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Abstract

In this work, we explore the possibility of training agents which are able to show
intelligent behaviour in many different scenarios. We present the effectiveness
of different machine learning algorithms in the StarCraft II Learning Environ-
ment [1] and their performance in different scenarios and compare them. In the
end, we recreate DeepMind’s FullyConv Agent with slightly better results.
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Chapter 1

Introduction

One of the biggest questions for mankind is the question of intelligence.
The key to this seems to be learning itself.

While animals, when trained, can learn also quite impressive feats, even rudi-
mentary speech[2], they lack the generalized learning nature of humans. Thats
why the field of Artificial Intelligence (AI) studies learning and how to build
algorithms that can even transcend human capabilities. The applications are
endless. From medical diagnosis, robot control to even education and finance
[3][4][5] [6].

In the history of AI, games were commonly used as benchmarks for intel-
ligence. There are several advantages of using them. First, repeatability. We
can repeat every experiment in precisely the same environment. Second, games
have a clearly defined objective. Third, games are difficult even for humans. In
total, they offer a unique means of measuring intelligence through task-based
comparisons.

One of the first self-learning programs and an early demonstration of the con-
cept of artificial intelligence dates back to Arthur Samuel developing a Checkers
program in 1959 that trained itself using reinforcement learning[7]. In 1995,
Gerry Tesauro built a program called TD-Gammon[8] that, with little backgam-
mon knowledge, and also using reinforcement learning, learned through self-play
to play near the level of the world’s strongest grandmasters and in 1997 IBM’s
Deep Blue defeated World Chess Champion Garry Kasparov[9].

After chess, the next challenge became the game of Go. With its enormous
state space an AI being able to compete against humans has to be able to learn
in a different way compared to Deep Blue that used mere brute force when
searching for the optimal action in a certain state.

Next, DeepMind developed novel Deep Reinforcement Learning algorithms,
that generalize Reinforcement Learning and thus was able to defeat Lee Sedol,
world’s top Go player with their new algorithm called AlphaGo[10].

With these recent developments and the development of novel algorithms
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1. Introduction 2

achieving human-like or even super-human results, Deep Reinforcement Learning
has gained a lot attention of the artificial intelligence research community.

Subsequently, DeepMind announced StarCraft II [11], a popular real-time
strategy video game, as their next research target. StarCraft II is considered
highly complex. Even for human players becoming able to remotely master the
game takes years of experience. While Backgammon, Chess and Go are games
of perfect information, as each player has instantaneous knowledge of all moves
in the game, StarCraft II is not. Additionally, the game consists of a vast state-
and action-space, the need to adapt fast to complex situations and requires a
high level of logical inference.

By creating the StarCraft II Learning Environment (SC2LE) DeepMind opened
up a new benchmark for reinforcement learning research. Together with SC2LE,
DeepMind published a paper describing a baseline and several mini-games that
were created to represent subsets of the full game[1].

In this thesis, we use SC2LE to explore the possibility of training agents,
which are able to show intelligent behaviour in many different scenarios uti-
lizing the mini-games. We start off with vanilla and dueling Deep Q-Network
(DQN)[12]. Next, we moved on to recreate the baseline and improve on it, try-
ing to find its flaws and strengths as early DQN versions are to inefficient. As
part of the evaluation of the baseline agent, we created a scripted agent for the
minigame CollectMineralShards that achieves near optimal results.



Chapter 2

Background

In this chapter, we give the technical background that is necessary to understand
the rest of the thesis. We start off with a general overview over Reinforcement
Learning and reinforcement methods. Then we briefly talk about Function Ap-
proximators like Artificial Neural Networks and Convolutional Neural Networks
and how to combine them with Reinforcement Learning to the area of Deep Re-
inforcement learning. In the end we give a brief summary of StarCraft II and
the Python API PySC2 [13] we used.

2.1 Reinforcement Learning

Reinforcement Learning is a behavioristic-psychology-inspired subdomain of Ma-
chine Learning and can loosely be defined as learning from interactions to achieve
a goal [14].

Figure 2.1: Agent interacting with environment [14].

It consists of an agent that interacts with an environment that is in a specified
state by taking actions to maximize a cumulative reward over time (see Figure
2.1). We define state as the information about the environment that is available
to the agent. By interacting with the environment, the agent constructs a map-
ping from states to probabilities of taking action a in state s. This is called the
policy and is defined for a time step t as

πt(s, a) = P (at = a|st = s)

3



2. Background 4

The policy defines which action a is chosen in a state s.

In general, the objective of a Reinforcement Learning Problem is to maximize
the expected reward by learning an optimal policy π∗. At each timestep the
reward is a number returned from the environment after an action has been
taken. The return Rt is defined as the cumulative reward from a state st until a
terminal state sT is reached.

Rt = rt+1 + rt+2 + ...+ rT

Here, we will only focus on finite, episodic tasks but continous tasks are also
possible. We also introduce the discount factor γ, that discounts future rewards,
such that the agent prefers earlier over future rewards:

Rt = rt+1 + γrt+2 + γ2rt+2 + ... =

∞∑
k=0

γkrt+k+1

0 ≤ γ ≤ 1

Therefore a reward k time steps in the future is only worth γk−1 times as much.

We usually assume the Markov Property for an environment, that is the
probabilistic behaviour of the future states does only depend on the present
state [15]. For the Markov Property holds:

P (st+1 = s, rt+1 = r|st, at, rt, ..., r1, s0, a0) = P (st+1 = s, rt+1 = r|st, at)

where st, at, rt, ..., r1, s0, a0 are past states, actions and rewards. A sequence of
states, actions and rewards is also called a trajectory.

Intuitively, the Markov Property can be described as that the information of
the current state combines all the information of the past states. This enables
the agent to predict the next state and the expected reward based on the current
state. A task that has the Markov Property is called Markov Decision Process
(MDP) [16]. MDPs are defined by their finite set of states and actions, their
transition probabilities Pa

s,s′ = P (st+1 = s′|st = s, at = a), the expected reward
Ra
s,s′ = E[rt+1|st = s, at = a, st+1 = s], and the discount factor γ. Additionally,

the notion of the MDP can be generalized to the partially observable Markov
decision process (POMDP), which assumes that the process is modeled after an
MDP but the agent can only partially observe the state. Thus the agent has to
take actions with uncertainty of the full state of the environment.

To evaluate policies, the expected return has to be known. We define the no-
tion of state-value function (Value Function). The expected return when starting
in state s and following policy π is defined as the value of the state s:

V π(s) = Eπ[Rt|st = s] = Eπ[
∞∑
k=0

γkrt+k+1|st = s]
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Informally, the value function describes how good it is to follow the policy.

A relationship between the value of a state and the values of its successor
states can be defined in terms of the expected reward and transition probabilities.
This is called the Bellman Equation [17] of the Value Function:

V π(s) =
∑
a

π(s, a)
′∑
s

Pa
ss′ [R

a
ss′ + γV π(s′)]

The Bellman Equation can be used to learn the Value Function of a Policy.

Similiarly, the notion of action-value function (Action Function) can be de-
fined, where the agent takes an action a in a state s and thereafter follows the
policy:

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ[rt+1 + γV π(st+1)|st = s, at = a]

Informally, the action-value function defines the value of taking an action a in
state s.

