
static sensor data by either the difference of the means (window aggregation via mean) or by
the difference of the medians (window aggregation via median) makes little difference to the
temperature, humidity, sound level and CO2 concentration values. The total volatile organic
compound concentration shows a different picture. Using the median leads to much smaller
relative errors. This is not expected as the CO2 concentration and the TVOC concentration
is calculated on the sensor from the same measured value. One possible explanation is that
the peaks occurring in the data are so big (value wise, not quantity wise) that they have a big
influence on the mean, where the median is known to be more robust against such outliers.

relative error =
estimate− truth

truth
(2.1)

Indoor vs. Outdoor Comparing indoor and outdoor data from the walking and standing still
contexts show for temperature and humidity values that the errors from outdoor data are higher
compared to the indoor data, the standard deviations of the outdoor data are also higher. This is
most likely due to the higher temperature difference between the outdoor temperature and the
skin temperature and due to the higher difference between the outdoor humidity and the skin
environment humidity respectively. Measurements were made mid to end of November, which
means that the temperature and humidity outside was relatively low. The relative errors and
the standard deviation of the sound level measurements show exactly the opposite picture. It
looks like the higher background noise outdoors covers a big portion of the noise produced by
the person wearing the sensor board during the measurements. The two air quality values both
perform better in outdoor conditions (both relative errors and standard deviations are smaller).
One must keep in mind that the air quality sensor was meant to be used indoors. We assume
that the two air quality metrics are heavily influenced by urban pollutants such as ozone.

Temperature and Humidity In both, indoor and outdoor conditions, some movement from the
person conducting the measurement seems to be beneficial for the temperature and the humid-
ity sensor values considering the relative errors, the standard deviations show similar values.
The biggest difference is seen when comparing standing still and walking. Running is even bet-
ter than walking but just slightly, considering both relative errors and standard deviations. Office
work performs the worst, but it has the smallest standard deviations. In conclusion one can say
that a certain airflow is beneficial to the temperature and humidity sensor.

Sound Level The sound level values shows similar results to the temperature and humidity
sensors when looking at standing still and walking contexts. The running context performs the
worst. This is probably due to the captured wind and the noise produced by the person wearing
the Thunderboard. Surprisingly, the office work context performs better than the standing still
context, despite the mobile sensor being closer to potential noise sources.

CO2 Concentration and TVOC Concentration The sensor values from the walking contexts
have worse relative errors and standard deviations than those from the standing still context.
More movement in form of the running context gives better results than the sensor values from
the walking context, but still worse than those from the standing still context. It seems that there
is a trade off between physical activity and airflow. Considering the office work context, the two
sensor values perform even better than in the standing still context, with the lowest standard
deviations of all four contexts. Despite the mobile sensor being in breath range it does not seem
to be affected by this. The good performance in this context is potentially caused by the small
movement of the mobile sensor, which seems to have a beneficial influence on the air quality
sensor.

Combined Data Looking at the influences the different contexts have on the different sensor
values as well as considering the above discussion of indoor versus outdoor, it clearly makes
sense to separate the data by context and the environment (indoor or outdoor). Combined data,
such as walking combined (walking indoor and walking outdoor together), have in general a
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bigger standard deviation as the individual contexts itself. The same applies for the combined
indoor data and the combined outdoor data.



Chapter 3

Ground Truth Estimation

In section 3.1 we explain why we are interested in ground truth estimation. The different algo-
rithms which we use to estimate the ground truth are described in section 3.2.1. How we handle
the input for these algorithms is described in section 3.2.2. To make the different algorithms
comparable to each other we have to score them, which is explained in section 3.2.3.
In section 3.3 we explain why we also use a truth finding algorithm. The specific algorithm we
use is further described in section 3.3.1 and in section 3.3.2 we explain how we create the input
data for this algorithm.

3.1 Goal of Ground Truth Estimation

We want to estimate the ground truth from the data produced by the measurements performed
in a specific context (Section 2.2.2). We exploit the potential relationship between context and
measurement quality to recover the ground truth of the measurement data. We assume the
value provided by the static sensor as the ground truth. We decided to try a variety of common
machine learning algorithms as well as two simple neural networks. The goal is to analyze
their performance afterwards to see if one of them is able to correct the errors introduce by the
context in an acceptable manner.

