
Distributed
 Computing

Chord Analysis App

Bachelor’s Thesis

Rafael Dätwyler

darafael@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

September 23, 2018

Acknowledgements

I want to thank my supervisor Manuel for his valuable inputs and for helping
me whenever I was not able to get ahead. I also want to thank my friends and
family for supporting me and my idea during this thesis.

i

Abstract

This thesis is concerned with the development of a smartphone application which
can extract chords from music. The implemented algorithm is largely based on
work by Mauch [1]. The app is written in Java and can simultaneously record
and analyze the recorded music.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Chord Estimation . 1

1.2 Related Work . 1

2 Theory 3

2.1 Harmonics . 3

2.2 Intervals and Chords . 4

3 Algorithm 6

3.1 Note Profiles . 6

3.2 Processing Steps . 7

3.2.1 Recording and Downsampling 7

3.2.2 Fourier Transform . 7

3.2.3 Bucketization . 7

3.2.4 Tuning . 8

3.2.5 Noise Reduction . 9

3.2.6 Non-Negative Least Squares 9

3.2.7 Chromagrams . 9

3.2.8 Dynamic Bayesian Network 10

4 Implementation 14

4.1 Python . 14

4.1.1 Note Profile Generator . 14

4.1.2 Chromagram Generator 15

4.2 Android Application . 15

iii

Contents iv

4.2.1 Structure of the App . 16

4.2.2 MainActivity . 17

4.2.3 ChordDetection . 17

4.2.4 JavaAPI . 18

4.2.5 BayesNetStructure . 18

4.2.6 Concurrency . 20

5 Evaluation 21

5.1 Accuracy . 21

5.2 Performance . 22

6 Conclusion 24

Bibliography 25

Chapter 1

Introduction

Composing a piece of music is a creative process which requires talent and train-
ing. Writing down a melody one has heard is not easy either, but in contrast, the
process is rather a mechanical one than a creative one. Naturally, people tried
to develop techniques to automate this process and nowadays a whole field of
research called Music Information Retrieval (MIR) exists, dedicated to the task
of extracting information from music. This can range from the determination of
the key of a song and genre classification to the extraction of a melody or lyrics.
Some research is focused on the transcription of chords from music, a task called
Chord Estimation. Other common terms for the same are Chord Transcription,
Chord Detection and Chord Extraction.

1.1 Chord Estimation

Audio chord estimation is the task to “extract or transcribe a sequence of chords
from an audio music recording” as defined by MIREX (Music Information Re-
trieval Evaluation eXchange), the largest contest for evaluating MIR algorithms.
It has scientific uses such as the semantic analysis of a piece or segmentation of
a song into characteristic segments for further analysis. But it has also everyday
uses, like when trying to play the guitar along with a song. Chord estimation
can then be used to determine the right chords to play.

The goal of this thesis is to develop a smartphone application that can per-
form chord estimation in real time, which is useful mainly for everyday uses like
the one mentioned above.

1.2 Related Work

There has already been a lot of research about the chord estimation of music in
the field of Music Information Retrieval. In a lot of approaches, a representation
of the audio called chromagram [2] is used for further processing. Chroma refers

1

1. Introduction 2

to the specific “position” of a tone inside an octave. The chromagram discards
all octave information and aggregates the intensity of every chroma over all
octaves. For practical purposes, the chromas are partitioned into buckets for
every semitone or pitch class, as seen in Figure 1.1.

Figure 1.1: Chromagram of the beginning of the song Rosanna by Toto.

These chomagrams are then used as features for machine learning algorithms
or as observed variables in a Hidden Markov Model (HMM) [3][4] or a Dynamic
Bayesian Network (DBN) [5][6]. Our implementation also uses a DBN. Other
approaches are based on high-order HMMs [7], Conditional Random Fields [8] or
use a Support Vector Machine and incorporate information from future frames
[9]. There are approaches for chord estimation in a real-time setting [4][10], but
none of them are implemented as an app. The only open source Android chord
estimation app found is one by De Santana Neto1 which is based on a Fourier
transform. Two apps called Chord detector2 and ZAX Chords3 are available
at the Google Play store at the time of writing (21.09.2018) but none of them
delivers satisfactory results.

1https://github.com/josepedro/ChordsDetector
2https://play.google.com/store/apps/details?id=com.xssemble.chordnamefinder
3https://play.google.com/store/apps/details?id=com.finestandroid.chorddetector

https://github.com/josepedro/ChordsDetector
https://play.google.com/store/apps/details?id=com.xssemble.chordnamefinder
https://play.google.com/store/apps/details?id=com.finestandroid.chorddetector

Chapter 2

Theory

2.1 Harmonics

Every time a note is played by a string or wind instrument, additional frequencies
are audible, namely integer multiples of the fundamental frequency. They are
called harmonics (if the fundamental tone is included) or overtones (if it is
not included) and their existence is a consequence of the physical behaviour
of resonant systems. The amplitudes of the individual harmonics define the
characteristic sound of an instrument and these harmonics can often not be
heard separately by an untrained ear.

Figure 2.1: Frequency spectrum of an A4 note played on a piano.

