
Distributed
 Computing

Mobile Smartphone Speed Test

Bachelor thesis

Fabian Grob

grobfa@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Gino Brunner, Simon Tanner

Prof. Dr. Roger Wattenhofer

August 31, 2018

Abstract

When a new smartphone is released, there are multiple technology magazines
which do reviews of the device. They usually test new features, the cameras,
various other sensors and measure the performance by running different synthetic
benchmarks. These benchmarks mainly focus on the maximum performance the
System-on-a-Chip can deliver in the tested device. Most of the time the user
does not use this maximum performance because usual every-day tasks such
as sending messages, taking photos or browsing the Internet do not need high
computation power. This real-world performance is rarely tested and so there
are no numbers to easily compare the real-world speed of smartphones.

This thesis presents a two-device solution for measuring the real-world perfor-
mance of an Android device. The solution consists of two apps: SpeedtestReplay
and SpeedtestControl. The tested device runs SpeedtestReplay, the other device
acts as measuring tool running SpeedtestControl, which records the other device
with the camera. The taken images are analysed to get the time the tested device
needs to start the specified app. The measurement is based on the assumption
that as soon the tested app is started completely the screen remains static.

These apps are used to compare the real-world performance of three devices:
Sony Xperia V, Sony Xperia Z1 Compact and Sony Xperia Z3 Compact, three
similar devices from different generations. The results show that as expected
the two newer devices perform much better but the difference between the Z1
Compact and Z3 Compact is bigger than one might expect from the synthetic
benchmark results.

An additional test is performed between two devices with identical hardware.
One of the devices is freshly reset, the other is used daily. Comparing just the
app start times, the difference between the two devices was negligible. When
switching between multiple apps there was a bigger difference.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Related Work . 2

2 Speedtest Application 4

2.1 SpeedtestControl . 4

2.2 SpeedtestReplay . 5

3 Device Recognition 7

3.1 Find Device . 7

3.2 Track Device . 8

3.2.1 Optical Flow . 8

3.2.2 Use Other Sensors . 8

3.2.3 Visual Mark . 8

3.3 Implementation . 9

4 Measurement 10

4.1 Procedure . 10

4.1.1 Initialisation Phase . 10

4.1.2 Synchronisation Phase . 10

4.1.3 Waiting Phase . 11

4.2 Accuracy . 11

5 Experiments 13

5.1 Setup . 13

5.1.1 Devices . 13

ii

Contents iii

5.1.2 Apps . 15

5.2 Test Methodology . 16

5.3 Results . 16

5.3.1 App Start Times . 16

5.3.2 Instant Start Size . 20

5.4 Discussion Of The Results . 21

5.5 Used Phone vs Reset Phone . 22

6 Conclusion 24

6.1 Future Work . 24

A Appendix Chapter A-1

A.1 Results Synthetic Benchmarks . A-1

Chapter 1

Introduction

1.1 Motivation

Every year manufacturers present new smartphones with faster processors and
graphic chips. They usually perform better in intense tasks like games, but most
users do not use their smartphone primarily for these tasks. Instead, they surf
the web, write messages or take pictures.

To compare the performance of different devices, you can look at the specifi-
cations: The type of processor and graphic chip plus the amount of memory give
you an idea how well a phone can perform. To measure this performance, there
are benchmark tools, for Android the most known are Antutu Benchmark [1]
and Geekbench [2]. There are also Android versions of 3DMark [3] and PCMark
[4], two very popular Windows benchmark tools. At the end these benchmarks
deliver a number as result. The task to find the more powerful system is then
as easy as comparing numbers.

These benchmarks are synthetic and do not tell the whole story. There are
more factors which influence the real-world performance such as the amount of
running background processes, the screen resolution (higher resolution means
more pixels to compute) or the speed of the storage memory. A widely known
example are SSD in desktop computers: A system may have a very high 3DMark-
result because it has a fast processor and graphics card but a harddrive leads to
long waiting times. A SSD makes the computer more responsive and for basic
office tasks like document processing or mailing a high 3DMark-result gives you
not really an advantage.

To compare the real-world performance you can put two ore more devices
side by side, press on a button and observe which finishes the task first. For a
review you can publish the video so everyone can watch it. This is a very good
comparison, but only for the phones beeing tested. To add a new phone to the
comparison you have to do the whole procedure again, for a nice video ideally
with every phone. You can also cut/stop the video, so that the tap on the phone
is shown at the same time. A simpler way to compare the results is to measure

1

1. Introduction 2

the start time with a stopwatch or watch the video and calculate the time from
the timestamps. If you repeat the test multiple times for more accurate results,
it will take quite a while and the tester has to stop the times manually. At this
the point starts the work of the the thesis.

1.2 Goals

The goal is to write an application for Android devices, where device A starts
different apps, device B records the screen of device A and determines how long
the apps needed to start. Apps on device A should start automatically, so the
user only has to interact with device B.

