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Abstract

Porto Seguro, one of Brazil’s largest auto and homeowner insurance companies,
challenged participants of the competition to build a model that predicts the
probability that a driver will initiate an auto insurance claim in the next year
given a strongly imbalanced and anonymized training set. This report assesses
the performance of two state of the art boosting methods, namely Extreme Gra-
dient Boosting (XGBoost) and Light Gradient Boosting Machine (LGBM), com-
paring their performance against a neural network (Multi-Layer-Perceptron). We
show that for this specific case, boosting methods outperform neural networks.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . 1

2 Boosting Methods 3

2.1 Adaptive Boosting (Adaboost) . . . . . . . . . . . . . . . . . . . 3

2.2 Gradient Boosting Models . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 eXtreme Gradient Boosting (XGBoost) . . . . . . . . . . 5

2.2.2 Light Gradient Boosting Machine (LGBM) . . . . . . . . 7

3 Experimental Results 8

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 One Hot Encoding . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Recursive Feature Elimination using gradient boosting . . 10

3.3 Normalized Gini . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Baseline: Multi Layer Perceptron (MLP) . . . . . . . . . . . . . . 11

3.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 12

4 Summary 14

5 Bibliography 15

iii



Chapter 1

Introduction

1.1 Motivation and Background

Boosting methods have been first proposed by Schapire and Freund’s AdaBoost
algorithm [1] as a derivative of ensemble methods based on the following obser-
vation: while it may be very hard to build a highly accurate classifier (strong
learner), it is much easier to come up with many rough rules of thumb (weak
learners) which we only expect to predict strictly better than a random guess-
ing. The performance of these simple and biased classifier is then ”boosted” by
combining them together using a majority vote of the weak learner’s prediction,
weighted by their individual accuracy. It can be seen as a weighted ensemble
method focusing on reducing bias by iteratively correcting the estimated classi-
fication function in order to improve accuracy: weights on misclassified training
examples are increased, forcing the weak learners to focus on the hardest sam-
ples. New weak learners built on the residuals of the base weak learners are added
sequentially to focus on the more difficult patterns. Shortly after AdaBoost was
introduced, it was observed that the test error of the algorithm does not increase
even after a large number of iterations [15] which was later explained by Schapire
and al. [16]: the generalization performance is improved because Adaboost tends
to increase margins of the training examples.

Friedman [2] proposed gradient boosting as a gradient descent method in
function space capable of fitting generic non parametric predictive models based
on the Schapire and Freund idea. It has been empirically demonstrated to be
very accurate for classification and regressions tasks when applied to tree models
[3] [4] [5]. While we witnessed these past years an infatuation around neural
networks and deep learning, gradient boosting turns out to be one of the most
used methods of winning competitions [13].

In this study, we assess two state of the art gradient boosting methods,
namely eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting
Machine (LGBM) to predict the probability that a driver will initiate an auto
insurance claim in the framework of the Kaggle Porto Seguro’s Challenge. We
compare them to an appropriate Multi-Layer Perceptron (MLP) to show their

1



1. Introduction 2

efficiency.



Chapter 2

Boosting Methods

As explained earlier, the idea behind boosting is to augment weak classifiers ac-
curacy using an ensemble averaging. Like Bagging, boosting is based on building
a ensemble of models aggregated by averaging the estimations or voting. How-
ever, it differs in the way of constructing this ensemble which is in this case
recursive : each model is an adaptive version of the previous one, giving more
weight to misclassified samples in the next estimation. Intuitively, the model
focuses hence on misclassified samples while the aggregation of models reduces
the risk of overfitting. Many parameters can then be tuned in order to derive
different version of boosting : The weighting , i.e the way of reinforcing impor-
tance of misclassified samples, the cost function which can be chosen more or
less robust to unusual values etc...

We will first briefly describe the original boosting model, AdaBoost, in order
to highlights the specificities of the gradient boosting tree models LGBM and
XGBoost further.

2.1 Adaptive Boosting (Adaboost)

In AdaBoost, weights of each sample are first initialized to 1/n for the first model
estimation and change at each estimation. The weight of a sample wi remains
unchanged if the sample is correctly classified, and grows proportionally to the
lack of fitting otherwise. The final predictor has the following form:

H(x) = ΣM
m=1cmδm(x0) (2.1)

where δ1, ..., δM the weak classifiers, in this case, decision trees.

Mathematically, it can be expressed as the following optimization algorithm:

(cm, γm) = argminc,γΣn
i=1L(yi, f̂m−1(xi) + cδ(xi; γ)) (2.2)

with:
f̂(x) = ΣM

m=1cmδ(x; γm) (2.3)

3



2. Boosting Methods 4

f̂m(x) = f̂m−1(x) + cmδ(x; γm) (2.4)

cm being a parameter, δ a weak classifier of x depending on parameter γm, L(.)
a cost function. In the case of AdaBoost, L(y, f(x)) = exp[−yf(x)].

