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Abstract

A big issue of blockchain systems is scalability. Solutions, such as payment
channels, have been suggested to alleviate the problem by allowing transactions
to take place off-chain. We study the problem of creating a payment channel
network with fees, which are charged by a Payment Service Provider (PSP).
Customers, however, only prefer this variant of making transactions, if the total
fee of routing the payment through the network costs less than the fee on the
blockchain.
We introduce various network structures and algorithms that allow the PSP
to maximize its profit by assigning optimal fees to the the network’s payment
channels. For tree-structured networks, where the PSP wants to cater to all
transactions, a linear program can find a solution. In the case of paths, we
introduce a polynomial-time dynamic program. Finally, we examine star graphs.
We provide an optimal fee assignment and a near-optimal solution, when adding
an additional central node.
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Chapter 1

Introduction

Even though cryptocurrencies, most prominently Bitcoin [9] and Ethereum [1],
have gained quite some popularity in recent years, they are still far from be-
ing commonly used in everyday payments. One of the largest obstacles of the
underlying technology used by cryptocurrencies, the blockchain, is scalability.
This is why the topic is actively researched. Several solutions to this issue have
already been suggested, one of which are payment channels [6, 10, 2]. The aim
of these is to enable secure, real-time transactions, while making as little use of
the blockchain as possible.
In this thesis, we will study the problem from the perspective of a Payment
Service Provider (PSP). A PSP would like to provide its customers with an al-
ternative of making payments in place of the blockchain. In order to do so, the
PSP creates a network of payment channels by opening channels between inter-
acting parties. However, as nothing comes for free, the PSP looks to charge fees
for the use of its payment channel network to maximize its own profit. Cus-
tomers, on the other hand, prefer this alternative method only if it costs less
than a transaction on the blockchain, the PSP’s direct competitor. This thesis
provides various solutions to the problem stated above and variations thereof.

1.1 Related Work

A lot of research in the direction of payment channels has already been done.
This includes the Raiden Network [2] for Ethereum [1] and the Lightning Net-
work [10] for Bitcoin [9]. Both implement payment channels to allow real-time,
secure off-chain transactions. The concept of duplex micropayment channels to
enable such payment networks is also studied profoundly in [6] by Decker and
Wattenhofer and in [5] by Burchert et al.
Other research is focused more on how to route payments in these networks.
Flare, a routing algorithm proposed by Prihodko et al.[11] aims to quickly find
payment routes in the Lightning Network by collecting information on the topol-
ogy of the network in advance. SpeedyMurmurs, presented by Roos et al. [12],
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1. Introduction 2

and landmark routing, described by Malavolta et al. [8], are two other designs of
routing algorithms proposed in recent papers. The latter is used in the decentral-
ized IOU credit network SilentWhispers, a credit network with many desirable
privacy properties. SpeedyMurmurs aims to improve routing algorithms, such
as the previously described ones, by utilizing embedding-based routing and by
distributing funds before path discovery.
Heilman et al.[7], on the other hand, propose a payment hub for Bitcoin, called
TumbleBit. This allows anonymous off-chain transactions, completed in seconds.



Chapter 2

Preliminaries

2.1 Payment Channel Networks

In order to formally define the described problem, we introduce in this section
some background and the necessary notation.

2.1.1 Payment Channels

Payment channels provide an alternative of securely carrying out transactions
with minimal use of the blockchain. Typically, a payment channel is set up
between two parties using a well defined creation protocol, where a funding
transaction, locking in the funds for the channel, is committed to the blockchain.
In our setting though, we assume that the PSP has the ability to open a channel
for its customers. In fact, this is possible with three-party channels funded by
the PSP alone. The PSP then distributes the money to the other parties of
the channel. Various techniques, described in detail in [6, 10, 2], then allow
participants in a network of payment channels to make transactions in a secure
and fast manner.

2.1.2 Channel Networks

A channel network is defined as an undirected graph G = (V,E) with a set of
vertices V and a set of edges E, where |V | = n and |E| = m. A vertex (or node)
v ∈ V denotes one of n participants wishing to use the network, whereas an edge
e ∈ E between two nodes i and j stands for an opened channel Cij . Figure 2.1
shows an example of a very simple channel network.

3



2. Preliminaries 4

1 2 4 5

3

C12 C24 C45

C23

Figure 2.1: A simple network G1 with 5 participants and 4 channels.