3.2 The different Ground Truth Estimation Algorithms

3.2.1 Short Description of the Algorithms

Ridge Regression and Bayesian Regression We use two variants of Ridge Regression.
One with only a one dimensional input, which uses only the corresponding sensor value to
estimate a certain sensor value ground truth (i.e. using only the temperature value to estimate
the temperature ground truth). The other variant considers all five sensor values to estimate
the ground truth. On both variants we use cross validation to determine the gamma parameter,
which penalizes learned weights of high magnitudes and, therefore, forces the learned weights
to have a small magnitude.
Bayesian Regression is comparable to Ridge Regression but the gamma parameter is learned
within its mathematical model.
For both, Ridge Regression and Bayesian Regression, we use the implementation provided by
scikit-learn [11] [12].

Bayesian Regression with Data transformed into Polynomial Space of Degree 2 and 3
We use Bayesian Regression another two times, but with transformed input data. We transform
our data once in a polynomial space of degree two and once in a polynomial space of degree
three.
For the Bayesian Regression as well as for the data transformation we use the implementations
provided by scikit-learn [12] [13].

25
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Kernel Ridge Regression with Polynomial Kernel of Degree 2 Instead of transforming the
data into a polynomial space as described above (3.2.1), an alternative is to make use of the
kernel trick. To archive this we use Ridge Regression with a polynomial kernel of degree two.
We used the implementation provided by scikit-learn [14].

SVR with RBF, Sigmoid, Linear Kernel and Polynomial Kernel of Degree 2 and 3 The
kernel trick we use for the Ridge Regression is also applicable to Support Vector Regressions.
We use five different kernels: a RBF kernel, a sigmoid kernel, a linear kernel and two polynomial
kernels of degree two and three respectively.
We use the implementation provided by scikit-learn [15].

KNN with Uniform and Distance Weights To complement the above algorithms, which focus
on fitting a mathematical model on the data, we include also an algorithm which focuses on the
distance of the data points to each other.
We use two varieties of the K Nearest Neighbor algorithm. One variety uses uniform weights,
which means that every data point in the neighborhood contributes the same to the cluster
assignment of a query point. The other variety uses distance weights which give data points
closer to the query point more weight. For both varieties the K was either three, five or seven,
determined by cross validation.
For both varieties we use the implementation provided by scikit-learn [16]

Multi-Layer Perceptron Neural Network To round up our collection of algorithms we also
include two simple neural networks. For the first neural network we use scikit-learn’s implemen-
tation [17]. The neural network has two hidden layers with the first hidden layer having 128
neurons and the second layer having 64 neurons. As optimizer we use lbfgs, which is an opti-
mizer in the family of quasi-Newton methods. The second neural network is built with tensorflow
[18]. This neural network has again two hidden layers but has less neurons, 64 and 16 neurons
respectively. In addition, the second neural network has a dropout layer on top for regularization
reasons. As optimizer we use the momentum optimizer which is provided within tensorflow.

Baseline Algorithms We need a basis for the performance of the algorithms described above.
For this reason we create two baseline algorithms. The first one calculates the score 3.2.3 on
the data without any modifications. For the second control algorithm we use a simple method
which corrects the data by the median offset to the ground truth.

3.2.2 Data Input for the Algorithms

For each sensor type (temperature, humidity, sound level, CO2 and TVOC concentration) there
are eleven data sets as input. These data sets are total (all measurements combined), indoor
(all measurements coming from an indoor environment combined), outdoor (all measurements
from an outdoor environment combined), standing still indoor, standing still outdoor, standing
still (combination of the data from the previous two data sets), walking indoor, walking outdoor,
walking (combination of the data from the previous two data sets), running outdoor and office
work.
Each of the data sets are randomly split into a training and test set. After the split the training
set goes through a balancing process. This is done by assigning the data points (regarding the
ground truth) to uniformly (between the maximum and minimum of the data set) distributed bins.
From each of these bins a certain number of data points is taken, defined by the formula 3.1.
Some algorithms benefit or even require the input data to be centered. If this is the case for an
algorithm, we center its input data.

