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Abstract

Karaoke is a game in which players sing over pre-recorded instrumental backing
tracks. To help the singer, lyrics are usually displayed on a video screen. The
synchronization between the lyrics display and the song record, often done man-
ually, is a tedious and time-consuming task. Automation of the annotation of
karaoke songs can help save time and effort.

In this thesis we use the representation of songs as spectrograms to detect
singing times. This timing information can be used later to align the lyrics
display with a sound track. Convolutional neural networks are trained to detect
at any moment in a song whether the artist is singing or not.
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Chapter 1

Introduction

1.1 Motivation and Previous Master Thesis

Annotating karaoke songs means associating the lyrics of a song to the audio
file with timing information. Collecting the lyrics of songs is quite easy, how-
ever gathering the timing annotation is much more tedious as it is often done
manually.

In this semester project, I used the database resulting from the master the-
sis ”Karaoke Song Generator” written by Vanessa Hunziker at the Distributed
Computing Group of Computer Engineering and Networks Laboratory at ETH
Zürich in 2016 [1]. This master thesis aimed at annotating song lyrics automat-
ically by using two different techniques. The first was based on the alignment
of two signals: the song itself and the text-to-speech signal created using the
written lyrics. The second approach used crowdsourcing to annotate the data.
To this end, a game for Android was developed and players had to select the
lyrics they heard at the correct time.

The goal of this semester project is to investigate a new method for the
annotation of karaoke songs.

We want to use a deep learning-based approach to annotate songs with their
lyrics. The idea is to train a deep neural network on a annotated dataset. The
model will then be able to predict the timing annotation for any other song.

1.2 The dataset

[1] resulted in the creation of a database containing for each song its mp3 file
and its txt file with the lyrics.

The txt file is structured like lyrics files used in open source karaoke games
like UltraStar [2]. The file starts with tags indicating for example the title,
the artist, the language, the genre, the year of release... More relevant for the
processing of the data in this project, the lyrics file also contains the gap, i.e. the
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1. Introduction 2

amount of time in milliseconds before the lyrics start and the bpm or beats per
minute, i.e. the rate at which the text should display. After the tags, the lyrics
and the notes are written. This information is divided into 5 columns separated
with spaces. Each row of the file corresponds to a different syllable. The first
column contains one of the following symbols: ’:’, ’*’, ’F’, or ’-’. ’-’ describes a
line break and does not correspond to any lyrics. The other symbols indicate
different scores for the player if he or she manages to find the correct timing
for a particular syllable. This information is not used in this work. The second
column indicates at what time the syllable is sung. That time is given in quarters
of beats. The third column gives the number of beats during which the syllable
lasts. The fourth column gives the number code of the syllable’s pitch. The fifth
column contains the syllable itself. An illustration is given in the figure 1.1.

1.3 Steps of the project

The project is divided into the 3 following steps.

• The mp3 and txt files from the dataset (see 1.2) will be preprocessed as
explained in 4.

• Speech to Text Recognition is performed with IBMrSpeech to Text API
(see 5.1) to get the content of the lyrics.

• A neural network is trained to detect when the artist is singing. The
detected voice times provide the timing information needed to align the
lyrics found and the song record.

The chapter 2 defines the spectrograms and the ideal binary masks. The
chapter 3 describes the two general approaches that have been studied to solve
the problem of lyrics annotation. Chapter 4 explains the different preprocessing
steps that were applied to the data. The chapter 5 analyses the results obtained
with the IBMrSpeech to Text API and with the neural network. Finally, chapter
6 concludes and gives ideas for improvement.
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Figure 1.1: First lines of the file ”Simon and Garfunkel - The Sound of Si-
lence.txt”



Chapter 2

Spectrogram and Ideal Binary
Mask

2.1 Spectrogram

2.1.1 Definition

A spectrogram is a representation of the spectrum of frequencies of the song
record as they vary with time. The horizontal axis represents time and the
vertical axis is frequency. The amplitude of a particular frequency at a particular
time is represented by the colour of each point in the image.

2.1.2 Creation

One spectrogram was created for each song of the dataset. They were created
using the STFT (Short-Time Fourier Transform). To compute the STFT, the
long time signal (the waveform of the song) is divided into short segments, and
then the FFT (Fast Fourier Transform) is computed on each segment. The FFT
is an algorithm allowing to compute a Discrete Fourier Transform. The STFT
can be seen as the correlation of the signal with a function w depending on time
such that the function w is real, symmetric and normalized.