For the sake of simplicity, we make the following two assumptions: The edges of
the network graph are undirected and the capacities of the channels are infinite.
The latter suggests that the PSP has the means to fund channels with a large
enough capital for the transactions performed in the network.
Furthermore, we define the cost of opening a new channel to be 1. This represents
the cost of opening a payment channel by submitting a funding transaction to
the blockchain.

2.1.3 Transactions

Given a sequence of transactions for n participants, we can define a transaction
matrix T ∈ Nn×n. An entry T [i, j] denotes the number of transactions from
the sender i to the receiver j and vice versa. Note that the direction of the
transactions is not important and therefore T can be represented by a triangular
matrix, as can be seen in an example in Figure 2.2. If there are no transactions for
a pair (i, j) of nodes, then the corresponding matrix entry is 0. Since transactions
where the sender is identical to the receiver are pointless, the diagonal entries
are 0 as well.

1 2 3 4

5

1 0 1

0
T =


0 2 1 1 2
0 0 0 0 0
0 0 0 5 0
0 0 0 0 6
0 0 0 0 0



Figure 2.2: A possible assignment of fees fE1 and a transaction matrix
T for the previously shown network G1.
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2.1.4 Fees

In order to make profit, the PSP is able to charge fees for the use of the channels
in its network. For each edge e ∈ E a fee fe ∈ R can be assigned and we denote
an assignment of fees to the set of edges E by fE . We require every fee to be
positive. Moreover, there is no point in fees that are greater than 1. This is
due to the fact that the channel network is in competition with the blockchain,
where the cost of a transaction is defined to be 1. In a case where an edge has a
fee larger than 1, a rational customer would always prefer to make a transaction
via the blockchain instead and effectively render this edge obsolete. Therefore,
we also require every fee to be at most 1.
In Figure 2.2 an instance of a possible fee assignment, represented by the labels
on the edges, is shown.

As mentioned above, we only consider positive fees in this thesis. As a matter of
fact, there exist cases, where, under certain conditions, even negative fees would
be viable for maximizing the profit. However, that seems to be far more complex
and will not be considered in this thesis.

2.2 Profit Function

To measure the value of a network we introduce a profit function. The profit of
a channel network depends on the structure of the underlying graph, the trans-
actions carried out between participants in the network and the fee assignments.
We define the profit of a graph G = (V,E), given a transaction matrix T , as
follows:

p(G,T, fE) = −m+
∑
i,j∈V

∑
e∈path(i,j)

fe ·Xij · T [i, j],

where Xij =


1, if the participant chooses to use the network,

i.e.
∑

e∈path(i,j) fe ≤ 1

0, otherwise

By path(i, j) we denote the set of edges on the path from sender i to receiver j,
where the overall fees are the lowest (i.e., the cheapest path).
The double sum in the profit function represents the profit generated by all
transactions in the network. For every possible pair of nodes (i, j) in the network,
we sum all the fees on the path from i to j and multiply by the number of
transactions between theses two nodes. However, the profit for a pair of nodes is
only taken into account if the fees on their path are at most 1. This indicates that
the customer only uses the payment channel network when the cost is not higher
than the blockchain fee. Finally, we subtract the cost of opening the payment
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channels, which is equal to the number of edges m, because each channel is
opened by a transaction with cost 1 on the blockchain.
The profit for the channel network G1 with transactions T and fees fE1 as shown
in Figure 2.2 is equal to p(G1, T, fE1) = −4 + (2 + 1 + 0 + 2 + 5 + 6) = 12. Notice
that the single transaction T [1, 4] is not carried out in the network, because there
exists no path from node 1 to node 4 with a total fee of at most 1.

2.3 The CNDF Problem

We can now formally define the Channels Network Design with Fees (CNDF)
problem.

Definition 2.1. (CNDF) Given a transaction matrix T ∈ Nn×n, return a graph
G = (V,E) with |V | = n, and fee assignments on edges fE , such that the profit
function p(G,T, fE) is maximized.

This problem is actually more complex than it seems. Intuitively, one might think
that simply connecting every node pair (i, j) that is involved in a transaction by
an edge with fee 1, as shown in Figure 2.3, results in optimal profit. However,
this is not necessarily the case. For instance, the profit p(G2, T, fE2) = 11 is
actually lower than the profit p(G1, T, fE1) = 12, where G1, T and fE1 are the
components from Figure 2.2.