An optimal policy π∗ is defined as having the highest expected return com-
pared to other policies for all states. In other words, the optimal policy has the
optimal Value Function V ∗(s). The Bellman Equation of the optimal state-value
function is defined independent of a specific policy and instead in terms of the
best action that can be taken in that state.

V ∗(s) = maxaQ
∗(s, a) (2.1)

Q∗(s, a) = Es′ [r + γmaxa′Q
∗(s′, a′)|s, a] (2.2)

=
∑
s′

Pa
ss′ [R

a
ss′ + γmaxaQ

∗(s′, a′)] (2.3)

Every policy that acts greedily with respect to the optimal state-value function
is then an optimal policy.

Reinforcement Learning suffers from 2 distinct problems [14]:
First, the Exploration-Exploitation-Trade-Off refers to the problem of choosing
between an seemingly rewarding action (exploitation) or deviating to explore
more of the reward structure of the environment (exploration).
Second, the Credit Assignment Problem refers to the problem of delayed rewards.
In environments with large action- and state-space, an action taken early can
result in an reward far into the future. Difficulties arise to assign the reward to
the correct action.

In Reinforcement Learning, we either optimize the policy directly by param-
eterizing it or we optimise the policy by maximizing the Value Function and
subsequently evaluate a policy. These are Policy Gradient Methods and Value-
based Methods and in the following subsections we will briefly describe them.
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2.1.1 Value-based Methods

In general, Value-based methods attempt to find a policy that maximizes the
return by first learning a state-value function or action-value function and then
improving the current policy.

For example, if a model is available, the Bellman Equation for the Value
Function can be used to subsequently approximate the Value Function for a
policy by iteratively updating [18].

The Q Values can then be determined and the policy improved by always
taking the action-value a that is highest in state s. By the Policy Improvement
Theorem, this leads to an optimal Policy [17].

In practice there is commonly an absence of a concrete mathematical model
and therefore no transition probabilities and expected rewards are available and a
Value Function is not sufficient to get a policy. Instead, the action-value function
is used. An agent learns the values of state-action pairs from experiences by
interacting with the environment under a policy. The downfall is that many
state-action pairs are never explored if a policy is deterministic. To ensure a
stochastic policy, exploration is encourage by using for example an ε-greedy
policy, which is greedy in the selection of an action but chooses an alternative
action with a probability of ε [19].

Additionally, instead of computing values of states over the whole episode,
that based on the return of the episode, the value can be computed based on
an estimate of the value of following states. This bootstrapping process is called
Temporal-Difference (TD) Learning [8]. The advantage is that it does not require
a model of the environment of the reward and the next state probabilities and it
can be used with continous tasks. Further empirical evidence suggests that TD
methods seem to converge faster.

One example of a model-free value-based TD method is Q-Learning [20]. The
learned action-value function Q(s, a) directly approximates the optimal action-
value function Q∗ and a policy can then be generated directly by using a greedy
strategy. In its simplest form the algorithm can be described as

Q(st, at) = Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

The full algorithm can be seen below [14].
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Algorithm 1 Q-Learning

1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s
4: repeat for each step in episode:
5: Choose a from s using policy derived from Q
6: Take action a, observe r, s′

7: Q(s, a)← Q(s, a) + α (r + γmaxa′Q(s′, a′)−Q(s, a))
8: s← s′

9: until s is terminal

2.1.2 Policy Gradient Methods

Instead of working with Value Functions, Policy Gradient Methods parameterize
the policy function and optimize it directly:

πθ(a, s) = P [a|s, θ]

The objective is the expected return of the episode and the optimisation in
terms of the objective is done with gradient descent methods.

Advantages of policy gradient methods are better convergence properties and
the efficiency of not needing to compute an exact value of every state. Further-
more in aliased states in an POMDP a deterministic policy could not differentiate
between similiar but for the observer equal states while a stochastic policy could
factor in the ambiguity of partial observed states. A disadvantage of this ap-
proach is high variance and the convergence in local rather than global optima
[21].

One of the earliest examples of policy gradient methods is REINFORCE [21].
It is a family of algorithms using Monte-Carlo Policy Gradient. It makes use of
the Policy Gradient Theorem to get the gradient and samples the expectation
by using the return Rt as an unbiased sample of the action-value functions.

θ = θ + α∇θ log πθ(st, at)Rt

The disadvantage of using REINFORCE is that it has high variance.

To further reduce variance in the unbiased estimate Rt of the action-value
function a baseline can be subtracted Rt−bt(st). The value function can be used
as a baseline and due to Rt being an estimate of Q(st, at) this leads to

A(st, at) = Q(st, at)− V (st)

This is the Advantage function, that is the advantage of using action at in state
st instead of following the policy. We will come back to this in Section 2.4.2
about Advantage-Actor Critic (A2C).



2. Background 8

2.1.3 Actor-Critic Methods

Actor-Critic Methods combine the value-based and policy-based approach. Pol-
icy gradient methods also include Actor-Critic Methods which learn both the
policy and the state-value function. Informally, the agent uses the current policy
(actor) to act in an environment, while the critic evaluates the action (see Figure
2.2).

An example of Actor-Critic methods, based on REINFORCE, is the Action-
Value Actor-Critic. A parameterized action-value function Qw(s, a) is introduced
that replaces the return to approximate the policy gradient as

∇θJ(θ) ≈ Eπθ [∇θ log πθ(s, a)Qw(s, a)]

∆θ = α∇θlogπθ(s, a)Qw(s, a)

where J(θ) is the policy objective function.

To update the critic, after each action a the critic evaluates if the action was
better in respect to the expectation by the state-value function. Depending on
the outcome the probability of taking action a should in- or decrease. This is
the TD error already mentioned before:

δt = rt+1 + γV (st+1)− V (st)

Figure 2.2: actor-critic architecture[14].

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are universal function approximators, that can
be trained without any prior knowledge on input data and corresponding targets
to learn the underlying function or pattern [22][23].
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Figure 2.3: Schematic of a neuron[24].

A neural network is made up of interconnected layers, starting with an input
layer, followed by several hidden layers and ending with an output layer. These
layers consist of computational units (also called neurons) that are parametrized
with a set of weights. They compute a weighted sum with a bias and the output
is then transformed by an activation function.

ν =

m∑
i=0

wixi + b

y = φ(ν)

Depending on which activation function is chosen, distinct mathematical
properties are achieved. The most common ones are the sigmoid and the ReLU[25].

A sigmoid unit uses the logistic function as activation and maps its input
to a range of values monotonically increasing between (0, 1) or (-1, 1) [26]. It
is differentiable and defined for all real inputs and the derivative is always non-
negative. The logistic function is defined as

σ(z) =
1

1 + e−z

The Rectifier Linear Unit (ReLU) [27] is the most commonly used activation
function because of its favorable mathematical properties. ReLU is defined as

(z)+ := max(0, z)

Compared to the sigmoid for instance, it suffers from fewer vanishing gradi-
ents, is computationally faster and has a more sparse activation [28]. When |z|
is large, sigmoids reach saturation and the derivative vanishes which leads to no
updates for the weights.
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To train an ANN, a forward pass is performed on the input data, meaning
the data is fed into the input layer and computation occurs successively in every
hidden layer until the output layer is reached. Due to the network being param-
eterized by random initialized weights, it will have output values which differ
from the target values. This prediction error can be measured by a loss function,
which needs to be defined depending on the task.