As a result, device B should analyse the recorded video nearly in real time
to detect the start and the complete load of the app started on device A.

1.3 Related Work

Ever since computer have existed, it has been important to know their perfor-
mance. Even the first computers were benchmarked. They needed to know how
much faster it can do algebraic operations than humans, so the performance was
measured in operations per second. This unit is still used today as floating point
operations per second or short FLOPS, the performance of super-computers is
specified in this unit [5].

This unit may be usefull for scientific computers but the casual user of a
personal computer is not interested in how many FLOPS his device has. He
rather wants to know how long the system and applications need to start or how
many frames per second are reached in the newest games. Popular benchmark
tools take this fact into account. They measure the performance of common tasks
and combine the results into a single number which then can be compared. In
the general linguistic usage a personal computer means a computer tower with
a monitor, a keyboard and a mouse. According to dictionary.com a personal
computer is a “a compact computer that uses a microprocessor and is designed
for individual use” [6], a smartphone matches these explanation too which means
the performance can be measured in the same way. Therefore, it is not surprising
that there are several benchmark apps for Android.

The most popular benchmarking apps from Google Play are Antutu Bench-
mark [1], Geekbench [2], GFXBench [7], 3DMark [3] and PCMark [4]. These
benchmarks differ as they focus on different things: Geekbench run theoretical
tests on the CPU, GFXBench measures the 3D graphics performance, 3DMark
simulates the workload of games, PC Mark has some tests “based on every-
day activities” [4], Antutu with over 10 million installations the most popular

1. Introduction 3

benchmark does a combination of all with additional storage tests.

All these benchmarks have one thing in common: They measure the per-
formance based on an artificial workload. With DiscoMark there was once a
benchmark app in Google Play, which measured the performance of a real-world
benchmark. DiscoMark was developed by Gino Brunner for his master thesis at
ETH [8]. It is a single device solution and uses Accessibility Services to measure
the start time of the apps. In November 2017 Google started removing apps from
the Google Play if the “application uses an Accessibility Service for any reason
other than assisting users with disabilities” [9] which is exactly what DiscoMark
does so it was removed from Google Play.

This leads to the fact that there are currently no apps in Google Play which
can measure the real-world performance of an Android device. The solution
created during this thesis should fit in this gap.

Chapter 2

Speedtest Application

As stated the benchmark is a solution which requires two devices so there are
also two different apps needed. These two apps are presented in this chapter:
SpeedtestReplay runs on the tested device, SpeedtestControl runs on the record-
ing device. These two apps communicate over the wireless so it is required both
devices are connected to the same wireless network. When no access point is
available, one of the devices can connect to the hotspot created by the other
devices.

2.1 SpeedtestControl

SpeedtestControl is running on the device which acts as measuring tool. On
top of the screen, the taken picture is visible (Figure 2.1 (a)). The largest red
contour on the picture is marked, so the user can easily see if the other phone
is detected correctly. The image is not rotated because test showed that the
additional computations needed for the rotation reduce the number of frames
per second.

In the center is a white bar. The IP address of the local device is displayed
here, as this must be entered manually on the other device. In a future version
of the app this may be solved by a QR-Code which can be scanned by the other
device. If the devices are connected, the address of the client is shown too. The
white bar does not state white all the time. It is also used as a progress bar for
the test (Figure 2.1 (b)).

On the right side of this bar there are two buttons. The function of the
Settings-Button is quite obvious: It opens the settings (Figure 2.1 (d)). All set-
tings and their effects are described in Table 2.1. The other button has different
functions depending on the configuration and the state of the test. To make
it easier for the user, the text of this button is changed based on the current
function. If “Collect and run” is disabled, this button stays hidden, otherwise
it is used to start the previously selected app, the number in the brackets is the
number of selected apps (Figure 2.1 (a)). While the test is running, the button

4

2. Speedtest Application 5

is used to cancel the test, in brackets showing the the runs left from the current
test (Figure 2.1 (b)). When some results are shown, the button is used to clean
up the results.

At the bottom left, the alphabetically sorted list of apps of the other device
is shown. It is used to choose the apps to be tested. At the bottom right, the
results of the measurements since the last reset are shown. The list of results
is scrollable and if there are any results, an additional button appears to share
them via mail (Figure 2.1 (c)).

(a) select apps (b) running a test (c) showing results (d) settings

Figure 2.1: Screenshots of SpeedtestControl

2.2 SpeedtestReplay

SpeedtestReplay is the app running on the tested device. It consists of a visible
activity and a background service. The interface of the activity can be divided in
a top and a bottom half. In the top half there are two buttons (Figure 2.2 (a)):
The first button is used to start or stop the background service, the other one to
change the address of the measuring device. The background color of the app is
used as visually detectable indicator of the current measuring phase (Figure 2.2
(c) and (d)). These phases are explained in detail in section 4.1.