1

2

4

5

3

1

1

1

1

1

1

Figure 2.3: A network G2 where we connect every party of a transac-
tion by an edge with an assigned fee of 1 (fE2

).

In the following chapter we will discuss several solutions to a relaxed version
of the CNDF problem, where the structure of the channel network is already
known. The goal is then to find an optimal assignment of fees, such that the
profit is maximized.



Chapter 3

Designing a Network with Fees

3.1 Linear Program for Trees

In a first approach to finding a solution to CNDF, we will only consider trees.
Assuming a channel network with the structure of a tree, we want to find the best
possible assignment of fees, in such a way that every transaction can be carried
out within the network, i.e., for every transaction the sum of the fees is at most 1.
In other words, every participant will always prefer to use the payment network
over the blockchain. This problem can in fact be solved efficiently as described
in the following.

Theorem 3.1. Given any tree and any transaction matrix, there exists a poly-
nomial-time algorithm to optimize the profit if every transaction is performed
using the payment network.

Proof. To solve this variation of the problem, we can use linear programming to
find the optimal profit along with an optimal assignment of fees.
In order to do so for some given tree G = (V,E) and a given transaction matrix
T , we first need to determine the objective function that we want to maximize.
Moreover, we need to specify suitable inequality constraints. We compute the
objective function by analyzing how many times each transaction uses each edge
in the network. This gives us an objective function

f(x) =

m−1∑
i=0

ci · xi.

The argument of the objective function, a vector x = (x0, · · · , xm−1) with m =
|E| components represents the fees of the edges, that we wish to maximize, and
ci denotes the number of times the edge i was used by a transaction.

7



3. Designing a Network with Fees 8

Then, to determine the inequality constraints, which are imposed by the con-
straint that each transaction must have a total fee of at most 1, we define one
inequality for every transaction t as follows:

m−1∑
i=0

ei · xi ≤ 1,

where ei = 1 if edge i was used for transaction t, and 0 otherwise. It is possible to
solve this linear program in polynomial time and it results in an optimal vector
of fees x.

Even though this result works well for some problem instances, it has a few
drawbacks: Firstly, the linear programming approach limits the payment net-
work to be a tree. Without this constraint, there might exist multiple paths
for a transaction. Then, it is not clear which path should be chosen to route
the transaction, as the fees are not yet assigned. The transactions’ routing, in
turn, has implications on the inequality constraints of the linear program and
consequently on the fees and the profit. Moreover, when considering the original
definition of CNDF, trees are not generally the best network structure for an
optimal solution, as one can easily verify with the example given in Figure 3.1.

1 2

3

0.5

0.5

1 2

3

1

11
T =

0 2 2
0 0 2
0 0 0



Figure 3.1: Above graphs G3 (left) and G4 (middle) show an example,
where a tree (graph G3) is not a favorable network structure, even
with an optimal fee assignment fE3

. Compared to the fully connected
graph G4 with profit p(G4, T, fE4) = 3, the tree has a lower profit
p(G3, T, fE3) = 2 when using the transactions T .
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The second shortcoming of this method is the restriction that every transaction
has to connect. As a consequence every transaction is given equal weight. How-
ever, it is definitely more profitable in certain cases to dismiss a small number of
transactions in favor of a larger portion, for which the PSP might then be able
to charge a higher fee. Such a scenario is shown in Figure 3.2 and also motivates
the next section of this chapter.

1 2 3 4

5

0.5 0 0.5

0.5
T =


0 2 1 1 2
0 0 0 0 0
0 0 0 5 0
0 0 0 0 6
0 0 0 0 0



Figure 3.2: The graph G1 with transactions T as shown before has
the fee assignment fE′

1
depicted in the diagram when using the linear

programming approach. The profit p(G1, T, fE′
1
) = 9 is worse than the

profit calculated for the fee assignment fE1 in 2.2.
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3.2 Dynamic Program for Paths

As we have just seen, linear programming for trees and attempting to cater
to every customer’s transactions does generally not result in an optimal profit.
Therefore, we remove the constraint that every transaction should be able to
be carried out within the channel network. The problem is now more complex
because we do not know how to select the transactions and applying a linear
programming approach is not possible anymore. For a more restricted graph
structure, paths, we provide a polynomial-time dynamic programming algorithm
(Algorithm 1) that is able to find an assignment of fees, which maximizes the
profit.

