
Distributed
 Computing

Creative Robot Composer

Bachelor Thesis

Christian Holzreuter

cholzreu@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

August 29, 2018

Abstract

This bachelor thesis is expanding on a library written by a previous student to
be able to create new music with the press of a button.

The existing library was written in Python and uses a console interface and
a .ini file to pass parameters. In this step a graphical user interface (GUI) for
that library was written to make it easier to enter parameters and therefore more
accessible. There was some restructuring done to the library as well to allow the
use of said GUI.

i

Contents

Abstract i

1 Introduction 1

1.1 Previous Work . 1

1.2 Related Work . 2

2 User Interface 4

2.1 Design . 4

2.2 Implementation . 5

2.2.1 Libraries . 5

2.2.2 Program Structure . 6

2.2.3 Library Restructuring . 7

2.2.4 Ongoing limitations . 8

3 Conclusion and Future Work 9

3.1 Future Work . 9

Bibliography 10

ii

Chapter 1

Introduction

Composing a piece of music is an art and not many are able to do it well. It
requires a lot of theory and inspiration. Many programs to assist in the process
of composing a new piece of music already exist but not a lot of them can do
it on their own. The ones that do are mostly based on machine learning which
means that they take a lot of human created music to learn how to make music.

The idea behind creating music based on music theory is to see if music
written this way can be as good as songs created by human talent or machine
learning.

The goal of this thesis is making the act of creating a new song available to
everyone by writing an intuitive GUI for the already existing library that can
create theory based music.

1.1 Previous Work

The original work created a program that can compose music for everyone was
done by Roland Schmid who wrote a paper called “Robot Composer” [1]. It is
based on the open source tool Sonic Pi [2] which is a music programming tool.
The interface of Sonic Pi looks a lot like an integrated development environment
(IDE) as seen in Figure 1.1. Because of this, it makes it hard for people without
programming knowledge to get into it.

Noah Studach later took that idea and created the Robot Composer Frame-
work [3]. It is a Python library that uses the same prinicples as the original
Robot Composer but was rewritten to function on multiple platforms and has a
better interface to be used as a framework in future programs.

The framework takes a .ini file with input parameters as an argument, gen-
erates a midi file with them and then exits. Since editing a text file and then
running a program with a file as a parameter in the console is not quite be-
ginner friendly, we decided to expand on the framework by adding a graphical
user interface and discarding the text based arguments. This not only allows

1

1. Introduction 2

Figure 1.1: Screenshot of the Sonic Pi GUI

complete beginners to try the program, it also allows listening to the generated
music before saving it and change parameters until the user is satisfied with the
outcome.

1.2 Related Work

There exist a lot of papers and scientific work about music creation, for example
[4, 5, 6, 7, 8]. A lot of the papers are based on machine learning which makes it
hard to compare them to our music theory based approach.

The above mentioned examples are all theory only which makes it impossible
to compare to an actual software like ours. In contrast to the theory based
papers, some music generation programs already exist as well, like the Henon
Map Melody Generator [9] and Impro-Visor [10].

The Henon Map Melody Generator relies as the name implies on Henon Maps
to create the music. Due to the chaotic behavior of Henon Maps, the music that
gets generated sounds quite random. As seen in Figure 1.2, there are not many
input options because the mathematical formula of the Henon Map does most
of the work.

Impro-Visor is pretty much on the other end of the spectrum in terms of

1. Introduction 3

Figure 1.2: Screenshot of the Henon Map Melody Generator GUI

music generating software. The idea behind it is to help artists create music by
adding percussion and deriving new solos from previous ones instead of creating
new music from scratch. The Impro-Visor GUI (Figure 1.3) therefore allows the
modification of every single note which even makes completely manual music
composing possible.

Figure 1.3: Screenshot of the Impro-Visor GUI

Chapter 2

User Interface

In the following chapters we show what changes were made to the Robot Com-
poser Framework and how we designed and added the user interface.

2.1 Design

For the user interface a simple looking approach was taken as seen in Figure 2.1.

Figure 2.1: Screenshot of the GUI

4

2. User Interface 5

It has a list on the left side which allows the selection of any single part or
the entire song. This is so that the user can listen to or change settings of a
single part. Due to limitations of the Robot Composer framework, this is not
currently supported as mentioned in Section 2.2.4.

On the right side all the parameters for the generator are listed and can be
edited. If an invalid value is entered into a field it is changed to the nearest valid
value as soon as the user changes the selection so it is ensured once the music
gets generated all variables are accepted. There is also an on-change listener on
the input fields so the user does not have to worry about manually saving them.
As described in Section 2.2.2, the settings are imported from a JSON [11] file
and can easily be extended to fit future need.