3

2. Theory 4

Harmonics make the automated detection of individual notes complicated
because the frequency spectrum of a sound contains, additionally to the fun-
damental frequency, a lot of frequencies which do not originate from a distinct
note. Additionally, since the strings of real instruments are not infinitely long
and infinitely thin, the frequencies of the overtones are not perfect integer mul-
tiples of the fundamental frequency, but slightly higher. This phenomenon is
called inharmonicity and complicates the automated detection of tones further.

2.2 Intervals and Chords

Western music is typically written down in notes on staves. The distance between
two notes is referred to as interval and the smallest commonly used interval is
a semitone. Twelve semitones build up an octave and notes that are an octave
apart sound the same. This is also reflected by the ratio of their frequencies: it
is 2:1.

All notes have names, but since notes that are an ocvate apart sound the
same, they have the same name and are distinguished by a number. On a piano
which has 88 keys, the notes range from A0 (deepest) to C8 (highest). The notes
in an octave, starting with C, are: C, C#, D, D#, E, F, F#, G, G#, A, A#, B.
The reference note to tune an instrument is A4 with a fundamental frequency of
typically 440 Hz.

A chord is a collection of notes with well-defined intervals in between them.
Chords with three notes are most common and are called triads. For example,
a major (maj) chord in root position consists of a root, a third which is four
semitones over the root and a fifth which is seven semitones over the root. For a
C major chord, this are the notes C, E and G as seen in Figure 2.2. There exist
other triads like the minor (min) chord where the third is a semitone lower than
in a major chord.

Figure 2.2: C major chord noted on a staff and played on a piano.

A chord does not have to consist of only three notes. Common types of
chords with four notes are the seventh chords which have an additional note

2. Theory 5

called the seventh placed three or four semitones over the fifth. Also, the root
note does not have to be at the lowest position of a chord. When playing a chord
in a inversion, the note played by the bass can be the third or the fifth (or the
seventh, for seventh chords).

MIREX proposes different levels of complexity for evaluating the accuracy of
chord estimation algorithms, the most complex of which consists of “no chord”,
maj, min, maj7, min7 and 7 chords and all inversions. In this thesis, only major
and minor triads are considered.

Chapter 3

Algorithm

In a first step, the probabilities of individual notes currently being present are
estimated. The note detection is performed by means of a Fourier transform and
note profiles as described below. The note probabilities are then used to create
treble and bass chromagrams which serve as evidence for a dynamic Bayesian
network to determine the most likely chord that is being played. The individual
steps are explained in this chapter.

The implemented algorithm is largely based on the one described by Mauch in
his PhD thesis [1]. The non-negative least squares part is taken from a subsequent
publication [11]. The main difference is that our implementation analyzes the
recorded music in real time whereas Mauch’s algorithm, escpecially the tuning
part, depends on the whole recording being available at the start of the analysis.
The tuning part is adjusted to work in a real time setting. Another difference
is that our implementation does not rely on beat tracking, because the app is
intended to also work on music with no beat, for example when trying different
chords on a guitar.

3.1 Note Profiles

For the detection of individual notes, the algorithm tries to “rebuild” the recorded
music from predefined note profiles. We consider 84 such note profiles, one for
every note from C1 to B7. This way we get seven full octaves. Lower or higher
notes are rarely present in music and cannot be properly recorded by most de-
vices. Each note profile is generated in advance and is supposed to represent a
most general tone which can match as many instruments as possible. For this,
the overtone series is of great importance. Mauch uses a geometrically decreasing
overtone series, so the k-th overtone has amplitude

ak = sk (3.1)

with the factor s being linearly spaced from 0.9 for the deepest note to 0.6 for
the highest note, which means that the series decreases faster for higher notes.

6

3. Algorithm 7

This makes sense intuitively as, for example on a piano, a vibrating string of a
low note causes a lot of the higher strings to vibrate as well, whereas a vibrating
string of a high note influences only few other (higher) strings. Testing different
parameters shows that this model indeed works better than using a constant
value for s.

3.2 Processing Steps

3.2.1 Recording and Downsampling

In a first step, a chunk of sound is recorded. A frame length of 4096 is chosen
because it delivers the best results. The sampling rate is 11025 Hz. This has
performance advantages over prevalent sampling rates like 44.1 kHz or 48 kHz,
because fewer samples have to be considered later in the Fourier transform. If
this sampling rate is not available on a device, the music is recorded with 44100
Hz and downsampled to 11025 Hz. According to the Nyquist-Shannon theorem,
a maximal frequency of about 5512 Hz can be described with this sampling rate.
Since harmonic information is mostly present below this frequency, we can safely
discard the higher frequencies (for comparison: C8, the highest note on a piano,
has a frequency of 4186 Hz).

3.2.2 Fourier Transform

For further processing, we want our audio to be in the frequency domain. For
this, we perform a discrete Fourier transform on the recorded chunk. To smoothen
the edges in time domain, the recorded chunk is first windowed by a Hamming
window. The frame length being a power of two allows us to perform the efficient
Fast Fourier Transform (FFT).

3.2.3 Bucketization

Because the amount of different frequencies that result from the Fourier trans-
form, namely 2049, is still too large for least squares solving, similar frequencies
are summed up and considered as one value. More concretely, the whole fre-
quency spectrum gets divided into buckets spaced a third of a semitone apart.
Hence we get 252 buckets and every bucket corresponds to a range of frequencies.
The note profiles mentioned above are also divided into 252 buckets. This will
allow us to solve for the probabilities of the 84 notes, see Subsection 3.2.6.

