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Abstract

Bitcoin is meant to offer a payment system where the users are custo-
dians of their funds instead of entrusting a trusted financial institution.
The limited transaction throughput of such permissionless blockchains,
however, results for example in volatile transaction prices that hardly
fit into traditional service level agreements required by professional
institutions and cannot accommodate micro-transactions.

This work presents a novel non-custodial 2nd-layer financial interme-
diary solution secure against double-spending that guarantees users
control of funds through leveraging a smart contract enabled decentral-
ized blockchain ledger as a means of dispute resolution. Two-party
payment channels networks have been proposed as building blocks for
trust-free payments that do not exhaust the resources of the blockchain;
however, they bear multiple fundamental limitations. NOCUST is a
specification for secure N-party payment hubs with improved transac-
tion utility, cheaper operational costs and leaner user enrollment.
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Chapter 1

Introduction

Since the beginning of centralized banking in Mesopotamia [26], finance in-
termediaries evolved as middlemen between, e.g. parties that have surplus
capital and others that desire access to liquid funds. Such finance interme-
diaries traditionally act as custodians, i.e., they (temporarily) possess the
transmitted funds, and therefore are entrusted with enforcing correct mone-
tary policy.

While the emergence of decentralized ledgers such as Bitcoin has portrayed
a mechanism of performing financial transactions without a centralized in-
termediary, low-throughput and privacy constraints are fundamentally hin-
dering the practical use of such ledgers. In particular the volatility of transac-
tion fees do not align with the business needs for Service Level Agreements
(SLA), such as a guaranteed transaction throughput and high availability of
the financial intermediary, while small value transfers (micro-transactions)
are impractically expensive.

To improve transaction utility, different classes of blockchain scaling solu-
tions are being pursued. Alternative consensus mechanisms [18, 11, 28, 20]
typically introduce different trust assumptions, sharding [21, 12] attempts to
partition the network into smaller shards that reach faster consensus, while
second layer payment channel scaling solutions [30, 25, 3, 31] reduce the
load on the blockchain ledger by performing operations off-chain securely.

Two-party payment channels establish a direct peer-to-peer payment medium
between two parties, where individual transactions on their privately main-
tained two-party ledger are not written to the blockchain, while, at any given
time, both parties are guaranteed to be able to claim their legitimate funds
in the global blockchain. Linked payments across a chain of payment chan-
nels are transmitted across two-party payment channel networks [30, 3] and
allow performing payments between parties that are not directly connected
by a payment channel. Numerous contributions address the performance
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1. Introduction

characteristics of payment networks [25, 31, 17, 19].

However, two-party payment channel networks face multiple fundamental
flaws: (i) two-party payment channel based hubs would require insurmount-
able amounts of frozen collateral, (ii) channel establishment requires an ex-
pensive on-chain transaction, (iii) two-party payment channels rely on com-
plex routing topologies which need to be setup and maintained, (iv) funds
allocated to a payment channel are typically bound between two parties
and can only be transferred further over fee-contingent routes, (v) current
payment channels require always-online observers to deter potential misbe-
haviour of the involved parties.

This work In this work, we propose a novel off-chain payment hub con-
struction named NOCUST, which allows the operation of a non-custodial fi-
nance intermediary, that by design can achieve the same transaction through-
put as traditional custodians. A user can open a payment channel directly
with a NOCUST hub off-chain, foregoing the need for a costly on-chain
channel initialization transaction. NOCUST allows a set of participants to se-
curely transact over a single payment hub — their allocated funds can there-
fore be used freely among the members of the hub. NOCUST’s structure
alleviates the burden on the off-chain network to route payments, while mul-
tiple NOCUST hubs can be interconnected e.g. over traditional two-party
payment channels with fairly static and long-lived peering agreements.

Defining transaction finality as the point at which a transfer is irreversible
on-chain, we demonstrate how NOCUST achieves delayed finality after a
disputable time window, and show how the hub operator can choose to
stake an amount of collateral anywhere between zero and the transaction
volume during the disputable time window as a trust model parameter that
completely eliminates ephemeral counter-party risk if desired. We argue
that for many real-world applications, a certain degree of reliability on the
system of the hub operator is sensible, because the hub’s smart contract
would seize to function if its integrity is not provable, effectively ruining the
hub operator’s business.

Contrary to traditional payment channel networks, we show how a NO-
CUST payment hub can easily manage its collateral in bulk, significantly
reducing the operating costs of hub payment channels. The main contribu-
tions of our work are as follows:

• We provide a novel payment hub construction NOCUST for off blockchain
payments that provides N-party off-chain payment channels where we
introduce a novel commitment scheme to account for user’s balances.

• Depending on how trustworthy the payment hub is, the hub either re-
quires no additional locked up funds per additional user or a progres-
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sive amount of collateral, capped at the respective transaction volume
of a disputable time window. We show how this collateral can be man-
aged efficiently in bulk, as opposed to traditional payment channels.

• Allocated funds of a user within a payment hub can be used to pay
any other member of the payment hub. This significantly reduces the
routing and network complexity of existing payment channel designs.

• We show how users of a payment hub can securely maintain custody
of their funds, even in the absence of the hub’s availability or under its
adversarial behavior.

