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ETH Zürich

Supervisors:

Oliver Richter

Prof. Dr. Roger Wattenhofer

August 31, 2018



Acknowledgements

I would like to thank my supervisor Oliver Richter for his support throughout this
thesis. His advice during our weekly meetings was always greatly appreciated.

i



Abstract

A fundamental dilemma in reinforcement learning is the exploration-exploitation
trade-off. Deep reinforcement learning enables agents to act and learn in com-
plex environments, but also introduces new challenges to both exploration and
exploitation. Concepts like intrinsic motivation, hierarchical learning or curricu-
lum learning all inspire different methods for exploration, while other agents
profit from better methods to exploit current knowledge. In this work a sur-
vey of a variety of different approaches to exploration and exploitation in deep
reinforcement learning is presented.
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Chapter 1

Introduction

Reinforcement learning agents learn autonomously by interacting with an envi-
ronment. Deep reinforcement learning (DRL) agents utilize deep neural networks
to approximate rich functions and learn useful representations from an agent’s
sensory inputs. Deep Q-learning [1] is famously able to learn to play many Atari
2600 games and achieve super-human performance on some, But deep reinforce-
ment learning is still limited. In games where rewards are only sparsely awarded,
an agent may fail to find any connection between its actions and the score it is
trying to improve. In robotics, tasks are easiest specified by a single reward for
successful completion, for example moving an object to a target location. DRL
agents may also require millions of interactions with their environment, making
them unsuitable for real world application where interactions can’t be simulated.

Therefore, it is critical that agents can learn good features of the input space
and interesting behaviors in the absence of rewards. Several approaches exist in
the literature aiming to improve exploration by guiding them towards interesting
regions in state space or to automatically learn to interact with the environment
in new ways. Intrinsic motivation methods give an agent a human drive to
explore and learn more about the environment, even if it does not directly lead
to completion of a goal. Other exploration methods keep track of the uncertainty
in the agents learning progress. Given DRL agents aim to directly learn and
end-to-end policy from visual inputs, it has also proven beneficial to develop
auxiliary techniques to efficiently find representations for the high dimensional
inputs. Conversely to improved exploration techniques, a focus on exploiting
the current policy has led to DRL algorithms with enhanced sample efficiency.
A diverse set of methods addresses the problem of exploration and exploitation
in DRL. This thesis presents an overview of the different approaches, as well as
highlighting some specific approaches in more detail.
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Chapter 2

Background

2.1 Reinforcement Learning

The setup in reinforcement learning consists of an agent interacting with an
environment in discrete time steps. At each time step t the agent observes a state
st, then the agent decides on an action at according to his policy π. It reaches
a new state st+1 and receives a reward rt. This interaction loop can be seen in
Figure 2.1. An agent’s goal is to learn a policy which maximizes the cumulative
rewards.

Formally the dynamics in an environment can be modeled as a Markov Deci-
sion Process. It consists of:

• S , the set of states.

• A , the set of actions.

• P0 : S → [0, 1] : P0(s), the initial state distribution

• P : (S × A × S) → [0, 1] : P (s′ | s, a) , transition probabilities describing
the dynamics between states.

• r : (S ×A)→ R : r(s, a) , the reward function.

• γ ∈ [0, 1], a discount factor that trades of short term rewards for low γ
against long term rewards.

With these definitions a policy is a function π : (S × A) → [0, 1] : π(a|s). It
determines the probability of taking an action a given some state s. Importantly
the action only depends on the current state and not its previous state history.
This does not hinder the agent’s ability, since the transition from one state to
the next doesn’t depend on the previous history either.

2



2. Background 3

Figure 2.1: The perception-action-learning loop [2]0. At each time t, the agent
observes a state st from the environment. Then chooses action at according to
its policy π and receives a reward rt.

Consider a trajectory of observed states, actions and rewards (s0, a0, r0, s1, ...).
The return Rt at state time t is defined as Rt =

∑∞
i=0 γ

irt+i and the n-step return
is Rt:t+n =

∑n−1
i=0 γ

irt+i. In environments such as video games the trajectory may
not be infinite but end in a terminal state when the agent dies. In this case a
trajectory from starting state to terminal state is called an episode. The goal of
an agent is to find a policy which maximizes the expected return at each state
st. The Q-value is the expected return of choosing action a at state s over the
trajectories produced by some policy π.

Qπ(s, a) = E
(at,rt,st+1,..)∼π

[Rt | st = s, at = a]

The value induced by policy π is:

V π(s) = E
a∼π(·|s)

[Qπ(s, a)]

For given Q-values the best policy is the greedy policy:

π(s) = arg max
a

Q(a, s)

The Bellman equation can be used to calculate Q-values via bootstrapping for a
given policy π:

Qπ(s, a) = E
s′

[
r(s, a) + γQπ(s′, π(s′))

]
The optimal Q-value Q∗(s, a) is the maximum expected return given starting
state s and action a and it satisfies the Bellman optimality equation:

Q∗(s, a) = E
s′

[r(s, a) + γmax
a′

Q∗(s′, a′)]

Then the optimal policy is given by the greedy policy induced by Q∗.
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2.2 Algorithms for Deep Reinforcement Learning

Deep reinforcement learning algorithms are employed in settings with complex
environments. For example, learning video games from screen images or robotic
control tasks. In these tasks agents must find efficient representations for the
high dimensional inputs and be able to generalize between similar experiences.

2.2.1 Value-based algorithms

The goal of reinforcement learning algorithms is to find a policy which maxi-
mizes the expected return. In value-based algorithms this is done by learning the
optimal values Q∗(s, a) for each state s and action a. This however is intractable
for a large or continuous state and/or action space.

The deep Q-Learning algorithm uses a neural network to approximate a Q-
value function. Consider some transition (s, a, r, s′) and a neural net with pa-
rameters θ. The target is derived from the Bellman optimality equation:

yDQN = r + γ maxa′Q(s′, a′; θ−)

where θ− are the parameters of a target network used for stability reasons.

Then the Q-value loss is given by

LQ(θ) = E
s′

(yDQN −Q(s, a; θ))2

This loss is minimized with sampled transitions using stochastic gradient in the
deep Q-learning algorithm 1. Here the difference between target and bootstrap
estimate yDQN −Q(s, a; θ) is called the temporal difference (TD) error.

With convolutional neural networks it is possible to train agents in complex
visual domains without any handcrafted features [1]. But using a nonlinear func-
tion approximator like a neural network is unstable due to correlation between
the samples, since they are drawn in sequence. This problem is addressed with a
replay buffer that stores recent transitions. These transitions are then uniformly
sampled to reduce correlations introduced by the otherwise sequential samples.
To further improve learning stability a target network stores old parameters and
is changed only periodically. The standard deep Q-learning algorithm employs a
stochastic exploration strategy called ε-greedy: The policy followed is the greedy
policy according to the current Q-value estimate, but with probability ε a random
action is chosen. This algorithm is model-free as neither the reward function r or
the transition probability is modeled. It is also off-policy as transition samples
can be used, that are not generated with the current policy.
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Init: Q-value network Q with random weights θ
Init: target Q-value weights θ− = θ
Init: replay memory D, number of training episodes M , batch size Nb

for episode e ∈ {1, ..,M} :
s0 ∼ P0(·)
for t ∈ {1, ..} :

/* Policy Rollout */

if Ber(ε) then /* random action with probability ε */
at ∼ Unif(A)

else
at = arg maxaQ(st, a; θ)

/* Get next state and reward from environment */

st+1 ∼ P(· | st, at)
rt = r(st, at)
Store transition (st, at, rt, st+1) in D
/* Training */

Sample a minibatch of Nb transitions (s, a, r, s′) ∼ Unif(D)
if s′ is terminal then

y = r
else

y = r + γ maxa′Q(s′, a′; θ−)
Do gradient step wrt. to θ to minimize: (y −Q(s, a; θ))2

Periodically update target network: θ− = θ
Algorithm 1: Deep Q-Learning (DQN) Algorithm

Since the initial success of deep Q-learning improvements have been introduced
for more stable and reliable training. Listed are a few of the most prominent
extensions.