take from each bin =

{⌊
n

#ofbins

⌋
, if > 0

5, otherwise
, n := # of data points (3.1)
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3.2.3 Scoring the Algorithms

To score the algorithms we use the root mean square error (RMSE). The RMSE score is defined
by the equation 3.2 [19]. We choose the RMSE over the mean absolute error (MAE) because
RMSE is sensitive to outliers. RMSE is sensitive to outliers because the errors get squared be-
fore averaged. MAE, on the other hand, behaves proportionally to the error magnitude because
the absolute value of the errors is taken before averaging. We especially want to correct outliers
with the algorithms and, therefore, we want to punish an algorithm which leaves outliers in the
data.

RMSE :=

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 N = # of samples, yi = observed value, ŷi = predicted value

(3.2)
We run each algorithm ten times and take the average of the RMSE scores as final score. To
make it fair for every algorithm, we run them with the same inputs respective to the different runs.
So algorithm A has the same input for its first run as algorithm B has on its first run. Obviously,
the input for the first run is different from the input of the second run and so on.

3.3 Truth Finding Algorithm as Comparison

We are not the first trying to find the ground truth in some data set. There exists a category
of algorithms, called truth finding algorithms, especially designed to find the ground truth in
data coming from different sources. We test one of these algorithms to see how it performs in
comparison to our own approach.

3.3.1 Description of the Truth Finding Algorithm GTM

We use a truth finding algorithm called Gaussian Truth Model (GTM) [20]. GTM uses a Gaussian
distribution for each truth to model the probabilistic distribution of observing each claim. The
truth itself is used as mean of the Gaussian distribution. The variance parameter controls how
likely claims deviate from the truth. Sources which make claims that deviate more from the
truth correspond to a larger variance. With this observation GTM models also every source
with a Gaussian distribution, which models how likely a claim of this source is. The variance
parameter of the Gaussian distribution is used to reflect the quality of the source. The model of
the truth and the models for the different sources form an EM model that builds the basis of the
GTM algorithm. GTM gives two outputs, one being the found truths and the other one being the
assigned quality levels of the sources.

3.3.2 Input Transformation for GTM

Like many other truth finding algorithms GTM expects claims for a truth coming from different
sources. Therefore, we have to create such sources. Our sources are based on the different
contexts described in section 2.1.1. We define two categories of sources, one for all indoor
sources and one for all outdoor sources. For a specific run we use only sources from one cat-
egory, because it makes no sense having an indoor source and an outdoor source making a
claim for the same truth.
Once the different number of sources for one run of the GTM algorithm are determined and the
corresponding claims are associated, the input data has to be z-scored (zero mean and stan-
dard deviation of one). GTM requires this step because otherwise one source could dominate
the other sources just because of the scale of its claims.
It is possible to give GTM the real truths as input. This helps GTM with its EM approach to start
close to the solution. We make use of this option because our input is on the smaller side and
an initial guess helps an iterative algorithm like GTM.
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Chapter 4

Evaluation

In this chapter we discuss the results of the ground truth estimation and the result of the truth
finding algorithm from chapter 3. In section 4.1 we discuss the result of the ground truth estima-
tion algorithms, described previously in section 3.2.1. Section 4.2.1 analyzes the performance
of the truth finding algorithm, GTM, described in section 3.3.1. A closer look at how GTM han-
dles the different contexts is given in section 4.2.2. Section 4.3 concludes this chapter by listing
the key findings of the evaluation.
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4.1 Performance of the Ground Truth Estimation Algorithms 35