The bottom part has simple play and stop buttons so the user can listen to
the generated song before exporting it to a Midi file.

The whole window can be resized and all the elements dynamically resize
with it. If the list of the settings is too long for the current window size, the list
becomes scrollable. The user can also freely move the middle line to make more
space for the part list or the settings list.

2.2 Implementation

The implementation of the user interface for the Robot Composer framework
currently relies on two libraries, required some restructuring of the framework
and still has some ongoing issues which we could not resolve in the time we had.

2.2.1 Libraries

Other than the Robot Composer library and its dependencies we used a GUI
creation library and one to play back the Midi files.

For playing the music in the program we used pygame [12]. It is open source
and licensed under the GNU Lesser General Public License [13]. It supports
almost every desktop operating system and can play back Midi files in a few
lines of code. Pygame also has many more feature like creating windows with
hardware acceleration but since its main purpose is to create games, it does not
allow the easy creation of menus and mostly text based applications. It does
allow further extensions which would add this function but we have decided to
go for a more proven library for the GUI instead. This also allows us to replace it
with a more lightweight Midi playback library or a more general music playback
or editing library in the future, if need be.

For the user interface part, we first decided to go for the Kivy [14] framework.
It is an open source MIT licensed [15] library to create applications for many

2. User Interface 6

operating systems with even multitouch and mobile support. We thought this
would allow us to easily expand to iOS and Android in the future if we decided
to do so. Due to the non-native look and some missing features like changing
the background color of a button, we needed in our particular case we changed
to another library after a while. This set us back quite a bit but in the end it
hopefully was the right decision.

The library we settled on is wxPython [16]. It is a Python wrapper for
the cross-platform GUI API wxWidgets [17], one of the best known GUI APIs
out there. It is licensed under the wxWindows License [18] which is similar to
the GNU Lesser General Public License [13]. WxPython has a native look and
feel for the supported operating systems with a few small exceptions for some
widgets. All the functions and features we needed are supported by this library
which makes it a perfect fit for us.

2.2.2 Program Structure

The main function creates a new instance of MusicCreatorApp and initializes it.
The MusicCreatorApp then creates a MainFrame which contains all the buttons
and UI elements and an instance of Configs which contains all the values the
library needs to create music.

Figure 2.2: Program flow chart of the Robot Composer GUI

2. User Interface 7

The Configs class gets instantiated with all the settings that are listed in
the variables.json file. It contains a list with all the variables the library uses
including the types and possible values for each variable. This file was created
to make it easier for future variables to be shown in the GUI as settings with
the right type and allowed input values.

When the GUI gets initialized, it uses the Configs class to look up all the
variables it needs to show. When a setting in the GUI gets adjusted, the value
in the Configs instance of the MusicCreatorApp will get changed. When the
buttons to generate or export the file in the GUI get pressed, the MainFrame
calls a function on the MusicCreatorApp which passes the current Configs to the
Robot Composer Framework and calls the corresponding function in the library.

2.2.3 Library Restructuring

The Robot Composer Framework had some issues when it was first used with
the GUI since it was designed to only run once and then close before generating
the next song.

Because of this original design, the main function of the program to use the
library contained everything to create a song. This code had to be split and
moved into a setup function and a music generation function. The new main
function only contains a call to the initialization functions for the user interface.
Most of the code from the old main function is now only executed when the
corresponding buttons in the user interface get pressed.

Another issue was that when the library was kept open in the background
of the user interface it kept some variables between generating songs like for
example the random seed. This meant that if the user did not close the window
after every song it would not create the next song with all the new variables
when they got changed by the user.

To change this, we created a new Configs class that is meant to function as
a container for all the parameters used for the creation of the song. We changed
the library to not use any internal variables any more and instead rely on this
lookup class. When the user changes a parameter in the user interface it is
changed in this settings container and when generating a new song the values in
the container are used.

To make it easier to add new possible variables to the GUI and the library we
decided to replace the .ini file that was used for the default values with a .json file
that not only contains the values but also the names, types and possible values
for every variable that can be used in the library as mentioned in Section 2.2.2.
It gets parsed once in the initialization of the Configs class. The values are used
as the default values in the Configs instance and the types and restrictions are
used to create the settings entries in the GUI.

2. User Interface 8

2.2.4 Ongoing limitations

Even though we were able to resolve most of the issues we had, we still could
not quite get everything to function as we intended.

The original idea was to allow the user to change only parts of the song
until he is satisfied with it and can then export it. Due to the way the library
generates the song, this change is not as easy as we first thought. The parts that
are implemented in the library function parallel to the instruments in the Midi
track generation and do not contain those as seen in Figure 2.3. This makes it
hard to change one without touching the others and therefore we were not able
to get it to work in the time we had.