Double DQN corrects a bias for Q-value functions to overestimate the action-
values [3]. The Double DQN target decouples action selection from evaluation
by using the online network to choose the action in the target update:

yDDQN = r + γ Q(s′, arg max
a′

Q(s′, a′; θ); θ−)

Q-value functions estimate the value for each state-action pair, which requires a
lot of training data. However, in many states the action may not matter. The
Dueling network [4] splits the Q-value network in into a state value component
V (s) and an advantage component A(s, a).

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α)− 1

|A|
∑
a′∈A

A(s, a′; θ, α)

Here α are the parameters for the advantage head and β those for the value head
of a neural network with parameters θ. This split allows for faster learning of
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the value function.

Rewards are propagated one step at a time while training with the conventional
Q-Learning target. The multi-step update rule improves learning efficiency by
propagating rewards faster. This is especially helpful in settings with sparse
rewards [5]. This monte-carlo return requires the full rollout and not just single
transitions.

yMC
t = Rt

The n-step target provides a middle ground between the usual bootstrap target
and the multi-step monte-carlo target.

yNMC
t = Rt:t+n + γn maxa′Q(st, a

′; θ−)

In the DQN algorithm, samples are drawn uniformly at random from the replay
buffer. However not all samples are equally important. Prioritized experience
replay [6] samples with a probability according to their TD-error.

2.2.2 Policy Based Algorithms

Deep Q-value networks have success in large, continuous visual state spaces,
but the action space still needs to be discrete. Otherwise choosing the action
with maximum Q-value would be impossible. Policy based methods and Actor-
Critic methods work also in the continuous action spaces arising in control tasks
such as robot motion.

Policy based algorithms parametrize the policy πθ : S → A : πθ(s). The
policy is optimized directly to maximize the expected reward Eπ[Rt] using a
policy gradient. A commonly used algorithm is the Asynchronous Advantage
Actor Critic Algorithm (A3C) [7]. It uses the policy gradient:

δ E[Rt]

δ(θ)
= E

[
δ

δθ
log π(at | st) (Qπ(st, at)− V π(st))

]
Then the gradient scale factor (Qπ(st, at) − V π(st)) is equal to the advantage
A(st, at) of action at in state st. The value function V π is approximated by an
additional neural network, the so-called critic, using the n-step update rule. The
Q-value is estimated by the return Rt of a rollout. A3C uses many instances of
agents in parallel to accelerate and stabilize learning. Each parallel learner uses
the on-policy samples it generates to update a central policy network.
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2.3 The Exploration-Exploitation Trade-off

An agent has to decide at every time step. Either make the best decision
according to the current estimate or explore and take actions not considered
optimal. Exploring can lead to new information about the environment, perhaps
reach states not reached before and discover new options which are better in
the long run. For large state-action spaces it is not possible to explore the
space fully or try every policy possible with an agent, requiring exploitation of
current knowledge. On the other hand, a full exploitation strategy would miss
out on possible rewards and converge to a local optimum. So, there is a trade-off
between the two and they need to be balanced.

Finding an optimal policy in DRL requires efficient methods to both explore
the environment, as well as exploit the current knowledge about it. Complex
environments introduce new challenges to both exploration and exploitation. In
the following, a diverse set of approaches is presented aiming to overcome these
challenges.



Chapter 3

Methods for Exploration

A good exploration method should explore promising regions and help an agent
gather useful information about the environment. Many different methods are
used to guide exploration. They follow one of a few principles.

The first principle is random exploration. This is the easiest principle and
requires no extra information about an environment. An example is the ε-greedy
strategy as used in the DQN algorithm. Another one is the softmax strategy: It
randomly chooses an action weighted according to the softmax distribution over
the estimated expected return for each action. Both strategies are limited as
they stray away from the current policy one step at a time. These are considered
shallow exploration, failing to discover strategies which require few steps from
the current policy. The ε-greedy strategy is also unguided and will make the
same mistakes repeatedly.

A second principle is the optimism in the face of uncertainty principle. These
methods require a measure for the uncertainty of the value alongside the estima-
tion of the value itself. The principle says that the more uncertain an agent is
about an action, the more important it is to explore. One example is the upper
confidence bound (UCB) strategy. It estimates the an upper bound on the value
which holds with high probability. Choosing the action with the highest upper
bound yields either the best action or reduces uncertainty over it, thus lowering
the upper bound. See Figure 3.1 for a visualization of choosing an action accord-
ing to the UCB principle. Similarly, Thompson sampling keeps a distribution
of the value uncertainty. Then the goal is to choose a policy according to the
probability that it is optimal [8]. Both these methods keep track of uncertainty
in their estimation and reduce it in a guided manner.

The third principle is the information state search principle. The goal in explo-
ration is to gain information. Not just information about potential rewards, but
also the dynamics of an environment or other general aspects of it. Estimating

8
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4 2 0 2 4 6
Q

P(
Q)

Q(s, a0)
Q(s, a1)
Q(s, a3)

Figure 3.1: The uncertainty when choosing action a0, a1 or a2 in some state s
given by a probability distribution. Shaded is the confidence interval containing
the correct value with high likelihood. The UCB principle states the best action
for exploration is a1 as it has the highest limit to the confidence interval.

this gain is done by estimating information an agent has about its environment
in an information state. The value of this information is then weighted against
the value of the reward leading to an explicit trade-off between exploration and
exploitation.

Exploration strategies also differentiate themselves in the space they explore.
First there is state-action exploration. These use knowledge about the state-
action space. For example, by choosing a different action each time a state is
visited to guide exploration. Secondly there is parameter space exploration which
alters the parameters of a policy to achieve exploration behavior.

The following examples for exploration strategies in DRL each follow one or
more principles to achieve efficient exploration.

3.1 Intrinsic Motivation based Exploration

Intrinsic motivation is a psychological drive that guides behavior even in the
absence of external rewards. The motivation is based on internal desires such
as curiosity about an environment. Consider for example a robot with the task
to stack blocks. It will only receive an extrinsic reward when the blocks are
all on one stack. Randomly choosing the correct sequence of actions is highly
improbable, but with intrinsic motivation the robot is curious about what it can
do with blocks and thus guided towards solving the task.
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To implement an intrinsically motivated agent the reward it receives is aug-
mented with the intrinsic reward ri(s, a) scaled by some factor β.

r̃(s, a) = r(s, a) + βri(s, a)

The hyperparameter β has to be tuned. A high β encourages exploration, while
the smaller it is, the more focus lies on the original objective. Modifying the
reward means that these methods can be used with any reward-based reinforce-
ment learning algorithm.