The goal is to minimize the loss function given a set of input values and
corresponding target values. This is achieved by determining the weights by
maximizing the likelihood of the target values. This requires the evaluation of
gradients with respect to the network parameters. After a forward pass, local
gradients are computed by iteratively propagating them backwards. The process
of computing gradients is called backpropagation. The gradients are then applied
to update the weights by using gradient or stochastic gradient descent methods:

This concept can be generalized to multiple layers and lead to success in
multiple areas such as medical diagnosis, computer vision, speech recognition,
finance, autonomous cars and data mining. As an example, Facebook achieved
an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, with
DeepFace, a program that uses neural networks to identify faces, rivalling the
performance of humans [29][30]

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are special end-to-end ANN architec-
tures made up of preprocessing layers (Convolutional, Pooling) and Fully-Connected
Layers and are commonly used for image processing [31].
Images consist of 3-dimensions: width, height, depth, where the depth stands for
the colour channels (RGB). The design is based on the organization of receptive
fields in the visual cortex.

While regular ANNs consist of only fully-connected layers, this is suboptimal
for images in that it would lead to an explosion in network parameters and would
not take the spatial structure into account. For example, a 64x64x3 image results
in 64 ∗ 64 ∗ 3 = 12, 288 weights. Instead the benefit of CNNs is that it can take
full advantage of the spatial information of the input with less weights.

Now we will give a short description of the layers of a CNN. A CNN con-
sists of an input layer, multiple preprocessing layers made up of a sequence of
Convolutional and Pooling Layers and at the end a Fully-Connected Layer.

The purpose of the Convolutional Layer is to extract features by training so
called filters (also known as kernels). Like the name of the layer implies they
do so by appyling convolutions on the input data. Among others, one benefit
of convolutions is that spatial dependencies in the data are preserved, although,
mathematically speaking, the convolution is a cross-correlation.
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Figure 2.4: Example: Architecture of LeNet5 [31].

The Convolutional Layer consists of filters (essentially weight matrices) and
corresponding receptive fields (essentially the filter size). The receptive field
enforces local connectivity by exploiting spatially local correlations through each
neuron only receiving input from small subparts of the input image.

Figure 2.5: Convolutional Layer [32].

Properties of a filter are its stride and zero-padding. The stride determines
the pixel distance between receptive fields per applying the filter and therefore
how much the receptive fields overlap. Zero-padding determines the size of the
border of zeroes around the input data, which allows controlling the size of the
activation maps.

When trained, a filter activates when features such as specific edges or curves
are detected at some position in the input. The outputs are 2-dimensional acti-
vation maps that essentially mark the spatial position of the feature. The output
of the layer is then the stacked activation maps.

A special case are 1x1 convolutional filters that are used to reduce dimen-
sionality along the channel dimension [33].

Usually between the Convolutional and Pooling Layer a element-wise non-
linear activation function such as ReLU is used to introduce non-linearity.
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The purpose of the Pooling Layer is the downsampling of spatial dimensions
to avoid overfitting and reducing the input dimension. There are several types
of pooling like Max and Average Pooling. In the case of Max Pooling, the most
commonly used type, the largest value of a receptive field is taken.

Figure 2.6: Max Pooling Layer [32].

The CNN architecture ends with a fully-connected (FC) layer. As the Con-
volutional and Pooling Layers output high-level features, the purpose of the FC
Layer is classifying the input image. As with ANNs, backpropagation and gra-
dient descent methods are used to train the CNN.

One example of the successful usage of CNNs is AlexNet, a CNN architecture
that won ImageNet Large Scale Visual Recognition Challenge in 2012 with a
significant jump in classification accuracy [34].

2.4 Deep Reinforcement Learning

As Backgammon has 1020 states, Go 10170 states and tasks with real-world com-
plexity have commonly a continuous state- and action-space, it is unpractical
to differentiate every state. Deep Reinforcement Learning combines Reinforce-
ment Learning with Function Approximators like artificial neural networks or
convolutional neural networks to generalize seen states to unseen states. This is
particularly useful for only partially observed environments. Furthermore func-
tion approximators can utilize non-i.i.d. data like highly correlated trajectories
and non-stationary problems that are typical for Reinforcement Learning prob-
lems [35].

In this section, we examine Deep Reinforcement Learning methods, in par-
ticular the Deep Q-Network (DQN) and Advantage Actor-Critic (A2C).
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2.4.1 Deep Q-Learning

Deep Q-Learning combines Q-Learning with a convolutional neural network as
function approximator [12].

The Convolutional Neural Network is used to approximate the optimal action-
value function. In particular

Q∗(s, a) = maxπE[Rt|st = s, at = a, π]

The network parameterizes the action-value function as Q∗(s′, a′; θ).

As input, the CNN gets a preprocessed high-dimensional visual input to
extract features and outputs the values for all actions. Then the action is selected
by an ε-greedy policy.

The Q-Network is trained to reduce the mean-squared error in the Bellman
Equation (Eq. 2.2). With approximated target values as

y = r + γmaxa′Q(s′, a′; θ)

using most recent parameters θ. The loss can be defined as

L(θ) = Es,a,r[(Es′ [y|s, a]−Q(s, a; θ))2]

= Es,a,r,s′ [(y −Q(s, a; θ))2 + Es,a,r[Vs′ [y]]]

This leads us to the following gradient

∇θL(θ) = Es,a,r,s′ [(r + γmaxa′Q(s′, a′; θ)−Q(s, a; θ))∇θQ(s, a; θ)]

An issue that arises is the instability based on naturally occuring correlation
in trajectories and therefore high variance. To solve this, Experience Replay, a
biological inspired process to randomize trajectories, is introduced. The Expe-
rience Replay Buffer stores experiences as et(st, at, rt, st+1) at each timestep t
over several episodes. For learning a sample from the buffer is drawn uniformly
at random. This reduces the correlation and leads to greater data efficiency as
experiences are sampled several times.

To further improve stability a separate duplicate Q-Network is introduced
that is used as a target network while the original network gets updated. After
several updates, the improved Q-Network replaces the old target network and
the process repeats.

There exists several improvements of DQN, most notably the Dueling DQN,
which approximates the state-value function and advantage separately and com-
bines those estimates to get the action-values. This reduces overestimation and
improves the stability [36].
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DeepMind’s Deep Q-Network is considered a major breakthrough and started
off major research interest in the field of Deep Reinforcement Learning. DQN
surpassed all other algorithms in classic Atari 2600 games and achieved human
level performance on only raw visual inputs without prior knowledge.

2.4.2 Advantage Actor-Critic

While DQN had a lot of success, it has several drawbacks, notably Experience
Replay. Experience Replay is memory and computation intensive and updates
the network on data generated from a target network that uses outdated param-
eters.

One proposed solution is Asynchronous Advantage Actor-Critic (A3C) [37].
As the name already suggests, A3C belongs to the Actor-Critic Methods. It
is based on General Reinforcement Learning Architecture (Gorila) [38], which
performs asynchronous training in a distributed setting, computes gradients lo-
cally and sents them asynchronously to a central parameter server. The updated
policy parameters are then sent to the local clients.

Instead of using Experience Replay, A3C utilizes agents (workers) on mul-
tiple environments in parallel by executing them asynchronously. The workers
compute gradients locally and send those to a global target network that updates
the parameters and sends them back to the worker.