The background service manages the communication and draw the red frame
on the screen (Figure 2.2 (b)) so it needs the permission to draw over other apps.
This permission is checked by the service at startup. It also checks if a server
address is defined. If one of these checks fails, the service is stopped immediately,
otherwise the first action of the service is connecting to the other device and send
a list of the installed apps.

2. Speedtest Application 6

Option Effect

No hot start No hot starts are performed. This should be reached by
killing all background processes before starting the app, but
it has not the same effect for all apps.

Collect and run When tapping an app in the list, the test is not started
immediately. The chosen apps are collected and the test
only starts when the “START” button is tapped. One run
consists of a start of each app.

Increase List Size This is only available when “Collect and run” is active. The
collected apps are tested in a different order: It performs
multiple runs. The first run is just done with one app. Af-
terwards each run contains all the apps of the previous run
plus one additional app. These runs are performed until
every selected app is started at least once.

Number of runs Each app is tested a specified numbers of time. Selectable
are 1, 5, 10 or 20 runs. This setting is ignored, when “In-
crease List Size” is active.

Just apps on both
devices

In the app list only apps are shown which are installed on
the local device as well. This option has no influence on the
performed test.

Table 2.1: Settings of SpeedtestControl

(a) initial state (b) service started (c) red background (d) green background

Figure 2.2: Screenshots of SpeedtestReplay

Chapter 3

Device Recognition

SpeedtestControl gets the results from the recorded images. To analyse if the
screen on the tested device is static, the app needs to know which part of the
image represents the screen. The task of recognize the device in the recorded
video is described in this chapter.

Finding a device in is a classical task of computer vision. There exist different
libraries for computer vision, SpeedtestControl uses with OpenCV [10] one of
the most popular. Nvidia even labeled OpenCV as “a de-facto standard API for
computer vision” [11]. Google itself has a mobile vision library too [12] but it is
more made for predefined tasks like face detection than for individual purpose.

3.1 Find Device

To measure the time in the video, the phone screen has to be recognized in the
video. A simple way to this is by placing the phone on a single color background,
there you can easily filter the background and the rest of the image is the phone.
Such a background should be easy to find, but it must also be ensured that there
are no other objects in the recorded image.

Another method is to use object detection. There are multiple object detec-
tion algorithms which mostly use deep neural networks. With such an algorithm
you can detect what objects there are in the video, if one of the object is a
smartphone or a tablet the goal is reached. These algorithms are very powerful
but they need some training and the computational effort is quite high.

These two methods detect the whole other device and nothing is needed on
the recorded device, but they do not make use of the fact that the two devices
can communicate. The recording device B can ask device A to show an easy
detectable pattern on the screen, which then can be detected. For example,
there are apps where a QR-Code is detected before the camera has finished
focusing the image.

7

3. Device Recognition 8

3.2 Track Device

Once the device is recognized, the system has to follow the device. The solution
should not just work in a laboratory-like environment, so the assumption that
the device always is at the same place in the video can not be made. There are
several ways to track the device.

3.2.1 Optical Flow

The Optical flow is a vectorfield where visual points move from one frame to
another. Under the assumption that the tested device is in a static environment,
which means neither the device nor anything else in the captured video is moved
during the capture, the movement of the image can be estimated from the optical
flow. Since version 3.0 OpenCV has some tracking algorithms implemented, one
of them is called MEDIANFLOW [13] which is based on the Optical flow tracking
of the Lucas-Kanade method [14]. On the Nexus 5X this algorithm was not fast
enough to keep a sufficient high frame rate.

3.2.2 Use Other Sensors

Most Android devices have more sensors than just the camera. From the nearly
2800 listed Android smartphones on “geizhals.de” [15] currently more than 95%
have an accelerometer and about 50% have a gyroscope. These sensors can be
used to compute the movement of both devices and so estimate the new position
of the phone in the video image. The results of these sensors are accurate for
tracking the device because most of the current virtual reality applications are
based on it. Google has a platform for building augmented reality apps called
ARCore [16], but it works only on a few devices which are powerful enough and
support Android 7.0 or higher.

3.2.3 Visual Mark

As stated before, detecting patterns like a QR-Code can be done very fast.
Because this is so fast, device A can show a pattern on the screen and device B
recognize the pattern in every frame.

This method is used by the final app. The app needs the permission to draw
over other apps and draw a red frame over the whole screen. The device now
just has to find the biggest red contour in the image which works quite well.
Obviously, it does not work if there is a bigger red object than the recorded
device in the image but there is another issue with this solution: The color of
the recorded video depends also on the illumination. Under some circumstances,
the red frame was recorded partly yellow. It could be solved by turning the

3. Device Recognition 9

lights on, change the brightness of the recorded screen or reposition the recorded
phone.

3.3 Implementation

The implementation of the device tracking is done in OpenCV, which has func-
tions for most of the tasks. It is implemented in the following steps.

Get red parts of the image

A binary image is generated where the parts of the source image are marked.

