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Abstract

Air pollution maps can help people to plan outdoor activities and environmental
scientists to evaluate new policies. Urban air is filled with ultrafine particles
(UFPs) that can have a severe impact on human health. Therefore, UFP con-
centration maps with high spatio-temporal resolution are of great importance to
control air pollution.
An extensive amount of UFP data is provided over more than three years by
sensors mounted on trams of Zurich as part of the OpenSense project. How-
ever, the locations of these measurements are only sparsely distributed over the
city area as the mobility of the trams is limited. Air quality information at lo-
cations without any measurements can be inferred by annotating measurement
data with information about factors that have an impact on air pollution like
weather, traffic and land use. In this thesis, an air pollution prediction approach
based on neural networks is proposed and tested on the OpenSense dataset.
Timely dynamic weather and traffic features are aggregated in order to improve
the temporal resolution of urban air pollution maps. In order to check the per-
formance of the model at locations where no UFP measurements are available,
two approaches that quantify the uncertainty of air pollution predictions from
neural networks based on ensembles and dropout are proposed and evaluated.
The comparison of the neural network with a generalized additive model showed
that similar or better performance in terms of the error metrics is achieved.
However, unrealistic pollution concentrations are predicted at locations that dif-
fer a lot in terms of environmental conditions from the training dataset. This
observation is confirmed by the generated uncertainty maps.
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Chapter 1

Introduction

1.1 Problem Description

Air pollution maps are getting more and more important in urban areas, as a
high concentration of air pollutants can have a severe impact on human health.
In particular, a high particle number concentration of ultrafine particles (UFPs),
which include all particles with a diameter of less than 100 nm, can have adverse
health effects. Such air pollution maps also raise people’s awareness about air
pollution and they empower environmental scientists to evaluate new policies.
Traditionally, air quality data is measured by stationary measurement stations.
However, with these static stations it is not possible to capture the high spatially
and temporal variability of air pollutants. That is why several sensors were de-
ployed on top of trams as part of the OpenSense project [1] in order to get air
quality data for a wider part of Zurich. This mobile sensor network delivers a big
amount of spatially and temporally high-resoluted air pollution measurements.
Urban air quality depends on multiple factors, such as land use (e.g. industrial
activities, population density and height of buildings), traffic or meteorology.
The annotation of the data measured along the tram lines with these factors
allows pollutant concentration inference. Using this approach, the air pollution
concentration can be estimated at locations without any measurements and an
air pollution map can be constructed. Unfortunately, the dependencies of the
explanatory variables and air pollution concentration is mostly unknown. There-
fore, it is crucial to find a model that is able to capture the influence of various
feature combinations effectively.
One possibility to create air pollution maps is the land-use regression (LUR)
model [2]. This model is presented in the following section.

1.2 Land-use regression (LUR) model

The proposed LUR model (Figure 1.1) evaluates the dependency between a set
of explanatory variables (land-use and traffic data) and the measured UFP con-
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1. Introduction 6

centrations to model the pollution concentration on a grid with 13200 cells (each
100m x 100m) of Zurich. Generalized additive models (GAMs) are used in or-
der to capture the non-linear relationships between the measured concentration
and the explanatory variables. For each time scale (yearly, seasonal, monthly,
biweekly, weekly, daily and semi-daily), a separate model using the following
relationship is built:

ln(cnum) = a+ s1(A1) + s2(A2) + · · ·+ sn(An) + ε.

Here, cnum denotes the UFP concentration, a the intercept, s1 · · · sn the smooth-
ing functions, A1 · · ·An the explanatory variables and ε the error term.
As a result, a decent performance could be reached for the models with yearly
to weekly time scales. However, the accuracy of pollution maps created for daily
and semi-daily temporal resolutions is notably worse compared with yearly to
weekly maps. The main problem is that for temporal high-resolution maps,
much less measurements are available to calculate the mean UFP concentration
in a cell. This leads to a less reliable mean and a bigger impact of inaccurate
measurements.

Figure 1.1: Land-use regression model

In order to increase the accuracy of highly temporally resolved pollution
maps, a history database is introduced. This database includes past pollution
measurements as well as its environmental conditions (e.g. temperature) and
weekday. By selecting data with similar environmental conditions and weekday
from this database, the number of measurements used for fitting the model is
extended and the accuracy for the semi-daily pollution maps could be slightly
increased.
In [3], the same modelling approach based on generalized additive models is used.
Here, the models have high temporal and spatial resolutions of 30 min and 10 m
by 10 m. As a result, a strong time dependency of air pollution in terms of time
of day, weekday and season is identified. Furthermore, a heavy impact of traffic
and meteorological features on the air pollution is observed.

1.3 Approach

Although the LUR model introduced in the previous section is able to generate
fine-grained pollution maps, this method has two important drawbacks. First, it
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is only possible to create air pollution maps with high accuracy at about semi-
daily resolution. Since pollution concentration can change heavily throughout
one day, it would be helpful to have accurate maps with at least hourly temporal
resolution. A second drawback is that the model outputs no uncertainty infor-
mation about the inferred UFP concentration. Providing such an uncertainty
measure is important for a lot of applications. For a weather forecasting model
for example, an uncertainty value for the predictions provides a measure of how
much the weather forecast can be trusted. In the case of air pollution inference,
having a confidence value of predictions for out-of-distribution examples is im-
portant as the performance at locations where no measurements are available
cannot be evaluated otherwise. By generating uncertainty maps, the generaliza-
tion abilities of the model can be investigated and regions where more data are
needed for more accurate predictions are discovered.

The goals of this thesis are to improve the temporal resolution of air pollution
inference and to propose a model for uncertainty estimation of the inferred air
pollution concentration.
In order to improve the temporal resolution compared to the LUR model, weather
and traffic features are aggregated to capture important time-dependent dy-
namics (Subsection 3.1.2 and Subsection 3.1.3). Furthermore, a neural network
approach (Subsection 3.2.2) is proposed and tested on the OpenSense dataset.
With the new features and the neural network, a higher temporal resolution of
the pollution maps is expected.
To provide an uncertainty measure, an approach is required where instead of
a point estimation, a probability distribution is modelled. Traditionally, neu-
ral networks provide no measure of uncertainty. However, there are methods
that adapt standard networks for approximating the probability distribution of
a prediction. In this work, two methods for providing an uncertainty measure
for a neural network are introduced (Section 2.2) and tested for air pollution
inference.

In Chapter 2, related work on both the use of neural networks for generating
pollution maps and how to get an uncertainty measure using neural networks
is presented. Chapter 3 describes the used features and the proposed models,
which are evaluated in Chapter 4. Finally, Chapter 5 concludes this thesis.



Chapter 2

Related work

In this chapter, related work about air quality inference (Section 2.1) and uncer-
tainty estimation (Section 2.2) using neural networks and ensemble methods is
presented.

2.1 Deep Learning and ensemble approaches for air
quality inference

There are various linear and non-linear statistical approaches to tackle the prob-
lem of air quality estimation. Neural networks have shown to perform well for
generating pollution maps with high spatio-temporal resolution. There are nu-
merous approaches for air pollution forecasting [4, 5, 6, 7] and inference [8, 9, 10]
using a neural network model.
In this section, some of these air pollution inference approaches are introduced.

2.1.1 U-Air: When Urban Air Quality Inference Meets Big Data

In U-Air [8], air quality information (SO2, NO2, PM2.5 and PM10) of Beijing
is inferred using a semi-supervised learning approach based on a co-training
framework. Two separate classifiers are used for the classification of air pollution
levels: an artificial neural network (ANN) that captures the spatial dependencies
and a linear-chain conditional random field (CRF) for modelling the temporal
dependencies.

In Table 2.1, an overview of the features used is given. Road-network-related
features include features extracted from the street network like the total length
of highways and other road segments as well as the number of intersections of
streets within a grid cell. Point of interest (POI) related features indicate the
land use, function and the traffic patterns of a region.
The meteorological features used in U-Air are temperature, humidity, barome-
ter pressure, wind speed and weather (such as cloudy, foggy, rainy, sunny and
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2. Related work 9

Spatially-related features Temporally-related features

Road-network-related features Meteorological features
POI-related features Traffic-related features

Human mobility features

→ ANN → CRF

Table 2.1: Features used by U-Air

Figure 2.1: Neural network for the spatial classifier as proposed in [8].

snowy). Traffic-related features include information about the speed of vehicles
traversing a grid and human mobility features represent information about the
number of people arriving or departing from a grid.