The STFT of a function f is a function of 2 variables given by :

X(n, k) = STFT {x[n]} =
∞∑

m=−∞
x[n]w[n−m]e−jωm

It can be interpreted as the multiplication of x by the window w which is
centred on the time n, followed by a Fourier Transform.

For the application we used the Python function: scipy.signal.stft(signal,
window=’hann’, nperseg=2048, noverlap=512). The computation was done with
a Hann window w of size 2048 samples. The chunks resulting of successive
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2. Spectrogram and Ideal Binary Mask 5

windowing of the signal overlap on 512 samples. These parameters were chosen
according to [3]. The Hann window which was also chosen in [3] provides a
good compromise between time and frequency resolution. The Hann window is
defined as:

w(n) =
1

2

(
1− cos

(
2πn

N − 1

))
with N=2048

Example:

The song Dancing Queen by ABBA has a record of length approximately 3
min and 52 sec (232 sec). The audio record has a sampling frequency of 44100
Hz. Thus, the entire song contains 10231200 samples (44100×232).

The STFT is computed with windows of size 2048 (in this song it represents
about 46 ms) which overlap with 512 samples. Therefore, to compute the STFT
of the whole song, 10231200

(2048−512) = 6660 chunks are needed. Each chunk of the origi-
nal signal is represented by a vertical line in the final spectrogram. Consequently,
the spectrogram should be of size 6660 on the time axis. In fact the spectrogram
has a width of 6665. This is due to the fact that the song does not last precisely
232 seconds but in fact its duration is closer to 232.09 seconds.

The audio signal is real, thus its Fourier transform is even. This explains
why the resulting spectrograms are of height 1025 (instead of 2048) because in
the signal, only half of the frequencies are needed to fully describe the Fourier
transform. If the signal was complex, the height of the spectrogram would have
been 2048. As the sampling frequency of the record is 44 100 Hz, the frequency
resolution of the spectrogram is 44100

2×1025 = 21.5 Hz. The maximum frequency

represented is 44100
2 = 22050 Hz. Frequencies from 20 to 20 000 Hz are audible

but human speech frequencies lie between 500 and 8000 Hz. Above 8000 Hz
there are mostly ringing sounds, this explains why the amplitude values with
frequency larger than 8000 Hz in the spectrogram are close to zero.

The figure 2.1 shows the entire spectrogram for the example as well as a
zoomed-in picture.

2.2 Ideal Binary Mask

In order to analyse the songs, [3] uses Ideal Binary Masks (IBMs) of the songs.
The IBMs are spectrograms, classically they are defined as:

IBM(t, f) =

{
1 if SNR(f) > θ
0 otherwise

typically, θ = 0dB

Each element of the mask is found by computing the Signal-to-Noise Ratio
(SNR). If the ratio of the signal power to the noise power is bigger than a defined
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(a) (b)

Figure 2.1: Entire Spectrogram (a) and Spectrogram between 2 min 37 sec and
3 min 29 sec and between frequencies 0 and 6884 (= frac320× 441002× 1025
Hz (b) of the song ’Dancing Queen’ by ABBA

threshold, the element takes the value 1, otherwise it takes the value 0. In our
case, the signal corresponds to the voice signal and the noise to the instrumental
part of the music.

Once the IBM has been computed it can be applied to the spectrogram of
the song (by multiplying the spectrogram and its corresponding IBM element
by element). This representation has the advantage of reducing the problem of
finding when the artist sings to a binary classification problem.



Chapter 3

Method

3.1 First approach: Voice Extraction

The first idea I considered is inspired by [3]. In order to annotate the songs, a
solution could be to extract the singing voice (or voices) from the record, i.e.
to remove the instrumental part. Then, speech recognition methods could be
used to recognize the lyrics from the extracted vocal part. This approach would
provide both the lyrics and their timing information. The spectrograms of the
songs are computed. The IBM of each song of the training and test sets is also
defined and computed such that:

IBM(t, f) =

{
1 if SNR(f) > θ
0 otherwise

typically, θ = 0dB

Where the vocal part is considered to be the signal and the instrumental part
is considered to be the noise.