Find largest contour

First in the binary images all contours have to be found. In a loop through all
contours the biggest is found.

Approximate a polygon around the contour

The contour is approximated with a polygon. If the polygon has four edges then
it is be recognized as the screen.

Chapter 4

Measurement

4.1 Procedure

The procedure of the measurement can be divided into three phases:

• Initialisation: Prepare the start of the tested app and recognize the phone
in the video

• Synchronisation: Show a visual mark which identifies the moment of the
app start

• Waiting: Wait until the recording device believe that the app is loaded
completely

4.1.1 Initialisation Phase

In the initialisation phase, the recorded device shows a
mostly red screen. Here the initialisations are done for
the app start. The app-start-intent is created, if “No hot
start” is selected, the background processes of the selected
apps are killed. When the red screen is recognized by the
recording device, it knows that the initialisation is done
and can send the request to start the app.

4.1.2 Synchronisation Phase

In the synchronisation phase the app is shown with a green
background. The recording device does not know when
network message are received, so just from the network
messages it is unclear when the app is started. To make
the moment visible when the app-start-intent is started, a
green screen is shown 2000ms before. So the recording app

10

4. Measurement 11

starts the stopwatch at the moment the green screen ap-
pears and then subtracts 2000ms from the measured time
when it recognizes that the app is loaded completely.

4.1.3 Waiting Phase

In the waiting phase the tested app is starting. The record-
ing device has to detect when the app is loaded completely.
The only evidence to recognize this are the recorded im-
ages, so it assumes that the load is complete when the im-
age does not change for 5000ms. The recorded images are
noisy so they are usually not identical so the images have
to be similar enough with a given threshold. The app uses
two metrics to decide if the two images are similar enough.

Structural similarity

The structural similarity (or short SSIM) was developed in 2004 [17]. The base
idea behind the algorithm was to measure the quality of lossy compressed images
with adoptions to the human perception which extracts structural information
from a scene. The implementation code is based on source code from an OpenCV
tutorial [18].

Edges similarity

As an additional metric, the similarity of the edges of both images are compared.
To compute this, the edges of both images are computed with the Canny edge
detector [19]. Then the edges of the first image are dilated, the metric is then
the percentage of the edges of the second images which are part of the dilated
edges of the first image.

The idea behind this additional metric is to detect small contour changes.
SSIM blurs the image at the beginning heavily, so contour changes are lost. Such
small changes are for example streets loaded in Google Maps.

4.2 Accuracy

To measure the accuracy of the Tester App, the tested device was filmed par-
allel with a Canon EOS 600D at 60 frames per second. The times were then
compared with the timestamps of the video. The accuracy was tested with two
apps (Google Chrome and Facebook), the results were taken from two different

4. Measurement 12

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

Run

E
rr

or
[s

]

Nexus 5X, Chrome
Nexus 5X, Facebook
Huawei P9, Chrome

Huawei P9, Facebook

Figure 4.1: Difference between measured time and exact time

phones (Huawei P9, Google Nexus 5X). For each combination of app and mea-
suring device there are 10 measurement results. The results of these tests are
shown in Figure 4.1.

As you can see, the results of Google Chrome are much more accurate than
the ones for Facebook. The reason is that Facebook loads first the structure of
the page and afterwards downloads the images to fill the structures with content.
A few of these images are very small so they are within the tolerance of the
similarity which leads to a lower measurement than the manual measurement.
Chrome is started with the default start page when opening a new tab. In
contrast Chrome loads all contents in the background and shows the final screen
in one rush, which is easier to detect.

There is also a difference between the phones. Due to some implementation
of OpenCV, the analysed frames on the Huawei P9 have a resolution of 960x720
whereas on the Nexus 5X the resolution is 1024x768. This and the faster CPU
(Appendix A.1) give the Huawei P9 a faster capture frame rate: The Huawei P9
analyses at a frame rate of around 30fps, the Nexus 5X just at a frame rate of
around 20fps. The cameras are not identical which can make a difference too.

As a conclusion, the accuracy of the results depends more on the tested app
than the device used for measuring.

Chapter 5

Experiments

5.1 Setup

The goal of a benchmark is to measure the performance and compare the re-
sults with other devices. The most common comparisons are done between the
top-devices of different manufacturers. Many people want to know which is the
fastest device. The focus in the following experiments is part of other important
comparisons: The one between devices of different generations. The manufac-
turer wants to sell the new device so it has to be better than the old one.

5.1.1 Devices

In the tests, three generations of Sony Devices are compared: Xperia V, Xperia
Z1 Compact and Xperia Z3 Compact. These phones are not the newest on the
market but are very similar in their size. At their release time their synthetic
benchmark scores were some of the highest.

Table 5.1 shows the technical specifications and some synthetic benchmark
results of the three devices. Before the test, all the devices were reset. Afterwards
all the apps were installed, started and configured so that the apps can load
completely and not just to a login screen.