3. Algorithm 8

3.2.4 Tuning

Because not all instruments are tuned to 440 Hz and some instruments might
not be tuned at all, the data is tuned to 440 Hz after bucketization. This highly
improves the note detection accuracy, see Figure 3.1. For every three buckets
corresponding to a semitone, only the middle bucket should contain information
if the instrument is perfectly tuned, while the information spills to the left or
right bucket if the instrument is tuned too low or too high, respectively. This is
reflected in the phase angle ϕ of the normalized frequency π/3 when interpreting
the vector of buckets as a time series and calculating the Fourier transform on
that series. This phase angle can be used to tune the data.

In order to use as much information as possible, buckets from previously
recorded chunks are also considered. More concretly, a “tuning vector” zt is
maintained and at every time step, the new vector

zt =
bt + s · zt−1

1 + s
(3.2)

is calculated where s ∈ [0, 1) is a parameter and bt is the vector of the newest
buckets. This way, the previous buckets are considered with exponentionally de-
creasing importance to account for possible tuning changes. The Fourier trans-
form is then performed on the vector zt. The tuning factor δ ∈ [−0.5, 0.5)
describes which fraction of a semitone the piece is off-tune and is calculated by
the following formula:

δ =
wrap(−ϕ− 2π

3)

2π
(3.3)

where wrap() phase wraps each number to the interval [−π, π). Using this factor,
the tuning is performed by linear interpolation between the buckets.

Figure 3.1: Estimated notes of an ascending series played on a piano tuned to
450 Hz with and without the tuning step applied.

3. Algorithm 9

3.2.5 Noise Reduction

In order to reduce noise and emphasize peaks, the running mean and running
standard deviation are subtracted from the buckets. More concretly, for every
bucket bi, the buckets from bi−18 to bi+18 (index taken over frequency) are con-
sidered, where the bucket vector is padded at the top and the bottom using the
nearest value. Then the mean is calculated as weighted average using the values
of a discretized Hamming window as weights.

µi =

18∑
k=−18

wk · bi+k

18∑
k=−18

wk
(3.4)

The running standard deviation is computed similarly, again using a Hamming
window as weights:

σi =

√√√√√√√√

18∑
k=−18

wk · (bi+k − µi)2

18∑
k=−18

wk
(3.5)

The denoised buckets are defined as b̄i = max{0, bi − µi − k · σi} where k is a
factor experimentally set to 1.

3.2.6 Non-Negative Least Squares

After tuning and noise reduction, the crucial step of determining the played notes
is performed by solving a non-negative least squares (NNLS) problem. NNLS is
defined as

min
x
‖Ax− b‖2 s.t. x ≥ 0 (3.6)

In our case, A ∈ R252×84
+ is the dictionary matrix consisting of the note profiles,

x ∈ R84
+ is the sought vector of note probabilities and b ∈ R252

+ is the vector of
frequency buckets. The non-negativity constraint is added because it does not
make sense for a note to contribute a negative amount.

Solving this problem is equivalent to finding the amplitudes of the 84 notes,
the sum of which minimizes the Euclidean distance to the recorded, bucketized
sound. So, if the recorded sound consists of music, we can assume to have a
confident measure of the intensity with which each note was played.

3.2.7 Chromagrams

Until now, octave information was preserved. Without this, solving NNLS using
the note profiles would not have been possible. In this step, octave information is

3. Algorithm 10

discarded and the same tones are aggregated to create chromagrams as described
in Section 1.2. Two different kinds of chromagrams are generated: a treble and
a bass chromagram. The treble chromagram only considers notes in mid and
high frequency ranges which contain most of the harmonic information. The
bass chromagram deals with the bass. Bass information is important for chord
estimation as it narrows down the set of possible chords and is necessary to
detect chord inversions.

The vector of notes is windowed before summing up over all octaves. The
window is shown in Figure 3.2.

30 40 50 60 70 80

0

1

MIDI note

fa
ct

or

Fig. 3. Treble (solid line) and bass (dashed) templates g. These
are used in (7) when calculating chromagrams from the note salience
values.

We add the respective salience values over time, and over
the note range,

Ek =
T∑

j=1

∑

(m−k) mod 3=0

Smj , k ∈ {−1, 0, 1}, (4)

and retrieve an estimate of the tuning by calculating the
angle

τ̂ = ∠
(

1∑

k=−1

Ek · exp
{
τk
√
−1
}
)
. (5)

We update S by linear interpolation so that the centre
bin of a semitone corresponds to τ̂ and then sum the
three tone saliences pertaining to the same semitone to
obtain the semitone-spaced salience matrix

Ss
kj =

∑

dm/3e=k
Smj . (6)

The matrix Ss is subsequently median-filtered [11] in
the time direction with a filter length of 9 frames (0.45
seconds). To obtain the treble chromagram x∗, the note
salience Ss is “wrapped”, i.e. note saliences that belong
to the same pitch class are summed,

x∗ij =
∑

(k−i) mod 12=0

Ss
kj · gk, i = 1, . . . , 12, (7)

weighted by the template g illustrated in Figure 3,
which discards bass and very high treble notes. The
bass chromagram is analogously obtained using different
weights g to discard notes in the treble range.