The parallelism decorrelates the experience and reduces variance. Further the
reduction in training time is roughly linear in the number of parallel workers.
Due to no longer relying on Experience Replay on-policy methods like Actor-
Critic can be used.

As an Actor-Critic method, the algorithm has a policy π(at|st; θ) and an
estimate of the value function V (st; θ). An update is performed every t steps or
when the terminal state is reached. The policy gradient is then defined as

∇θ log π(at|st; θ)A(st, at; θ)

and the Advantage estimate A(st, at; θ) as

A(st, at; θ) =
k−1∑
i=0

γirt+i + γkV (st+1; θ)− V (st; θ)

where k is the length of the trajectory. Adding the entropy of the policy π further
encourages exploration and helps prevent converging to local minima.

This defines the objective function as

J(θ) = ν log π(at|st; θ)A(st, at; θ) + α(Rt − V (st; θ))
2 − βH(π(st; θ))

= ν log π(at|st; θ)(Rt − V (st; θ)) + α(Rt − V (st; θ))
2 − βH(π(st; θ))
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where the hyperparameters α and ν trade off the importance of the different loss
components and β controls the strength of the entropy regularization term.

As a result of most workers using a version of the global network with old
parameters non-optimal updates are computed. As an alternative a synchronous
implementation was proposed called Advantage Actor-Critic (A2C). In A2C the
workers are only used for communicating with the environments and do not have
a local network. Workers act synchronously and gather experience which is then
sent to the global network. One advantage of this approach is that the work load
is on the global network and thus specialized hardware like GPUs can be used
more efficiently, further reducing training time.

The adapted algorithm for A2C from A3C can be found below:

Algorithm 2 Advantage Actor-Critic (A2C)

1: Input: max updates Tmax, learning rate ν, number of training steps tmax
2: Initialize all environments and receive initial states s0
3: Initialize the global network with random weights
4: repeat
5: Reset states s, actions a, rewards r, values v
6: t← 0
7: for t ≤ tmax do
8: Perform at according to policy π(at|st; θ)
9: Receive reward rt and new state st+1

10: t← t+ 1

11: R =

{
0 for terminal st

V (st, θ) for non-terminal st// Bootstrap from last state

12: for i ∈ {t0, ..., tmax} do
13: Ri ← ri + γRi+1

14: Compute gradient: θ ← θ +∇θJ(θ)
15: Perform synchronous update of θ
16: until max updates is reached

2.5 StarCraft II

StarCraft II (SC2) is the sequel to the real-time strategy videogame StarCraft,
developed and published by Blizzard Entertainment and known as one of the
most popular and competitive videogames of all time [11].

The StarCraft II Learning Environment (SC2LE) [1] is the successor to the
community-made Brood War API (BWAPI) [39], an open-source C++ frame-
work for StarCraft: Brood War [40], created by reverse engineering the game and
relying on reading and writing to memory in order to interact with the game.
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BWAPI already attracted some research interest [41][42] and several tourna-
ments have formed, where AI bots compete against each other. Among others,
one tournament is part of the annual IEEE Conference on Computational Intel-
ligence and Games [43][44][45].

DeepMind and Blizzard developed the StarCraft II API and PySC2, a Python
environment wrapper which is optimized for Reinforcement Learning agents [13].
It follows in the footsteps of video game benchmarks like the OpenAI Gym [46]
and the Broodwar API. In general, benchmarks are critical to advance and test
algorithms and fulfil the need of having a mutual standard.

The game is usually played between two players with each controlling an
army of one of three distinct races competing for influence and resources and
can last from a few minutes to an hour. Each race comprises of unique units and
structures, and consequently unique strengths and weaknesses. The goal of the
game is to defeat the enemy player by destroying his base and his units. A game
of SC2 consists of longterm high-level planning and short-term tradeoffs. Small
early decision making can have game deciding long-term consequences.

Figure 2.7: StarCraft 2 Gameplay [47].

Compared to games like Chess or Go, SC2 can capture the continuous na-
ture of the real world and posseses a high-dimensional, continuous action- and
state-space. The player has to be able to deal with the concepts of macro-
and micromanagement, dealing with the tradeoff of gathering and spending re-
sources, controlling units in an effective manner and adopting the right combat
tactics. Furthermore due to the only partially observed map (also known as ‘fog
of war‘), the players are only in a partially-observed state, that means imperfect
information over a long time horizon, leading to difficult decision making. Some-
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thing that is even considerably challenging for a human players. Additionally,
this makes StarCraft II a POMDP. With its sparse ternary rewards (tie, win,
lose), the game is a perfect training ground for state-of-the-art reinforcement
algorithms.

2.5.1 PySC2

PySC2 is a Python environment wrapper for the StarCraft II API and part of
the SC2LE [46].

The API provides ways to create new environments, set properties like the
resolution of spatial observations, take certain actions and exposes spatial and
structural features in isolated layers. Further, it is used to communicate with
SC2 programmatically.

Every time an action in an environment is taken it returns an observation, a
tensor of spatial and structural feature layers, ranging from general player infor-
mation and in-game alerts to decomposed and structured screen and minimap
features like which units are friendly and hostile and which units are selected. For
example in an observation, spatial features are exposed as feature screen and
feature minimap, which are multidimensional tensors with height and width of
their respective resolutions and different feature layers as channels. An element
in the feature layer corresponds with a game pixel. In the player relative

feature layer, pixels can take on values between 0 and 4, which denote back-
ground, self, ally, neutral and enemy units respectively. Non-spatial features are
individually exposed and can not be read from pixel values. As an example,
the general player information is a tensor with 11 elements: player id, minerals
count, vespene count, supply used, supply cap and more.

An action is taken by calling the step function on the environment and pass-
ing a single FunctionCall in pysc2.lib.actions with all its arguments filled. To be
precise actions are exposed as nested lists of action id and corresponding argu-
ments. For example move camera is the action with action id 1 of moving the
ingame perspective to a position on the minimap. That means the action takes
as argument coordinates on the minimap.

The game speed is determined by how fast steps are taken using the API.
This gives a significant speed-up compared to the normal game. Bottlenecks
are scene and unit complexity. Actions per minute (APM) are determined by a
variable called step mul, which determines how many game frames are skipped
between actions. For example, if an action is taken every 8 frames the agent
has an APM of 180. While an AI could take an action in every frame that
is not comparable to humans, who have an average APM ranging from 10 to
300 depending on the player skill. While SC2 is mostly deterministic, there are
small sources of randomness, such as weapon speed and update order, to provide
random outcomes in fair settings to make the game feel more natural. A random
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seed to mitigate this can be set for evaluation purposes.

See the environment documentation for a complete description of observa-
tional and action space [49].
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Figure 2.8: PySC2 Feature Layers [48].

Figure 2.9: PySC2 Visualization with feature layers in headless Linux.



Chapter 3

Implementation

In this chapter we describe the implementation details of the agents that were
used to examine the effectiveness of different machine learning algorithms. First,
we created a simple vanilla Deep Q-Network with slight improvements like Pri-
oritized Experience Replay. Second, to calibrate the task difficulty DeepMind
created several baseline agents, particularly an Atari-net agent, that is a close
adaptation of the architecture used for their Atari benchmark, and 2 fully convo-
lutional agents, one with and one without convolutional LSTM module [50]. We
recreated the fully convolutional architecture from DeepMind’s baseline agent
using Advantage Actor-Critic, which is examined in Section 3.2. Third, we cre-
ated, for evaluation purposes, an algorithm that reaches near optimal results in
the CollectMineralShards minigame.