A neural network will be used to predict the IBM for any song. To train the
neural network, the set of the spectrograms of the songs is used as input data.
The labels are the IBMs.

Once an IBM is predicted, it can be applied on the spectrogram of the song.
The filtered spectrogram is then inverted to get the record of the voice alone,
without the instruments.

By defining the mask in this way, some singing parts are possibly filtered
if they are sung while the instruments are loud (so loud that the SNR < θ).
However, we assume that this case occurs rarely. Otherwise, it would be difficult
to understand the lyrics, even for human ear.

The great disadvantage of this approach that the SNR in our case is not
known. The dataset does not provide any information concerning the respective
powers of the vocal part and of the instrumental part. Unlike in [3] the database
I use contains only the records of the songs and not the records of the singing
voice and records of instruments alone. Therefore, we should first solve a simpler
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3. Method 8

problem: ”voice detection” instead of ”voice extraction”.

3.2 Second approach: Voice Detection

Instead of wanting to extract the singing voice, it could be enough just to detect
when the singing occurs in the song. Each time the person starts singing, his
or her voice is detected, which provides the timing information needed for the
karaoke annotation.

Concerning the content of the lyrics, a possibility, as a first step, is to use an
already existing API for speech recognition (IBM’s API Watson for example) and
apply the speech recognition directly on the songs. Then, thanks to the detected
singing times, the lyrics found with the API can be align with the sound track.



Chapter 4

Preprocessing

4.1 MP3 files

For this part, the .mp3 files were converted into .wav files. I used the scipy.io.wavfile.read
Python function to extract the waveform signal (figure 4.1) as well as the rate
of the record. The songs were stereo records so I kept only one channel (the
left one) and could then apply as STFT on this signal as explained in section
2.1.2. I then normalized the spectrograms with norm 2 with the Python function
np.linalg.norm (figure 4.2).

Figure 4.1: Waveform of the first 23 ms of ’Dancing Queen’ by ABBA

4.2 Text files

From the .txt files, I extracted the values of the BPM and of the GAP (defined
in section 1.2) as well as an array of couples (xsyllable i,ysyllable i) where xsyllable i

is the starting time in milliseconds of the syllable i and ysyllable i, its ending time.

9
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(a) (b)

Figure 4.2: Spectrogram (a) and Normalized Spectrogram (b) of ’Dancing Queen’
by ABBA

That array thus contains the starting and ending times of all the syllables in the
song.

xsyllable i = GAP +
60000

BPM
× starting time of syllable i in quarter of beats

4

ysyllable i = xsyllable i +
60000

BPM
× ending time of syllable i in quarter of beats

4

Note: It can be seen that the created array can be assimilated to an IBM as
described in section 2.2.

IBM(t, f) =

{
1 if the artist is singing
0 otherwise

It is clear that this representation (example on figure 4.3) is redundant and
only one row is enough to describe it. This mask can then be applied on the
song spectrogram in order to remove from it all the parts of the song when only
the instruments are playing.

An important observation to make is that the annotation of the starting and
ending times in the dataset .txt files have been made during the master thesis
[1] for a karaoke application and not a voice detection application. In fact, their
accuracy is perfectly valid for lyrics display in a karaoke. However, they may
not be accurate enough for a voice detection application. Indeed, some parts of
the singing voice are deleted and some purely instrumental parts remain. The
labels do not match exactly with the moments when the artist is singing, which
can make it difficult for a neural network to detect these moments.
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Figure 4.3: ’Ideal Binary Mask’ for Voice Detection for the song ’Sound of Silence’
by Simon and Garfunkel

4.3 Smoothing

The realism of this representation can be improve by a smoother separation be-
tween the times when the artist is singing and when he or she is not singing.
Indeed, the voice does not often stop suddenly but its volume decreases gradu-
ally. What is more, it usually does not make sense to detect a separation between
syllables of the same words or even words of the same sentence. We can con-
sider that blanks with duration of less than 50 milliseconds usually correspond
to breathing and should not be detected as instrumental parts. Similarly, an
isolated vocal part lasting less than a second does not in fact correspond to a
word. Therefore, it seems meaningless to have ”blocks” of zeros or ones with
a size smaller than 30 samples (which correspond to approximately 1 second).
The binary arrays created can be smoothed by an eroding and dilatation method
(figure 4.4).