For the last test another Xperia Z3 is used. This device is special because
it is used daily since over three years and runs some test in the non-reset state.
This device is compared with the reset device in a special run to examine how
much the data generated by daily usage (e.g. multiple background-services, fuller
storage, more messages in WhatsApp to load) makes the device slower. Seven
apps from the main test set are installed and used on this device. To not falsify
the results, the state of the device remains as untouched as possible which means
the test is restricted to these seven apps.

13

5. Experiments 14

Devicename Sony Xperia V
Sony Xperia
Z1 Compact

Sony Xperia
Z3 Compact

Release 2012, December 2014, January 2014, September

Android 8.1.0 (Custom) 5.1.2 (Stock) 6.0.1 (Stock)

Resolution 1280x720

CPU ARMv7 Snapdragon 800 Snapdragon 801

Cores 2 4

Max. Clock 1512 MHz 2150 MHz 2457 MHz

GPU Adreno 225 Adreno 330

Max. Clock 400 MHz 450 MHz 457 MHz

RAM 1GB 2 GB

Storage 8GB 16 GB

Antutu Score1 23194 65323 65056

Geekbench 4 SC1 599 997 999

Geekbench 4 MC1 967 2657 2694

Table 5.1: Specifications and synthetic benchmark results of the phones

1Detailed results can be found in the Appendix A.1

5. Experiments 15

5.1.2 Apps

The measurement is tested with a few popular apps. Google Play has “Apps-
Top-Charts” in which the apps are ordered by the number of downloads. There
are also apps which are preinstalled on many devices, so they do not appear in
the charts, but are popular too. These are mainly apps from Google. The list of
all apps can be found in Table 5.2.

Apps-Top-Charts

Facebook Messenger Helix Jump

Instagram MeteoSwiss

SBB Mobile Snapchat

Spotify Tomb of the Mask

Whatsapp Wish

Popular preinstalled apps

Facebook Gmail

Google Chrome Google Maps

Play Store Youtube

Table 5.2: Used apps to test the measurement

5. Experiments 16

5.2 Test Methodology

To compare the devices, each runs through three different tests. For all results,
the recording device is the Google Nexus 5X.

Single App

As a first test, on each device each app is started 20 times. If the app was started
immediately before then the previously allocated memory is still available and
the app performs a hot start [20], which means the app is loaded nearly instantly.
To prevent this, before starting the app the background processes are cleaned.
This test measures the start time of an app on each device. The “No hot start”
and “Number of runs” options of the settings 2.1 is used to perform this test.

App Switching

The second test should deliver similar results like the first one. Instead of manu-
ally cleaning up all the apps are started in a row. Afterwards the test start again
from the first app. The idea is to make use of the limited resources of the phone.
Every app has some allocated memory which stays assigned until the user closes
the app manually or the memory is needed for another app [20]. So if the number
of other apps used between two usages is high enough the previously allocated
memory is no longer available and a cold start is performed. The “Collect and
run” and “Number of runs” options of the settings 2.1 is used to perform this
test.

Instant Start Size

The last test wants to find out, how many apps can perform a hot start. To
measure this, it performs multiple runs where an increasing number of apps are
started in a row. In each run, there is one additional app, which should be the
only one which does no hot-start. As soon as one of the previously started app
does a cold start the limit is reached. The “Increase List Size” option of the
settings 2.1 is used to perform this test.

5.3 Results

5.3.1 App Start Times

When analysing the results of the Single App-Test (Figure 5.1) we see that the
Xperia V usually takes the longest to start the app. The only difference are the

5. Experiments 17

two games Helix Jump and Tomb of the Mask, where it is very fast. Analyzing
the app start of these two apps, it gets clear why the Xperia V has the faster
results: Both apps have a static loading screen before showing the app. This
loading screen needs on the Xperia V more than five seconds, so the results are
wrong. In reality, the loading screen for both games is shown for about 20 seconds
on the Xperia V. Even on the other two devices the loading screen sometimes
needs more than five seconds, so the results from these two apps are just shown
in the first figures 5.1.

0 2 4 6 8 10 12 14 16

Helix Jump

WhatsApp

Tomb of the Mask

Wish

SBB Mobile

Facebook Messenger

MeteoSwiss

Spotify

Instagram

Snapchat

Chrome

Gmail

Facebook

Google Maps

PlayStore

Youtube

Mean Start Time [s]

Xperia V
Xperia Z1 Compact
Xperia Z3 Compact

Figure 5.1: Results of the Single App-Test

5. Experiments 18

Taking a closer look at the results there are a few results which are very
inconsistent. It seems that killing the background services does not always work
so sometimes hot starts are performed. Figure 5.2 shows the mean times without
respecting these values. The order of the results does not change much, the
Xperia V still has the worst performance and between the other two devices
there is no clear winner identifiable.