The temporal and the spatial classifier are trained on the two separated sets
of features and the probability scores of both classifiers are combined in the
inference step.

In Figure 2.1, the structure of the spatial classifier is showed, where F kp
indicate the POI features and F kr the road-network features at a certain location.
For generating inputs of the artificial neural network, the correlation between the
POI features (∆Pkx) and road-network features (∆Rkx) of some already labeled
grids and the grid that is to be labeled as well as a distance measure (dkx) between
the two grids are computed. These correlations and distances are then feeded
with the true labels (ck) into a one-layer neural network to get an estimation of
the label of the unknown grid cell.

U-Air outperformed other classical air pollutant dispersion models by far.
Especially the modelling of spatial and temporal dependencies with a separate
classifier and using co-training does a good job. This approach showed the im-
portance of having features with a high spatial resolution as well as features with
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a high temporal resolution. Since the LUR model lacks timely resolved variables,
more features are aggregated in order to model the temporal dependency of air
pollution. Moreover, the good performance of the ANN in U-Air motivates the
usage of a similar structure in this work.

2.1.2 Extending Urban Air Quality Maps Beyond the Coverage
of a Mobile Sensor Network: Data Sources, Methods, and
Performance Evaluation

In [9], air quality of Lausanne is inferred using a deep learning framework that
is based on autoencoders. Unlike in U-Air, spatial and temporal dependencies
are learned simultaneously.

The features used in this model are: land-use features (such as altitude,
population and industry), traffic features (such as daily and hourly mean charges)
and some weather and pollutant data recorded by two static monitoring stations.

Figure 2.2: Neural network as proposed in [9].

In Figure 2.2, the neural network used for estimating Lung-Deposited Surface
Area (LDSA) is shown. An autoencoder (W1, W2, W3, W6, W7, W8) is first
trained on these features to extract the informative features of the data and
to lower the input dimensions. Together with the time of the day and the air
pollution measurement of the most similar street segment, the outputs of the
autoencoder are feeded into a one layer neural network (W4 and W5).

As a result, this deep learning model outperformed two log-linear regression
models which have already delivered acceptable results. Nevertheless, the com-
putational complexity of the neural network approach was much higher than the
compared models. This paper approves the usability of a neural network for air
pollution inference.
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2.1.3 Spatially Fine-grained Urban Air Quality Estimation Us-
ing Ensemble Semi-supervised Learning and Pruning

In [11], air pollution concentration is inferred by using an ensemble semi-supervised
learning approach. Multiple classifiers are generated from the original dataset
and then retrained by an interative co-training process.

This approach uses traffic-related features, road-network-related, POI-related,
check-in features and nearby monitoring-related features. Check-in features
model human mobility by counting the number of check-ins of people in so-
cial networking services. Nearby monitoring-related features take the air quality
and correlation of features of nearby measuring stations into account.

Figure 2.3: Ensemble approach as proposed in [9].

In Figure 2.3, the procedure of the semi-supervised ensemble algorithm is
described. Multiple classifiers are first trained on bootstrap samples (Li) of the
original dataset and a label and confidence measure is assigned to the unlabeled
examples. High-confident examples are added to the training dataset and the
classifiers are trained again. This iterative process is repeated until a label is
assigned to all the unlabeled examples.

This method outperformed different air quality estimation methods like Gaus-
sian process regression [12] and U-Air [8]. The effect of using multiple regressors
and combine them as an ensemble prediction is evaluated in this work for air
pollution inference as well as uncertainty estimation.

2.2 Methods for uncertainty estimation

Measuring the predictive uncertainty of deep neural networks is a key factor
for improving the accuracy and evaluating the estimation quality. One method
of approximating the uncertainty are Bayesian neural networks. These networks
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require large changes to the training procedure and they are computationally way
more expensive than standard neural networks. However, there are approaches
for uncertainty estimation in non-Bayesian neural networks which achieve similar
or better performance than Bayesian NNs. In the next subsections, a method
that is based on using an ensemble of neural networks (Subsection 2.2.1) and a
method based on using dropout (Subsection 2.2.2) is presented.

2.2.1 Ensemble approach

In [13], a predictive uncertainty estimation method based on deep ensembles is
described. A neural network used for regression usually outputs one single value
µ(x). To capture uncertainty, the observed value is treated as sample from a
Gaussian distribution with predicted mean µ(x) and variance σ2(x). Therefore,
the neural network is changed in order to output mean and variance of the
distribution [14].

A neural network that models a probabilistic predictive distribution pθ(y|x)
is used. In the context of air pollution inference, y would be the air pollution
concentration, x a feature vector and θ indicates the parameters of the neural
network. This approach makes use of three key techniques:

1. proper scoring rule as training criterion

2. adversarial training

3. ensemble training

Proper scoring rules
A scoring rule measures the performance of probabilistic predictions by assigning
a numerical score to a predictive distribution pθ(y|x). For a proper scoring
rule, the score is only maximized if the predicted distribution equals the true
distribution. In this paper, the score function used is log pθ(y|x), which is a
proper scoring rule. Therefore, the neural network is built in order to minimize
the negative log-likelihood criterion of a Gaussian distribution.

Adversarial training
Adversarial training is used to smooth the predictive distributions, which results
in an improved robustness of the regressor. The idea here is to compute the
direction of the feature vector where the loss is likely to increase and add per-
turbated samples which are close to the original training samples to the dataset
for minimizing the loss in every iteration.

Ensemble training
In this work, a randomization-based ensemble approach is used, meaning that the
regressors are trained in parallel. Because the usage of bagging deteriorated the
performance, the entire training set is used to train each regressor. The ensemble
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is treated as mixture of Gaussian distributions resulting in the following mean
and variance of the mixture:

µ(x) =
1

M

M∑
m=1

µθm(x),

σ2(x) =
1

M

M∑
m=1

(σ2θm(x) + µ2θm(x))− µ2(x).

The ensemble approach performs as well as Bayesian neural networks, re-
quires little hyperparameter tuning and is well suited for large scale distributed
computation. In this work, the ensemble method for modelling predictive distri-
bution of a neural network is applied for the problem of air pollution inference
(Subsection 3.2.3).

2.2.2 Dropout approach

In [15], a method for estimating predictive uncertainty that is based on dropout
is described. As for the ensemble method, the predictions are modelled as prob-
ability distributions instead of point estimations. The key techniques used in
this approach are:

1. tunable proper scoring rule

2. dropout training

Proper scoring rule
Like in the deep ensemble approach (Subsection 2.2.1), the usage of a proper
scoring rule is inevitable for training an effective neural network. In RDeepSense,
the weighted sum of negative log-likelihood and mean square error is used as a
loss function. This tunability should avoid the effect over- and underestimation
of the predictive uncertainty.

Dropout
Dropout is often used in fully-connected neural networks as a regularization
method to avoid feature co-adapting and overfitting. In each iteration of training,
a given rate of weights are ignored in each layer of the neural network. These
dropout operations convert a traditional neural network into a statistical model,
which is mathematically proved in [15].

In order to approximate the predictive distribution p(y|x), Monte Carlo esti-
mation is used. For the case of regression, this results in an average of Gaussian
distributions which can be approximated by one Gaussian distribution with fol-
lowing mean and variance:
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µ(x) =
1

M

M∑
m=1

µm(x),

σ2(x) =
1

M

M∑
m=1

(σ2m(x) + µ2m(x))− µ2(x).

In RDeepSense, a recipe without the usage of Monte Carlo estimation is
introduced. During test time, all the weights are multiplied by the dropout
rate. Like this, the neural network has to be run only once which is especially
benefitial for usage in mobile applications. This efficient variant performed better
in various tests even though it is mathematically not equivalent to the Monte
Carlo estimation.