In general, the intrinsic rewards are based on a forward dynamics model
learned concurrently with the policy. This way an agent learns the consequences
of its own actions. The agent is driven towards regions where predictions are less
accurate and as a result improves its forward prediction model in these regions.

A classic forward dynamics model predicts the next state st+1 given the cur-
rent state and actions (st, at), but as states are very high dimensional the model
is learned in a feature space, e.g. computed by an auto-encoder (Stadie et al,
[9]). Building a state representation that only encodes part of an environment
the agent can influence improves robustness of the exploration strategy in the
presence of distracting objects (Pathak et al. [10]; Haber et al. [11]). On top of
implementing a curiosity drive from a dynamics model, also a homeostatic drive
can be implemented, which aims to keep states familiar such that the agent acts
according to familiar patterns (de Abril & Kanai, [12]). These methods use the
error of a forward dynamics model as the intrinsic reward. This model is a
deterministic function, so the error is only informative in deterministic environ-
ments. Other methods model the full MDP with stochastic transitions and use
the KL-divergence between true transitions probabilities and a learned model
(Achiam & Sastry, [11]). Instead of using the error of these dynamics models the
intrinsic reward can also be based on parametric uncertainty (Houthooft et al.
[13]). The previous intrinsic motivation methods all alter the reward an agent
receives to guide its behavior. But intrinsic motivation can also be useful for
learning interesting aspects of an environment. These methods aim to improve
state representations through auxiliary tasks (Jadenberg et al. [14], Shelhamer
et al. [15]).

We now explore two examples in more detail.

3.1.1 Curiosity-driven Exploration by Self-supervised Prediction

Pathak et al. [10] computes the intrinsic reward based on the prediction error in
a forward dynamics model. Since for high dimensional inputs (such as images),
predicting the next input is challenging, there is a need to compute a simpler
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state representation. Also using the state space directly would mean that failing
to predict movement of background objects leads to a high intrinsic reward, even
though these changes do not affect the performance of an agent.

These issues are addressed with the Intrinsic Curiosity Module (ICM) (see
Figure 3.2). The intrinsic reward is the error of the forward model f computed
in feature space. rit = β‖f(φ(st), at)−φ(st+1)‖2. Computing the error in feature
space allows this method to scale to complex inputs. The feature transformation
φ is trained using a self-supervised inverse dynamics model. The goal of the
inverse dynamics model is to predict the action at from a transition st to st+1.
Consequently, there is no incentive for features φ to encode parts of the input
that can’t be affected by the agent.

The authors experiments show how an agent using these intrinsic rewards
can learn to play a level of Mario even in the absence of extrinsic rewards.
Nevertheless, basing the intrinsic reward on a forward model has limitations.
Environments must be deterministic. If actions can have random consequences,
the next state could not be accurately predicted leading to high intrinsic reward
that can’t be reduced over the training.

Forward 
Model 

Inverse 
Model 

fe
at

ur
es

 

fe
at

ur
es

 

E

ICM	  

st st+1

ri
tri

t

st+1stat

at at+1

�(st) �(st+1)

�̂(st+1) ât

ICM	  

re
t+1 + ri

t+1re
t + ri

t

Figure 3.2: The Intrinsic Curiosity Module (ICM) [10] used to compute the
intrinsic reward rit. It consists of an inverse dynamics model learning a feature
transformation φ, which only captures features the agent can affect. Then the
forward dynamics model predicts the next state in this feature space and the
prediction error is taken as an intrinsic reward.

3.1.2 Unsupervised Auxiliary Tasks

In DRL state spaces can be complex. Images from video for example, contain
of a vast range of signals and finding features relevant to an agent’s policy is
challenging in the absence of rewards. The UNsupervised REinforcement and
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Auxiliary Learning (UNREAL) algorithm (Jaderberg et al. [14]) finds good state
representations by training on auxiliary tasks maximizing other intrinsic rewards,
rather than the extrinsic one from the environment.

Changes in intensities often relate to important changes in the environment
and the agent learns to change them maximally. For each auxiliary task c a
separate agent is trained with its own value function Qc. These share the first
layers of a neural network with the original A3C agent approximating V and
π. As a result, the shared network computes features that are relevant to the
agent. Data efficiency of the base A3C agent is further improved by two addi-
tional techniques called reward prediction and value replay. Reward prediction
is another auxiliary task and again uses the same base layers, but a simpler over-
all architecture to predict the immediate reward given some state. Similarly to
DQN, value function replay uses the replay buffer to update the value function
V using a multi-step update rule. The full loss optimized by the UNREAL agent
is then:

LUNREAL = LA3C + λV RLV R + λPC
∑
c

L
(c)
Q + λRPLRP

Here λV R, λPC and λRP balance the value replay, pixel-control and reward-
prediction losses respectively.

Augmenting A3C as a baseline with these auxiliary tasks results in a faster and
more robust learning algorithm, as is evidenced by the authors Atari benchmark
results. In contrast to other intrinsic motivation methods, UNREAL does not
require learning a dynamics model, but only learns to control certain aspects of
the input. However not all pixels can be controlled. Some may be random, some
may be irrelevant to the task of an agent. It is unclear how training to control
these affects the agent.

3.2 Count-Based Exploration

Count-Based Exploration follows the optimism in the face of uncertainty prin-
ciple. These value-based algorithms count state(-action) visits: A small visit
count gives a high exploration bonus as the agent is uncertain about the value.
During training the visit count gets higher, the agent develops a better value
approximation and the uncertainty decreases. For a finite MDP and tabular
RL, the Model-Based Interval Estimation with Exploration Bonus (MBIE-EB)
algorithm (Strehl & Littman [16]) offers strong theoretical guarantees. It is
model-based and thus estimates the transition probabilities P̂ and the stochastic
reward r̂. The method counts state-action visits n(s, a) and solves a modified
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Bellman optimality equation:

Q̃(s, a) = r̂(s, a) +
β√
n(s, a)

+ γ
∑
s′

P̂ (s′ | s, a) max
a′

Q̃(s, a)

MBIE-EB is PAC-MDP (Probably Approximately Correct in Markov Decision
Processes), meaning in can find an approximately correct value table with high
probability in a time polynomial in the sizes |S|, |A| and the approximation error.
MBIE-EB inspires the bonus used in count-based methods for DRL. However
applying these bonuses directly to DRL with large to infinite state spaces is
impossible, as most states are never visited and consequently the bonus is the
same for most states.

Count-based methods are also intrinsic motivation based, but in contrast to
the previous methods these do not model the environmental dynamics. They
solely rely on the state space to guide exploration toward novel states. As they
also add an intrinsic reward they share the common downside of changing an
agent’s objective. In this setting an agent can visit a less frequently visited state
many times, even though the value in this state is already estimated.

For large state spaces several for count-based exploration have been proposed.
These use pseudo-counts based on a visit-density model over states (Bellemare et
al. [17]). The visit-density model predicts the probability of visiting some state
given the history of state visitations. Ostrovski et al. [5] explore the importance
of a good density model and use a strong neural network based model which
is learned alongside the value function. Computing pseudo-counts based on a
locally-similar hash function and then counting visits in each bucket has also
been successful (Tang et al. [18]). In all these approaches the similarity measure
between states plays a critical role. Novel states should have low probability in
the density model, while states with no important differences to an agent should
have high probability or map to the same bucket given some hash function. These
pseudo-counts are based on state representations distinct from the one used in
the Q-value network. Martin et al. [19] compute the pseudo-count directly
in the feature space of a linear Q-value approximator, ensuring a task-relevant
density model is produced. Machando et al. [20] develop a stochastic successor
representation, which implicitly counts feature visitations and thus leads to a
count based intrinsic reward without a density model.