3.2.1 Algorithm

Algorithm 1: Dynamic Program for Paths

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = number of nodes, m = number of edges, i.e., n− 1
Set all entries of M [m,m,m] to 0
Set all entries of P [m,m] to 0

Compute tensor M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 for every 1 ≤ i ≤ j ≤ k ≤ m:

2 p = 0

3 for every entry T[u,v] in T :

4 if T[u,v] only uses edges in the interval [i,k] :

5 p = p+ T [u, v]

6 M [i, j, k] = p

Compute the dynamic programming table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 for every 1 ≤ x ≤ y ≤ m:

8 P [x, y] = M [1, x, y]

9 for lastX = 1 to x− 1:

10 if P[lastX,x-1] + M[lastX+1,x,y] >P[x,y] :

11 P [x, y] = P [lastX, x− 1] +M [lastX + 1, x, y]

12 Store edges with a fee of 1, i.e., x and edges that have a fee of 1
for P [lastX, x− 1]

13 profit = maximum entry in P
14 fee assignment = edges with a fee of 1 stored for the maximum table entry
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First, we compute a tensor M , where M [i, j, k] is the maximal profit when the fee
of edge j is 1 and all remaining fees are 0, while considering only transactions in
the interval [i, k] of edges (line 6). Next, we compute the dynamic programming
table P , initialized with M [1, x, y] (line 8), the maximum entry of which is the
optimal profit at the end of the algorithm (line 13). P [lastX, x− 1] denotes the
best possible profit when setting the edge with index lastX to 1 (it is possible
that more edges have a fee of 1 before that, but lastX is the last edge where this is
the case) and only using the edges up to (and including) x−1. M [lastX+1, x, y]
represents the profit in the interval [lastX+1, y] when setting the fee of the x-th
edge to 1. Thus, for some fixed x, y we iterate over all possible profits of the
preceding part of the graph, add it to the profit of the corresponding current
interval and only consider the maximal profit (provided it is greater than only
setting the x-th edge’s fee to 1)(lines 10/11).
To retrieve the fee assignment which has optimal profit, we can do the following:
We define an additional matrix E, where the entries of each row are initialized
with the number of the row. Now, every time we update an entry P [x, y], we
set E[x, y] = [x,E[lastX, x− 1]]. These denote the edges that are assigned a fee
of 1 to attain the calculated profit. When the algorithm has ended, we read the
entry E[x′, y′], where x′, y′ are the indices of the maximum value in P , and set
the fee of the edge contained in E[x′, y′] to 1 in the optimal fee assignment.
Figure 3.3 presents an application of the algorithm to an example.

1 2 3 4 5
1 0 0 1 T =


0 4 0 2 0
0 0 0 0 0
0 0 0 6 8
0 0 0 0 5
0 0 0 0 0


Figure 3.3: The path G5 with a corresponding transaction matrix T
has an optimal fee assignment fE5

with 0 and 1 as displayed. fE5
can

be calculated using Algorithm 1. One can easily verify that a greedy
approach does not work in this case, as it results in a lower profit.

3.2.2 Correctness and Runtime

We now present a proof of correctness for Algorithm 1 and analyze its runtime.
In order to do so, we first need to show that a fee assignment where each fee is
either 0 or 1 can indeed achieve optimal profit, as is done in the following lemma,
first presented in [4].
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Lemma 3.2. [4, Lemma 1 on pp. 5-6] For every given path and for every set of
transactions, the optimal profit can always be achieved by assigning edges a fee
0 or 1.

Proof. Assume that we are given some optimal fee assignment f = (f1, f2, . . . , fm)
for the path of length m, but this assignment may use other values, not only 0
or 1. We show that only using 0 and 1 one also can achieve the same (or even
more) profit.
Based on the given fee assignment f , we compute the set S of all maximal inter-
vals (i.e., there does not exist a pair of intervals (i, j) and (i′, j′) such that i ≤ i′
and j ≥ j′) where the sum of the fees on the edges in that interval is less or equal
to 1. That is, an interval (i, j) is in S if and only if it satisfies that