The original label (the binary array which indicates whether the artist is
singing) is first dilated by 7 samples so that groups of zeros or ones with less
than 15 samples are merged. Then, an erosion of 7 samples is applied to remove
the ones or the zeros that have been added on edges. At this point, there are
no more groups of zeros of size less than 30 samples in-between ones. This part
allows to group the syllables of same words or phrases.

A second erosion of 15 samples is applied to eliminate groups of ones of size
smaller than 30 samples. A second dilation is done to add the ones at the edges
of groups of ones that have been deleted during the second erosion. This part
helps eliminate very short and isolated vocal parts)
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(a)

(b) (c)

(d) (e)

(f)

Figure 4.4: Initial label (a), label after first dilation (b), label after first erosion
(c), label after second erosion (d), label after second dilation (e)



Chapter 5

Results

5.1 Speech to Text recognition

As explained in section 3.2, I used a Speech-to-Text API to retrieve the content of
the lyrics. Surprisingly, the IBMrSpeech to Text API [6] gives very poor results
concerning the speech recognition on songs. I analysed the first 233 songs of
the dataset with this tool and the mean number of words detected per song was
12.7 words, the median number words detected was 5. There are obviously not
enough words to allow the use the IBMrSpeech to Text API’s song transcription
for a Karaoke application.

Usually the best recognized songs have a very clear and close to speech singing
part and a very quiet instrumental background. However even though some
words or sentences are well detected, the resulting lyrics are not accurate enough
to use them in Karaoke. An example of one of the better recognized songs is
given in annexe (for the song ”Don’t Worry Be Happy” by Bobby McFerrin).

These tests using the IBMrSpeech to Text API show that lyrics recognition
in songs is a more difficult problem than speech recognition in spoken language.
It would take more time to adapt the methods ( for example neural networks)
used in speech recognition to the lyrics recognition problem. Besides, collecting
the lyrics of songs is not the most difficult task in annotating the songs for a
karaoke application. Indeed, some databases like the Music Lyrics Database [4]
contain lyrics of hundreds of thousands of songs and can easily be downloaded.
Therefore, I chose to focus on the collection of timing information rather on the
recognition of the lyrics’ content.

5.2 Neural Network Training

5.2.1 Motivation

The goal of this semester project is to investigate how to use deep learning to
annotate songs. The use of spectrograms allows to represent the song as an

13



5. Results 14

image. As Convolutional Neural Networks (CNN) are particularly effective for
image recognition [5] , the choice of this kind of network seemed natural.

5.2.2 Inputs

The song spectrograms are divided in spectrograms of size 200*1025. To make
sure that the class 0 (no voice) is not over represented, the spectrograms contain-
ing only zeros (which often occurs at the beginning or at the end of the song) are
not used. The size 200 corresponds to approximately 7s. 23835 inputs remain.

5.2.3 Labels

The binary arrays created as explained in section 4.2 are the labels. They are also
divided in array of size 200 corresponding to the remaining spectrograms. The
neural network has to predict a binary array corresponding to a spectrogram,
i.e. predict for every time if there is a voice in the record or not. The problem
of voice detection is a binary classification problem for each time step.

5.2.4 Training

The training set is composed of 19668 examples and the test set contains 4167
examples. I made sure that two examples build from the same song cannot be
one in the training and the other in the test. Otherwise very similar patterns
could be both in the training and test sets and create biased results.

5.2.5 Loss and Optimizer

We define the binary crossentropy loss as :

L(w) = − 1

N

N∑
n=1

[
yn log ŷn + (1− yn) log(1− ŷn)

]
, (5.1)

where w is the vector of weights and N the number of samples. yn is the ground
truth for the sample n (the label) and ŷn the CNN’s prediction for the sample
n.

The binary crossentropy is often used in machine learning for classification
problems involving two possible classes. When the prediction ŷ is very close to
(resp. far from) the label y, the term y log ŷ+ (1− y) log(1− ŷ) is very close to 0
(resp. very close to 1). In order to minimize the loss L(w), the predictions have
to get closer to the labels.

The optimizer I used is AdaGrad (adaptive gradient algorithm). This is a
stochastic gradient descent with an adaptive learning rate which is often used
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in image recognition. Changes in the learning rate (in a range of 0.0001 to 0.1)
made no real differences on the results.