Figure 2.3: Program flow chart of the Robot Composer Framework (from [3])

The user interface already supports changing parts only but the library itself
does not currently. This is one of the things that could be added in the future
to expand on the functionality of the program.

Chapter 3

Conclusion and Future Work

The GUI that we implemented during this thesis successfully replaces the previ-
ous .ini file for the parameters. This makes it more intuitive to use for beginners
so everyone can generate songs without having to work with a console and text
files. It also allows the playback of the new song before saving it to the disk so
the user can adjust the parameters and generate new songs until the music is
satisfying.

3.1 Future Work

The library and GUI as it is now works on its own but a lot can be done to
improve it. Due to how the library is structured it is not currently possible to
adjust parts without changing the whole song. This could be added by reworking
parts of the Python library. The GUI already implements the possibility to list
and select parts to support the library.

Another quite obrious thing would be to implement more music styles. Since
the whole program does not make use of machine learning, it would be necessary
to implement the music theory behind other music styles which requires quite a
bit of work.

9

Bibliography

[1] Schmid, R.: Robot Composer.
https://pub.tik.ee.ethz.ch/students/2016-HS/SA-2016-63.pdf

(2017)

[2] Website: Sonic Pi.
https://sonic-pi.net/

Accessed: 2018-08-14.

[3] Studach, N.: Robot Composer Framework.
https://pub.tik.ee.ethz.ch/students/2017-HS/SA-2017-95.pdf

(2018)

[4] Kathiresan, T.: Automatic Melody Generation (06 2015)

[5] Povel, D.J.: Melody Generator: A Device for Algorithmic Music Construc-
tion. Journal of Software Engineering and Applications Vol. 3 No. 7 (2010)

[6] Rinchiera, S., Nagler, D., Davison, J., Karunaratne, C.: Youtube: Intelli-
gent Jazz Improvisation Generation using Markov Chains.
https://www.youtube.com/watch?v=zploY043Gx8

Accessed: 2018-08-14.

[7] Youtube: Computer-Generated Jazz Improvisation.
https://www.youtube.com/watch?v=Cbb08ifTzUk

Accessed: 2018-08-14.

[8] Temperley, D., Sleator, D.: Melisma Stochastic Melody Generator.
http://www.link.cs.cmu.edu/melody-generator/

Accessed: 2018-08-14.

[9] Website: Henon Map Melody Generator.
http://henon.sapp.org/

Accessed: 2018-08-14.

[10] Keller, R.: Impro-Visor.
https://www.cs.hmc.edu/~keller/jazz/improvisor/

Accessed: 2018-08-14.

[11] Website: JSON Standard.
https://www.json.org/

Accessed: 2018-08-22.

10

https://pub.tik.ee.ethz.ch/students/2016-HS/SA-2016-63.pdf
https://sonic-pi.net/
https://pub.tik.ee.ethz.ch/students/2017-HS/SA-2017-95.pdf
https://www.youtube.com/watch?v=zploY043Gx8
https://www.youtube.com/watch?v=Cbb08ifTzUk
http://www.link.cs.cmu.edu/melody-generator/
http://henon.sapp.org/
https://www.cs.hmc.edu/~keller/jazz/improvisor/
https://www.json.org/

Bibliography 11

[12] Website: pygame.
https://www.pygame.org/

Accessed: 2018-08-14.

[13] Website: GNU Lesser General Public License.
https://www.gnu.org/licenses/lgpl-3.0.en.html

Accessed: 2018-08-14.

[14] Website: Kivy.
https://kivy.org/

Accessed: 2018-08-14.

[15] Website: The MIT License.
https://opensource.org/licenses/MIT

Accessed: 2018-08-14.

[16] Website: wxPython.
https://wxpython.org/

Accessed: 2018-08-14.

[17] Website: wxWidgets.
https://www.wxwidgets.org/

Accessed: 2018-08-14.

[18] Website: wxWindows Library Licence.
https://www.wxwidgets.org/about/licence/

Accessed: 2018-08-14.

https://www.pygame.org/
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://kivy.org/
https://opensource.org/licenses/MIT
https://wxpython.org/
https://www.wxwidgets.org/
https://www.wxwidgets.org/about/licence/

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Related Work

	2 User Interface
	2.1 Design
	2.2 Implementation
	2.2.1 Libraries
	2.2.2 Program Structure
	2.2.3 Library Restructuring
	2.2.4 Ongoing limitations

	3 Conclusion and Future Work
	3.1 Future Work

	Bibliography