0 2 4 6 8 10 12 14 16

WhatsApp

Wish

SBB Mobile

Facebook Messenger

MeteoSwiss

Spotify

Instagram

Snapchat

Chrome

Gmail

Facebook

Google Maps

PlayStore

Youtube

Mean Start Time [s]

Xperia V
Xperia Z1 Compact
Xperia Z3 Compact

Figure 5.2: Cleared results of the Single App-Test

5. Experiments 19

The results of the App Switching-Test shows that loading different apps in a
row is the better way to prevent hot starts. In this test the Xperia Z3 Compact
is significantly faster than the Xperia Z1 Compact, in most tests the apps load
more than one second faster (Figure 5.3). In contrast to the Single App-Test at
start time there are other apps open on the device, this behaviour can be seen
in a side by side comparison. In most tests the Xperia V is again the slowest
device. Wish, Google Maps and Youtube break this pattern but when analysing
the start of these three apps, all load data in the background while showing a
static loading screen. On the Xperia V, the loads in the background take that
long that the time required to show this loading screen is measured. For these
apps, the waiting-time of five seconds is too short to get correct results.

0 2 4 6 8 10 12 14 16

Helix Jump

WhatsApp

Tomb of the Mask

Wish

SBB Mobile

Facebook Messenger

MeteoSwiss

Spotify

Instagram

Snapchat

Chrome

Gmail

Facebook

Google Maps

Mean Start Time [s]

Xperia V
Xperia Z1 Compact
Xperia Z3 Compact

Figure 5.3: Results of the App Switching-Test

5. Experiments 20

5.3.2 Instant Start Size

The results of the Instant Start Size test are similar to the start time test: The
Xperia V is behind the other two whereas the Xperia Z1 Compact and the Xperia
Z3 Compact perform similar. The number of apps which start instantly is not
fix but depends on app (Figure 5.4). With simpler apps like the calculator, the
dialer or the clock, all devices allow more instant start apps. Even the Xperia V
allowed more than ten simple apps which all start instantly.

0 1 2 3 4 5 6 7 8 9 10

Xperia V

Xperia Z1 Compact

Xperia Z3 Compact

Number of Apps started instantly

Figure 5.4: Instant Start Size

To find a difference between the Xperia Z1 Compact and the Xperia Z3
Compact, the mean times a hot start needed is compared (Figure 5.5). Here
some differences are seen, in fact the Xperia Z3 Compact performed the hot start
on average 300ms faster. In a classical side-by-side-comparison, this difference is
visible too, but the difference vanishes when animations are disabled.

0 200 400 600 800 1,000 1,200 1,400

Xperia V

Xperia Z1 Compact

Xperia Z3 Compact

Average Hot Start-Time[ms]

Figure 5.5: Mean time needed for an instant start

5. Experiments 21

5.4 Discussion Of The Results

In the synthetic benchmarks, the newer devices deliver better results (Table 5.1).
The difference between the Z1 Compact and the Z3 Compact is negligible, the
Xperia V is far behind. The ranking of the devices of the tests is the same and
in most tests the Xperia V is far behind. But while the results of Z1 Compact
and the Z3 Compact in Antutu and Geekbench are similar, the App Switching
Test shows a significant difference.

To find an explanation, we must watch the difference between the two devices.
From the specifications the largest difference is the higher clock speed of the
graphics chip. This gives more frames in 3D-applications but should not affect
the app start results. Another difference are the preinstalled apps which are
similar for both devices. The last difference is the Android version. In the
changes of Android 6 [21] Google does not mention performance improvements
but it is likely they have done some.

5. Experiments 22

5.5 Used Phone vs Reset Phone

For the first comparison 20 starts in a row of each app are tested. Compared
are the hot start times. As the first start is a cold start, the mean values do
not include the first time. The results are shown in Figure 5.6. Except in
Google Maps the difference between the hot start times is less than 100ms. This
difference is measurable but in everyday usage not noticeable.

200 400 600 800 1,000 1,200 1,400 1,600

WhatsApp

Chrome

Gmail

Facebook

Google Maps

PlayStore

Youtube

Mean Hot Start Time[ms]

Reset device
Used device

Figure 5.6: Used vs Reset: Hot Starts

Compared to the other apps the difference in Google Maps is quite huge. The
individual times per run show that in the first five runs the app needed much
more time to load (Figure 5.7). The cause of those slow starts is unknown, there
were probably some background tasks of Google Maps like finding the location
or downloading offline maps running which caused the first slow five runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

3

4

Run

H
ot

S
ta

rt
T

im
e[

s]

Figure 5.7: Used device: Hot start times of Google Maps

5. Experiments 23

In the second test app switching (Section 5.2) was tested. To have more load
two preinstalled apps are added to the test. The reset device performed during
the whole test no clear cold start (Figure 5.8), the peak from Whatsapp in Run
7 is probably an error of measurement. The difference between the two devices
in this test is much bigger: the used device had just two runs without a clear
hot start (Figure 5.9). The apps on the used device have more data to load (e.g.
the reset device has no messages in WhatsApp) which means that even the same
apps are used the number of apps which can perform an hot start at the same
time differ.