The dropout method outperforms state-of-the-art baselines on the quality of
uncertainty estimations. It is way more effective in terms of energy consumption
than the ensemble method, but has the disadvantage that it is only applicable
on fully-connected neural networks. This approach is applied on the problem of
air pollution inference and is compared to the ensemble method regarding the
quality of uncertainty in this work.

2.2.3 Comparison

For demonstration and comparison of the two methods, a one-dimensional toy
regression dataset is generated. Training samples are drawn from y = 5 sin(x)+ε
where ε ∼ N (0, 1). For the training set, samples with x ∈ [−8, 8] are generated,
for the testset, samples are in the range x ∈ [−16, 16]. In Figure 2.4, the two
methods are compared. Both models are able to estimate the mean in the range
where training data is available. However, in the range where no data is used
for training, the mean deviates a lot from the ground truth and the predicted
standard deviation corresponds to this uncertainty for both the dropout and
ensemble approach.
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(a) Ensemble method. (b) Dropout method.

Figure 2.4: Comparison of predictive uncertainty estimation of the ensemble and
dropout method on a toy dataset.



Chapter 3

Data aggregation and Model

In this chapter, the applied features, UFP data (Section 3.1) and models (Section
3.2) are described.
The same land use features that are used for the land-use regression model [2]
are used in this thesis (Subsection 3.1.1). These features are averaged values
that vary only spatially and include no temporal dependencies. In order to
capture the temporal dependencies of air pollution concentration, new traffic and
weather variables that are dynamic in time are aggregated (Subsection 3.1.2 and
Subsection 3.1.3). The aggregation of ultra fine particle (UFP) measurements is
described in Subsection 3.1.4.
In this thesis, long short-term memory networks (Subsection 3.2.1) and fully-
connected neural networks (Subsection 3.2.2) are used for predicting air pollution
concentration based on the features and UFP data. Moreover, this model is
changed such that it is able to provide an uncertainty measure of its predictions
(Subsection 3.2.3).

3.1 Features and UFP data

A high quality of air pollution measurements and the explanatory variables is a
requirement for a successful air pollution inference. In this thesis, three types
of features are used: the static land use and traffic data obtained from the LUR
model (F1), dynamic traffic features with spatial and temporal resolution (F2)
and timely resoluted weather features (F3).

3.1.1 F1: Static land use and traffic data

In Table 3.1, the features that are used for the land-use regression model intro-
duced in Section 1.2 are listed. As in Hasenfratz et al. [2], a high correlation
(R2 > 0.6) between population, floorlevel and heating is observed. Replacing
these variables by only one of them should not result in a decreased perfor-
mance.

16
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In the land-use regression model, two variables describing the traffic volume
are used. However, these values only describe a mean value and are not time-
resolved. To improve the model, time-resolved traffic features are needed. In the
next subsection, the extraction of some new traffic features is described.

Variable [unit] Variable [unit]

Population [inhabitants/ha] Industry [industry buildings/ha]
Building height [floor levels/ha] Heating [oil and gas heatings/ha]
Terrain elevation [average m/ha] Road type [busiest road type/ha]
Distance to next road [m] Distance to next large road [m]
Terrain slope [average degree/ha] Terrain aspect [average degree/ha]
Traffic volume [vehicles per day/ha] Distance to next traffic signal [m]

Table 3.1: Spatially resolved land use and traffic features [2].

3.1.2 F2: Dynamic traffic features

Traffic is one of the most significant sources that produce air pollutants. There-
fore, the quality of a model depends strongly on the exactness and resolution
of traffic features. In order to catch the spatial and timely dependencies of the
traffic, two data sources are used: the cantonal average daily traffic model of
Zurich and the data of several counting stations in the city of Zurich.

(a) Traffic network of Zurich and the grid con-
sidered in this thesis.

(b) Counting stations in the city of Zurich.

Figure 3.1: The two data sources used for extracting traffic features.

The cantonal average daily traffic model of the Canton Zurich yields a precise
model of daily traffic and public transport volume. For this work, the average
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daily traffic model (DTV1) and the daily traffic model for an average working
day (DWV2) is used. Figure 3.1a shows the traffic network and a grid that
includes 13200 cells of size 100m x 100m. Two numbers (one for each direction)
are assigned to each segment i. For street segments, this number represents the

number of vehicles (N
(i)
v ), while in public transport segments, it describes the

number of commuters (N
(i)
c ). In each grid cell, different features are extracted

for both the DTV and DWV:

• Sum of the length of a street segment multiplied by N
(i)
v (dtv1/dwv1)

• Maximum N
(i)
v over all street segments (dtv2/dwv2)

• Incoming N
(i)
v (dtv3/dwv3)

• Sum of the length of a public transport segment multiplied byN
(i)
c (dtv4/dwv4)

• Maximum N
(i)
c over all street segments (dtv5/dwv5)

• Incoming N
(i)
c (dtv6/dwv6)

In addition, the length of all segments (len streets) in a cell is summed and
used as the last of the 13 features in total.

As a second source of traffic information, the data of 85 vehicle counting
stations in Zurich is used (Figure 3.1b). The mean value of all these stations is
computed in hourly resolution for 2012 and 2013. Figure 3.2 shows a comparison
of the average traffic counts for a working day and a holiday or weekend day. As
can be expected, more vehicles are counted on working days in general. Further-
more, traffic load peaks in the morning and evening for working days, whereas
there is only one peak in non-working days.
In addition to the mean of the counting stations, a second feature is extracted
that combines the two data sources. The idea is to get a value for the number
of cars passing each cell for a specific day and hour. To reach that, the counting
station values are averaged over the year and multiplied by the incoming number
of cars in each cell from the DTV or DWV models.

Table 3.2 shows an overview of the aggregated traffic features. ’dtv*’ and
’dwv*’ describe the features extracted from the DTV and DWV model, ’cars1’
is the combination of DTV/DWV and the counting stations and ’cars2’ is the
mean extracted from all the counting stations.

In Figure 3.3, the correlation matrix of all the traffic features is shown, where
’traffic’ and ’traffic tot’ are the traffic features from the LUR model. The features
1-3 from DTV and DWV, which represent the features extracted from the street

1DTV: Durchschnittlicher Tagesverkehr
2DWV: Durchschnittlicher Werktagesverkehr
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(a) Working day. (b) Weekend or holiday.

Figure 3.2: Hourly mean of all the counting stations for a working day (left) or
a weekend or holiday (right).

Variable [unit] Variable [unit]

dtv1/dwv1 [vehicles·m/ha] dtv4/dwv4 [commuters·m/ha]
dtv2/dwv2 [vehicles/ha] dtv5/dwv5 [commuters/ha]
dtv3/dwv3 [vehicles/ha] dtv6/dwv6 [commuters/ha]
len streets [m/ha] cars 1 [vehicles/ha]
cars 2 [vehicles]

Table 3.2: Traffic features extracted from DTV, DWV and the counting stations.
’cars 1’ is spatially and timely resolved, ’cars 2’ is only timely resolved and the
others only spatially.

segments described above, highly correlate to each other and ’cars 1’. Similarly,
features dtv4/dwv4 to dtv6/dwv6 from these models also highly correlate to
each other, as they all represent some public transport feature. The effect of
replacing the high correlated features by only one of them is examined later on.

3.1.3 F3: Dynamic weather features

The concentration of air pollutants is highly influenced by meteorology. There
even are air quality forecasting models that only include weather data (e.g. [6]).
Therefore, it is inevitable to include meteorological features in order to push the
temporal resolution of air pollution inference.

The weather data of two meteorological stations located at Mythenquai and
Tiefenbrunnen are used. For temperature, humidity, wind chill, air pressure and
dew point, the mean between the two stations is computed. Because the data
of Mythenquai showed unrealistic wind measurements in some time ranges, the
data of Tiefenbrunnen is taken here. Rain and global radiance is only measured
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Figure 3.3: Correlation matrix of the traffic features.

in Mythenquai. In total, 11 weather features (Table 3.3) are extracted for every
10 minutes from April 2012 to March 2013.