C. Averaging over Beats and Normalisation

Beat, or “tactus”, represents the main regular pulse in a
piece of music [25, p. 71]. In order to segment the audio
into musically meaningful chunks we use an automatic
beat-tracking algorithm [26]. The system extracts beat

Fig. 4. Example treble and bass chromagrams generated from the
song Let It Be (Lennon/McCartney).

times 0 < t0 < . . . < tN . We take the median (over
time) of the chromagram frames within each beat,

xij = median
tj≤(j′·∆h)<tj+1

x∗ij′ . (8)

A measure of chroma flatness is computed to express the
salience of “no bass note” and becomes a 13th dimension
to the bass chromagram,

x13,j =

(
12 ·max

i
Sij

/
12∑

i′=1

Si′j

)−2

∈
[

1

144
, 1

]
.

(9)

Both beat-quantised chromagrams—including the addi-
tional bass bin—are subsequently normalised according
to the maximum norm [7, p. 79], i.e. every bin value is
given relative to the most salient bin of the same frame,
see Figure 4.

III. NETWORK MODEL

A Bayesian network (BN) is a joint distribution of
several random variables. It is called a “network” be-
cause its dependency structure can be represented using
a directed acyclic graph. Every node represents one
random variable3. A directed edge represents a direct
dependency; it points at the node that directly depends on
the node from which the edge originates. This duality of
the graph and the joint distribution allows very intuitive
modelling as detailed in this section. The requirement of
the graph to be acyclic means that there is no dependency

3We will use the two expressions node and random variable inter-
changeably.

4

Figure 3.2: Window which is applied to the note vector before summing up to
treble chromagram (solid line) and bass chromagram (dashed). (from [5])

3.2.8 Dynamic Bayesian Network

A Bayesian network is a probabilistic graphical model that connects random
variables in a directed acyclic graph (DAG). In the DAG, the nodes are random
variables and a node that is connected to a parent is conditionally dependent on
that parent. Some of the variables might be known (“observed”) and serve as
evidence in order to infer the probabilities of the hidden variables by Bayesian
inference.

A dynamic Bayesian network (DBN) connects nodes over adjacent time steps
and is used to model structures that change over time, such as speech or music.
We are interested in inferring the probabilities for different chords in a model
that consists of the song key, chord and bass as hidden variables and treble chro-
magram and bass chromagram as observed variables, as depicted in Figure 3.3.
Using this model, the algorithm infers the chord probabilities and outputs the
chord with the highest probability.

The DBN is an adapted version of [11], but without the metric position. We
give a quick overview over the different nodes, the details are explained in [1].

The song key is assumed to be dependent on the previous key estimation and

3. Algorithm 11

Key

Chord

Bass

Bass Chroma

Treble Chroma

Ki−1 Ki

Ci−1 Ci

Bi−1 Bi

Xbs

i−1 Xbs

i

Xtr

i−1 Xtr

i

Figure 3.3: Model of the dynamic Bayesian network. (adapted from [11])

unlikely to change. Therefore:

P (Ki|Ki−1) =

{
0.98 if Ki−1 = Ki

(1− 0.98)/23 otherwise.
(3.7)

The chord is only dependent on the key. We use an adapted version of the
perceptual chord ratings by Krumhansl [12] (page 171). Table 3.1 shows the
probabilities for the different chords in a C major and C minor key.

The bass is dependent on whether or not a new chord is played, because the
bass usually plays the root note after a chord change. This is reflected in the
conditional probability:

P (Bi|Ci−1 6= Ci) =

{
0.8 if the bass is the root note of Ci

0.2/11 otherwise.
(3.8)

If the chord has not changed, the bass is still likely to play the root note, but
also other notes of the chord are possible. A small probability is left to the cases
where the bass plays any other note.

P (Bi|Ci−1 = Ci) =

0.4 if the bass is the root note of Ci

0.2 if the bass is one of the other notes of Ci

0.2/9 otherwise.

(3.9)

3. Algorithm 12

maj min maj min

C 7.28% 5.84% 6.94% 7.42%
C# 4.13% 3.31% 4.55% 2.68%
D 3.95% 4.47% 3.99% 2.96%
D# 3.48% 2.42% 4.61% 3.38%
E 4.02% 3.68% 4.31% 3.10%
F 5.55% 4.62% 5.15% 5.23%
F# 3.56% 2.31% 4.17% 2.51%
F 5.13% 3.51% 5.09% 3.35%
G# 4.62% 3.36% 5.23% 3.43%
A 4.02% 5.55% 3.71% 3.85%
A# 4.16% 3.25% 4.77% 2.76%
B 4.07% 3.68% 4.03% 2.78%

Table 3.1: Chord probabilities dependent on the song key. Here shown for the
C major key (left) and C minor key (right).