1 2 3 4 5 6 7 8 9

0

2

4

6

Run

M
ea

n
H

ot
S

ta
rt

T
im

e[
s]

Chrome Facebook Photos
Gmail Play Store Maps

Sony Music WhatsApp Youtube

Figure 5.8: Reset device: Switch test

1 2 3 4 5 6 7 8 9

0

2

4

6

8

Run

M
ea

n
H

ot
S

ta
rt

T
im

e[
s]

Chrome Facebook Photos
Gmail Play Store Maps

Sony Music WhatsApp Youtube

Figure 5.9: Used device: Switch test

Chapter 6

Conclusion

The results show that older top-of-the-line devices are behind when it comes to
gaming performance but still are very usable for everyday tasks. Although the
tests missing a current top device, because the results are durations in millisec-
onds and not a theoretical value in points an interpretation is possible without
comparison to other devices. If a user usually does not use more than about 8
apps, the first start times of the apps may be slower, but if the apps are started
once, future starts are very fast. To load apps even faster, it can help disabling
animations.

It shows also that there is a limit how old the device can be: Even a new
operating system does not help the Xperia V. The new OS gives the device more
security patches and a better compatibility with newer apps, but the phone is
missing some raw hardware performance to compete with newer devices. If the
Xperia V would have more RAM, more apps would fit into memory which would
lead to a improved user experience.

The comparison with the non-reset device shows that everyday usage does
not really impact the real-world performance. There was a obvious difference in
the App Switching-test, but even the used device performed most of the time
hot starts.

6.1 Future Work

Most of the false results come from the waiting time which was too small. Five
seconds were enough in most tests, for more exact results this time can be raised,
but this leads also to a longer time needed for each test run so the waiting time
is a compromise between accuracy and responsiveness.

If the app knows at start how the finished app looks like, the waiting time can
be reduced. A possible solution may be a first run with a much longer waiting
time. The app then stores then the final image. In future runs he just has to
compare the taken image with the final image of the first run. This solution
would not work with all apps because there are apps like Facebook which show

24

6. Conclusion 25

different content, even when there is very little time between two starts.

Another variant would be a online database in which these final images are
stored, so the first long run is not required. For apps with random content, the
database can store the static parts of the screen or propose a good waiting time.

As a benchmark is more valuable with more results. These can be collected
in the future to obtain more references to which a device can be compared.

Bibliography

[1] AnTuTu. Antutu Benchmark - Google Play. [Online; accessed 22-August-
2018]. 2018. url: https://play.google.com/store/apps/details?id=
com.antutu.ABenchMark.

[2] Primate Labs Inc. Geekbench 4 - Google Play. [Online; accessed 22-August-
2018]. 2018. url: https://play.google.com/store/apps/details?id=
com.primatelabs.geekbench.

[3] Futuremark Oy. 3DMark - The Gamer’s Benchmark - Google Play. [On-
line; accessed 22-August-2018]. 2018. url: https://play.google.com/
store/apps/details?id=com.futuremark.dmandroid.application.

[4] Futuremark Oy. PCMark for Android Benchmark. [Online; accessed 22-
August-2018]. 2018. url: https : / / play . google . com / store / apps /

details?id=com.futuremark.pcmark.android.benchmark.

[5] Top500. Top500 JUNE 2018. [Online; accessed 28-August-2018]. 2018. url:
https://www.top500.org/lists/2018/06/.

[6] Dictionary. personal computer. [Online; accessed 29-August-2018]. 2018.
url: https://www.dictionary.com/browse/personal-computer.

[7] Kishonti Ltd. GFXBench Benchmark. [Online; accessed 29-August-2018].
2018. url: https://play.google.com/store/apps/details?id=com.
glbenchmark.glbenchmark27.

[8] Gino Brunner. “Android Benchmark”. In: (2016).

[9] Mishaal Rahman. Google is Threatening to Remove Apps with Accessibility
Services from the Play Store. [Online; accessed 29-August-2018]. 2017. url:
https://www.xda-developers.com/google-threatening-removal-

accessibility-services-play-store/.

[10] OpenCV team. OpenCV Website. [Online; accessed 23-August-2018]. 2018.
url: https://opencv.org/.

[11] Nvidia. Mobile Visual Computing @ GPU Technology Conference. [On-
line; accessed 23-August-2018]. 2013. url: http://developer.download.
nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB140-Computational-

Photography-Visual-Computing.pdf.

[12] Google. Mobile Vision. [Online; accessed 23-August-2018]. 2018. url: https:
//developers.google.com/vision/.