∑j
k=i fk ≤ 1

and
∑j

k=i−1 fk > 1 (or i = 1) and
∑j+1

k=i fk > 1 (or j = m). The optimal profit
can be obtained by solving a linear program.
It is well known that every linear program reaches its optimal at the vertex of
the feasible region. Hence, we only need to show that every entry of every vertex
of the feasible region defined above is either 0 or 1. Equivalently, we show that
every feasible solution is a convex combination of vectors with only 0 and 1.
We prove this by induction on the length of the path. For the base case, when
the length is 1, i.e., a single edge, it is trivial. Now, assume that this result holds
for paths of length smaller than m, and we prove that it also holds for length
equals to m. The key observation is that, for any path, there always exists an
assignment f ′ with only 0 and 1 such that

∑j
k=i f

′
k = 1 for every (i, j) ∈ S, as

follows:

1. Let f ′k = 0 for all k.

2. For k from 1 to m, consider all intervals (i, j) in S such that i ≤ k ≤ j. If
all such intervals (i, j) satisfy

∑j
t=i f

′
t = 0, then let f ′k = 1.

We define K := {k : f ′k = 1} and let θ := min{fk : k ∈ K}. Now we write f as a

convex combination f = θ ·f ′+(1−θ) ·f ′′. Since
∑j

k=i f
′
k = 1 for every (i, j) ∈ S,

it follows that
∑j

k=i f
′′
k ≤ 1 for every (i, j) ∈ S. By the definition of θ, we know

that there exists at least one index t such that f ′′t = 0 (ft = θ). According to
these two facts, f ′′ can be considered as a feasible solution for the path of length
n− 1, which by the induction hypothesis is also a convex combination of vectors
with only 0 and 1. The lemma is proved.

Unfortunately, the lemma above only allows us to reduce the runtime to O(2m)
when applying a brute force approach to find an optimal fee assignment. With
Algorithm 1 the runtime is further reduced to polynomial time, as is shown by
the following theorem.
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Theorem 3.3. Algorithm 1 returns the optimal solution and the time complexity
of the algorithm is O(n5).

Proof. Let OPT (x, y) denote the profit of the sub-path from edge 1 up to and
including edge y where we set the fee of edge x (x ≤ y) to 1. We claim that
OPT (x, y) fulfills the following recurrence:

OPT (x, y) = max

{
M [1, x, y] (Case 1)

P [lastX, x− 1] +M [lastX + 1, x, y] (Case 2)

If OPT (x, y) is equal to (Case 1), this means that we reach the maximum profit
in the subgraph from edge 1 to y by only setting the fee of edge x to 1 in the
entire subgraph. Consequently, every transaction, that only uses edges from this
subgraph, can generate profit.
Otherwise, if OPT (x, y) happens to be (Case 2), we know that there are at least
two edges with a fee of 1 in the subgraph from edge 1 to y, namely on edge x
and on edge lastX. Therefore, profit is generated by transactions in the first
part of the subgraph, i.e. from edge 1 to x − 1, and at the same time in the
second part, that is from lastX + 1 to y. However, no transactions, which use
edges in both parts of the subgraph, can generate profit, as such a transaction
would then cross both edges with a fee of 1.
Because of this, we can iterate over every possible sum of the profits of P [lastX, x−
1] and M [lastX + 1, x, y] and choose the maximum thereof. Note, that we do
not necessarily choose the maximum of both terms, but instead pick the max-
imal sum or otherwise we might only obtain a locally optimal solution. This
method can be used, since we were able to split the subgraph from 1 to y in
two parts as explained above. Moreover, we have already precomputed both
terms: M [lastX + 1, x, y] was computed at the very beginning of the algorithm
and P [lastX, x− 1] is always an entry of the table that was the result of a prior
computation with exactly the same recurrence.

The tensor M can be computed in time O(n5). The computation of the table P
can be accomplished in time O(n3), since we have 3 loops that iterate over parts
of the edge indices. Therefore, the complete algorithm can be implemented with
runtime O(n5).
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3.3 Star Graphs

In the previous section we have studied a polynomial-time algorithm for paths.
However, paths are not really an optimal structure for a payment network, as
they are not as highly connected as one would expect. Therefore, we will analyze
in this section another network layout, namely star graphs.
A star graph, as for instance in Figure 3.4, has some interesting properties when
considering the CNDF problem. Firstly, star graphs are trees, which reduces
the number of channels necessary while still maintaining the connectivity of the
network. Secondly, the diameter (i.e., the longest path) of star graphs equals 2.
This suggests that the paths of possible transactions overlap less than it might
be the case with other tree-structured networks.