5.2.6 Size of the convolutional filters

The filters shape makes the training focus on particular features. As explained
in [6], applying filters of size m× n with m and n bigger than 1 allows to learn
time and frequency features at the same time. Filters with m = 1 helps to learn
temporal features such as rythmic or tempo whereas filters with n = 1 are better
to learn frequency features such as timbre. For the purpose of voice detection,
as the main difference between singing voice and instruments are the frequency
distributions and ranges. Therefore, it seems appropriate to choose a filter with
large n. On the first layer, I chose to set the size of the filters such that n is
equal to 1025 (the height of the spectrograms) and m takes much smaller values
(between 3 and 19 samples).

5.2.7 Number of training samples

The first tests were made on smaller set of examples (with only 200 songs). The
results got better when the training was done on the entire dataset.

5.2.8 Evaluation of the results

During the training the binary crossentropy losses on the training set and on
the test set were saved after each epoch in order to plot the training and test
loss curves. This curves help to choose after how many epochs the model is
supposed to perform the best in the classification on the test set. As long as the
test loss keeps decreasing, it makes sense to keep training the model. If the test
loss increases on average for a certain number of epochs, the training has to be
stopped.

The predicted array has elements which take real values between zeros and
ones. To evaluate a prediction, its elements are rounded to 0 or 1 (if an element
is smaller than 0.5 then it is set to 0, otherwise, it is set to 1).

The accuracy is defined as Accuracy = tp+tn
tp+tn+fp+fn .

• tp is the number of true positives, i.e. the number of elements in the
predicted array that are equal to one with corresponding element in label
array also equal to one.

• tn is the number of true negatives, i.e. the number of elements in the
predicted array that are equal to zero with corresponding element in label
array also equal to zero.
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• fp is the number of false positives, i.e. the number of elements in the
predicted array that are equal to one whereas corresponding element in
label array is equal to zero.

• fn is the number of false negatives, i.e. the number of elements in the
predicted array that are equal to zero whereas corresponding element in
label array is equal to one.

5.2.9 Results

MLP

The first tests are carried with MLPs (Multi Layer Perceptron) with only fully
connected layers. With one hidden layer, I obtained a clearly overfitting model
with an accuracy of 99% on the training set and a maximum of 52% on the test
set. When using dropout, I could reach an accuracy of 56% on the test set.

CNN

With the a convolutional architecture, the parameters that were tuned in the
different simulations were:

• the number of layers from 3 to 6 layers

• the different sizes of the filters (1,7),(1,5), (1,3)

• different numbers of filters on each layer

The best accuraccy that could be obtained was of 60% in test (with 80% in
training ) with a 4 layers network with filter sizes (1025, 11) on the first layer
and (1,5) on the next layers and 10 filters on each layer.

Adding a dropout layer did not change the results.

Smoothed Labels

These tests were all carried before smoothing the labels. Smoothing the la-
bel brought the biggest difference I could observe in all the different trainings.
As shown in figure 5.2, the test loss decreases much more when the labels are
smoothed. The confusion matrices 5.1 and 5.3 are drawn at the end of the
training and the confusion matrices 5.2 and 5.4 after the epochs at which the
test loss reaches its lowest point. Smoothing the labels helps the test accuracy
to increase from 60% to 65%.

This shows that imroving the labels is a condition to have better results.
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Table 5.1: Confusion matrix in training without smoothed labels

`````````````̀Prediction
Groundtruth

0 1

0 38% 17%

1 14% 31%

Accuracy 69%

The CNN is represented in the figure 5.1.

Figure 5.1: CNN

(a) (b)

Figure 5.2: Training and Test Losses with Non Smoothed (a) and Smoothed (b)
Labels

An illustration of satisfying and not satisfying predictions is given in .
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Table 5.2: Confusion matrix in test without smoothed labels

`````````````̀Prediction
Groundtruth

0 1

0 35% 22%

1 18% 25%

Accuracy 60%

Table 5.3: Confusion matrix in training with smoothed labels

`````````````̀Prediction
Groundtruth

0 1

0 22% 10%

1 19% 49%

Accuracy 71%

Table 5.4: Confusion matrix in test with smoothed labels

`````````````̀Prediction
Groundtruth

0 1

0 18% 11%

1 23% 48%

Accuracy 66%



Chapter 6

Conclusion

The goal of this project was to annotate songs using deep learning for a karaoke
application. The songs representation as spectrograms, their preprocessing as
well as the preprocessing of the labels are important steps.