overall scores mean mean no
aggrega-
tion

median median no
aggrega-
tion

no learning score 166.349 151.441 9.682 10.689

median shift 148.244 128.606 6.328 5.684

ridge regression single input 32.633 29.066 5.356 5.232

ridge regression 28.131 24.579 4.477 4.176

bayesian regression 28.038 24.623 4.410 4.176

bayesian regression poly d2 26.766 22.915 4.497 4.117

bayesian regression poly d3 37.644 35.170 6.749 6.237

kernel ridge regression poly 2d 27.454 23.306 4.368 4.642

svr rbf 31.698 29.087 7.254 5.677

svr sigmoid 32.423 29.933 7.661 6.304

svr linear 35.527 29.957 13.225 10.562

svr poly 2d 4.66E+04 6457.091 1999.904 373.374

svr poly 3d 1.71E+10 2.39E+09 2081.681 885.311

knn uniform weights 28.179 23.600 4.314 4.723

knn distance weights 26.902 22.555 3.959 4.210

mlp regression sklearn 27.152 24.011 4.277 4.297

tensorflow neural network 56.679 42.488 12.653 14.737

Table 4.6: Mean and median of the RMSE scores, no aggregation excludes data sets that com-
bine data, i.e. indoor or walking

4.1 Performance of the Ground Truth Estimation Algorithms

The scores of the different learning algorithms can be found in six tables. There is a table with
scores for all temperature data sets (table 4.1), a table for all humidity data sets (table 4.2), a
table for all sound level data sets (table 4.3), a table for all CO2 concentration data sets (table
4.4), a table for all TVOC concentration data sets (table 4.5) and a table with the median and
median scores (table 4.6).

Baseline Algorithm Our baseline algorithm, which shifts the data by the median relative error,
shows already a good performance considering the temperature (table 4.1) and humidity (table
4.2) data sets. On these data sets some of the RMSE scores where reduced by up to 50%. On
the CO2 (table 4.4) and TVOC concentration (table 4.5) data sets nearly no improvement can
be seen. The scores on the sound level data set (table 4.3) is even a bit worse compared to the
base score.

Ridge Regression and Bayesian Regression The two Ridge Regression and the Bayesian
Regression algorithms performed very well considering the over all scores (table 4.6). On the
temperature data set (table 4.1) they are under the top performing algorithms. On the other
sensor type data sets they still perform very well, especially on the different walking and running
contexts.
The Ridge Regression algorithm with one-dimensional input performs the worst of the three
algorithms, which indicates that other sensor values can give hints on the error of an other
sensor value. The other two algorithms perform very similar. This is no surprise as the difference
between the two is only that in Ridge Regression the gamma parameter is chosen via cross
validation and in Bayesian Regression the gamma parameter is learned within its mathematical
model.
Worth mentioning is the fact that Bayesian Regression is the fastest algorithm to train.
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Bayesian Regression with Data transformed into Polynomial Space of Degree 2 and 3
On the temperature data sets (table 4.1) the scores are comparable to the scores of the normal
Bayesian Regression, which means both variants are under the top performing algorithms. On
the humidity data set (table 4.2) the two algorithms are under the top performing algorithms as
well. On the data sets of the other sensor types the two algorithms are always outperformed by
other algorithms, but they are not far off on the data sets of the walking and running contexts.
The Bayesian Regression with data transformed into polynomial space of degree two is one of
the best performing algorithms considering the median and mean of all scores (table 4.6).

Kernel Ridge Regression with Polynomial Kernel of Degree 2 In most cases the perfor-
mance of this algorithm is close but not equal to the top performing algorithms. In some rare
occurrences on the CO2 (table 4.4) and TVOC concentration data sets (table 4.5) the algorithm
has the best score, for example on the TVOC concentration walking outdoor data set.

SVR with RBF, Sigmoid and Linear Kernel In nearly all cases the performance of the three
algorithms is not good. There are cases where the score is even worse than the score of the
data without learning. On the other hand, on the TVOC concentration data sets (table 4.5) the
algorithms performs better, giving the best results of all algorithms for standing still outdoor and
running outdoor.

SVR with Polynomial Kernel of Degree 2 and 3 These two algorithms have problems run-
ning on the data sets. The problems are so severe that the number of iterations the algorithms
can perform has to be limited to 10’000 to even get a result in a reasonable time. Due to this
limitation the two algorithms show by far the worst performance of all algorithms.