All of our agents are written in the programming language Python. We use
the PySC2 Library [13] to interact with the game engine and utilize OpenAI’s
Baseline Library, a set of high-quality implementations of reinforcement learn-
ing algorithms [51]. Particularly, our DQN agent is based on OpenAI’s DQN
example and uses its model implementation [52]. The DQN and A2C agent
both use the logger class of the Baseline Library for logging, extending it where
needed. Furthermore, the Tensorflow Library [53] is used to build Neural Net-
work archictecture as it provides an easy interface and takes care of a large part
of computational setup. Additionaly, as pre-processing is needed to ensure the
modularity for different algorithm, the NumPy Library [54] was used, which
supports a variety of functions to operate easily on arrays.

3.1 Deep Q-Network

The DQN agent consists of main.py, where the environment and model is created,
deepq runner.py, where the main execution loop and logging is located, and
deepq preprocess.py, where observations are pre-processed.

In main.py the DQN model and the SC2 environment is created. As a model
we use OpenAI’s end-to-end convolutional architecture (cnn to mlp). The pre-

20
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processed screen observation is passed through a 2-layer convolutional network
with 16 and 32 filters of size 8 x 8 and with stride 4 and 4 x 4 with stride 2
respectively, followed by a fully-connected layer with 256 units. We evaluated
the agent with and without dueling. Model and environment are then passed on
to the main execution loop in deepq runner.py.

deepq runner.py consists of the ActWrapper class, which is used for serializ-
ing the model parameters and the function learn, which trains the DQN. learn
first creates a placeholder for the input data and builds the network and target
network using the model.

We use the LinearSchedule from the Baseline Library to create a Prioritized
Experience Replay buffer with linear interpolated beta schedule and a specified
linear interpolated exploration schedule [55]. The original Experience Replay
samples the experience transitions uniformly from a replay memory. Instead, we
use Prioritized Experience Replay samples based on importance. Importance for
a transition is defined as the magnitude of the TD error. The higher the TD
error the more frequent the transition is sampled. The drawback of this greedy
approach is severe overfitting and sensibility to noise spikes. To mitigate this we
use stochastic priorization. The probability of sampling transition i is

P (i) =
pαi∑
k p

α
k

p(i) =
1

rank(i)

where rank(i) is the position by TD error in the replay buffer and α is the
strength of the prioritization. Due to introducing a bias, weighted importance-
sampling is added

wi =

(
1

N
∗ 1

P (i)

)β
Using the linear schedule on β, we anneal the amount of importance-sampling
correction over time. The gradient is multiplied by the weight wi and reduces
the bias and also the magnitude of the gradient and thus the learning rate, which
leads to better convergence.

Next the main execution loop is a sequence of retrieving observation, pre-
processing, acting in the environment and storing the transition in the replay
buffer.

After a specified consecutive number of steps, the agent samples a batch of
experience from the replay buffer, trains the network on the sample, updates the
priorities and periodically updates the target network’s parameters.

The pre-processing consists of extracting reward and StepType, indicating if
an observation is the first or last step in an episode, and screen, the player’s on-
screen view extracted features in form of a tensor. Due to the modular structure
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of the pre-processing, evaluating on different combinations of screen features is
possible.

3.2 Advantage Actor-Critic

In this section we introduce the Advantage Actor-Critic agent. We will first
examine the basic architecture laid out in the reference paper [1] and then dive
deeper giving an overview over our codebase, the implementation details and
advances we made.

3.2.1 Basic Architecture

The basis for our agent is DeepMind’s fully convolutional architecture, which is
visualized in Figure 3.1. In essence, it is a convolutional architecture adapted to
the needs of StarCraft II, in particular the action space.

Figure 3.1: FullyConv architecture [1]

In StarCraft II the input feature layers consist of 2-dimensional tensors repre-
senting the same perspective view as a human would see in the game but instead
of raw RGB values, features are directly exposed. For example, units can take
up several elements (‘pixels’) in the tensor, having the size of the resolution, and
every element contains various information about these units, such as their type
(e.g. Marine or Zergling) or player affiliation (e.g. friendly, hostile).

As these features are most often categorical, they have to be preprocessed.
Usually this is dealt with by one-hot encoding. This can cause massive expansion
in dimensionality. For example there are currently 1914 different unit types and
an one-hot encoding of the unit type feature layer with size NxN, would lead to
a new dimensionality of NxNx1914. For that reason all categorical features are
embedded into a continous space by using a one-hot encoding and subsequently
1 x 1 convolutional filters. These reduce the depth by essentially ‘squashing’ the
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one-hot encoded tensor together along the channel dimension by applying a dot
product.

Numerical features are transformed to a logarithmic scaling to combat the
value explosion of some values such as minerals or hit-points.

Unlike usual reinforcement learning agents, which tend to reduce spatial di-
mensionality to extract spatial information from the input, the fully convolu-
tional architecture preserves the spatial structure in the observation (screen and
minimap) as it is passed through 2 layers with 16, 32 filters of size 5 x 5, 3 x 3 re-
spectively with no stride or padding. This is needed as spatial actions act in the
same space as the inputs and reducing the dimensionality might be detrimental.

Next, the spatial network outputs and non-spatial features are concatenated
to a state representation. For this the non-spatial features are broadcasted along
the channel dimension as they do not have matching shapes.

To compute the state-value, the state representation is passed through a fully-
connected layer (FC1) with 256 units and ReLU activations. To further get the
non-spatial, that is categorical like right-click or button-press, action policy, the
output of the fully-connected layer FC1 is followed by another one with softmax
outputs.

Lastly, to obtain the spatial action policy the state representation is passed
through a layer of 1x1 convolutions and a subsequent softmax layer for each
spatial action argument.

As described in Section 2.5.1, actions are exposed as nested list of an action
and its arguments. For example Move screen, which defines the move action for
currently selected units in the screen space, takes two arguments: a bolean value,
specifying if this action should be deferred or not, and a tuple of coordinates
that represent the location on the screen. This would mean that we would
have to model a joint distribution of action and arguments but as the action
space in StarCraft II is very large, this is impractical. Instead the assumption
is made that actions and arguments are conditionally independent and thus the
softmax output layers can determine the probability distribution individually.
Additionally, the argument types that are not allowed for a specific action are
masked, that is setting all probabilities to zero that are unavailable for this
action. For example Move screen action does not take the argument unload id.
We will come back to this in the next subsection

3.2.2 Implementation Details

A general difference in DeepMind’s baseline compared to our implementation
is the use of A2C as DeepMind uses A3C [37]. As we laid out in Section
2.4.2, this is computationally more efficient. Furthermore, due to non exist-
ing official A2C publications, we used several reference implementations of A3C
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and A2C. Notably NVIDIA’s GA3C, OpenAI’s baseline A2C and several oth-
ers [56][57][58][59][60][61][62][63]. These are also referenced in the specific code
sections.

Further, as a result of DeepMind not making their code publicly available,
assumptions had to be made based on the reference publication.