(cm, γm) = argminc,γΣn
i=1exp[yi(f̂m−1(xi) + cδ(xi; γ))] (2.5)

and hence
(cm, γm) = argminc,γΣn

i=1w
m
i exp[−cyiδ(xi; γ)] (2.6)

with wmi = exp[−yif̂m−1(xi)], independent of c and γ, playing the role of a
weight that depend on the previous iteration. Hastie et al. (2001) [6] show that
the solution is obtained by first searching for the optimal classifier and then
optimizing parameter cm.

γm = argminγΣn
i=11[δm(xi; γ) 6= yi], (2.7)

cm =
1

2
log

1− ε̂
ε̂

(2.8)

The weights are updated using:

wmi = wm−1
i exp[−cm] (2.9)

Algorithm 1 AdaBoost

z = (x1, y1), ...(xn, yn)
2: INITIALIZE w = wi = 1/n; i = 1, .., n

for m ∈ {1, . . . ,M} do
4: Find classifier δm that minimizes classification error depending on difficulty

of the samples

Compute empirical error:ε̂ =
Σn

i=1wi1[δm(xi)6=yi]
Σn

i=1wi

6: Compute logit: cm = log((1− ε̂)/ε̂)
Compute new weights: wi = wi.exp[cm1[δm(xi) 6= yi]]; i = 1, ..., n.

8: end for
Prediction f̂M (x) = sign[ΣM

m=1cmδm(x)]
=0

2.2 Gradient Boosting Models

Based on Adaboost and more generally on adaptive approximation methods,
Friedman (2002) [9] proposes to build a sequence of models such that at each
iteration, each model added to the combination improves the overall solution.
The main innovation here is that, in order to improve convergence, the optimal
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solution is heading the direction of the gradient of the objective function. The
previous adaptive model:

f̂m(x) = f̂m−1(x) + cmδ(x; γm) (2.10)

is transformed as a gradient descent:

f̂m(x) = f̂m−1(x) + γmΣn
i=1∇fm−1L(yi, fm−1(xi)) (2.11)

Instead of looking for a better classifier like in AdaBoost, the problem is re-
strained to finding the best learning rate γ:

minγΣn
i=1[L(yi, fm−1(xi)− γ

∂L(yi, fm−1(xi))

∂fm−1(xi)
)] (2.12)

Algorithm 2 Gradient Tree Boosting

INITIALIZE f̂0 = argminγΣn
i=1L(yi, γ)

2: for m ∈ {1, . . . ,M} do
Compute rmi = −[∂L(yi,fm−1(xi))

∂fm−1(xi)
)]; i = 1, ...,m

4: Fit a decision tree δm to (xi, rmi)i=1,...,n

Compute γm by solving: minγΣn
i=1L(yi, fm−1(xi) + γδm(xi))

6: Update f̂m(x) = f̂m−1(x) + γmδm(x)
end for

8: Prediction f̂M (x) =0

The algorithm is here initialized by a constant, which mean a tree with a
single leaf. For each node of the model and each sample of this node, we compute
rmi and the learning rate γ is optimized resulting in each update of the model.

2.2.1 eXtreme Gradient Boosting (XGBoost)

Chen and Guestrin (2016) [7] introduced the eXtreme Gradient Boosting (XG-
Boost). They introduce a regularization to the cost function, making it a ’regu-
larized boosting’ technique:

L(f) = Σn
i=1L(ŷi, yi) + ΣM

m=1Ω(δm) (2.13)

with:

Ω(δ) = α|δ|+ 1

2
β||w||2 (2.14)

where |δ| is the number of leaves of the classification tree δ and w the vector
of values attributed to each leaf. the regularizer Ω penalizes the complexity of
the model and can be interpreted as a combination of ridge regularization of
coefficient β and Lasso regularization of coefficient α. When the regularization
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parameter is set to zero, the cost function falls back to the traditional gradient
tree boosting.

J. Friedman, T. Hastie, and R. Tibshirani (2000) [7] show a trick consisting in
expressing the objective function as a second order Taylor expansion to quickly
optimize the objective: For each leaves, it consists in adding first and second
order derivative of the cost function to evaluate the regularized objective and
maximize its decrease when searching for splits. This simplification also allows
an efficient parallelization of tree construction, which was not possible in the
original gradient boosting model.