Variable [unit] Variable [unit]

Temperature [◦C] Humidity [%]
Wind gust [m/s] Wind velocity [m/s]
Wind strength [bft] Wind direction [◦]
Wind chill [◦C] Air pressure [hPa]
Dew point [◦C] Rain [mm]
Global radiance [W/m2]

Table 3.3: Timely resolved (10 min) weather features.

In Figure 3.4, the correlations between each meteorological feature is shown.
As expected, all the features describing a temperature (temperature of the air,
wind chill and dew point) and all the wind features (wind gust, wind velocity and
wind strength) highly correlate with each other. In Subsection 4.2.2, the effect
of replacing these high-correlating features with only one of them is examined.
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Figure 3.4: Correlation matrix of the weather features.

3.1.4 UFP data

In most countries, air quality regulations only consider the mass of particulate
matter with a diameter of less than 10 µm (PM10) and 2.5µm (PM2.5). However,
studies have shown that ultrafine particles (particulate matter with diameter less
than 0.1 µm) are more toxic than larger particles [16]. In order to monitor con-
centrations of UFP, a mobile measurement system consisting of ten sensors on
top of trams collected over 75 million UFP measurements over a time period of
three years from April 2012 to May 2015.
UFP concentration is sampled every 50 ms and is aggregated to one sample for
every 5 s in order to reduce the amount of tramsmitted data. The timestamped
and geo-tagged measurements are calibrated and filtered in order to remove
faulty and unreliable measurements. A high spatial resolution is guaranteed by
dividing the city into grid cells of 100m x 100m and a good spatial coverage is
reached by the UFP measurements (Figure 3.5).
In this thesis, air pollution prediction is examined for various temporal resolu-
tions. For yearly to biweekly resolution, land use features F1 are assigned to the
averaged pollution concentration according to the location of the measurements.
The data from April 2012 to April 2013 is used for air pollution prediction of
daily to hourly resolution. For this purpose, UFP data and the timely dynamic
weather and traffic features are averaged over the given time range and all pre-
sented features are allocated to each averaged UFP concentration according to



3. Data aggregation and Model 22

the time and location.

Figure 3.5: Spatial coverage of Zurich by the mobile sensor network. [2]

3.2 Modeling methods

Artificial neural networks have shown to be usable for different tasks like speech
recognition, computer vision or medical diagnosis. They are able to approximate
an arbitrary function by learning from data and are often used to represent a
mathematical model. As introduced in 2.1, neural networks are also successfully
used for air pollution inference. In the next subsections, a short introduction in
long short-term memory networks (Subsection 3.2.1) and fully-connected neural
networks (Subsections 3.2.2 and 3.2.3) and their usage in this project is presented.

3.2.1 Long short-term memory

Recurrent neural networks (RNN) are a family of neural network that address
the issue of processing sequential data. Unlike traditional feedforward neural
networks, RNNs are able to learn a temporal context of input sequences. This is
achieved by using a loop structure (Figure 3.6a) where the output at a timestep
is used as an input to the next timestep.

Long short-term memory (LSTM) networks are a special kind of RNNs that
work better for most tasks as they learn much faster and solve the problem of
long-term dependencies [17]. They are widely used for numerous applications
like robot control, speech recognition or music compostion.
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LSTM

unit

(a) Loop structure of LSTM.

LSTM

unit

LSTM

unit

(b) Unrolled LSTM for two timesteps.

Figure 3.6: Loop structure and unrolled LSTM network.

In Figure 3.6b, the LSTM is shown when unrolled for two timesteps. This
network first takes x0 from the sequence and outputs c0, which is also the input
to the next time step together with x1. This process makes sure to remember
the temporal context of the sequences and can be continued for an arbitrarily
number of timesteps. However, only sequences of length two are used in this
project as the grid cells where longer time sequences of UFP measurements are
available is limited.

Two tests using an LSTM network are carried out. First, the usability
of LSTMs for air pollution forecasting based on the weather measurements is
checked. Given the meteorological conditions as well as the pollution concentra-
tion for the prior day, the pollution of the next day is predicted by the LSTM. In
a second experiment, the performance and predictions of using an LSTM with
all features as an input is compared to using a standard neural network with one
hidden layer (Subsection 4.2.1).

3.2.2 Neural network for air pollution prediction

Neural networks often consist of several layers with multiple neurons that are
connected by weights. If all the neurons from each layer are connected to each
neuron from the previous layer, the network is called fully-connected. In Figure
3.7, an example of a fully-connected neural network with two hidden layers, is
shown. A similar structure is used for air pollution inference in this project,
where F1 - F3 are the different feature types and c is the inferred pollution
concentration.

These networks are called feedforward neural networks or multilayer percep-
trons (MLPs), because information flows through the network from the input to
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Figure 3.7: Fully-connected neural network with two hidden layers used to model
the dependencies of features F1 - F3 and the pollution concentration c.

the output [18]. A function f(x) is approximated by chaining different functions.
For the example of the neural network with two hidden layers, f(x) is composed
of three functions (f(x) = f (3)(f (2)(f (1)(x)))). Here, f (1) is called the first layer,
f (2) the second layer and f (3) the output layer. In each layer, an activation
function is applied to the weighted inputs:

y = activation(W Tu + bias),

where activation is an element-wise activation function, W ∈ Rn×m is the
weight matrix, u ∈ Rn the input and y ∈ Rm the output from a layer. When
training the network, the weights and biases are adapted such that a specified cost
function is minimized for the training examples. A popular cost function that is
often used in neural networks is the mean squared error 1

n

∑n
i=1(ci−ĉi)2, where ci

is a training sample and ĉi are the estimations by the network. To minimize this
cost function, it is essential to numerically compute the gradient of the function,
which is done by the simple and popular back-propagation algorithm [18]. In
order for this back-propagation algorithm to converge, the input and output data
is standardized to have zero mean and unit variance.

In the case of air pollution inference, the goal is to find a function c = f(x)
which models the dependencies of the explanatory variables x (land use, traffic
and weather features) and the concentration c of air pollutants. The performance
of neural networks with one, two or three hidden layers and their combination
as an ensemble is evaluated in Section 4.2.2.
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3.2.3 Neural networks for probability distribution estimation

In order to get an uncertainty measure, the observed pollution concentration is
treated as a sample from a Gaussian distribution with mean µ(x) and variance
σ2(x) and the searched function is changed to a probabilistic predictive distri-
bution pθ(c|x). Instead of having only one output of the neural network, the
structure is altered such that it outputs both mean and variance of the Gaussian
distribution [19] (Figure 3.8). To enforce a positivity constraint on the variance,
this output is passed through the softplus function log(1 + exp(·)).
In this thesis, the deep ensemble [13] and dropout [15] approach (Subsections
2.2.1 and 2.2.2) are applied on air pollution inference, where the outputted vari-
ance σ2(x) is used as an uncertainty measure.

Input x

Hidden

Hidden Output

Figure 3.8: Fully-connected neural network with two hidden layers used to model
a predictive distribution pθ(c|x).

The results of the uncertainty prediction methods based on ensemble and
dropout methods are presented in Subsection 4.2.3. Furthermore, the empirical
variance of the outputted means of the ensemble members is tested as a third
uncertainty measure.



Chapter 4

Evaluation

In this chapter, the performance of neural networks for air pollution prediction
and the reliability of uncertainty estimations of proposed models in Section 3.2
are evaluated. Therefore, the quality of predicted UFP concentrations is tested
on the OpenSense dataset (Subsection 4.2.1 and 4.2.2) and is compared to the
genenerative additive model. The reliability of predictions at locations where no
measurements are obtained is examined by generating uncertainty maps (Sub-
section 4.2.3).
The used metrics and methods for evaluating the quality of predicted air pollu-
tion and uncertainty measures are presented in Section 4.1 and the results are
shown in Section 4.2.

4.1 Evaluation metrics and methods

Root-mean-square error, normalized root-mean-square error, coefficient of deter-
mination and factor of 2 measure are used for evaluating the performance of air
pollution inference (Subsection 4.1.1). For illustrating the quality of uncertainty
estimations, calibration curves, an evaluation in bins and rank histograms are
used (Subsection 4.1.2).