3.2.1 Unifying Count-Based Exploration
and Intrinsic Motivation

One way to remedy-count based approaches is to use a density model (Bellemare
et al. [17]). The density model ρ : S → R : ρ(s) predicts the probability of



3. Methods for Exploration 14

visiting a state following some policy. A new unvisited state which is similar
to the already seen states can have a positive probability, compared to the visit
count which would be zero for all new states. Given a density model one can
derive pseudo counts.

With n recorded states s1:n the probability of state s is given by: ρn(s) =
ρ(s; s1:n). The recording probability ρ′n(s) = ρ(s; s1:n,s) is the probability of
observing state s again after training on s additionally. Then the pseudo count
N̂n(s) should increase by 1, by a single observation. Let n̂ be the pseudo-count
total.

ρn(s) =
N̂n(s)

n̂
, ρ′n(s) =

N̂n(s) + 1

n̂+ 1

Solving this linear system yields the pseudo count N̂n(s) = ρn(s)(1−ρ′n(s))
ρ′n(s)−ρn(s) . Here

n̂ is the pseudo count total. An intrinsic reward is then defined:

ri(s) = (N̂(s) + ε)−
1
2

This reward is inspired by the optimism in the face of uncertainty principle and
ε is a small number for numerical stability.

The density model ρ has to be designed specifically for each state space. Ideally
the density model generalizes over differences that are not important for an
agent (like background objects), while distinguishing between key features in
the state space. To give meaningful pseudo counts it has to be learning positive
(ρ′n(s) > ρn(s)) and each observed state has to be used exactly once to train the
density model. In their experiments a Context Tree Switching (CTS) model [21]
predicts the probability of a pixel intensity based on its neighbors. Results show
that for games with sparse rewards, performance significantly improves when
using intrinsic rewards from pseudo counts.

The pseudo-counts in this method rely on strict assumptions about the density
model like learning positiveness and using samples exactly once to train the den-
sity model. In Count-based Exploration using Neural Density Models (Ostrovski
et al. [5]) it is shown how these assumptions can be relaxed and how a better
density model can improve performance. The pseudo count is approximated via
a prediction gain PGn(s) = log ρ′n(s)− log ρn(s). Then N̂n(s) ≈ (ePGn(s)−1)−1.
A density model based on neural networks still is not learning positive, but the
prediction gain can be capped to positive values. Their experiments show that
PixelCNN, an advanced density model, can further improve exploration over the
previous CTS based density model.



3. Methods for Exploration 15

3.3 Ensemble approaches

Ensemble methods consist of a collection of base models which are then com-
bined into one stronger model. In supervised machine learning these techniques
are used to improve predictive power like in boosting or to reduce variance of
the model like in bagging. Here are approaches using an ensemble of policies to
improve exploration over base methods in DRL.

3.3.1 Bootstrapped DQN

In Bootstrapped DQN (Osband et al. [22]) build an ensemble of K Q-value
functions. The individualQ-value functionsQk represent samples of the posterior
over estimates for Q∗ and reflect the parametric uncertainty in the learning
algorithm.

These K Q-value functions are implemented as heads to a shared network
(Figure 3.3. The shared part allows for an efficiently learned feature representa-
tion at the cost of diversity between the heads. To ensure diversity between the
heads two techniques are tested: Random initialization of heads and the boot-
strap sampling scheme. Bootstrap sampling trains on random subsamples of the
training data for each head, but the authors experiments reveal that sharing all
transition samples retains enough diversity.

Exploration is inspired by Thomson sampling: At the start of an episode, one
of the K Q-values Qk is sampled and then the greedy policy selects actions for the
full episode. Taking actions according to the trained Qk instead of randomly as
in ε-greedy leads to a directed exploration method. The selected greedy policy is
consistent over multiple time steps as it will consistently choose the same action
given the same state. Combined this leads to a deep exploration method: It is
directed exploration and consistent over multiple time steps. This is necessary
in for problems where reward is not immediately following an action.

3.3.2 UCB Exploration

UCB Exploration (Chen et al. [23]) uses the same ensemble as bootstrapped
DQN. The exploration is different however and guided by the uncertainty be-
tween the Q-value heads. The approach follows the optimism in the face of
uncertainty principle. At each time step the action chosen is the one with the
highest upper confidence bound across all K Q-value heads. Specifically the ac-
tion is at ∈ arg maxa(µ̃(st, a)+λ · σ̃(st, a)). Here µ̃(st, a) is the sample mean and
σ̃(st, a) is the empirical standard deviation of the ensemble.
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Figure 3.3: The Bootstrap DQN network with K heads [22]. The shared net-
work architecture learns shared features from the input frame for computational
efficiency at the cost of diversity between the value heads.

In contrast to bootstrapped exploration the policy head is no longer kept for
the full episode. Instead, the policy is similar to the ensemble strategy, which
takes the action with most votes at each time step and therefore has a high Q-
value. Further, taking actions with high standard deviation reduces uncertainty
at difficult decision points. In comparison this leads to a stronger policy in a
majority of Atari games over the Double DQN and Bootstrapped DQN .

3.4 Parameter Space Exploration

Aside from the ensemble strategies parameter exploration can also be achieved
by directly introducing noise to the parameters of a policy. In deep reinforcement
learning the policy is given by a neural network with trained weights. Changing
a single weight in the policy network can lead to a complex change in policy that
is state dependent and consistent over multiple time steps.

3.4.1 Parameter Space Noise

Parameter Space Noise for Exploration perturbs the weights with additive
gaussian noise (Plappert et al. [24]). For a policy network with current pa-
rameters θ the new perturbed version is given by: θ̃ = θ + N(0, σ2I). The
amount of noise needs to be adjusted carefully to get a meaningful policy. Deep
neural networks are more sensitive to noise introduced in earlier layers. Layer
normalization [25] is applied between perturbed layers and consequently, the
same noise scale can be applied across all layers. The amount of noise σ is
adaptively chosen to keep the distance between the unperturbed and perturbed
policy d(πθ, πθ̃) ≤ δ small. This distance δ is annealed during training to trade off
exploration with exploitation. The distance d between policies is implemented
differently for each learning algorithm. For deep Q-learning the probabilistic
softmax policy πθ(a|s) = expQθ(s,a)∑

a′∈A expQθ(s,a′) is used. Then the difference is given
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by the KL-divergence DKL(πθ||πθ̃) estimated on the states traversed in the replay
buffer.

The exploration strategy is then to sample new parameters at the start of
the episode. Like bootstrapped DQN this results in a deep exploration strategy,
but with possibly more diverse policies as they are sampled from a continuous
distribution of policies. Figure 3.4 shows how parameter space noise compares
to bootstrapped DQN on a test task and how parameter space exploration can
find policies that ε-greedy does not find.
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Figure 3.4: Chain experiment [24]. The optimal policy is to go right in every
state and receive the big reward in the rightmost state. The graphs show the
median number of episodes until the environment is considered solved. In this
environment parameter space exploration is able to effectively learn, while ε-
greedy exploration requires data exponential in the chain length.