L(f) ≈ Σn
i=1[(L(ŷi, yi)) + giδt(xi) +

1

2
hiδ

2
t (xi))] + Ω(δt) (2.15)

where gi = ∂ŷL(ŷi, yi) and hi = ∂2
ŷL(ŷi, yi). By removing the constant term, we

obtain the following approximation of the objective at step t:

L̂(f) = Σn
i=1[giδt(xi) +

1

2
hiδ

2
t (xi))] + Ω(δt) (2.16)

By defining Ij as the instance set at leaf j and expanding Ω, we can rewrite
equation (2.16) as [7]:

L̂(f) = ΣT
j=1[(Σi∈Ijgi)wj +

1

2
(Σi∈Ijhi + β)w2

j ] + α|δ| (2.17)

Finally, XGBoost does not use entropy or information gain for splits in a decision
tree but rather use the following gain:

Gj = Σi∈Ijgi (2.18)

Hj = Σi∈Ijhi (2.19)

Gain =
1

2
[

G2
L

HL + β
+

G2
R

HR + β
− (GR +GL)2

HR +HL + β
]− α (2.20)

where the first term is the score of the left child, the second the score of the right
child and the third the score if we do not split; α is the complexity cost if we
add a new split. When implementing this we basically sort all of the attributes
and linearly pass through all of the possible values of the split and compute the
gain.

Missing values are handled in XGBoost by proposing at each split a default
direction if a value is missing. The gradient is computed on the available values
only.
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2.2.2 Light Gradient Boosting Machine (LGBM)

LGBM is a new gradient boosting library implemented by Microsoft in April
2017 [9]. The aim was to make gradient boosting on decision trees faster. The
idea is that instead of checking all of the splits when creating new leaves, we only
check some of them: We first sort all of the attributes and bucket the observation
by creating discrete bins. When we want to split a leaf in the tree, instead of
iterating over all of the leaves, we simply iterate over all of the buckets. This
implementation is called histogram implementation by its authors. The trees
are grown depth first (or leaf wise) keeping the presorted state instead of level
wise like other gradient boosting methods. The algorithm chooses the leaf with
maximum delta loss to grow and does not to grow the whole level.

Figure 2.1: Leaf wise growth

Figure 2.2: Level wise growth

.



Chapter 3

Experimental Results

Porto Seguro, one of Brazil’s largest auto and homeowner insurance companies,
observed that inaccuracies in car insurance company’s claim predictions raise
the cost of insurance for good drivers and reduce the price for bad ones. They
challenged competitors to build a model that predicts the probability that a
driver will initiate an auto insurance claim in the next year. A more accurate
prediction will allow them to further tailor their prices, and hopefully make auto
insurance coverage more accessible to more drivers [6].

3.1 Dataset

The training Set contains 595212 observations and 57 features from which 17
binary variables, 30 categorical variables (14 nominal, 16 ordinal) and 10 float
variables. Features are anonymized and renamed according to their data type.
The target is binary and the dataset is strongly imbalanced: 3.65% is 1, the rest
is 0. Missing values are represented by the value ”-1”.

We noticed that the distribution of the train and test set are almost identical
which allowed us to fully trust our cross validation score. This observation was
made by reducing both dataset to a small number of dimension and compare
both scatter plot. The PCA scatter plot are shown in the Figure 3.1, where the
principal axis 1 explains 9% of the variance and the principal axis 2 7.5%.

. We also observed significant overlap between positive and negative samples
in low dimensional space suggesting that no small sample of features is easily able
to predict future claim making. We show this by plotting positive and negative
samples of the training set in a two-dimensional feature space for few pairs in
Figure 3.2

.

8
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Figure 3.1: Train (blue) and test (red) data projected on the 1st and 2nd prin-
cipal components

Figure 3.2: Distribution of positive (blue) and negative (red) example for two
pairs of features
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3.2 Preprocessing

3.2.1 One Hot Encoding

A one-hot encoding consists of representing states using for each a value whose
binary representation has only a single digit 1. A one-hot encoding function can
be defined as the function that takes a z vector as input and redefines the largest
value of z to 1 and all other values of z to 0.

For example, in a one-hot encoding, for three possible states, the binary
values 001, 010, and 100 can be used.

When using boosting trees, it is important to use a one hot encoding in order
to reduce the noise while getting the splits for most useful categories.

3.2.2 Recursive Feature Elimination using gradient boosting

The main idea here is to use LGBM or XGBoost feature importance method
to reduce the dimensionality of the training data not by selecting the important
ones but rather by eliminating the unimportant ones. The underlying idea is that
if the gradient boosting splitting algorithm does not select some feature to split,
it means that this feature does not add value to the boosting trees model. We
hence first run LGBM with a small depth and remove feature with 0-importance
(Figure 3.3).