4.1.1 Metrics for the quality of inference

Four standard metrics are used to evaluate the quality of the predicted pollution
concentrations ĉi compared to the measured values ci. In order to get realiable
evalution metrics, a 10-fold cross-validation is applied, which is also described in
this subsection.

26
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Root-mean-square error (RMSE) and normalized root-mean-square
error (NRMSE)

Root-mean-square error is a measure for the differences between predicted and
measured values. The lower the RMSE is, the more accurate is the model.
However, this metric does not allow for a comparison between different datasets.
That’s why the normalized root-mean-square error (NRMSE) is computed in
addition to the RMSE. The RMSE normalized by the standard deviation of the
measurements (σc) yields the normalized RMSE, where c̄ is the mean of the
measured values.

RMSE =

√√√√ 1

N

N∑
i=1

(ci − ĉi)2

NRMSE =
RMSE

σc
=

√∑N
i=1(ci − ĉi)2√∑N
i=1(ci − c̄)2

Coefficient of determination (R2)

The coefficient of determination represents how well the predictions of a regres-
sion fit the measured data. The closer this value gets to 1, the better is the
fitting. R2 is defined by

R2 = 1−
∑N

i=1(ci − ĉi)2∑N
i=1(ci − c̄)2

Factor of 2 measure (FAC2)

Factor of 2 computes the fraction of the test data that satisfies:

0.5 ≤ ĉi
ci
≤ 2.0.

This corresponds to the fraction of the data that lie in the factor two area of a
scatter plot of the predictions against measurements.

10-fold cross-validation (CV)

As suggested in [2], a 10-fold cross-validation is performed for testing the model’s
ability to predict the air pollution concentration of new data. The original
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dataset is randomly partitioned into 10 equally-sized subsets, where one of these
subsets is retained for testing while the other 9 subsets are used as training data.
This process is repeated until every subset is used as test data once. In this way,
too optimistic results of only one simple train/test split can be avoided and the
skill of a model on unseen data can be estimated reliably.

4.1.2 Methods for the quality of uncertainty estimation

For evaluating the quality of the uncertainty prediction models, three evaluation
methods (calibration curves, rank histograms and evaluation in bins) are used.

Calibration curves

The first method is based on calibration curves, also called reliability diagrams
[15, 20]. A good predictive model should be well calibrated, which means that the
observed frequencies of samples that lie within a confidence interval should truth-
fully reflect this confidence interval (predicted frequency). In case of modelling
a Gaussian distribution, 68.3% of the samples should lie within the standard
deviation (68.3% confidence interval) of the predicted mean (µ±σ) for example.
Ideally, the observed frequencies perfectly matches the predicted frequencies,
which results in a diagonal calibration curve.
For a set of confidence intervals z = [10%, 20%, · · · , 80%, 90%], the fraction of
predictions where the true value lies within the bounds of the confidence interval
is computed and plotted against the value z. By considering these calibration
plots, it can be evaluated if predictions tend to over- or underestimate predictive
uncertainty. In Figure 4.1, the calibration plots of two different predictive mod-
els are shown. If a model tends to overestimate uncertainties (too high predicted
variances), more true values lie in lower confidence intervals which leads to cali-
bration curves that lie above the diagonal. Similarly, a calibration curve that lies
below the diagonal is a sign that a model tends to underestimate uncertainties
(too low variances are predicted).

Evaluation in bins

For evaluating the relationship between predictive uncertainty and absolute error
of a prediction, the samples are divided in ten bins of equal size. The samples
are sorted in increasing order regarding absolute error. The 10% of the samples
with the smallest absolute errors are placed in the first bin, the next 10% are
placed in the second bin and so on. The variances are scaled such that they are
in a range from 0 to 1 and the mean of these scaled variances is computed in
each bin. To show the raise of uncertainty from each bin compared to bin 1,
the computed mean of bin 1 is subtracted. Like this, the raise in variance with
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Figure 4.1: Example of calibration curves of overly confident predictions (orange)
and overly cautious predictions (blue).

increasing absolute error is illustrated to see if samples with high absolute error
also yield a high uncertainty value.

Rank histogram

Rank histograms are used to visualize the characteristics of an ensemble (Sub-
section 2.2.1). A rank indicates where a measured value lies compared to the
predictions of the ensemble members. Rank (k + 1) is assigned to a sample if k
ensemble members predict a value lower than the true value. A rank histogram
shows how many times each rank occurs. Ideally, this histogram is flat, meaning
that the frequency of each rank is approximately the same. However, if there is
a peak in low ranks, there is probably a high bias in the model as the observed
value is too commonly lower than most of the ensemble predictions. If there are
some low and some high biases or if the ensemble does not spread enough, more
low and high ranks occur resulting in an U-shaped histogram.

4.2 Results

In this section, the results of the experiments are presented. First, the perfor-
mance of an LSTM network for air pollution forecasting is compared with a
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standard neural network (Subsection 4.2.1).
In Subsection 4.2.2, the fully-connected neural network model is compared to
the land-use regression model in yearly to biweekly resolution. Furthermore, the
neural network with the new weather and traffic features is tested for daily to
hourly resolution and is compared to a generalized additive model (GAM) and
a linear regression model for daily resolution. In addition, a sensitivity analysis
on different feature sets is carried out.
The results of the tests with uncertainty estimations are presented in Subsec-
tion 4.2.3. Here, ensemble and dropout methods are compared and the spatial
and temporal dependency as well as the dependency on features of the predicted
uncertainties is examined.

4.2.1 Air pollution forecasting

The LSTM network for two timesteps introduced in Subsection 3.2.1 is tested
using the daily means of pollution concentration and features. Pollution data is
extracted from each grid cell where measurement data is available for two succes-
sive days. This dataset is scaled to a range between zero and one and is randomly
splitted into training and test data. An LSTM with 10 units is trained for 1000
epochs and the batchsize is chosen as 128. The LSTM using only the weather
features showed a decent performance for air pollution forecasting. (Table 4.1).
In a second test, the performance of LSTM with 10 units and a fully-connected
neural network with one hidden layer of 52 nodes is tested using all of the fea-
tures. Standard scaling is applied on features and pollution concentrations before
training the networks for 1000 epochs. Both networks are evaluated on the same
test set and it is observed that the absolute errors of the LSTM highly correlate
to the errors of the NN. Samples predicted badly by the LSTM are also poorly
predicted by the NN and vice versa. The final error metrics of the two tests are
described in Table 4.1.

RMSE NRMSE R2 FAC2

LSTM, weather features 3648.447 0.549 0.699 98.196

LSTM, all features 3455.779 0.518 0.731 98.261

NN, all features 3294.303 0.494 0.756 98.379

Table 4.1: Air pollution forecasting using an LSTM compared with NN approach.

A better performance is reached by a fully-connected neural network com-
pared to a long short-term memory network. Furthermore, the LSTM is highly
restricted in its usage since a prediction is only possible if a measurement from
the day before is available. That is why only standard neural networks are used
for further evaluation.
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4.2.2 Air pollution inference

Yearly to biweekly resolution - comparison with LUR model

The neural network (NN) approach presented in Subsection 3.2.2 is first com-
pared to the land-use regression model using only the static landuse data F1 as
input features. A small neural network of one hidden layer and 16 nodes is used
and the comparison is carried out for yearly, seasonal, monthly and biweekly
timescales.
In Figure 4.2, the results of a 10-fold CV are shown in a boxplot for the error
metrics RMSE, R2. The orange middle line of each boxplots shows the median
of the error metrics and the box represents 50% of the data by extending from
the lower quartile to the upper quartile. The length of the whiskers is restricted
to 150% of the length of the box but ends if the maximal or minimal value
lies in this range. Outliers are marked by circles. For FAC2, the mean of the
cross-validation results is plotted because these values do not differ much and a
boxplot is not illustrative.
The neural network model reached a similar performance as the land-use regres-
sion approach for the tested time scales. As for the LUR, the performance of the
neural network model decreases when including more than 200 grid cells (Figure
4.3). This is due to the fact that the grid cells with a higher number of measure-
ments are favored. Therefore, the number of cells with an unreliable average cell
concentration increases when considering more cells as the calculated means are
more and more based on a limited number of measurements.
Although the performance of these two models is similar, the generated maps dif-
fer significantly (Figure 4.4). The neural network predicts a very high pollution
concentration at the corners of the considered region. This could be because of
the small amount of training data (only 200 cells) and the little spread of features
like the distance to roads in the training set. Since the measurements are taken
by trams, the training data only covers points where the distance to roads is low.
The neural network approch with that limited amount of training samples seems
to struggle to predict the air pollution at locations where the input features differ
a lot from features values in the training set. This inability of extrapolation is
often observed with neural networks, which results in bad predictions outside of
the range spanned by the training samples. As shown in Subsection 2.2.3, even a
simple sine function could not be modeled outside the training range by a neural
network model.