3.4.2 Noisy Networks

Another approach to parameter space exploration is to use noisy networks
(Fortunato et al. [26]). A noisy network is a neural network with a random
distribution over its weights θ. These weights are given by θ = µ + Σ � ε,
where µ contains the mean for each weight and Σ the noise scale. ε is randomly
distributed according to some zero mean noise distribution and � is the element-
wise product. Then ζ = (µ,Σ) is the new set of learnable parameters. The loss
L(θ) of a network is then replaced with the expectation over the noise ε. So the
new loss is L̄(ζ) = E[L(θ)] which is optimized with stochastic gradient descent
like normal deep Q-learning or other learning algorithms. A noisy linear layer
is depicted in Figure 3.5. A neural network consisting of noisy layers has twice
the number of parameters and can be trained in DRL algorithms with only
minor adaptations. In their experiments, the authors adapt DQN, DDQN with
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Dueling and A3C. For all they show improvement on Atari benchmarks without
significantly increasing computational cost. In the Rainbow algorithm (Hessel et
al. [27]), the noisy network is one of many extensions used to improve DQN.

Noisy networks give rise to parameter space exploration, since a new policy
or value network can be sampled at every time step. Having the noise level
learnable means, it is automatically adjusted during training, in contrast to the
parameter space noise approach presented before. The noise level is problem
specific and automatically learned.

Figure 3.5: A noisy linear layer. The weight matrix w is computed as w =
µw + σw � εw and analogously the bias b. While the noise εw, εb is sampled at
random, the parameters µw, bw, σw, σb are learnable.

3.5 Distributed Architectures

A general idea in deep learning is to use more computational resources and work
with larger datasets. In Reinforcement Learning interactions with the environ-
ment are sequential by nature, however multiple approaches exist to efficiently
use parallel or distributed compute architectures. The idea is to decouple acting
and learning. Actors interact with their own environments to collect experi-
ences, while a learner’s job is to update the policy based on the collected expe-
riences. Aside from utilizing computational recourses a distributional approach
has advantages to exploration. Using slightly different policies, e.g., induced
by changing ε in the ε-greedy exploration policy, diversifies the set of collected
experiences. Even without explicit manipulation, policies in a parallel and asyn-
chronous setting differ depending on the learners’ synchronization and thus likely
explore different states. The diverse experiences help break correlations between
data samples and thus improve learning stability. Exploration is also aided since
multiple learners are able to cover a larger amount of the state space.
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In the General Reinforcement Learning Architecture (Gorila) (Nair et al. [28])
multiple actors and multiple learners are distributed across several machines.
The learners send gradient updates to a global parameter server and the actors
send their experiences to a replay server. The Distributed Prioritized Experience
Replay (Ape-X) (Horgan et al. [29]) streamlines the architecture (See Figure
3.6) using a single GPU based learner and by communicating through collected
transitions, rather than gradients to reduce network traffic. Importantly the
learners generate vast amounts of data and then select the most useful events
using prioritized replay.

Actor-Critic methods have also benefited from parallel architectures, despite
being on-policy algorithms in general. In on-policy algorithms experiences have
to be generated by the same policy as is updated. A3C (Mnih et al. [7]) uses mul-
tiple actor-learner threads updating a global network asynchronously. The GPU
Asynchronous Actor-Critic (GA3C) (Babaeizadeh et al. [30]) and Parallel Ad-
vantage Actor-Critic (PAAC) (Clemente et al. [31]) utilize the GPU for efficient
training of actor-critic methods. Gruslys et al. [32] decouple acting and learning
in the off-policy Reactor (Retrace-Actor) agent based on the retrace algorithm
[33]. Reactor also improves sample efficiency by incorporating n-step updates
and new form prioritized replay. The importance weighted Actor-Learner Archi-
tecture (IMPALA) (Espeholt et al. [34]) uses GPU based learners and scales a
large number of actors. It is the base algorithm for many recent state-of-the-art
algorithms.

Learner

Network

Replay

Experiences

Sampled experience

Updated priorities

Initial priorities

Generated experience
Network parameters

Actor

Environment

Network

Figure 3.6: The Ape-X architecture [29]. A single learner updates the network
parameters and the learning error is sent to update priorities of the replay sam-
ples. The actors receive their policy weights from the learner and store their
experiences in the replay buffer. This architecture does not require gradient
updates to be sent, reducing network traffic and allowing for more actors.
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3.6 Curriculum Learning

Human learning is based on an organized school curriculum. Simple concepts
are introduced first, followed by concepts of increasing complexity that build
upon the earlier ones. This curriculum eases learning of new abstractions and
can increase training speed. A curriculum can also be beneficial as a learning
strategy for machine learning. Here the idea is to first learn simple tasks and
gradually increase complexity. These tasks are for example given by increasingly
difficult samples for a classifier or regressor (Bengio et al. [35]).

Curriculum learning is also applicable in DRL. A robotics task may be specified
with a single reward for completing the objective. Reaching the rewarding state
is a too complex task to start with. So instead of learning a policy to directly
reach this state, one can learn a universal policy π(a|s, g) (Schaul et al. [36]). It
takes a goal state g as a parameter and tries to reach it with the fewest number
of transitions possible. Choosing the goals according to a curriculum of solvable
tasks, it is possible to train an agent with increasingly complex tasks. In the end
this produces a policy that is able to reach any state from any other, including the
original objective. Curriculum learning bares similarity to multi-task learning.
A robot may be required to solve many tasks within the same environment and
curriculum-based approaches offer a guided way to learn these tasks.

Asymmetric Self-Play (Sukhbaatar et al. [37]) trains two RL agents. A teacher
(Alice) to generate tasks specified by a goal state, and a student called Bob to
learn and complete them. Bob’s reward is determined by how fast he reaches the
target state. At the end of an episode Bob receives rB = −tB if he is successful
or tMax − tA otherwise. Alice’s reward is rA = max(0, tB − tA). Here tA is the
number of time steps it takes Alice to set up a task by executing her policy and
reaching g. For a maximal reward, Alice presents the simplest task Bob cannot
complete. Then the inter-play between the agents leads to an automatically
generated curriculum.

Training Alice’s policy simply for generating goals is inefficient as it requires
separate interactions in the environment. Furthermore the self-play approach
has a biased exploration towards a small region of space where Alice and Bob
get stuck [38]. Florensa et al. [39] use a generative adversarial neural network
(GAN) [40] to address the problem. The GAN takes the role of the teacher. It
consists of goal discriminator judging if a goal g is at an appropriate difficulty and
a goal generator producing said goals. Another way to find goals is presented
in Hindsight Experience Replay (Andrychowicz et al. [41]). It looks at the
collected trajectories (s0, ..., sT ) from the replay buffer. If the real goal state is
not reached, it sets a new goal g = sT and learns how it can be reached. This
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way it is possible to balance rewarding trajectories with non-rewarding ones in
the replay buffer for an improved learning efficiency.

Instead of setting tasks by giving a goal state, it is also possible to specify
a task with a start state. Reverse Curriculum Learning (Florensa et al. [38])
builds a curriculum of start states which are increasingly far away from the set of
goal states. As a result, the agent learns to reach its goal from a large set of start
states, which improves robustness over an agent starting from a single state. This
approach requires some additional assumptions about the environment. For one
it has to resettable to any state in order to start an episode. And at least one
goal state g must be provided. Furthermore for any states s1, s2 ∈ S there has
to be a trajectory from s1 to s2. New start states are sampled using a random
policy starting from the current start state, in the reverse direction the agent
has to traverse. Another approach with similar requirements is based on region
growing (Molchanov et al. [42]). It keeps track of a reachability region consisting
of the states where the policy is already capable of moving from any state to any
other. This region is gradually extended during training until a universal policy
is learned for the full state space.