KNN with Uniform and Distance Weights The two algorithms show good performance on
aggregated data sets (total, indoor, outdoor, standing still and walking). Standing still indoor and
office work are also strong points of the two algorithms. On the CO2 and TVOC concentration
data sets they perform better than most of the other algorithms.
Considering the mean and the median of all scores the KNN variant which uses distance weights
is under the top two performing algorithms.

Multi-Layer Perceptron Neural Network (scikit-learn implementation) Looking at the over
all scores (mean and median of all scores) (table 4.6) the performance of this algorithm is good
and is always close to the best performing algorithms in the individual cases. On the CO2 (table
4.4) and TVOC concentration data sets (table 4.5) the performance is not as good as on the
data sets of the other sensor types. On the aggregated data sets (total, indoor, outdoor, stand-
ing still and walking) the performance is good as well.
A big part of the good performance comes from the lbfgs optimizer. Changing to an other opti-
mizer leads to significant worse scores.

Multi-Layer Perceptron Neural Network (TensorFlow) This algorithm does not perform
good. It seems that the algorithm suffers from some oscillation and is on the edge to diverge
(changes to the configuration leads to divergence). Despite some testing with different optimiz-
ers the TensorFlow framework provides, we can not find another optimizer which performs bet-
ter than the momentum optimizer. The lbfgs optimizer, used by the neural network implemented
with scikit-learn, is not available in the TensorFlow framework.

4.2 Performance of the Truth Finding Algorithm GTM

Where the complete GTM output of a run with up to 10 and a run with up to 20 claims and
different source configurations can be found is written in the appendix A. A few example outputs
can be found in listing 4.1, which serves as an example for the problems GTM has on our data
set.
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4.2.1 Performance Analysis of GTM

The performance of GTM is disappointing. Besides some rare cases when dealing with TVOC
concentration data, GTM is not able to challenge the top performing algorithms from the ground
truth estimation (section 3.2.1 and 4.1). The mathematical model behind GTM can give a pos-
sible explanation for this performance. The real truths we provide GTM, are only used as a first
estimation of the Gaussian distribution. The problem is, the more claims the different sources
make the more likely it is for the model that the claims are the truth (or at least closer to the truth).
Strictly speaking, the Gaussian distribution deviates from the real truth with every iteration of the
algorithm if the sources do not provide claims that are telling the truth or do not provide claims
that are close to the truth. And indeed, examples where more claims lead to worse results can
be found (listing 4.1). The assigned quality levels are also worse in these cases (lower is better).

i npu t exp lana t ion :

number o f each sources has the form [A, B, C]
A always corresponds to the number o f s tanding s t i l l sources ,
B always corresponds to the number o f walk ing sources and
C always corresponds to the number o f running or o f f i c e work sources
( depending i f indoor or outdoor )

number o f c la ims found M/N means M cla ims found , was look ing
f o r up to N cla ims

the d i f f e r e n t sources get a q u a l i t y l e v e l assigned , smal le r i s b e t t e r

###########################################

indoor r e s u l t s

co2 l e v e l

number o f each source : [ 2 , 2 , 2 ]
number o f c la ims found : 10/10
RMSE of found t r u t h s : 346.920797031

s t a n d i n g _ s t i l l _ i n d o o r _ 0 : 6.61178228027
s t a n d i n g _ s t i l l _ i n d o o r _ 1 : 7.41559129189
walk ing_indoor_0 : 6.33696723317
walk ing_indoor_1 : 6.33696723317
of f i ce_work_ indoor_0 : 6.33696723317
of f i ce_work_ indoor_1 : 6.33696723317

number o f each source : [ 2 , 2 , 2 ]
number o f c la ims found : 15/20
RMSE of found t r u t h s : 368.300282622

s t a n d i n g _ s t i l l _ i n d o o r _ 0 : 8.9250750701
s t a n d i n g _ s t i l l _ i n d o o r _ 1 : 9.22567149362
walk ing_indoor_0 : 8.2326023983
walk ing_indoor_1 : 8.2326023983
of f i ce_work_ indoor_0 : 8.2326023983
of f i ce_work_ indoor_1 : 8.2326023983