We chose a modular design such that the code is easily extendable to use
different architectures or networks. First, main sets up all the individual com-
ponents of the agent. The A2C network, environments and logger are created
that are passed on to the Runner, which contains the main execution loop. All
hyperparameter and general configuration, such as type of model or number of
environments, is setup in main.

The SC2 environments are all initialized in the EnvWrapper class, that further
creates an environment pool EnvPool that is used as interface for communication.
The environment pool creates separate worker processes for every environment
and uses pipes to communicate with them. While the environment pool is an
abstract vectorized environment and therefore acts as interface between the indi-
vidual environments and the wrapper, the EnvWrapper acts as interface between
network and EnvPool and splits upon receiving, environment observations into
rewards, StepType and raw observations, which are then preprocessed to states.

The Runner is used as main execution loop and lets the network and environ-
ments interact. This is done by first resetting the environments and receiving the
initial states. Second, it passes the states as input to the network, which returns
the actions that the individual environments should take. Third, the actions are
taken in the environments and new states are received. This repeats until the
maximum train-loop steps are reached. Afterwards the network is trained on all
states and actions.

After every train-loop, the Logger is called, which utilizes the baseline imple-
mentation to achieve extensive logging, like the elapsed time, number of samples,
important current and past rewards. General configuration and hyperparameters
are logged at the start of every log file at the beginning of every execution.

To preprocess the raw observations to states, the spatial and non-spatial fea-
tures that are used are extracted. This is done for each environment to build raw
state. As raw observations in StarCraft II are in channels-first format (NCHW),
we transform the observation to channels-last format (NHWC) because the non-
spatial observations need to be broadcasted later.

The ac network class builds the fully-convolutional network and is used to
run the Tensorflow sessions.

The fully conv model in models implements the basic architecture described
in Section 3.2.1. The non-spatial input is split in non-spatial features and avail-
able actions. Available actions are only used to mask our actions. This saves
time compared to making the network learn masking itself. Masking is done by



3. Implementation 25

computing a dot product between the available actions and the action output
and subsequently normalized such that the total probability is 1.

While the numerical features are only transformed to logarithmic scaling, the
categorical features are passed through a layer of 1x1 convolutions. As number
of filters we use a logarithmic transformation of the dimensionality of the feature
scaling. For example this reduces the output dimensionality of unit types from
1921 to only 11.

Next, the non-spatial features are broadcaste to match the shape of spatial
features. The combined state representation is then transformed from NHWC
back to NCHW, as NCHW is the optimal format for training with Tensorflow
on NVIDIA GPUs [64].

The flattened state representation is then passed through the subsequent
fully-connected and convolutional layers, as already mentioned in Section 3.2.1.,
to create policy and value outputs. To obtain an action and arguments, we then
sample from the probability distributions received by the policy output.

To train the network, we compute the loss function over the mean of the
batch:

J(θ) = ν log π(at|st; θ)A(st, at; θ) + α(Rt − V (st; θ))
2 − βH(π(st; θ))

= ν log π(at|st; θ)(Rt − V (st; θ)) + α(Rt − V (st; θ))
2 − βH(π(st; θ))

As an additional enhancement, we used Generalized Advantage Estimation
[65], which is a more sophisticated form of Advantage. This can tremendously
reduce variance but unfortunatetly comes at the cost of introducing bias.

We defined Advantage in Section 2.1.2 as

A(st, at) = Q(st, at)− V (st)

Estimating Q(st, at) gives us

A1
t (st, at) = rt + γV (st+1)− V (st)

A2
t (st, at) = rt + γrt+1 + γ2V (st+2)− V (st)

A∞t (st, at) = rt + γrt+1 + γ2rt+2 + ...− V (st)

If the time frame of estimation is small, then the estimation has low variance
but high bias, whereas with a large time frame the estimation has high variance
but low bias. This is because the amount of dependency of our estimation.

Instead of using a specific time frame, Generalized Advantage Estimation
uses all of them. For this we define the Bellman residuals:

δt = rt + γV (st+1)− V (st)
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This defines the Generalized Advantage Estimation as

A
GAE(δ,λ)
t = (1− λ)

(
A1
t + λA2

t + λ2A3
t + ...

)
= (1− λ)

(
δt + λ (δt + γδt+1) + λ2

(
δt + γδt+1 + γ2δt+2

)
+ ...

)
= (1− λ)

(
δt
(
1 + λ+ λ2 + ...

)
+ γδt+1

(
λ+ λ2 + ...

)
+ ...

)
Using geometric series formula:

= (1− λ)

(
δt

1

1− λ
+ γδt+1

λ

1− λ
+ ...

)
=

∞∑
i=0

(γλ)i δt+i

where the hyperparameter λ and γ adjust the bias-variance tradeoff.

We compute the loss and use the RMSProp algorithm to optimize our net-
work. Further cliping gradients at 1 seemes to have stabilize the network more.

3.3 TSM Scripted Agent

For evaluation purposes we also implemented an agent that reaches near optimal
score on the minigame CollectMineralShards.

In the minigame CollectMineralShards the agent has two Marines (game
units) and the goal is to collect 20 Mineral Shards randomly spread (at least
2 units away from all Marines) on the map. For every collected Shard the agent
receives +1 reward. Whenever all 20 Shards have been collected, a new set of
20 Mineral Shards are spawned at random locations. This repeats until a time
limit of 120 ingame seconds is reached.

CollectMineralShards can be viewed as a generalization of the Traveling Sales-
men (TSM) Problem. To be precise, as a non-fixed destination multi-depot mul-
tiple traveling salesman problem. The more efficiently the units move, the higher
the score. An optimal strategy needs to exploit that the units can be controlled
separately.

As with the DQN and A2C agents, the TSM Scripted agent is written in the
Python programming language and uses the PySC2 library to interact with the
game engine. It consists of 2 files main.py and mtsm.py.

In main.py an SC2 environment is created with a step mul of 1 (we explain
later why this is the case). After the environment is reset and the agent received
the initial observation, the mtsm function in mtsm.py is called with the observa-
tion as parameter to calculate the game actions and paths for the Marines.

mtsm.py consists of two functions mtsm and held karp. mtsm preprocesses
the observation to extract the player relative feature layer of screen. player relative
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Figure 3.2: CollectMineralShards.

is used to get the coordinates of the Marines and Shards. The distances are then
calculated and inserted into the list dist.

After this preprocessing held karp is called. held karp uses the Held-Karp
algorithm [66] to calculate the optimal path for a TSM problem. It takes the
list of distances and returns the optimal cost and optimal path (TSM path) to
mtsm. The optimal cost is used to compare different initializations (seeds) of the
minigame.

The agent creates the list action list, which is used later as a bootstrap
of actions, and adds the FunctionCall to select the first Marine (Marine1). The
order of Marines is based on their location in the environment, the first Marine
is always the left most.

As a result of the Marines only being recognizable by their location, the agent
needs to keep track of their latest coordinates. When the agent wants to select
a specific Marine the locations are compared to the latest coordinates and the
one with the shortest deviation in distance is selected.

Next, the closest Shard to Marine1 is found, the move action is added to
the action list and the coordinates are added to list path marine1. The same
is done for Marine2. The closest, non-identical, Shard is found and the location
and move action are added to the action and corresponding path (path marine2)
list.