Rather than building a curriculum of increasingly difficult tasks, Czarnecki
et al. [43] build a curriculum of increasingly complex agents. The approach
might start with a policy on a few actions and gradually change to a policy over
the full action space, thus learning in environments with big action spaces more
efficiently.

3.7 Hierarchical Learning

An enduring problem in DRL is credit assignment over long periods of time. In
Atari games with sparse rewards it could be hundreds of frames between reward
signals. The standard way to address this is frame stacking. Here multiple
(typically 4) frames are used as state input, reducing time steps between reward
signals. Hierarchical reinforcement learning offers a more principled approach
by introducing RL models at multiple time scales. Typically a high-level policy
choosing subgoals or options and multiple low-level policies executing primitive
actions to achieve these subgoals. The high-level policy then operates at a lower
temporal resolution, enabling faster learning.

The options framework (Sutton et al. [44]) introduces Markovian options
ω ∈ Ω to formalize this hierarchy. An option ω is a triplet 〈Iω, πω, βω〉. Here
Iω ⊂ S is an initiation set (typically Iω = S), πω it an inter-option policy and
βω : S → [True, False] is a termination function. The set of options Ω leads
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to higher level RL problem, where the meta-policy πΩ(s) learns which option ω
to choose given some state s. This meta policy should then be more efficient at
exploring the state space, since it can take bigger steps.

Implementations in DRL for hierarchical learning differ in the options consid-
ered and their terminations functions. Hierarchical DQN (Kulkarni et al. [45])
implements DQN agents for two levels of hierarchy with a controller and meta-
controller (see Figure 3.7). Their set of goals (options) Ω is designed for each
environment and specified in advance. It might consist of the entities in a goal
world. Then the termination function decides if the low-level agent is able to
navigate close enough to this target entity.

Ideally a DRL agent would decompose tasks into options on its own and find
abstract goals for the low-level agent. The option-critic architecture (Bacon et al.
[46]) offers a way to learn both options and termination functions automatically.
Thus building an end-to-end algorithm for general DRL problems. However the
learned policy often degenerates to one of two solutions: Either only one option
is active, implementing the whole policy or the meta-policy chooses another
option for every time step. Feudal Networks (Vezhnevets et al. [47]) address this
issue by separating learning between meta-policy and inter-option policies and
also by generating explicit subgoals in a latent space. Harb et al [48] address
frequent termination in the option-critic architecture with deliberation costs for
terminating options.
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Figure 3.7: The perception-action-learning loop for hierarchical DQN [45]. The
agent consists of a meta controller and controller operating at two different time
scales. The meta controller has as his action space a discrete set of subgoals and
learns to choose those to maximize extrinsic reward. The low level controller
selects primitive actions in the environment in order to complete these subgoals.
The critic serves as a termination function, deciding when a goal is achieved and
awarding an intrinsic reward.



Chapter 4

Methods for Exploitation

Exploration methods are not only helpful in hard exploration problems but can
also improve sample efficiency in general. Another reason for learning algorithms
to be inefficient besides poor exploration strategies is poor learning efficiency or
exploitation. The methods presented hereafter do not improve an exploration
strategy, but rather exploit their policy or a policy demonstrated to them. They
are capable of solving problems where ε-greedy exploration was thought to be
insufficient [49].

4.1 Episodic Control

Episodic memory is a type of human memory besides procedural and semantic
memory [50]. Procedural memory stores procedures like walking or riding a bicy-
cle and is linked to model-free reinforcement learning. Semantic memory stores
general world knowledge like ideas or concepts and is linked to model-based rein-
forcement learning. In contrast episodic memory stores specific experiences and
events like visiting a birthday party. These memories lead to episodic learning,
which enables the brain to learn from a single experience rather than through
repeated trial or from related concepts. Episodic control is inspired by these
mechanisms for rapid learning in the human brain.

Current DRL algorithms can take millions of interactions with an environment.
They may experience a highly rewarding sequence of events but fail to capitalize
on it. Since DRL algorithms rely on neural network based value approximations
they have several issues: Stochastic gradient descent in neural networks requires
small step sizes, since too big steps risk catastrophic interference. Another cause
for slow learning is the bootstrap update rule. Deep Q-learning propagates re-
wards only one step at a time and consequently needs to experience the same
rewarding event multiple times. The target network introduced to improve sta-
bility also changes only periodically, further slowing down training.

24
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4.1.1 Model-free episodic control

Model-free Episodic Control (Blundell et al. [49]) implements a simple model
of the hippocampal episodic control. General DRL algorithm assume a stochas-
tic environment which causes further inefficiencies, since the expectation over a
random process has to estimated. Model-free episodic control assumes a deter-
ministic environment.

Episodic memory im modeled with a table QEC(s, a) storing the most reward-
ing return for each state-action pair. At the end of each episode it is updated as
follows:

QEC(st, at) =

{
Rt , if (st, at) /∈ QEC

max (QEC(st, at), Rt) , otherwise

This learning update is not valid in stochastic environments as it would lead
to a risky policy that takes an action even if the outcome of this action is very
unlikely. However as desired, the policy implicated by QEC will reproduce the
most successful sequence of events even if they were experienced only once.

A DRL algorithm needs to generalize to states not visited and thus not in the
table QEC . Hence the Q-value at some state-action pair (s, a) is estimated by
using values from the nearest neighbors s(1), ..., s(k):

Q̂EC(st, at) =

{
1
k

∑k
i=1Q

EC(s(i), a) , if (s, a) /∈ QEC

QEC(s, a) , otherwise

The model-free episodic control algorithm will then use the estimate Q̂EC for
policy rollout and update its table QEC according to the observed sequence of
states in an episode.

Episodic Control also works on transformed states st = φ(ot) rather than the
direct observation ot. This transformation not only reduces the memory foot-
print but choosing the right transformation φ can improve generalization of the
algorithm. A good transformation should ignore irrelevant details and distances
in the feature space should correlate with differences in the action-value. The au-
thors test two transformations: Random projections of observations into a lower
dimensional subspace and a transformation learned by a Variational Autoen-
coder (VAE) [51] trained on state observations collected with a random policy.
Their experiments on Atari games show how ε-greedy exploration can lead to
much faster policy improvement when combined with an algorithm capable of
quickly learning from newly discovered strategies. But while initial performance
is greatly improved, policies represented with neural networks generalize better
once later stages in a game can be reached.
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4.1.2 Neural Episodic Control

Neural Episodic Control (Pritzel et al. [52]) also utilizes Q-value function approx-
imations based on an episodic control rather than neural networks. It addresses
the same issues with neural network based value approximations, but also aims
to capitalize on the benefits of them. Neural networks are able to learn feature
transformations from high dimensional inputs.

Neural Episodic Control builds a fully differentiable neural dictionary to store
the returns for each transformed state. The feature transformation is a neural
network. Combined with a lookup in the neural dictionary this leads to a dif-
ferentiable architecture which can learn abstract state representation much like
conventional DRL architectures. See Figure 4.1 for a schematic of the full archi-
tecture. Crucially the learned representation focuses on aspects that are helpful
to predict rewards, whereas handcrafted features, random projections or feature
mappings based on a VAE ignore reward. So irrelevant details should be ignored
and distance in the feature space should be more meaningful.