Daily resolution - comparison of different NN structures

In order to test the neural network model for higher temporal resolution, the
timely resolved weather (F2) and traffic (F3) features are added. Here, all the
features are allocated to the datapoints from April 2012 to March 2013 where
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the daily mean is generated from over 50 samples. This dataset of 44469 samples
is used for training and testing different structures of the neural network.
In Figure 4.5, the results of a 10-fold cross-validation of various neural networks
are shown, where the numbers in brackets describe the number of nodes in each
hidden layer of the network. All the models performed very similar regarding all
the error metrics and making the network deeper did not necessarily result in a
significantly improved performance.

Daily resolution - comparison of different models

Figure 4.6 shows the comparison of a single neural network consisting of 80
nodes in the first layer and 20 nodes in the second layer ([80, 20]) with a lin-
ear regression model, a generalized additive model (GAM) and an ensemble of
neural network. A linear link function is chosen for GAM instead of the loga-
rithmic function as used in the land use regression model (Section 1.2) because
the standardized pollution concentrations can also include negative values. The
ensemble of neural networks averages the predictions of 24 individually trained
neural network models (8 models for 1, 2 or 3 hidden layers).
The evaluation plots (Figure 4.6) show that the ensemble of neural networks
outperformed the single neural network model for all the evaluation metrics. A
good performance is also reached by GAM, whereas the linear regression is too
limited for modelling the non-linear dependencies of the features and air pollu-
tion concentration.
In Figure 4.7, the maps generated by the ensemble for one day in May, August,
November and February are shown. It is observed that spatial differences are
similar for each map, whereas predicted pollution levels are much higher in win-
ter (February) compared to summer (August).

Daily resolution - importance of features

The performance of individual features and their combination is shown in Table
4.2. For F4, the highly correlated features (Section 3.1) are removed and replaced
by only one of them. A neural network with one hidden layer and 100 nodes
is trained for each feature set and evaluated applying a 10-fold CV. The entries
in the table correspond to the mean of the cross-validation results. They show
that adding weather features results in a considerable improvement of the model.
In general, adding a feature set into the model brings an improvement in each
case, adding traffic features results in the lowest improvement however. Further-
more, performance is not decreased significantly when removing high correlated
features.
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Features RMSE NRMSE R2 FAC2

F1 6058.926 0.894 0.2 92.469

F2 4502.875 0.664 0.558 96.726

F3 5919.972 0.874 0.237 92.957

F1 + F2 3227.12 0.476 0.773 98.309

F1 + F3 5869.625 0.866 0.25 93.587

F2 + F3 3734.033 0.551 0.696 97.888

F1 + F2 + F3 3160.959 0.466 0.782 98.543

F4 3185.045 0.47 0.779 98.426

Table 4.2: Results related to land use (F1), weather (F2) and traffic features
(F3).

Daily to hourly resolution

When increasing the timely resolution of the model, the problem of air pollution
inference gets more complex. In order to test the performance of the neural
network for up to hourly time scales, the pollution data and features are averaged
over 18 hours (6-23), 9 hours (6-14, 15-23), 6 hours (6-11, 12-17, 18-23), 3 hours
(6-8, ..., 21-23), 2 hours (6-7, ..., 22-23) and 1 hour. As for the daily dataset,
only cells where pollution data is averaged over at least 50 cells is taken for
training a neural network with one hidden layer of 60 nodes. The results of a 10-
fold cross-validation is shown in Figure 4.8. The figure shows that performance
decreases continuously when increasing the timely resolution. This is due to
the lower amount of samples considered for aggregating a mean pollution and
feature value, which gives a higher weight to outliers. Furthermore, it is difficult
to estimate a pollution concentration of higher resolution because of increased
fluctuations in the true values.



4. Evaluation 34

(a) RMSE.

(b) R2.

(c) Factor of 2.

Figure 4.2: Comparison of the neural network approach with the generalized
additive model.
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(a) RMSE.

(b) R2.

(c) Factor of 2.

Figure 4.3: Comparison of the yearly model with 50-1400 grid cells.
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(a) GAM. (b) NN.

Figure 4.4: Air pollution maps of the month August generated by GAM and
NN.

(a) RMSE. (b) Normalized RMSE.

(c) R2. (d) Factor of 2.

Figure 4.5: Comparison of different structures of the neural network with daily
resolution.
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(a) RMSE. (b) Normalized RMSE.

(c) R2. (d) Factor of 2.

Figure 4.6: Comparison of different structures of the neural network with daily
resolution.
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(a) May. (b) August.

(c) November. (d) February.

Figure 4.7: Ultra-fine particle maps for one day in May, August, November and
February.
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(a) RMSE. (b) Normalized RMSE.

(c) R2. (d) Factor of 2.

Figure 4.8: Evaluation of daily to hourly time scales.
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4.2.3 Uncertainty estimation

In this subsection, the quality of the uncertainty estimation models is discussed.
Furthermore, the spatial and temporal dependencies as well as the feature de-
pendencies of uncertainty maps are evaluated in a sensitivity analysis. For each
evaluation, a testset is extracted considering only grid cells with a distance of at
least 420 meters from each other.

Quality of uncertainty estimation models

For estimating the quality of the uncertainty of the dropout (Subsection 2.2.2)
and ensemble (Subsection 2.2.1) models presented, calibration curves, rank his-
tograms and a bin evaluation are used. The dropout approach is tested using a
Monte Carlo estimation with M = 20 (RDeepSense-MC20) and using the pro-
posed efficient variation (RDeepSense). For the ensemble approach, 20 neural
networks are trained independently and the variance of the mixture of Gaus-
sians (DeepEnsembles-20) and the empirical variance of the outputted means
(EmpiricalVariance-20) is taken as an uncertainty measure. For both methods,
a neural network with two hidden layers of 50 nodes each is trained on the daily
resoluted dataset for 5000 epochs. A dropout rate of 80% is chosen and the tune
parameter for the loss function in RDeepSense is chosen such that it consists
of 60% mean square error and 40% negative log-likelihood. The geographically
spreaded testset is used to produce calibration curves, evaluation in bins and
rank histograms (Figure 4.9).
The calibration curves show that both RDeepSense-MC20 and DeepEnsembles-
20 are well calibrated, while RDeepSense and EmpiricalVariance-20 tend to un-
derestimate uncertainty predictions. In average, all the models output a higher
variance if a higher absolute error is made when predicting the pollution concen-
tration of a sample. The predicted variance of the ensemble method shows the
biggest increase while there is only a small increase of the empirical variance.
A U-shaped rank histogram is observed for both the ensemble and the dropout
model. This could be due to some low and some high biases in the models or the
fact that the ensemble does not spread enough. However, the probability dis-
tribution of the pollution concentration is not well represented by the predicted
means of the ensemble or dropout members.
In Figure 4.10, the generated pollution and uncertainty maps of these approaches
are shown, where the predicted variance is thresholded at 1.5. The structure of
the uncertainty maps of DeepEnsembles-20 and EmpiricalVariance-20 are sim-
ilar, but lower variances are predicted by the latter. As expected from the
calibration curves, the empirical variance underestimates the uncertainty. Even
lower variances are predicted by RDeepSense and a similar structure as in the
ensemble maps is observed for the well calibrated RDeepSense-MC20.
Because of the bad performance regarding the error metrics of RDeepSense and
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the poor calibration of this approach as well as EmpiricalVariance-20, only the
other two models are used for further evaluation.