Finally, the treble chromagram is dependent on the key and the bass chroma-
gram is dependent on the bass. Each semitone of the treble and bass chromagram
is modelled as a Gaussian variable. If a note is played, it is likely that the corre-
sponding value in the treble chromagram has a high value. And the value should
be low if the note is not played. Therefore, for each entry of the chromagram
is the mean set to 1, if the entry is part of the chord and to 0, if it is not (see
Figure 3.4). The variance is set to 0.2. For the bass chromagram, the mean for
each entry is set to 1 if and only if the corresponding bass note is played. The
variance is reduced to 0.1.

3. Algorithm 13
Chapter 4. A Musical Probabilistic Model 76

�� ����
Cmaj7

���
Cmin

(a) musical notation

C C# D E! E F F# G A! A B! B

C C# D E! E F F# G A! A B! B

1

(b) binary pitch classes

Figure 4.8: Chord examples: Cmaj7 and Cmin chords in musical notation and a binary pitch
class representation. The shaded squares in (b) denote the pitch classes belonging to the chord.
To obtain the same chord type with a different root, the chord is “rolled” (circular shift).

0 0.2 0.4 0.6 0.8 1
note salience

de
ns

ity

Figure 4.9: Treble chroma node: distribution of single elements of the 12-dimensional Gaus-
sian, monotonically increasing curve for chord pitch classes, monotonically decreasing curve
(dashed) for non-chord pitch classes.

has been explained in Chapter 3, the chroma features xi ∈ [0, 1] are normalised by the maxi-

mum norm, so high values will be close to one, and—ideally—low values will be close to zero.

Hence, the probability density P (Xi|ci) of the chroma node given a chord should monotonically

increase with any of the chord pitch class saliences increasing (C, E[, and G in the case of a

Cmin chord). It should monotonically decrease with any of the non-chord pitch class saliences

increasing. In a manner very similar to Bello and Pickens (2005) and Catteau et al. (2007) (see

also Figure 2.4 in this thesis) we model this behaviour as a 12-dimensional Gaussian random

variable: the mean vector has ones at elements representing the chord pitch classes, and zeros

at the elements representing non-chord pitch classes. We choose to use a diagonal covariance

matrix and set the variances in all dimensions to σ2 = 0.2. Figure 4.9 shows the marginal prob-

ability density distribution over the interval [0, 1] for a single dimension for the case in which

this dimension corresponds to a chord note and a non-chord note, respectively. Note that due to

the chroma normalisation, a flat chroma vector will contain only ones. Therefore, we define N

(no chord) as including all pitch classes.

Figure 3.4: The entries of the treble chromagram are modelled as Gaussian
distributions which differ in whether the entry is a note of the chord (solid line)
or not (dashed). (from [1])

Chapter 4

Implementation

Two implementations of our algorithm exist. The first is written in Python be-
cause the development is more lightweight and testing can be performed quicker.
The second is written in Java and is the core of the Android application.

4.1 Python

For development in Python, the libraries NumPy and SciPy are used. Because
many of the operations are performed on vectors, the vectorized methods pro-
vided by these libraries are useful. A lot of plots and graphics are created by
means of the library Matplotlib. Few methods are also used from other libraries.
In contrast to the Android implementation, no real time analysis is performed
with Python, but whole WAVE files are read and processed. Two main programs
are explained in the following subsections.

4.1.1 Note Profile Generator

This program is used to generate the note profiles which are saved in the matrix
for the NNLS problem. Two different approaches are tested. The first generates
the note profiles directly and saves the amplitudes of the harmonics into the
corresponding buckets. The other approach first generates a waveform from
the note profile, then uses discrete Fourier transform and bucketization to fill
the buckets, similar to the steps described in Sections 3.2.2 and 3.2.3. Due to
numerical inaccuracies, this does not lead to the exact same results as the first
approach. Especially lower tones show distortions as can be seen in Figure 4.1.
But because recorded music runs through the same process, the latter approach
results in better note detection.

14

4. Implementation 15

Figure 4.1: Note profile of the C2 note, generated directly (upper) and via DFT
(lower).

4.1.2 Chromagram Generator

The chromagram generator implements the algorithm described in Chapter 3.
This program is also used to generate graphics like Figure 3.1, mainly to vi-
sually confirm that the implementation of the algorithm produces the intended
results. The graphics include Fourier transformations of music, graphs of buck-
ets, semitones and chromagrams and are used to analyze the frequency spectrum
of recorded music and to experiment with the parameters in the noise reduction
step.

4.2 Android Application

The Android application is developed in Android Studio using the Java pro-
gramming language. In contrast to Python, Java is strongly typed and does not
have an “industry standard” numerical library which provides native support for
vector operations and unites all the funcionality required for this purpose. An-

4. Implementation 16

droid allows to write code in C++ which is linked to the application through the
Java Native Interface (JNI) provided by the Android Native Development Kit
(NDK). This allows for better performance because the code does not have to be
compiled by a just-in-time compiler while executing. However, Java and C++
store certain types differently in memory and the structure of the app gets more
complicated when using NDK. So, all numerical operations are implemented di-
rectly in Java which turns out to perform well enough. But the app is built in a
way that would make switching to a native implementation easy.