outdoor r e s u l t s

temperature
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number o f each source : [ 3 , 3 , 3 ]
number o f c la ims found : 10/10
RMSE of found t r u t h s : 2.55184711683

s t a n d i n g _ s t i l l _ o u t d o o r _ 0 : 7.27497877048
s t a n d i n g _ s t i l l _ o u t d o o r _ 1 : 6.77568064148
s t a n d i n g _ s t i l l _ o u t d o o r _ 2 : 6.65503307511
walking_outdoor_0 : 6.39287710099
walking_outdoor_1 : 6.39287710099
walking_outdoor_2 : 6.39287710099
running_outdoor_0 : 6.39287710099
running_outdoor_1 : 6.39287710099
running_outdoor_2 : 6.39287710099

number o f each source : [ 3 , 3 , 3 ]
number o f c la ims found : 18/20
RMSE of found t r u t h s : 2.75773715353

s t a n d i n g _ s t i l l _ o u t d o o r _ 0 : 10.247715894
s t a n d i n g _ s t i l l _ o u t d o o r _ 1 : 9.83468592154
s t a n d i n g _ s t i l l _ o u t d o o r _ 2 : 9.75953450452
walking_outdoor_0 : 9.20137203457
walking_outdoor_1 : 9.20137203457
walking_outdoor_2 : 9.20137203457
running_outdoor_0 : 9.20137203457
running_outdoor_1 : 9.20137203457
running_outdoor_2 : 9.20137203457

Listing 4.1: Examples where GTM performs worse with more claims than with less claims, as-
signed quality levels are also worse (lower is better) with more claims

4.2.2 Analysis of the Context Handling by GTM

As GTM assigns quality levels to the sources (section 3.3.1) and we create the sources from the
different contexts (section 3.3.2), GTM should give us some insights how the different context
have an influence on the algorithm. Unfortunately, the assigned quality levels are very close
to each other (listing 4.1) which does not allow us to say a certain source/context is favored.
In other words, it most likely makes no difference from which context the source has its data
from and GTM can most likely not handle the different contexts. This directly contradicts our
observation (section 2.3.2) where we can observe that the contexts have an influence on the
data quality.

4.3 Conclusion

In this chapter we have seen that ground truth estimation works better if not only one sensor
type is considered. The Ridge Regression algorithm with all five sensor types outperforms itself
if trained with only one sensor type.
For the temperature and humidity data sets our baseline algorithms which shifts the data by
the median of the relative errors already shows good results. With a bit more work in training
by using Bayesian Regression and transforming the data into polynomial space of degree two
most of the errors introduced by the contexts can be removed.
The K nearest neighbors algorithms using distance weights is able to handle combined data
sets (i.e. both walking indoor and walking outdoor combined). Also the CO2 and TVOC concen-
tration data sets are handled well by this algorithms. Together with Bayesian Regression with
transformed data into polynomial space of degree two KNN is the best performing algorithm on
our data sets.
The truth finding algorithm GTM is not able to recognize the the relationship between context
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and data quality. To assume that the claims are represented by a Gaussian distribution with the
ground truth as mean seems to be wrong.
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Chapter 5

Conclusion

In this chapter we draw our conclusion of the thesis. In section 5.1 we briefly summarize the
main findings of the thesis. Section 5.2 lists points which can be improved in a future work.
Lastly, section 5.3 lists the take-away messages how to handle data coming from a mobile
crowdsensing context.