Corresponding to the closest Shards the Marines are now on two different
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positions in the TSM path. This leads to two distinct cases for selecting the rest
of the paths optimally. If the Marines are on positions next to each other, they
follow the path in opposite directions.

If the Marines are not next to each other, both follow the path in the same
direction until one reaches the starting position of the other Marine. It then
turns around and goes in the other direction of its starting position. See Figure
3.3 for an example.

Figure 3.3: Example of Scenario 2.

After the optimal distinct paths for both Marines are computed, the mtsm
function returns to the main function. Now the bootstrapping actions are ex-
ecuted in the environment. Afterwards turns are taken in selecting the next
Marine and queueing the move action to the next Shard on their corresponding
paths. We do this so that even when Marines and Shards are close to each other
on the path we reduce the potential waiting time between queuing the next ac-
tions. In StarCraft II actions can be queued for a unit such that the unit will
carry them out in sequence.

A minor bug arises when the Marines are too close to each other and the
wrong unit is selected. Hence the other is not selected anymore. This rarely
happens in practice when the environment is not skipping frames between ac-
tions (step mul=1) and therefore the Marines do not move considerably between
turns.

When all 20 Shards are collected mtsm is called on the latest observation and
the process repeats until the end of the episode is reached. We believe this to be
near optimal.
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Evaluation

In this chaper we evaluate the agents on a set of tasks, examine our setup and
lastly discuss our results. DeepMind provides seven minigames to divide the
full-game into subsets and to test agents on different game mechanics and sce-
narios with different reward structures. Unlike the full-game where the reward
is ternary, that is win, tie or lose. In Section 4.1.1 we give a brief overview over
the minigames and in Section 4.2 we examine the results of our agents.

4.1 Setup

We tried to stay as close as possible to DeepMind’s setup to be able to compare
the results, although some changes had to be made. Our computational setup
consists of an AMD Threadripper 1950X 16-Core Processor with Hyperthread-
ing and 2x GeForce GTX 1080 Ti with 11GB RAM. Despite this being above
average consumer hardware, it does not match the computational capabilities
of DeepMind. Therefore it was infeasible to randomly sample hyperparameters.
All experiments were run on Linux with the headless StarCraft II game.

Furthermore, in contrast to DeepMind we evaluated both agents for every
minigame on a (32, 32) resolution, the same for screen and minimap, while
DeepMind uses a (64, 64) resolution. To make sure that the results on lower
resolution are accurate, we let every agent additionally run on the (64, 64) res-
olution at least once. However, it takes at least 10x as long as the state space
grows by a factor of 4. Our empirical evidence supports that a (32, 32) resolution
leads in fact to the same results, although at a reduction in wall clock time.

For both agents, we use a fixed step mul of 8 as this complies with Deep-
Mind and matches human APM levels. This means that the agent acts in the
environment every 8 frames, which leads to an APM of 180. Further, we did not
fix our maximum number of training updates as this widely varied depending on
the minigames and agent.

The DQN agent is not as computational expensive to run as the A2C agent,
due to the need of only a single CPU and GPU. Therefore hyperparameter tuning

29
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was done and we determined a learning rate of 3e−4 and a discount factor

of 0.99. Furthermore, we ran experiments with and without dueling but settled
for dueling as it significantly reduced the training time. The same is true for the
Prioritized Experience Replay.

With our A2C agent, we tried to stay as close as possible to the original
fully-conv baseline agent, only differences are mentioned here.

We used 20 environments, that is environment worker threads that send and
receive observations and actions respectively. As the cutoff for the trajectory,
we settled for 16 forward steps (n steps) per train loop or if a terminal signal is
received, compared to DeepMind, which used 40. This does not seem to affect
results but makes training more computational feasible. We used a learning

rate of 7e − 4 and a discount factor of 0.99. Further, we use an entropy
penality of 2e− 3 and 0.25 as value coefficient.

DeepMind does not mention, which spatial or non-spatial features they use.
As using all features is computational expensive und simply impractical, we de-
cided on a set of features that we used for all experiments with A2C. For screen
feature layers, we use visibility, player relative, unit type, selected,
unit hit points, unit hit points ratio, unit density and for minimap fea-
ture layers, we use visibility, camera, player relative. These were decided
as the lowest common denominator as they were used on all minigames. Some of
them are redundant for specific minigames. For example for the minigame Col-
lectMineralShards, unit hit points ratio does not convey any information as
the unit hit points do not change. For exploration tasks like FindAndDefeatZerglings,
camera and visibility are important, while for minigames with battles are unit
related features important. Additionally, we used as an guide-line other imple-
mentations.

DQN, however, uses a restricted set of features, as they massively extend
training time. For this agent we use only spatial features, in particular player relative

and selected of the screen feature layers, and no non-spatial features.

4.1.1 Minigames

We will now give a brief summary of the minigames:

• MoveToBeacon: The agent has one unit and the goal is to go to a bea-
con that appears in random positions. It has a simple greedy strategy as
solution and should be viewed as a simple unit test.

• CollectMineralShards: The agent has two units and the goal is to collect
20 mineral shards that are scattered on the map. It can be viewed as a
generalization of the Traveling Salesmen (TSM) Problem.
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• FindAndDefeatZerglings: The agent has to explore the map to find and
defeat Zerglings. This minigame mainly tests exploration.

• DefeatRoaches: The agent has a small army and has to defeat Roaches.
For every successful round, the agents army gets reinforcements.

• DefeatZerglingsAndBanelings: The agent starts with a small army and has
to defeat an army of Zerglings and Banelings. The agent’s army is weaker
than the enemies and a greedy solution is not optimal.

• CollectMineralsAndGas: The agent starts with a small base and has to
collect resources to increase its score.

• BuildMarines: The agent starts with a base and units to gather resources
and has to build an army of marines. It is the biggest subset of the full-
game and therefore the most complex and hardest to learn for any agent.

See the minigame documentation for a complete description of reward and game
structure and Figure 4.1 for an overview of the minigames [67].

To better evaluate the minigame CollectMineralShards, we introduced in
3.3 the TSM Scripted Agent, an almost optimal scripted agent solution. We let
both the TSM and A2C agent run on the same random seed to compute the
efficiency difference.



4. Evaluation 32

(a) MoveToBeacon (b) CollectMineralShards

(c) DefeatRoaches (d) DefeatZerglingsAndBanelings

(e) FindAndDefeatZerglings (f) CollectMineralsAndGas

Figure 4.1: Minigames ingame perspective
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4.2 Discussion

Agent Metric MoveToBeacon CollectMineralShards DefeatRoaches DefeatZerglingsAndBanelings FindAndDefeatZerglings CollectMineralsAndGas BuildMarines

Human GrandMaster
best mean 28 177 215 727 61 7566 133
max 28 179 363 848 61 7566 133

DeepMind Fully-Conv
best mean 26 103 100 62 45 3978 3
max 45 134 355 251 56 4130 42

DQN Agent
best mean 25 63 - - - - -
max 28 85 - - - - -

A2C GAE Agent
best mean 26.6 105 167 341 36 3436 0.5
max 38 126 343 425 48 3878 14

Overall we ran a minimum of 5 experiments for each minigame on each agent
and computed the mean over all experiments to obtain the results. The number
of maximum game steps varied per minigame depending on the complexity. For
example MoveToBeacon takes around 10 minutes wall clock time to reach an
optimal mean reward, while CollectMineralsAndGas and BuildMarines have far
longer episode times and the state space is far larger. Thus more samples are
needed for training.