4.2.1 Structure of the App

The app essentially consists of the MainActivity and three additional classes: the
ChordDetection class, the JavaAPI class and the BayesNetStructure class. The
MainActivity is the starting point of the application and manages the user inter-
face (UI). The ChordDetection is responsible for the creation and initialization
of the native AudioRecord class, for managing the audio buffer and for invoking
the calculation for chord detection. The JavaAPI class contains all methods that
are necessary to compute treble and bass chromagrams from a chunk of recorded
audio. It implements the interface “API” and could be replaced by a native
(C++) implementation. The BayesNetStructure defines the Bayesian network
which is used to calculate the most likely chord.

MainActivity ChordDetection
(contains buffer) JavaAPI

bufferReader.run()

bufferWriter.run()
(uses microphone)

Thread 1
(UI Thread)

Thread 2

Thread 3

accesses

creates

Thread 4 bayes.run()

BayesNetStructure

Figure 4.2: Flow chart of the app structure.

4. Implementation 17

4.2.2 MainActivity

The MainActivity, as seen in Figure 4.3, consists of a button to start/stop the
chord detection, a set of progress bars to show the treble and bass chromagram,
a “song mode” switch and a TextView which shows the estimated chord. The
chromagrams are used for debugging and to give the user an intuition of how
the chord was estimated. The “song mode” switch allows the user to switch
between song and no-song mode: Song mode is intended to be used on a song
which has a harmonic structure over time and a song key. No-song mode does
not require these properties and is better for detecting randomly played chords.
The technical details are explained in Subsection 4.2.5. The MainActivity is
also responsible for checking that the audio recording permission is granted and
eventually creates an instance of the ChordDetection class.

Figure 4.3: Screenshot of the MainActivity.

4.2.3 ChordDetection

The ChordDetection class takes care of initializing the AudioRecord class, which
is provided by the Android API. This class reads audio from a microphone input
and writes it into an internal buffer. From this buffer, chunks of arbitrary size (as
long as they are shorter than the internal buffer) can be read into a working buffer

4. Implementation 18

in a blocking or non-blocking way. For this application, three working buffers
were chosen which are filled circularly by a blocking read. This way, when the
JavaAPI is calculating chord estimation using one buffer, the other two buffers
can still be filled alternately and there is always one full buffer available. The
ChordDetection class contains the three threads bufferWriter, bufferReader and
bayes which are invoked once the chord detection is started. The exact way the
buffers are processed and how the threads interact with each other is explained
in Section 4.2.6.

4.2.4 JavaAPI

The JavaAPI class contains all methods to calculate the treble and bass chro-
magram. Upon creation, initialization takes place, such as the creation of Ham-
ming windows and reading the note profile matrix from a CSV file into a two-
dimensional array. The main method is called calculate() and is invoked by
the bufferReader. This method implements the concurrency mechanisms and
calls the procedure() method which then executes the algorithm and saves the
treble and bass chromagram into a list, from where it can be processed by the
BayesNetStructure. Because no Java library was found which supports all nec-
essary operations, the data is generally stored in a double array and temporarily
converted to library-specific data representations if necessary.

For the discrete Fourier transform, the library JTransforms1 by Piotr Wendykier
is used. For solving NNLS, a first approach uses the least squares package of
Apache Commons Math2 with the additional restriction of the parameters being
non-negative. This package solves the problem iteratively using a Levenberg-
Marquardt method. However, benchmarking shows that this method performs
poorly (see Section 5.2), so an alternative was sought. The current approach
uses Parallel Java 2 (PJ2)3 by Alan Kaminsky which is approximately eight
times faster. For reading CSV files, the library opencsv4 is used.

4.2.5 BayesNetStructure

The BayesNetStructure class, when instantiated, creates a Bayesian network
using the library Jayes5. No free Java library could be found that supports
dynamic Bayesian networks, so the structure of a DNB is emulated by a normal
Bayesian network with multiple layers created manually. The number of layers
n can be passed to the constructor as a parameter. This class maintains a list
to which pairs of treble and bass chromagrams can be appended and offers the

1https://sites.google.com/site/piotrwendykier/software/jtransforms
2http://commons.apache.org/proper/commons-math/userguide/leastsquares.html
3https://www.cs.rit.edu/˜ark/pj2.shtml
4http://opencsv.sourceforge.net/
5http://www.eclipse.org/recommenders/jayes/

https://sites.google.com/site/piotrwendykier/software/jtransforms
http://commons.apache.org/proper/commons-math/userguide/leastsquares.html
https://www.cs.rit.edu/~ark/pj2.shtml
http://opencsv.sourceforge.net/
http://www.eclipse.org/recommenders/jayes/

4. Implementation 19

method update(). Every time this method is called, the class starts Bayesian
inference using the latest n chromagrams of this list (if available) as observed
variables by means of the junction tree algorithm. update() returns an array of
chord probabilities which the bayes thread uses to update the UI with the most
likely chord.

Two different Bayesian networks are created (see Figure 4.4): One (used by
song mode) which is multi-layered to use previous chromagrams and one (used
by no-song mode) which consists of only one layer and does not incorporate
the key information. The former is an adapted version of the one described in
3.2.8. More concretely, the temporal connection from the previous chord to the
current bass is left out and only the probabilities from Equation 3.9 are used.
This is because the large amount of conditional probabilities that arises when
considering the current and previous chord slows down the inference significantly
and renders the app unusable.