26

https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=com.futuremark.pcmark.android.benchmark
https://play.google.com/store/apps/details?id=com.futuremark.pcmark.android.benchmark
https://www.top500.org/lists/2018/06/
https://www.dictionary.com/browse/personal-computer
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27
https://www.xda-developers.com/google-threatening-removal-accessibility-services-play-store/
https://www.xda-developers.com/google-threatening-removal-accessibility-services-play-store/
https://opencv.org/
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB140-Computational-Photography-Visual-Computing.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB140-Computational-Photography-Visual-Computing.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/SB140-Computational-Photography-Visual-Computing.pdf
https://developers.google.com/vision/
https://developers.google.com/vision/

BIBLIOGRAPHY 27

[13] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Forward-backward
error: Automatic detection of tracking failures”. In: Pattern recognition
(ICPR), 2010 20th international conference on. IEEE. 2010, pp. 2756–
2759.

[14] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration tech-
nique with an application to stereo vision”. In: (1981).

[15] Geizhals. Handys ohne Vertrag mit Betriebssystem: Android. [Online; ac-
cessed 23-August-2018]. 2018. url: https://geizhals.de/?cat=umtsover&
xf=148_Android.

[16] Google. ARCore Overview. [Online; accessed 28-August-2018]. 2018. url:
https://developers.google.com/ar/discover/.

[17] Zhou Wang et al. “Image quality assessment: from error visibility to struc-
tural similarity”. In: IEEE transactions on image processing 13.4 (2004),
pp. 600–612.

[18] OpenCV. Video Input with OpenCV and similarity measurement. [Online;
accessed 28-August-2018]. 2018. url: https://docs.opencv.org/2.

4/doc/tutorials/highgui/video-input-psnr-ssim/video-input-

psnr-ssim.html#videoinputpsnrmssim.

[19] John Canny. “A computational approach to edge detection”. In: IEEE
Transactions on pattern analysis and machine intelligence 6 (1986), pp. 679–
698.

[20] Google. App Startup Time. [Online; accessed 28-August-2018]. 2018. url:
https://developer.android.com/guide/components/activities/

activity-lifecycle.

[21] Google. Android 6.0 Changes. [Online; accessed 28-August-2018]. 2018.
url: https://developer.android.com/about/versions/marshmallow/
android-6.0-changes.

https://geizhals.de/?cat=umtsover&xf=148_Android
https://geizhals.de/?cat=umtsover&xf=148_Android
https://developers.google.com/ar/discover/
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
https://docs.opencv.org/2.4/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes

Appendix A

Appendix Chapter

A.1 Results Synthetic Benchmarks

Each device was tested three times, these are the highest values.

Value Huawei P9 Nexus 5X Xperia V Z1 Compact Z3 Compact

Antutu All 114471 82549 23194 65323 65056
Antutu CPU 55519 33509 10193 37266 36141
CPU-Math 16318 8961 3847 8106 8225
CPU-Common 8714 6131 2785 4472 4753
CPU-Multi 30487 18417 3561 24688 23163
Antutu GPU 17915 23104 0 5526 6608
GPU-Marooned 2409 4831 n/a 2452 3029
GPU-Coastline 4358 9040 n/a 3074 3579
GPU-Refinery 11148 9233 n/a n/a n/a
Antutu UX 33355 20421 10597 17509 17349
UX-Data-Sec 6792 3296 1515 2421 2024
UX-Data-Proc 8360 4368 1705 2542 2775
UX-Img-Proc 3374 4574 218 3831 4095
UX-User-Exp 14829 8183 7159 8715 8455
Antutu MEM 7682 5515 2404 5022 4958
MEM-RAM 2581 1992 1705 3115 2992
MEM-ROM 5101 3523 699 1907 1966
Geekbench 4 SC 1730 1209 599 997 999
Geekbench 4 MC 5026 2699 967 2657 2694
SC Crypto 1317 868 29 46 51
SC Integer 2055 1312 601 958 981
SC FP 1516 980 347 630 684
SC Memory 1470 1411 1120 1872 1753
MC Crypto 4516 2852 57 179 197
MC Integer 6741 3910 1110 3406 3527
MC FP 4650 1792 643 2206 2302
MC Memory 1859 1487 1360 2265 2071

A-1

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Related Work

	2 Speedtest Application
	2.1 SpeedtestControl
	2.2 SpeedtestReplay

	3 Device Recognition
	3.1 Find Device
	3.2 Track Device
	3.2.1 Optical Flow
	3.2.2 Use Other Sensors
	3.2.3 Visual Mark

	3.3 Implementation

	4 Measurement
	4.1 Procedure
	4.1.1 Initialisation Phase
	4.1.2 Synchronisation Phase
	4.1.3 Waiting Phase

	4.2 Accuracy

	5 Experiments
	5.1 Setup
	5.1.1 Devices
	5.1.2 Apps

	5.2 Test Methodology
	5.3 Results
	5.3.1 App Start Times
	5.3.2 Instant Start Size

	5.4 Discussion Of The Results
	5.5 Used Phone vs Reset Phone

	6 Conclusion
	6.1 Future Work

	A Appendix Chapter
	A.1 Results Synthetic Benchmarks