1

2 3

4

5
0.5

0.5
0.5

0.5

Tu =


0 2 2 2 2
0 0 2 2 2
0 0 0 2 2
0 0 0 0 2
0 0 0 0 0



Figure 3.4: A star graph S1 with 5 nodes and uniform transactions Tu.

3.3.1 Optimal fees for star graphs

In the following, we will consider a specific pattern of transactions, where every
participant in the network carries out exactly one transaction to every other
party (called uniform transactions in the following). The reason therefor is that
it makes it easier to reason about the optimality of fee assignments. The optimal
fee assignment of a star with the described transactions is as follows:

Theorem 3.4. For any star S = (V,E) with |V | = n ≥ 3 and uniform transac-
tions Tu, a fee assignment fe = 0.5, ∀e ∈ E is optimal.

Proof. In order to prove the statement, we define the following linear program:
For each pair of fees fi and fj , where i 6= j, we obtain an inequality constraint
fi + fj ≥ 1. Furthermore, we have the constraints 0 ≤ fi ≤ 1,∀i.
Now, if we require that all transactions are facilitated by the network, we treat
every inequality as an equation. Solving this system of linear equations results
in an optimal fee assignment where every fee is 0.5 (or, for n = 3, an assignment
with 0 and 1, which has exactly the same profit).
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On the other hand, if the requirement that every transaction should be carried
out within the network is not given, we only consider those inequality constraints,
which correspond to a transaction facilitated by the network, as equations. De-
pending on this system of equations and the remaining inequality constraints,
we obtain a vector of fees f as a solution. We know that the solution of the
linear program corresponds to a vertex of the feasible region, a convex polytope.
Moreover, each vertex of this linear program’s feasible region has coordinates
fi ∈ {0, 0.5, 1}. This, in turn, means that we are able to only consider fee as-
signments which agree with this format. The profit of a star graph with such a
fee assignment f ′S can generally be computed as follows:

p(S, Tu, f
′
S) = x2 + 2y + 2yz + xz,

where x, y and z are the number of edges with a fee of 0.5, 1 and 0, respectively.
Naturally, x, y and z are non-negative and x+ y + z = |E| has to hold.
Once again, this problem can be solved using a linear program, which reaches
its maximal solution at the point (x, y, z) = (|E|, 0, 0). Thus, the profit of the
star graph is definitely maximized, when every edge has a fee fi = 0.5.

Corollary 3.5. For any star S = (V,E), where |V | = n ≥ 3, and uniform
transactions Tu while using the optimal fee assignment fe = 0.5, ∀e ∈ E, the
profit is equal to (n− 1)2 − (n− 1).

Proof. The star graph contains
(
n−1
2

)
pairs of nodes which are connected by a

path of length 2. The optimal profit for such a path in the star with uniform
transactions equals 4. However, we now included the profit for the paths of length
1 too many times. Hence, we subtract 2

(
n−1
2

)
, where 2 is the profit using only

the paths of length 1, and then add the correct profit of (n−1) ·0.5 ·2 = (n−1).
Thus, the profit from transactions amounts to

4

(
n− 1

2

)
− 2

(
n− 1

2

)
+ (n− 1) = 2

(
n− 1

2

)
+ (n− 1)

= (n− 1)(n− 2) + (n− 1)

= (n− 1)2

Subtracting the number of edges, (n − 1), of the star yields (n − 1)2 − (n − 1)
and the statement is proved.
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3.3.2 Payment Hubs

Stars with an optimal fee assignment and uniform transactions as presented
seem to achieve quite good profit, only missing out when transactions are routed
between the center node and a leaf. However, we can add an additional node
acting as a payment hub for the network, like in Figure 3.5, and obtain a situation
where every transaction can be carried out within the network with best possible
profit.
Assuming the optimal network is connected, we can show with the following
theorem from [4] that the star graph using a payment hub is a near-optimal
solution.

1

2

3

4

5c

0.50.5

0.5

0.5

0.5

Figure 3.5: A star graph S′
1 with the 5 original nodes and an additional

center node c.

Consider an optimal solution for the network Gopt with a fee assignment fEopt

reaching the profit opt(Gopt, T, fEopt) for a given transaction matrix T . Further,
let S = (VS , ES) be a star graph, where VS = V ∪ {c}. c denotes the additional
node acting as the payment hub. To the edges we assign uniform fees, i.e.,
fe = 0.5, ∀e ∈ ES .