Ki

Ci

Bi

Xtr

i

Ki−1

Ci−1

Bi−1

Xbs

i−1

Xtr

i−1

Xbs

i

Key

Chord

Bass

Bass Chroma

Treble Chroma

a) b)

C

B

Xbs

Xtr

Figure 4.4: Model of the implemented dynamic Bayesian network. a) The only
temporal connection is the key. Used by song mode. b) A model which does
not depend on previous information and does not incorporate a key. Used by
no-song mode. (adapted from [11])

4. Implementation 20

4.2.6 Concurrency

This subsection describes how the different threads interact with each other.
Four threads are maintained (see Figure 4.2): The main thread which takes care
of all initialization steps and invokes the execution of the other threads once
the start button is pressed. This thread is also the UI thread which updates all
UI elements. The bayes thread is explained below. The writer thread records
the audio and fills the buffers and the reader thread reads from the buffers and
is responsible for all the computation. The buffers act as a producer-consumer
data structure, but in contrast to the usual implementation, the consumer (buf-
ferReader) is only concerned with the most recent chunk of audio data. It is
therefore possible that a chunk of audio is dropped if the computation is not fast
enough (see Figure 4.5). However, the goal is to keep the number of dropped
chunks as low as possible.

The information of which buffer was most recently filled and which is being
processed by the JavaAPI is stored in variables, the write-access to which is
mediated by a lock. The consumer tries to read the newest chunk of data and
if there is no data, the thread sleeps. Meanwhile, the producer fills a buffer and
upon completion, notifies the consumer thread which can then process this buffer.
During computation, the producer only fills the other two buckets, alternately.
Once the consumer finishes computation, it causes the MainActivity to update
the progress bars and appends the treble and bass chromagrams to the list which
is maintained by the BayesNetStructure. Then, if there is new data available in
a new buffer, it can directly continue computation on that buffer.

The bayes thread operates independently of the producer and consumer.
Once started, it repeatedly invokes the update() method defined by the class
BayesNetStructure. The producer, consumer and bayes thread operate in a
while loop whose condition is an AtomicBoolean which can be switched by the
button in the MainActivity.

Figure 4.5: Schema of how the producer (bufferWriter) and consumer (buffer-
Reader) work with the data. In this example, the block f5 is dropped because
the calculation of f3 and f4 took too long.

Chapter 5

Evaluation

This chapted is concerned with the evaluation of the app in terms of accuracy
and performance. For testing, a Samsung Galaxy S6 phone is used. It was
released in 2015 and has an eight core 64bit processor and 3GB RAM.

5.1 Accuracy

To test the accuracy of the app under real-world conditions, audio is played on
a portable speaker and recorded by the phone about 0.5m away. The series of
calculated chords is saved and compared against ground truth from the Isophon-
ics data set1. We measure the fraction of the song at which the app shows the
correct chord. Because the song and the recording are started manually, the
data points are shifted in time before comparison to account for these inaccura-
cies. The amount of displacement is determined by seeking the local maximum
of correct overlap time. The results for three songs are shown in Table 5.1 for
different amounts of Bayesian network layers and for the no-song mode.

The Beatles - I Saw
Her Standing There

Queen - We Are
The Champions

Zweieck -
Andersrum

No-song mode 26.60% 25.26% 30.96%
5 layers 26.54% 26.28% 42.28%
10 layers 34.24% 27.04% 36.90%
20 layers 34.48% 31.34% 37.84%
50 layers 40.04% 32.07% 34.20%

Table 5.1: The fraction of a song at which the app shows the correct chord.
Tested with three different songs and different amounts of Bayesian network
layers.

The fraction of correctly displayed chords peaks at about 40%. State of the
art algorithms achieve up to 80% but they operate on the original audio data and

1http://www.isophonics.net/datasets

21

http://www.isophonics.net/datasets

5. Evaluation 22

not on audio recorded through a smartphone microphone. Some algorithms rely
on the whole song being available at the start of analysis, which is not possible
in a real-time setting.

In some cases, the app performs better with fewer layers. This could be
the case if the harmony of a song does not behave like the model defined by
the Bayesian network. Also, the accuracy of the app can vary between different
recordings of the same song because the alignment of the recorded chunks can
be shifted in time, resulting in a different frequency spectrum and eventually in
different chord probabilities.

5.2 Performance

When recording with 11025 Hz, a chunk of 4096 samples is 371’519 µs long.
So, if the processing from recorded audio to chromagrams is longer than this,
frames have to be dropped. On the Galaxy S6, both the implementation using
Apache Commons Math and the one using PJ2 as NNLS solver are able to stay
under this time limit. The calculation of one chunk using Apache Commons
Math takes on average 101’666 µs whereas using PJ2 takes only 18’269 µs (see
Table 5.2). The phone supports a sampling rate of 11025 Hz, so no downsampling
is needed. Downsampling is tested manually and also shown in the benchmark,
but not added to the total running time. The data is divided by its norm after
the Fourier transform, which is also shown in the benchmark.

Downsampling 1’661 µs

Fourier transform 1’764 µs

Division by norm 197 µs

Bucketization 23 µs

Tuning 281 µs

Noise subtraction 4’222 µs

NNLS (Apache) 94’920 µs

NNLS (PJ2) 11’523 µs

Chroma generation 259 µs

Table 5.2: Benchmark for the different processing steps, averaged over ten iter-
ations.