Figure 4.1: The full Neural Episodic Control architecture for a single action a
[52]. The input state s is transformed with convolutional layers to a representa-
tion h. The dictionary stores all representations hi encountered during training
as well as their n-step Q-value Qi. To estimate the Q-value at a new state s with
representation h the nearest neighbors are found in the dictionary and their
contribution to Q(s, a) is weighted according to some kernel distance function
k. This whole architecture is differentiable, so the error between Q(s, a) and
the n-step target can be backpropagated to update weights in the convolutional
layers.

4.2 Learning from Demonstrations

The previous methods all assumed the familiar RL setting of an agent learning
in an environment solely based on rewards. But in real world settings more
information may be available. A self-driving car could utilize data captured
by real drivers. Some problems such as recommendation systems may already
have a working system based on previous RL agents or other techniques. In
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these settings the goal of a reinforcement learning algorithm is to imitate the
previous policy and ultimately to improve on it. In settings with sparse rewards,
demonstrations can replace a good exploration strategy and learn policies by
exploiting the demonstrated one. These methods typically also increase learning
speed as they learn from the given demonstration or previous systems.

Pure imitation learning finds a policy by imitating an expert. These methods
do not require rewards to specify a task as in RL. Assessment of a policy is
solely based on how close it matches the demonstrated policy. Imitation learn-
ing can be split into two categories: Those working with a passive collection of
demonstrations and those with an active expert. In the passive collection setting
the demonstrations are given before training starts. A common method is be-
havioral cloning which minimizes a policy loss between the demonstrated policy
and learned one πθ parameterized by θ. For a deterministic policy with discrete
actions and a collection of ND demonstrations (si, ai) the loss is given by:

LBC =

ND∑
i=1

‖πφ(si)− ai‖2

This loss can be minimized by modelling πθ as a classifier and using standard
supervised learning.

Behavioral cloning methods have for example been used for autonomous driv-
ing (Bojarski et al. [53]). State-of-the-art imitation learning methods include
(Ho et al. [54]; Ho & Ermhon [55]). However the resulting policy will unlikely
work outside the manifold of the state space spanned by the demonstrations.
Furthermore the i.i.d. assumptions made in supervised learning is violated. In
the active learning from demonstrations setting an expert is also available during
training and policies can be tested in an environment. An active learning strat-
egy can help overcome the shortcomings in the passive learning setting (Ross
et al. [56]; Sun et al. [57]). But pure imitation learning is still limited, as the
learned policy can never improve upon the one demonstrated by the expert.

Combining DRL and imitation learning offers more flexibility in the learned
policies. Policies are evaluated according to the RL return. The passive learn-
ing from expert demonstrations again assumes a collection of demonstrations
is available before training begins. Human checkpoint replay (HCR) samples
checkpoints from human demonstrations to start an episode (Hosu & Rebedea
[58]). Here the demonstrations help an agent reach states that a DRL agent may
have never explored on its own. Deep Q-Learning from Demonstrations (Hester
et al. [59]) adapts the behavioral loss from pure imitation learning for DRL.
The demonstrations are also kept in the replay buffer to sample from, instead of
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only relying on its own experiences. The same replay strategy is also applied to
off-policy DRL for continuous control tasks (Vecerik et al. [60]). Nair et al. [61]
extend this approach with a behavioral cloning loss, as well as Q-filtering, which
automatically ignores expert demonstrations as they become obsolete. Learning
from demonstrations can also be combined with exploration algorithms to help
initial learning performance (Lipton et al. [62]). Pohlen et al. [63] build on dis-
tributed prioritized replay (ApeX) and incorporate an imitation loss, as well as
sampling from expert demonstrations to overcome exploration in sparse reward
games of Atari. Kickstarting Deep Reinforcement Learning (Schmitt et al. [64])
learns from already trained teacher agents for faster initial performance.

Compared to standard DRL algorithms, combining DRL and imitation learn-
ing is able to improve initial learning performance. Compared to pure imitation
learning they are able to improve upon the expert policies.

4.2.1 Deep Q-Learning from Demonstrations

Deep Q-Learning from Demonstrations (Hester et al. [59]) uses two techniques
to speed up training with demonstration data.

First it fills up the replay buffer with demonstrations at the beginning of
training. However, this alone would be poor use of the demonstrations as they
are quickly overwritten with inferior transitions sampled by the agent. To address
this issue, demonstrations are kept permanently in the replay buffer and sampled
using prioritized replay. This first technique learns a self-consistent Q-value
function by reducing the typical Q-value loss. The second way to take advantage
of the demonstration samples is by imitating the demonstrated policy. The
learning updates are aided by a supervised loss which compares the trained
policy to an expert policy:

LE(Q) = max
a∈A

(Q(s, a) + l(ae, a))−Q(s, aE)

Here aE is the action taken in the expert demonstrations. l(ae, a) is zero for
ae = a and positive otherwise. The initial training phase of the Q-value function
has to focus on the few states covered by the demonstration data. Adding this
loss ensures that actions not covered in the demonstrations stay at reasonable
values. The complete algorithm has two phases. In the first phase the initial
Q-value function is trained without any interaction with the environment solely
sampling from expert demonstration data. In a second phase the agent trains
like the baseline agent, but permanently keeps the demonstration data in the
replay buffer. This way the policy, when the agent starts interacting with the
environment, is already much better than random.
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The conducted experiments show that performance is better in 41 of 42 Atari
games in the initial 1 million frames. For final overall performance, the method
improves on some games and reaches state-of-the-art scores, including some hard
exploration games. In these games the demonstrations can replace exploration
bonuses.

4.2.2 Kickstarting Deep Reinforcement Learning

Another way to improve initial performance is presented in Kickstarting Deep
Reinforcement Learning (Schmitt et al. [64]). The background of this method
is different in that it assumes a previous DRL agent is already trained. In this
setting the goal is to quickly learn from the teacher policy and then improve on
it as the teacher policy becomes less helpful over the course of training.

The teacher policy is used to improve the policy of a student by encouraging
the student to match the teacher’s actions using an auxiliary loss. Note how the
teacher’s policy πT needs to be evaluated in the same state as the student’s πS .

Ldistill = DKL(πT (a|xt)||πS(a|xt, φ))

The difference between these policies is measured on the trajectories created by
the student, so the student alone can explore parts of the state space the teacher
did not visit. This loss Ldistill is than weighted against the standard DRL loss.
During training the weight is slowly reduced so the student becomes independent
of the teacher.



Chapter 5

The Arcade Learning
Environment

The Atari 2600 is a home video game console first sold in 1977. Games include
classic arcade games ported to the console like Pac-Man or Space Invader. In
these arcade games actions such as eating dots or shooting down aliens awards
points and the goal is to reach a high score. Through time games became more
complex with first action-adventure games such as Pitfall! or later Montezuma’s
Revenge. These games retain an arcade like score, but points are rewarded
only rarely, usually for completing subgoals such as collecting keys. The Arcade
Learning Environment (Bellemare et al. [65]) provides an interface to Atari 2600
games for reinforcement learning algorithms.