The next step to make the data more robust is to remove noisy and correlated
features. We used a simplified version of the Boruta algorithm available in LGBM
library which is the shuffling method [10] allowing to randomize selection of
feature. Finally, we remove features with 0-importance in the new randomized
dataset.

Also, we removed all the features starting with ”calc” as they seemed to be
randomly generated.

.

3.3 Normalized Gini

The Normalized Gini (NG) score is a very common metric for decision tree and
can be expressed as a function of AUC:

Gini = 2 ∗AUC − 1 (3.1)

The main advantage of this metric is that it sets the performance of a random
classifier to 0 which is useful here as our data set is strongly imbalanced so any
random predictions with a majority of 0 would seem to have a good performance
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Figure 3.3: Feature Importance using LGBM

with another metric. The normalization improves the other end of the scale and
ensure that a perfect classifier has a score of 1 rather than a maximum achievable
AUC which is less than 1.

3.4 Baseline: Multi Layer Perceptron (MLP)

We designed a multi layer perceptron as a benchmark to our boosting trees
libraries. We observed that among our 57 features, we have 8 types: psind,
psindcat, psindbin, psreg, pscarcat, pscar, pscalc and pscalcbin. The only pre-
processing done for the MLP is normalizing the features and the removal of both
pscalc and pscalcbin as explained earlier. We imputed the missing values using
the most frequent value of the feature. For the feature selection, we let the
neural network learn the more suitable representation of the data. We hence
designed a neural network whose input is divided in three parts ’reg’, ’car’ and
’ind’; each part is subdivided depending to its type: categorical or numerical.
Because categorical features are fed into the network using one-hot encoding
their dimensionality is very high and it’s necessary to use a different embedding
to avoid the curse of dimensionality. For each different input, the network learns
an encoding which will then be combined to produce the prediction. We hence
have 6 inputs, three layers in parallel, allowing to do a better fine tuning of the
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size of the layers and assign to each type of feature the importance that it has
for the prediction. After a grid search for parameter tuning, we came up with a
tanh activation function on the embedding with L1 and L2 regularization to fight
the curse of dimensionality , ReLu on the classifier with dropout, and sigmoid
for the output layer.

The Figure 3.4 explains the architecture of the MLP, the rounded boxes are
inputs, squared ones are nodes: .

Figure 3.4: Neural Network Architecture

3.5 Results and Discussions

Below is a table summarizing the performance of our models according to Kaggle
public and private leader board where the public leader board is computed based
on a fraction of the test set while the private leader board is computed on the
whole test set (so that if you overfit the test set you can do very well in the
public leader board and very bad in the private one).

We have conducted numerous experiments locally, on ETH’s CPU and GPU.
All the experiments employ the preprocessing stage described in Sections 3.2.1
and 3.2.2. Table 3.1 showcases the main results of our experiments. The best
performing model was XGBboost with both one hot encoding and gradient boost-
ing feature selection. We can see that the gradient boosting methods individ-
ually outperform the MLP and Adaboost. It is probably due to the fact that
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Model NG Public Score NG Private Score

MLP 0.2712 0.2805
AdaBoost 0.2231 0.2310

LGBM + OHE 0.2791 0.2810
LGBM + OHE + Feature Selection 0.2825 0.2873

XGB + OHE 0.2807 0.2867
XGB + OHE + Feature Selection 0.2858 0.29105

Table 3.1: Accuracy comparison of GB models and MLP

both LGBM and XGBoost have sparsity penalties while Adaboost excessively
increases weight for noisy observations without regularization. Both LGBM and
XGBoost have been optimized using Bayesian grid search for hyperparamater
tuning [13] [14]. A more complex architecture of neural network could possibly
result in a better normalized Gini score. .

Figure 3.5: XGBoost and LGBM Learning Curves

The general boosting trees performance trends showcased in the literature
[7] have been showcased in our experiments as well: tree based models solves
tabular data very well. However, our data set was not very large and usually
only deep learning methods are able to absorb huge amounts of training data
without saturating in performance.



Chapter 4

Summary

This report compared the use of XGBoost and LGBM in the framework of Kag-
gle Porto’s Seguro Challenge. The experimental results show that individually,
gradient boosted tree models outperformed a simple Multi-Layer-Perceptron.
Data preprocessing also played an important role as results showed that the fea-
ture selection procedure used improved XGboost performance over a simple one
hot encoding. Many architecture could further enhance accuracy. Feature engi-
neering has been shown to improve accuracy: blending several neural networks,
Xgboost, and LGBM models would have probably resulted in a better accuracy
as seen from the winning solution which was a linear stacking of 1 LGBM and 5
Neural Networks. Also, new boosting libraries as CatBoost [11] and InfiniteBoost
[12] could have been tested as well and used in a ensemble averaging.

14
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