Sensitivity analysis - spatial dependencies

In order to investigate the effect on the uncertainty of using training datasets
with different spatial distributions, three datasets are aggregated which vary in
the spatial spread of the samples (Figure 4.11). Two stationary datasets are
aggregated considering only grid cells that are at least 300 meters or 2000 me-
ters away from each other. The third dataset contains only grid cells that are
at most 1200 meters away from the city center. In Table 4.3, the error met-
rics of RDeepSense-MC20 and DeepEnsembles evaluated on the geographically
spreaded testset are presented. The neural networks trained only on points with
2000 meters distance perform poorly. Moreover, both models also struggle when
considering only central datapoints. Unfortunately, the calibration plots show
that the uncertainty metrics are also less reliable when using the training sets
that result in poor performance (Figure 4.12). However, the bin plots (4.13)
show that variance is still increasing with absolute error. As DeepEnsembles-20
achieved the most consistent performance, the uncertainty maps for the different
training sets are shown for this approach in Figure 4.14.
At first glance, the network that is only trained on datapoints that are at least
two kilometers away from each other should be the best as it shows the biggest
region with a low uncertainty. Anyway, the model tends to underestimate un-
certainty with this training set as can be seen in the calibration plot.
The network that is only trained on central data shows a higher uncertainty for
outer regions in general. Furthermore, there are some lines (streets) where the
model predicts a high uncertainty.

Training datasets
All 300m 2000m central

RDeepSense-MC20

RMSE 4370.59 4731.21 9781.83 5911.89
NRMSE 0.62 0.675 1.396 0.844

R2 0.61 0.544 -0.95 0.288
FAC2 96.16 95.69 76.29 90.61

DeepEnsembles-20

RMSE 4061.58 4278.85 5694.48 4821.51
NRMSE 0.58 0.611 0.813 0.688

R2 0.66 0.627 0.339 0.526
FAC2 96.82 96.61 92.77 95.49

Table 4.3: Error metrics of the dropout and ensemble approach with spatially
different training sets.
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Sensitivity analysis - feature dependencies

In order to investigate the effect of different features on the uncertainty, features
that highly correlate to the pollution concentration are removed. The following
features are removed from the dataset:

a) distance to traffic features

b) wind velocity, wind gust and wind strength

c) all traffic-related features

Performance only decreased significantly when removing all traffic-related
features (Table 4.4). For all the different feature sets, DeepEnsemble-20 cali-
brates well. The generated air pollution concentration and the uncertainty maps
that go with them are shown in Figure 4.15.
Removing the wind features does not influence the uncertainty maps much as
these aggregated features do not differ spatially. However, removing spatially
resoluted features like traffic can lead to a remarkable change in both pollution
and uncertainty maps. When the ’distance of traffic’ features are removed, air
pollution maps do not change much. However, at some regions, the variance
is lowered significantly compared to the uncertainty maps generated using all
features. Apparently, even if some features do not have a big impact on the
predicted pollution concentration, they can lead to a very high uncertainty at
locations where the feature values differ from the training values considerably.

Feature sets
a) b) c)

DeepEnsembles-20

RMSE 4042.06 4096.67 4631.889
NRMSE 0.577 0.585 0.661

R2 0.667 0.658 0.563
FAC2 96.91 96.736 95.304

Table 4.4: Error metrics of the ensemble approach with different features used
for training.

Sensitivity analysis - temporal dependencies

In this part, the temporal dependencies of the uncertainty of air pollution in-
ference is investigated. Here, the models are trained and tested on the data of
only one month. In most cases, NRMSE and R2 of training on a monthly basis
are worse than if the dataset of one whole year is used for training (Table 4.5).
However for November 2012, a lower NRMSE and higher R2 is achieved, and at
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Training datasets
May 12 August 12 November 12 February 13

DeepEnsembles-20

RMSE 3067.543 3290.389 3857.422 5547.23
NRMSE 0.695 0.601 0.544 0.601

R2 0.516 0.639 0.704 0.638
FAC2 97.698 98.162 96.226 95.918

Table 4.5: Error metrics of the ensemble approach trained on different months.

the same time, the lowest uncertainty is reached for this month (Figure 4.16).
The model seems to yield better and more certain air pollution predictions for
the month of November compared to the other months.
In order to investigate the uncertainty development over three years, some weather
features (wind gust, wind velocity, wind chill, air pressure, dew point and rain)
and the features extracted from the vehicle counting cells are left out because
these features are only extracted from April 2012 to March 2013. The daily air
pollution and uncertainty maps generated for one day in May 2012, 2013 and
2014 are shown in Figure 4.17. There is a high temporal dependency in uncer-
tainty estimations. However, no clear tendency is observed that air pollution
predictions get more uncertain when using pollution data from older sensors.
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(a) Calibration curves. (b) Mean of absolute error in bins.

(c) Mean of variance in bins. (d) Rank histogram.

Figure 4.9: Evaluation of uncertainty estimations for the dropout and ensemble
models.
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(a) DeepEnsembles-20.

(b) EmpiricalVariance-20.

(c) RDeepSense.

(d) RDeepSense-MC20.

Figure 4.10: Air pollution (left) and uncertainty maps (right) of ensemble and
dropout models.
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(a) All. (b) Stationary (300m). (c) Stationary (2000m). (d) Central data.

Figure 4.11: Overview of the datasets used for training (yellow).

(a) Stationary (2000m). (b) Central data.

Figure 4.12: Calibration curves using the spatially different training datasets.

(a) Stationary (2000m). (b) Central data.

Figure 4.13: Bin evaluation using the spatially different training datasets.
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(a) All. (b) Stationary (300m). (c) Stationary (2000m). (d) Central data.

Figure 4.14: Uncertainty maps generated by DeepEnsembles-20 for spatially
different training datasets.

(a) Remove distance of traffic features.

(b) Remove wind velocity, wind gust and wind strength.

(c) Remove all traffic-related features.

Figure 4.15: Comparison of air pollution maps (left) and uncertainty maps (right)
of DeepEnsembles-20 using different sets of features.



4. Evaluation 48

(a) May 2012. (b) August 2012. (c) November 2012. (d) February 2013.

Figure 4.16: Comparison of uncertainty maps of DeepEnsembles-20 trained on
different months.

(a) May 2012.

(b) May 2013.

(c) May 2014.

Figure 4.17: Comparison of air pollution maps (left) and uncertainty maps (right)
of DeepEnsembles-20 trained on the daily data of one month.



Chapter 5

Conclusion

5.1 Discussion

In this thesis, an air pollution map generation method based on neural net-
works is presented. Air quality in the city of Zurich is inferred using ultra fine
particle measurements recorded by a mobile sensor network and three types of
features (land use, weather and traffic). The dependencies between features and
air pollution is learned by training a neural network on the measurements of the
sensor network. At locations and times where no measurements are available,
the trained network is used to extrapolate the air pollution concentration for the
whole area of Zurich. Additionally, approaches that provide an uncertainty mea-
sure of the estimated air pollution concentration are evaluated and uncertainty
maps are generated.

The comparison with the land use regression model showed that a neural
network is a good alternative for modelling the dependencies of land use fea-
tures and air pollution concentration. Even a simple neural network reached a
similar performance as the land-use regression model. In order to increase the
temporal resolution, timely resolved weather and traffic features are added to
the land use features and a daily resolved dataset including air pollution and
feature data from one year is aggregated. An ensemble of neural networks out-
performed single neural networks as well as a generalized additive model and a
linear regression model. Weather features showed to be important for estimating
air pollution, whereas traffic features showed to be less important than land use
and weather features. A good inference of ultra fine particles could be reached
up to 6-hourly resolution. However, for higher temporal resolutions, the model
performance drops to an unsatisfactory level.
Even though the neural network model showed improved error metrics compared
to GAM, the inspection of the generated air pollution maps uncovers the dis-
advantage of this model. Unrealistic pollution concentrations are predicted at
locations where the input features differ significantly from the feature values of
the training dataset. The error metrics are not able to capture this restriction
because the test dataset contains only points on the tram network.