Atari 2600 games are rendered on 120× 180 7-bit color image. See Figure 5.1
for screenshots. The controls consist of a joystick for 8 directions and a paddle
with a single button. Factoring in in no-ops for both direction and paddle this
yields 18 possible actions. Though effectively the action space can be as small
as 3 in games like Pong.

The default benchmark based on the Arcade Learning Environment consists
of 57 games. These games offer a variety of game mechanics and visual inputs.
They offer challenges to representation learning, planning and exploration mak-
ing them a suitable benchmark to test generalization for DRL agents. To test the
generalization of an agent, its hyperparameters are tuned on a small subset of
games. After that, the goal is to solve all games without any fine-tuning to them
individually. Solving a game means reaching a high-score comparable to human
play. Despite steady progress from the first DRL algorithms, some games like
Montezuma’s Revenge remain unsolved. Table 5.1 provides a rough taxonomy
of the Atari games based on the baseline performance of the deep Q-learning
algorithm and how well it compares to human play.
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Figure 5.1: Screenshots of two Atari Games: Space Invaders (left) and Mon-
tezuma’s Revenge (right). Space Invader is considered an easy exploration game
as it has dense rewards guiding an agent to a simple and successful control pol-
icy. Meanwhile Montezuma’s Revenge is one of the most challenging games.
It requires planning over multiple time-steps to collect keys and discover new
rooms.

Easy Exploration Hard Exploration
Human-Optimal Score Exploit Dense Reward Sparse Reward

Assault Asterix Beam Rider Alien Freeway
Asteroids Atlantis Kangaroo Amidar Gravitar

Battle Zone Berzerk Krull Bank Heist Montezuma’s Revenge
Bowling Boxing Kung-fu Master Frostbite Pitfall!
Breakout Centipede Road Runner H.E.R.O. Private Eye

Chopper Cmd Crazy Climber Seaquest Ms. Pac-Man Solaris
Defender Demon Attack Up n Down Q*Bert Venture

Double Dunk Enduro Tutankham Surround
Fishing Derby Gopher Wizard of Wor
Ice Hockey James Bond Zaxxon

Name this Game Phoenix
Pong River Raid

Robotank Skiing
Space Invaders Stargunner

Table 5.1: A taxonomy of Atari 2600 games based on exploration difficulty pre-
sented in [17]. Easy exploration are games where a DQN agent with ε-greedy
exploration is sufficient for a high scoring policy. These are subdivided into games
where RL agents find a score exploit and reach high-scores without reaching a
game’s objective. Hard Exploration Games are divided depending on reward
frequency.
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5.1 Atari Benchmarks

Despite the prominence of the Atari benchmarking suite to evaluate recent
DRL algorithms, it remains challenging to compare performance between them.
The difference between game scores can have various sources apart from the
developed exploration or exploitation method. Differences include:

• Starting Regime: The no-op regime inserts up to 30 no-op actions at
the beginning of an episode. Human starts sample from 100 human starts
for the first 30 frames and thus require a more robust policy.

• Terminal Loss of Life: Most benchmarks terminate an episode on loss of
life. Letting an agent continue playing with the remaining lives improves
scores in unforgiving games like Montezuma’s Revenge.

• Episode Length: Episodes are always limited in time. Most commonly
30 minutes, 108K frames, but evaluation time can as low as 18K frames.

• Preprocessing: Frames are usually stacked 4 at a time, down sampled
and gray-scaled. Yielding a 84× 84× 4 tensor as state input. The reward
signal is also preprocessed by clipping it to the range [−1, 1] for stability
reasons.

Aside from differences in Atari benchmark configuration, different base agents
also have a considerable influence on the performance of a final agent. Ex-
tensions to DQN like prioritized experience replay, the multi-step update rule,
dueling architecture and more all address different problems in DRL. The re-
sulting performance increase is complementary to that of an exploration method
[27]. So while a specialized method for exploration may show good improve-
ment over their baseline, it may stack up badly compared to more advanced
exploration methods. Training time may also be a deciding factor for final per-
formance. While most commonly every game is trained for 200M frames, the
distributed prioritized experience replay agent (ApeX) uses up to 228000M .
Meanwhile methods focused on initial performance like episodic control only use
10M frames training time.

5.2 Comparison

Despite all the differences, presented below are some comparisons between the
different methods summarized in this paper. First a comparison on performance
off the full benchmark. Then on the selection of hard exploration games that
has been the focus of most research. Compared is the human normalized score
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defined as in [3]:

scorenormalized =
scoreagent − scorerandom

scorehuman − scorerandom

Here the human score is from an average player as in [4]. An agent acting uni-
formly at random at every step is evaluated for the baseline. The normalized
score allows us to compare performance across games. Figure 5.2 shows the
median score across all games for both human starts and random starts. In
Figure 5.3 the selection is restricted to the hard exploration games with sparse
rewards, a focus of much of the research. Lastly Figure 5.4 presents the scores
on Montezuma’s Revenge, one of the most challenging games and thus the most
benchmarked game. All scores are taken from the corresponding publications.
Where a full benchmark was not available originally, a rerun from a later publi-
cation with more games scored is shown.

The benchmarks show agents achieve super-human performance across a ma-
jority of games, but the suite of 57 Atari games remains a challenge overall. A
focus on only sparse reward games reveals that sophisticated methods for ex-
ploration or distributed methods are required for some progress, while agents
learning to imitate human play from demonstration show the best performance.
These benchmarks should however not be taken as a measure for exploration
effectiveness of the individual agents, as many do not aim for overall perfor-
mance, but rather improvement over some baseline. As an example, consider
DQN Noisynet vs. DDQN Dueling Noisynet in Figure 5.3. While the explo-
ration method is shared, exchanging the base agent DQN with DDQN and the
dueling target, yields far superior performance.
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DDQN Dueling NoisyNet

IMPALA
DQN Rainbow

Reactor
A3C UNREAL

DQN ApeX
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Figure 5.2: Median score across all games. Both for the human starts (left)
and random starts (right) a variety of methods is able to surpass median human
performance.
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Figure 5.3: Median score for sparse reward games only. This selection offers
a bigger challenge to the exploration capability. The more difficult benchmark
with human starts (left) sees no method surpass human performance. While in
the no-op starts regime (right) only methods utilizing demonstrations are able.
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Figure 5.4: Raw scores for Montezuma’s Revenge. As one of the hardest games
many trained agents fail to get past the first room, which would yield 400 points.



Chapter 6

Conclusion

Presented is an overview of a diverse set of exploration and exploitation methods
applicable to deep reinforcement learning problems. There exist different types
of exploration, from intrinsic motivation methods gathering information about
the environment dynamics, to count-based methods inspired by the optimism
in the face of uncertainty principle. Exploring in parameter space, rather than
state-action space leads to deep exploration policies. In curriculum learning
and hierarchical learning, tasks are split into smaller, easier to solve subtasks,
enabling efficient and guided exploration. Distributed architecture make use of
parallel compute resources to enable faster learning. More efficient exploitation
is demonstrated in episodic memory based methods, aiming to learn from single
experiences. In the learning from expert demonstration settings, agents copy
from demonstrations for initial performance and then learn to surpass them.

All these approaches take inspiration from human learning, tabular RL or
other areas of machine learning. While each shows promise in its own regard,
it has proven difficult to compare performance between them. Nevertheless, the
Atari benchmarks show overall progress of DRL in hard exploration problems.
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