The performance of the Bayesian network calculation is tested for different
amount of layers (see Table 5.3). Even a Bayesian network with 50 layers has
feasible runtime, but startup time already amounts to 2.92 seconds when using

5. Evaluation 23

20 layers and rises to 13.41 seconds when using 50 layers. When trying 100 layers,
the app crashes because it runs out of memory. This is due to the large amount
of conditional probabilities which are loaded by the nodes of the network.

Relating to the results regarding accuracy, we choose 10 layers for the Bayesian
network as a tradeoff between accuracy and startup time.

1 layer (no-song mode) 452 µs

5 layers 2’616 µs

10 layers 6’247 µs

20 layers 16’068 µs

50 layers 46’454 µs

Table 5.3: Benchmark for the inference of chord probabilities using different
amounts of layers in the Bayesian network, averaged over ten iterations.

Chapter 6

Conclusion

Estimating the chords from a piece of music is not easy, and the accuracy of
the app reflects that. As soon as the harmony does not follow the structure of
the Bayesian network, chords start to change quickly or the melody becomes
predominant, the app fails to deliver accurate results. This makes it difficult to
use it as a general chord recognition tool like intended. However, when playing
chords over a longer period of time or with little noise, the prediction become
more accurate. Adding a beat tracking algorithm to the song mode would cer-
tainly help to deliver a clearer result, as the app currently cannot determine
whether a complex chromagram belongs to a complex chord or is just the result
of a chunk which happens to overlap a chord change.

The app leaves a lot of options for future work: Additionally to the chord
display, the tuning factor δ from Subsection 3.2.4 could be displayed such that
the app can be used as a tuner. The chords could be saved on the phone or
online in a database which could be used as a library to look up songs. One
could also add a music theoretical analysis such as determining the key of the
song, the groundwork for which is already laid by the Bayesian network. Based
on the key, one could perform Roman numeral analysis which can be used to
transpose a song to a different key.

24

Bibliography

[1] Mauch, M.: Automatic Chord Transcription from Audio Using Computa-
tional Models of Musical Context. PhD thesis, Queen Mary University of
London (2010)

[2] Wakefield, G.H.: Mathematical representation of joint time-chroma distri-
butions. In: Proc. Int. Symp. Opt. Sci., Eng. Instrum. Volume 99. (1999)
18–23

[3] Sheh, A., Ellis, D.: Chord segmentation and recognition using em-trained
hidden markov models. In: Proc. 4th Int. Soc. Music Inf. Retrieval. (2009)
183–189

[4] Cho, T., Bello, J.: Real-time implementation of hmm-based chord estima-
tion in musical audio,. In: Proc. Int. Comput. Music Conf. (2009) 16–21

[5] Mauch, M., Dixon, S.: Simultaneous estimation of chords and musical
context from audio. 18 (09 2010) 1280 – 1289

[6] Ni, Y., Mcvicar, M., Santos-Rodriguez, R., De Bie, T.: An end-to-end
machine learning system for harmonic analysis of music. 20 (07 2011)

[7] Scholz, R., Vincent, E., Bimbot, F.: Robust modeling of musical chord
sequences using probabilistic n-grams. In: Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (04 2009) 53–56

[8] Burgoyne, J., Pugin, L., Kereliuk, C., Fujinaga, I.: A cross-validated study
of modelling strategies for automatic chord recognition in audio. In: Proc.
8th Int. Conf. Music Inf. Retrieval. (01 2007) 251–254

[9] Weller, A., P. W. Ellis, D., Jebara, T.: Structured prediction models for
chord transcription of music audio. In: Proc. Int. Conf. Mach. Learn. Appl.
(12 2009) 590–595

[10] M Stark, A., Plumbley, M.: Real-time chord recognition for live perfor-
mance. In: Proc. Int. Comput. Music Conf. (08 2009) 85–88

[11] Mauch, M., Dixon, S.: Approximate note transcription for the improved
identification of difficult chords. In: ISMIR. (2010)

[12] Krumhansl, C.: Cognitive Foundations of Musical Pitch. Volume 25. (01
1990)

25

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Chord Estimation
	1.2 Related Work

	2 Theory
	2.1 Harmonics
	2.2 Intervals and Chords

	3 Algorithm
	3.1 Note Profiles
	3.2 Processing Steps
	3.2.1 Recording and Downsampling
	3.2.2 Fourier Transform
	3.2.3 Bucketization
	3.2.4 Tuning
	3.2.5 Noise Reduction
	3.2.6 Non-Negative Least Squares
	3.2.7 Chromagrams
	3.2.8 Dynamic Bayesian Network

	4 Implementation
	4.1 Python
	4.1.1 Note Profile Generator
	4.1.2 Chromagram Generator

	4.2 Android Application
	4.2.1 Structure of the App
	4.2.2 MainActivity
	4.2.3 ChordDetection
	4.2.4 JavaAPI
	4.2.5 BayesNetStructure
	4.2.6 Concurrency

	5 Evaluation
	5.1 Accuracy
	5.2 Performance

	6 Conclusion
	Bibliography