49
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A well calibrated uncertainty estimation is provided by the ensemble and dropout
approaches. The U-shaped rank histograms showed that the probability distri-
bution of the pollution concentration is not well represented by the ensemble and
dropout members. However, a tendency that estimated variance increases with
absolute error is observed.
The generated uncertainty maps show that neural networks are uncertain in its
air pollution predictions at locations that have a high distance to the training
data. More precisely, the uncertainty is high at grid cells where a feature value
differs a lot from the feature values that are feeded into the neural network.
This behaviour was already observed by the generated air pollution maps and is
confirmed by the uncertainty maps. Uncertainty predictions are highly sensitive
regarding the removal of spatially resolved features. Removing such features
may lower the predicted uncertainty by the network, but will not make the in-
ferred air pollution concentration better, as the effects of these features on the
air pollution concentration are not considered anymore.

To sum up, the neural network approach performed good for estimating
air pollution at points with similar environmental conditions like the original
dataset. The temporal resolution is captured well by the neural network ap-
proach because the full range of timely resolved weather and traffic values are
contained in the training set. However, this approach is not able to accurately ex-
trapolate air pollution concentrations at other locations because the features are
too divergent. In this case of having air pollution measurements from a mobile
tram network, a neural network is only promising for high quality air pollution
predictions at locations similar to the samples in the training data. However, the
ability of extrapolating air pollution concentrations at other locations is doubted.
The generalized additive model from the land use regression model showed more
promising abilities for extrapolation, but no information about the uncertainty
of the predictions is provided there.

5.2 Future work

An improvement of the temporal resolution of proposed models could be reached
by aggregating more timely resolved features like human mobility or traffic fea-
tures that include the speed of vehicles [8]. In order to improve the spatial
resolution, the inputs to the neural network have to be in a similar range at all
locations of the map. Therefore, a preprocessing of the features is inevitable.
One approach could be to compute correlations between the features and use
them as input to the neural network [8]. A co-training approach of using neural
networks for timely resolved features and a GAM for spatially resolved features
could reach a better performance for extrapolating UFP concentrations.

Only a tendency of correlation between predicted variance and absolute error
is observed by the uncertainty estimation approaches. A low predicted variance
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tends to result in a low absolute error, but a high error can be present for
individual samples. This limits the usage of these uncertainty methods, as the
measures are not trustworthy for single predictions. However, both approaches
could be used to detect out-of-distribution examples when using a neural network
model.



Appendix A

Reconstruction of the results

A.1 Dataset aggregation

New weather data and traffic data

• In data/weather data/, the weather data is stored in 10 minutes and
daily resolution. weather daily.npy and weather hourly.npy are gener-
ated by python weather hourly.py and python weather daily.py and
contain the daily or hourly averages.

• In data/traffic data/Gesamtverkehrsmodelle/gvm.py, the DTV and
DWV are in stored .mat format.

• The data of the vehicle counting cells is prepared in data/traffic counts.

py

Aggregation of daily to hourly datasets

For the evaluation of daily to hourly temporal resolution, the features are allo-
cated to the pollution data of one year by dataset aggregation/add features

daily.py and dataset aggreagation/add features hourly.py.

In Table A.1 and A.2, the structure of the daily (daily 50 allfeatures2.npy)
and hourly (Nhourly allfeatures50.npy) datasets are shown. Here, x and y
are the coordinates of the grid cell, ci is the pollution concentration and fea-
tures are the allocated land use, traffic and weather features. The order of the
allocated features is shown in Table A.3.

day x y ci features

Table A.1: Columns of daily dataset
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day hour x y ci features

Table A.2: Columns of N-hourly dataset

0 population 16 - 21 dtv 1-6

1 industry 22 len streets

2 floorlevel 23 - 28 dwv 1-6

3 heating 29 temperature

4 elevation 30 humidity

5 streetsize 31 wind gust

6 signal dist 32 wind velocity

7 street dist 33 wind strength

8 slope 34 wind direction

9 exp slope 35 wind chill

10 traffic 36 air pressure

11 streetdist m 37 dew point

12 streetdist l 38 rain

13 trafficdist l 39 global radiance

14 trafficdist h 40 cars 1

15 traffic tot 41 cars 2

Table A.3: Order of the features in the dataset

A.2 LSTM results

Forecasting based on weather features

The implementation of this experiment is based on this example. and is located
in lstm nn/. By running python lstm.py, the error metrics are printed.

Comparison of LSTM with the fully-connected neural network

The code for the comparison of the LSTM with the fully-connected neural net-
work is also stored in lstm nn/.

1. adjust parameters in config2.yaml: set model and job to ’both’ for a
comparison of NN and LSTM.

2. run python daily.py, a directory including the results is created in
results/

https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
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3. outputs: summary.csv (error metrics of LSTM and NN), y lstm nn0.png

(plot of absolute error of NN vs absolute error of LSTM)

A.3 NN results

The experiments for yearly to biweekly resolution are stored in nn infer1/ and
the code for daily to hourly resolution can be found in nn infer2/.

Yearly to biweekly resolution

1. adjust parameters in config.yaml, choose data (yearly, seasonal, monthly
or biweekly) in datadir (air pollution data with features)

2. for generating maps:

(a) set job to ’maps’

(b) run python run.py

(c) plot outputted maps (nn model pm ha ext ***.mat) with matlab func-
tion plot model map.m

for CV tests:

(a) set job to ’CV test’

(b) run python run.py

(c) for plotting CV results: results nngam.py

Daily to hourly resolution

For training individual models:

1. adjust parameters in config nn.yaml:

(a) dataset: ../data/daily 50 allfeatures2.npy for daily resolution,
../data/*hourly allfeatures50.npy for hourly resolutions

(b) layers: choose structure of nn models

(c) model: ’nn’ or ’gam’

(d) job: ’onetest’ or ’CV test’

(e) remove features: set to True and specify indices in features if
features should be removed

2. run python train nn.py
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3. plot CV results with results daily.py or results hourly.py

For combining the models to an ensemble:

1. adjust parameters in config ensemble.yaml:

(a) models dir: path where the trained models are stored

(b) job: ’onetest’ or ’CV test’, choose ’onetest’ for generating pol-
lution maps

2. run python ensemble.py

A.4 Uncertainty results

The implementation of the uncertainty methods is based on this implementation
and is located in ’nn uncertainty/’.
To train and test both ensemble and dropout methods, execute python train.py

--args ARGVALUE or python test.py --args ARGVALUE, and adjust desired ar-
guments (Table A.4).

Remarks:

• for feature evaluation (preproc mode 4), make sure to adapt the first entry
of args.sizes in main() and the specify features that should be removed
in utils.py

• for monthly training and testing (preproc mode 5), make sure to adapt
month and year in utils.py.

• trained models are stored in nn uncertainty/euler results/sensitivi

ty analysis/

• for testing, specify path of trained models in main() and make sure to use
the same args as trained models

• change from DataLoader AirPollutionDaily() to DataLoader AirPollut

ionDaily temporal() for monthly evaluation after April 2013

https://github.com/vvanirudh/deep-ensembles-uncertainty
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args ARGVALUE

ensemble size Size of ensemble (default: 20)

epochs Number of epochs for training (default: 5000)

batch size Size of batch (default: 50)

epsilon Epsilon for adversarial input perturbation for ensemble
method (default: 0.02)

alpha Trade off parameter for likelihood score and adversarial
training for ensemble method (default: 0.5)

loss alpha Trade off parameter for MSE and NLL loss of dropout ap-
proach (default: 0.6)

keep prob Keep probability for dropout (default: 0.8)

preproc mode Specify preprocessing of dataset (default: 0)
0: no preprocessing
1: PCA
2: stationary dataset
3: central dataset
4: remove features
5: train/test on month

distance Distance or range of training samples (default: 2000)
preproc mode 2: specifies distance between training samples
preproc mode 3: specifies range from center of training sam-
ples

Table A.4: Arguments for train.py and test.py
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