5.1 Summary

In this thesis we have conducted our own mobile crowdsensing measurements in a variety of
different contexts. These contexts were standing still, walking, running and office work. The
person conducting a measurement acted according to the context the measurement should
have had attached to it. During a measurement the temperature, the humidity, the sound level,
the CO2 concentration and the TVOC concentration were logged.
In the investigation of the collected data we observed the existence of a relationship between
context and data quality. With this relationship observed, we tested different learning algorithms
to estimate the ground truth and correct the errors introduced by the context. For comparison
we tested GTM, an algorithm from the truth finding algorithm family. Truth finding algorithms
are developed with the idea to discover the truth in the data provided by multiple sources. We
observed that there exist algorithms suitable for the task of estimating the ground truth. Bayesian
Regression with the input data transformed into a polynomial space of degree two and the K
nearest neighbors algorithm are two algorithms which are able to correct most of the errors in
our data sets. The truth finding algorithm, GTM, is not able to deal with the different contexts
and can not recognize the relationship between context and data quality. All contexts get similar
quality levels assigned by GTM, which contradicts our observation to the relationship between
context and data quality.

5.2 Future Work

A future work can improve this thesis by considering the season in which the measurements
will be performed. We performed the measurements from mid to end of November. The season
could also have had an effect on the data we collected. A feature work can collect data over all
seasons to eliminate this variable from the data.
It is possible that, in the future, affordable air quality sensors will get a significant improvement
of their quality. In case this happens it makes sense to re-do the measurements of the two air
quality metrics as the air quality sensor we used most likely suffered from its quality.

5.3 Take-Away Messages

In the following paragraphs we list take-away messages for someone handling data coming from
a mobile crowdsensing context.
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Context Matters The first key take-away is that context has an influence on data quality as we
have seen in section 2.3.2. There is more to the context as just the activity of a participant, the
environment (i.e. outdoor or indoor) plays also an important role. We suggest to keep in mind
that there exists this relationship if starting a project with such data.

Tackle the Influence of Context The second key take-away is that there are simple learning
algorithms which work quite well for estimating the ground truth of context affected data (section
4.1). We suggest starting with having a look at the description of the algorithms we have used
in section 3.2.1 and then testing some of them on the data set.

Testing Truth Finding Algorithms and Ground Truth Our third take-away is to carefully test
a truth finding algorithm before using it. It is possible, that a truth finding algorithm is not able
to perform well on a particular data set while on other data sets the performance is as desired.
GTM, the truth finding algorithm we tested is, for example, not able to handle the different
contexts in our data (section 4.2.2).
It is also important to use meaningful ground truths for testing algorithms. Assuming that the
ground truths follow a certain mathematical model can lead to a wrong test result, especially if
the tested algorithm, by chance, uses the same mathematical model.



Appendix A

Data and Source Code

On request, the data from the measurements and the source code of the software used in this
thesis is available.

A.1 Data

The data from the overnight measurements can be found in:

\Data\Measurements\Overnight_Measurement

The aggregated data from the measurements in context as well as the statistics of this data can
be found in:

\Data\Measurements\Measurements_in_ Context

The GTM output data from two runs (one up to 10 claims and one with up to 20 claims per truth)
can be found in:

\Data\Ground_Truth_Estimation_Results\GTM_Results

The performance scores of the ground truth estimation algorithms can be found in:

\Data\Ground_Truth_Estimation_Results\Algorithms_Performance

A.2 Source Code

The source code for the modified Android app (mostily DemoMeasurementActivity.java) can be
found in:

\Source_Code\thunderboard-android-app

The source code for the modified Thunderboard firmware (radio_ble.c) can be found in:

\Source_Code\thunderboard-firmware\soc-thunderboard-sense

The source code for the script reading the sensor values from a Thunderboard connected to a
computer can be found in:

\Source_Code\serial-port-reader

The source code for the preprocessing of the measurement data can be found in:

\Source_Code\measurement_analysis

The source code of the different learning algorithms and the truth finding algorithm, GTM, can
be found in:

\Source_Code\truth_estimation

43



44 APPENDIX A. DATA AND SOURCE CODE



Appendix B

45



Bibliography

[1] Context-Aware Data Quality Estimation in Mobile Crowdsensing,
Shengzhong Liu, Zhenzhe Zheng, Fan Wu, Shaojie Tang and Guihai Chen,
IEEE Conference on Computer Communications INFOCOM 2017,
May 2017, Atlanta, GA, USA

[2] A Survey on Truth Discovery,
Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan and Jiawei Han,
ACM SIGKDD Explorations Newsletter Volume 17 Issue 2,
December 2015, New York, NY, USA