In order to detect the singing times, different types of neural networks were
used. The results obtained with CNNs improve on the ones with MLPs. Smooth-
ing the labels also refined the results.

However, the detected time information is not sufficiently accurate to prop-
erly synchronize the lyrics with the song record.

Other types of neural networks could be used such as LSTM (Long short-
term memory) networks, which are recurrent networks that are used in many
speech recognition problems.

The preprocessing of the songs can be improved by using the Constant-Q
transform instead of Fourier transform (this kind of transform is preferred in
some music applications) and by using the Mel-frequency cepstral coefficients
(MFCCs).

One of the problems identified in this project was the lack of accuracy for
voice detection of the timing information given in the dataset described in section
1.2 . The division of the lyrics in syllables is maybe not the most appropriate for
voice detection. It would maybe make more sense to use a division of the lyrics
in entire words or sentences.

In order to use the first approach described in section 3.1, another dataset
including records of songs as well as separate records of the instruments and of
the voice could be used (for example the MedleyDb [7]).
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Appendix A

Appendix Chapter

A.1 Example of an IBMrSpeech to Text API’s test

The following lyrics give the example of the song ”Don’t Worry Be Happy” by
Bobby McFerrin.

In bold type are the lyrics that have been recognized.

Lyrics from [4]

Here’s a little song I wrote
You might want to sing it note for note,
Don’t worry, be happy
In every life we have some trouble,
When you worry you make it double
Don’t worry, be happy

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
(Don’t worry, be happy)
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
(Don’t worry, be happy)

Ain’t got no place to lay your head,
Somebody came and took your bed,
Don’t worry, be happy

A-1
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The land lord say your rent is late,
He may have to litigate
Don’t worry, be happy
(Look at me I’m happy)

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be Happy)
Ooh oo-ooh oo-ooh
Here I give you my phone number
When you worry call me, I make you happy
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be Happy)
Ooh oo-ooh oo-ooh
Here I give you my phone number,
When you worry call me, I make you happy
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh

Ain’t got no cash, ain’t got no style
Ain’t got no gal to make you smile
But don’t worry, be happy
’Cause when you worry your facewill frown
And that will bring everybody down,
So don’t worry, be happy
Don’t worry, be happy now

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
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Don’t worry, be happy
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
Don’t worry, be happy

Now there, is this song I wrote,
I hope you learned it note for note
Like good little children,
Don’t worry, be happy
Listen to what I say
In your life expect some trouble
When you worry you make it double
Don’t worry, be happy, be happy now

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
Don’t worry, be happy
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Be happy)
Ooh oo-ooh oo-ooh
Don’t worry, be happy

Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(Don’t worry, don’t worry, don’t do it, be happy)
Ooh oo-ooh oo-ooh
(Put a smile on your face, don’t bring everybody down)
Ooh, ooh ooh ooh oo-ooh ooh oo-ooh ooh ooh oo-ooh
(Don’t worry)
Ooh oo-ooh ooh ooh oo-ooh
(It will soon pass, whatever it is)
Ooh oo-ooh oo-ooh
Don’t worry, be happy
Ooh oo-ooh oo-ooh
I’m not worried, I’m happy
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Result from the Speech to Text API

here’s a little song I
you might want to sing it note for note gone
we have
do you have a life and we have some trouble when you worry you may get
dial tone
may have been all the way we have
where
it happened
where have
we had
don’t
and god will bless
they are ahead
somebody came in your bed gong
we had
they ran late and he may have
let
don
and then we have a
you have
I give you my phone number when you worry about
where
and Capital cascade god knows that
and god will gather
and
because when
faced with from
that will bring everybody down
so it’s all
we have a dog where they have been that
so where
happy
and the
where
Dorgan well
this song I wrote
I hope you learned it
children don’t worry
the a happening
they let it all out
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in your life back from
but when you add a
top of
dawn
I have
go all the way
the happy
don’t worry be
wearing
elaborate may have a
we have
don’t bring everybody
going to wear
the sun passed with the
they have

A.2 Example of 2 predictions and labels in the test
set

(a) (b)

Figure A.1: Example of a satisfying (a) and not satisfying (b) predictions
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