Theorem 3.6. [4, Theorem 3 on p.7] If Gopt is connected, then p(S, T, fES
) ≥

opt(Gopt, T, fEopt)− 1.

Proof. If Gopt is one connected component, then |Eopt| ≥ n − 1. For the star
graph S, we have VS = V ∪ {c} and |ES | = n ≤ Eopt + 1. Furthermore, the sum
of fees on all shortest paths is equal to 1 due to the uniform fees equal to 0.5 and
the star structure. The profit function maximizes its value when all transactions
go through the graph Gopt with total fee equal to 1, hence

opt(Gopt, T, fEopt) ≤
∑
i,j∈V

T [i, j]−|Eopt| ≤
∑
i,j∈V

T [i, j]−|ES |+1 = p(S, T, fES
)+1

The last equality holds since the sum on every shortest path equals to 1.
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An implication of the theorem above is that only networks with the structure of
a tree are able to achieve a better profit than the star with a payment hub, which
is because trees contain one less edge. However, depending on the transactions,
not every tree automatically has a higher profit. The following theorem gives
such a condition for the transactions, where the path of one transaction t0 fully
contains two other non-intersecting transactions t1 and t2, as displayed in Figure
3.6.

t0

t1 t2

Figure 3.6: The path of t0 contains the paths of two other transactions
t1 and t2, which do not overlap.

Theorem 3.7. For any tree and any transactions, where the path of a transac-
tion t0 fully contains the paths of two other non-intersecting transactions t1 and
t2, the star with a payment hub achieves better profit.

Proof. We can analyze the following three cases:

Case 1: We set the fee of some edge on the path of t1 to 1 and the remaining
fees on the path of t0 to 0. Then, the profit from these three transactions equals
t0 + t1. Setting the fee of an edge on the path of t2 to 1 works analogously and
results in t0 + t2 profit.

Case 2: One fee on the paths of each t1 and t2 is 1, while the remaining fees on
the path of t0 are 0. This yields the profit t1 + t2.

Case 3: Setting the fee of a single edge that is only contained in the path of t0
results in a profit of t0.
Using only fees of 0 and 1 is possible because all transactions are on a path, which
means that Lemma 3.2 can be applied. Due to the fact that every transaction
in the star goes through with total fee equal to 1, the profit achieved by these
three transaction is t0 + t1 + t2 for the star. For the tree with the mentioned
criteria, on the other hand, this is not the case, as we have just shown with the
case analysis. Thus, the star generates a higher profit and the theorem is proved.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In the course of this thesis, we have introduced several methods how a payment
channel network with fees could be designed.
We first presented a linear programming algorithm that allows the calculation of
optimal fees for given, tree-structured graphs, while facilitating all transactions
and maximizing the PSP’s profit. The constraint on the transactions, however,
is not always beneficial when looking to maximize the profit of a network. There-
fore, we also introduced a polynomial-time dynamic program to assign fees in
paths without any restriction on the transactions.
Finally, we considered a very promising structure, namely star graphs. Although,
we have shown that star graphs with a fee assignment where every fee is 0.5 yields
acceptable profits, they can be further improved by adding an extra node. This
node acts as payment hub, connecting all parties in the network. We have proven
that such a structure is a near-optimal solution when considering connected pay-
ment networks. Finally, we have given a condition on the transactions, such that
the star achieves the optimal profit.

4.2 Future Work

Even though we managed to provide some algorithms and solutions to variants
of the CNDF problem, there are still many aspects to explore and prove.
As we have seen throughout this thesis, the CNDF problem seems to be hard
to solve in its original definition, as well as its variations. However, finding a
polynomial-time algorithm or rather, as we believe, a proof of hardness is still
required, for instance, for the following conjectures.

Conjecture 1. The CNDF problem, as stated in Definition 2.1, is an NP-
optimization problem.

18
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Conjecture 2. Given any graph G = (V,E) (except for a path), where |V | = n,
and uniform transactions Tu ∈ Nn×n, return a fee assignment fE, such that the
profit is maximal. This is an NP-optimization problem.

Doing further research on star graphs, especially with payment hubs, is another
interesting direction. We have shown one condition for transactions, where the
star results in higher profit than a tree. However, it might be that the star with
an extra node is even an optimal solution, or there exist other restrictions one
can put on the transactions.
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