[3] Participatory Sensing or Participatory Nonsense?: Mitigating the Effect of Human Error on
Data Quality in Citizen Science,
Matthias Budde, Andrea Schankin, Julien Hoffmann, Marcel Danz, Till Riedel and Michael
Beigl,
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume 1 Issue 3,
September 2017, New York, NY, USA

[4] Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors,
Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten and Paul J. M.
Havinga,
PMC Us National Library of Medicine, National Institutes of Health, Sensors Journal 2016
Volume 16 Issue 4,
March 2016, Basel, Switzerland

[5] Apple Watch Series 3 Specifications,
Apple, Website,
https://support.apple.com/kb/SP766?viewlocale=en_US&locale=de_CH,
Last visited on the 11th of February 2018

[6] Garmin vivoactive 3 Specifications,
Garmin, Website,
https://buy.garmin.com/en-US/US/p/571520#specs,
Last visited on the 11th of February 2018

[7] NoiseTube Crowdsensing Project,
NoiseTube, Website,
http://www.noisetube.net/index.html#&panel1-1,
Last visited on the 11th of February 2018

[8] OpenSense 2 Crowdsensing Project EPFL Lausannne,
EPFL Lausanne, Website,
http://opensense.epfl.ch/wiki/index.php/OpenSense_2,
Last visited on the 11th of February 2018

[9] Simplicity Studio 4,
Silicon Labs,
https://www.silabs.com/products/development-tools/software/simplicity-studio,
Last visited on the 29th of January 2018

47



48 BIBLIOGRAPHY

[10] Source code of the official Thunderboard Android app,
Silicon Labs, GitHub repository,
https://github.com/SiliconLabs/thunderboard-android,
Last visited on the 29th of January 2018

[11] Ridge Regression,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html,
Last visited on the 8th of February 2018

[12] Bayesian Regression,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html,
Last visited on the 8th of February 2018

[13] Poynomial Features,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html,
Last visited on the 8th of February 2018

[14] Kernel Ridge Regression,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html,
Last visited on the 8th of February 2018

[15] Support Vector Regression,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html,
Last visited on the 8th of February 2018

[16] K Neighbors Regression,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html,
Last visited on the 8th of February 2018

[17] Multi-Layer Perceptron Regressor,
scikit-learn.org, documentation,
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html,
Last visited on the 8th of February 2018

[18] TensorFlow,
TensorFlow website,
https://www.tensorflow.org/,
Last visited on the 8th of February 2018

[19] Root Mean Squared Error (RMSE) Explanation,
Professor Susan Holmes,
Introductory Statistics,
Stanford University, CA, USA,
http://statweb.stanford.edu/ susan/courses/s60/split/node60.html,
Last visited on the 19th of February 2018

[20] A Probabilistic Model for Estimating Real-valued Truth from Conflicting Sources,
Bo Zhao and Jiawei Han,
Proceedings Proceedings of the VLDB workshop on Quality in Databases QDB 2012


	Introduction
	Motivation
	Related Work
	Report Structure

	Measurements and Observations
	Measurement Tools
	Contexts
	Hardware
	Sensors
	Software

	Measurement Approach
	Overnight Measurement
	Measurements in Context

	Observations
	Observations from the Overnight Measurement
	Observations from the Measurements in Context


	Ground Truth Estimation
	Goal of Ground Truth Estimation
	The different Ground Truth Estimation Algorithms
	Short Description of the Algorithms
	Data Input for the Algorithms
	Scoring the Algorithms

	Truth Finding Algorithm as Comparison
	Description of the Truth Finding Algorithm GTM
	Input Transformation for GTM


	Evaluation
	Performance of the Ground Truth Estimation Algorithms
	Performance of the Truth Finding Algorithm GTM
	Performance Analysis of GTM
	Analysis of the Context Handling by GTM

	Conclusion

	Conclusion
	Summary
	Future Work
	Take-Away Messages

	Data and Source Code
	Data
	Source Code

	Declaration of Originality