Our results are visible in the table above. The DQN agent was significantly
slower as the other agents even though we used Prioritzied Experience Replay and
Dueling. In particular, even on MoveToBeacon the DQN agent needed roughly
6 million samples, while the A2C agent achieved better results with around 1
million samples. As A2C scales and performs significantly better than DQN, it
should be preferred over it. Unfortunately, due to the time constraint, we could
not test more advanced DQN implementations like Rainbow DQN [68].

We can also see the difference between DeepMind’s agent and ours. We
clearly beat DeepMind’s agent in DefeatZerglingsAndBanelings and DefeatRoaches,
while the other results are similar. We also compared our agent with A2C with
Generalized Advantage Estimation (GAE) and vanilla A2C and we get results
that match the comparision between DeepMind’s and our agent. Although our
vanilla agent also performed slightly better than DeepMind’s agent on the respec-
tive maps, Generalized Advantage Estimation clearly lead to a boost in mean
scores.
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In Figure 4.2 to 4.7, sample plots can be seen of our agents. Unfortunately,
due to a bug the plotting ended being cut off prematurely. The y-axis is the
mean score and the x-axis the number of episodes. We want to note that ‘jumps’
in performance always coincide with a strategy change of the agent. We will go
into more detail in a task by task result analysis:

MoveToBeacon
Due to this map being a form of unit testing, the expected the agent found
the optimal solution very easily and but suprisingly fast compared to the
other minigames as it takes around 10 minutes in wall clock time. Off
particular interest is that the agent’s results jump very suddenly as one
can see in Figure 4.2. Our DQN agent takes longer and there is no ‘jump’
in results.

CollectMineralShards

CollectMineralShards is a variant of the TSM Problem and therefore NP-
hard. It is suprisingly hard to learn in terms of complexity for an agent
compared to other minigames. Ongoing research in cognitivie psychology
observed that humans are able to produce near optimal solutions to the
TSM problem and even an order of magnitude better than well-known
heuristics [69][70]. We assume that Deep Reinforcement Learning agents
can provide more efficient ways of computing NP-complete problems in the
future. Our DQN agent’s strategy is to move in the approximate direction
of the Shards, despite behaving rather randomly sometimes. The ‘optimal’
strategy of our A2C agent is to move both units together, this leads to
a decent score but is far from the perfect strategy. Compared with TSM
Scripted Agent, we achieved only an accuracy of around 50% as the TSM
agent reached a score of around 198, while the DQN agent only achieves
25%.

FindAndDefeatZerglings
Our agent achieved similar results to DeepMind’s but far from optimal.
We assume this is due to the nature of the partial observed state due to
the fog-of-war.

DefeatZerglingsAndBanelings
We expected the minigame to be quite challenging because the enemy army
consists of several units with different abilities, strength and weaknesses but
our agent was suprisingly good and learns to reduce exposure to Banelings
but lacks efficient micromanagement. We assume this to be the reason that
the agent did not achieve human level scores.

DefeatRoaches
As DefeatZerglingsAndBanelings, we have better results than DeepMind
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but lack a human level score. The most likely optimal strategy would be
to efficiently micromanagement the units.

CollectMineralsAndGas
Our results were slightly below DeepMind’s. However, we assume this to
a lack of training time. The general solution of our agent was to send the
workers to gather resources.

BuildMarines
As this minigame is the biggest subset of the full-game, it is clearly the
most complex. Our expectations were confirmed by our results that this
map is most likely not beatable without a form of long term strategy as
could be achieved with LSTMs. The best strategy our agent has learned, is
to send the work to gather resources and then do nothing for the remaining
time.



4. Evaluation 36

Figure 4.2: MoveToBeacon

Figure 4.3: CollectMineralShards

Figure 4.4: DefeatRoaches
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Figure 4.5: DefeatZerglingsAndBanelings

Figure 4.6: FindAndDefeatZerglingsbig

Figure 4.7: CollectMineralsAndGasbig



Chapter 5

Conclusion

In this thesis, we presented the effectiveness of different machine learning algo-
rithms in the StarCraft II Learning Environment. At first we created a Deep
Q-Network agent that had decent results but it is a computationally impractical
approach due to the complexity of the benchmark environment. Unfortunately,
due to time constraints and lack of prior experience, we were not able to investi-
gate every idea and settled for a more conservative approach of testing 2 of the
most prevalent agents in reinforcement learning.

Recently DeepMind published their Relational Deep Reinforcement Learn-
ing (RDRL) model, which exceeded the baseline results and also the professional
player in 6 out of 7 minigames. While this is significant, our improvements of
A2C in form of Generalized Advantage Estimation suggest that current algo-
rithms are not nearly at their limits. We have shown that our implementation is
capable of surpassing the baseline in 2 minigames with minor improvements. An
alternative successful example of this is Rainbow DQN, which is a combination
of improvements to the DQN algorithm [68]. Additionally, our TSM Scripted
agent seemes to be an almost optimal approach as DeepMind’s RDRL agent
achieved the same mean score of around 198 in CollectMineralShards.

A video comparing results, that is untrained and trained A2C agent, will be
found at https://www.youtube.com/channel/UCo72ShAMnW9OZhI5YrGlvdA.

5.1 Future Work

As our A2C agent is marginal better or on par with DeepMind’s baseline, we
would like to see an extension of our approach in future works. In particular, the
replacement of vanilla policy gradient by Proximal Policy Optimization (PPO)
or Trust Region Policy Optimization (TRPO) [71][72]. Additionally to make
A2C more sample efficient Experience Replay could be added (ACER) [73]. Due
to the nature of StarCraft II, RNNs and especially LSTMs are also of interest. In
particular for the full game as long-term planning needs some form of memory.

At the beginning of this year DeepMind also presented Importance Weighted
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Actor-Learner Architectures (IMPALA) [74], which is even more scalable and
sample efficient than A2C and could be a viable replacement. Utilizing IMPALA
DeepMind’s Relational Deep Reinforcement Learning [75] approach is currently
the most promising approach to solve the game of StarCraft II, we would like to
see improvements and further investigations of that.

Instead of working with feature layers, an agent can also learn from raw
RGB pixels as the newly updated PySC2 allows. This resembles the learning
of a human more closely and should be a longterm goal. To transition to the
full game, it might make sense to limit the action space significantly, thus only
allowing a specific unit composition as there are countless examples of players
reaching a high level in the game by mastering a single strategy. For example
the player ‘pseudomota’ moved from Bronze to Diamond League, which is among
the highest leagues in StarCraft II, by only building Marines [76].

Hierarchical Reinforcement Learning [77] seems also to be an interesting ap-
proach as that it closely models how real players approach the game by macro
and micro strategies. For that reason we propose the following approach. The
first agent would operate on a meta level, deciding ‘high-level’ strategies and a
second agent uses those strategies to act in the game and decide on ‘low-level’
strategies, such as short-term trade-offs like building an army or focussing on
gathering resources.

Furthermore, the evaluation of semi-supervised approaches using the pro-
vided replays to additionally train networks should be investigated. This is also
one of the most common training strategies among human players as there is no
‘fog-of-war’ and the player can analyse the opponents behaviour easily.
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