The remainder of this thesis is organized as follows. In Chapter 2, we pro-
vide the necessary background and related work overview on permission-
less blockchains and payment channel networks. In Chapter 3 we present
the NOCUST architecture, while we analyze its security and privacy in Chap-
ter 4. We evaluate NOCUST in terms of its usability and practicality in Chap-
ter 5. In Chapter 6 we outline possible avenues for future work on NOCUST,
and lastly, we conclude in Chapter 7.
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Chapter 2

Background and Related Work

In this chapter, we provide the necessary background on permissionless
blockchains such as Bitcoin and Ethereum, and discuss existing payment
channel networks.

2.1 Decentralized Ledgers

Bitcoin [27] allows mutually mistrusting peers to trade, without relying on
a centralized trusted third party. Inspired by Bitcoin, other blockchains sur-
faced, e.g., Ethereum [34] which extends Bitcoin’s transaction language to
a Turing-complete programming language to ease the development of so-
called smart contracts. We refer the reader to related work [5] for more
in-depth background on decentralized ledgers.

The blockchain’s primary intention is to provide a time stamping service
that can act as an electronic payment solution which solves the double-
spending problem. That is the problem of spending an electronic coin multi-
ple times. The majority of the existing blockchains rely on a so-called Proof of
Work (PoW) [9, 4], which is a computationally expensive puzzle and allows
for a permissionless blockchain operation - i.e. any peer can join and leave
the network at any time.

The central costs associated to permissionless blockchains stems from the
requirement that all peers are required to be made aware of all transactions
in the network to not be vulnerable to double-spending. Bitcoin currently
only supports up to about 10 transactions per second [6]. This throughput is
unlikely to grow for a single consolidated network beyond 100 transactions
per second (assuming the same underlying Internet topology) with simple
re-parametrization [13].
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2. Background and Related Work

2.2 Two-party Payment Channels

Two-party payment channels establish direct peer-to-peer payment channels
between two parties. A payment channel can be seen as a private two-party
ledger, which is instantiated and closed with a respective on-chain transac-
tion. During the channel’s lifetime, the channel is privately maintained and
does not require ongoing communication with the underlying blockchain.
The security of payment channel payments is guaranteed by the amount of
escrow that the channel holds on-chain and it’s ability to recourse to the
blockchain in case of disputes. This on-chain escrow which is gradually
used off-chain makes sure that the participants are only allowed to spend
their rightful amounts.

Because a payment channel transaction avoids costly on-chain transactions
(besides channel establishment and closure), the direct service of miners
is not required and the transaction costs are significantly reduced. As such
payment channels (re)enable the use of micro transactions on the blockchain.
The transaction rate is primarily limited by the network bandwidth between
the participating peers and the respective channel collateral.

For a pair of individuals that are not directly connected via a payment chan-
nel, a payment can be routed along a set of payment channels, i.e. over a
payment channel network. This avoids to open individual payment chan-
nels with each counter-party that one might interact with. Such payment
networks are envisioned to enhance the usability and practicality of pay-
ment channels.

Routing payments over a payment network has certain analogies to Internet
packet routing, with additional routing restrictions. Intermediate hops on
a routing path are required to offer sufficient collateral along the payment
path, and if one intermediate payment were to fail, the other intermediate
payments are also invalidated. Linked payments are therefore atomically
executed or invalidated. Intermediate hops are eligible to collect payment
forwarding fees.

Several off-chain payment solutions have been proposed and can be divided
into two categories. The first category relies on blockchain based time locks
(e.g. by Decker et al. [8]). The channel starts with a commitment transaction
which for example lasts for 10 days. The subsequent commitment transac-
tion will then last 9 days, and can thus be spent before the first transaction.
The second category of payment channels relies on punishment, i.e. if one
party misbehaves, the other party can claim all funds of the channel. One
instance of this payment channel is the Lightning Network [30]. The Light-
ning Network relies on Bitcoin, while the Raiden Network [3] is currently
in development for the Ethereum blockchain. Existing payment channels
are still in early development and therefore allow for several improvement
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2.3. Alternatives

proposals. Sprites [25], inspired by Lightning and Raiden aims to minimize
the worst-case collateral costs of indirect off-chain payments. Flare [31] is
another proposal to optimize the search process of finding a payment route.
Bolt [14] provides different constructions that allow for privacy preserving
off-chain payment channels. BitcoinJ, a lightweight Bitcoin client implemen-
tation, also supports micropayment channels [1]. The Orchid Network pro-
poses probabilistic micropayments, where the recipient does not necessarily
need to have deposited funds in escrow [7]. Probabilistic payments, how-
ever are only more efficient than payment channels whenever the service
provided is continuous and granular enough for the probabilistic variance
to become negligible.

2.3 Alternatives

TumbleBit [16] is an anonymous payment protocol, fully compatible with
nowadays Bitcoin protocol and allows parties to make payments through an
untrusted Tumbler (which can operate as hub as well). TumbleBit claims
to provide privacy properties such that no-one, not even the Tumbler, can
tell which payer paid which payee during a TumbleBit epoch. Nothing ap-
parently, however, prevents the hub to deny payments to individual users,
finally enabling the hub to reject all but the victims and hub controlled pay-
ments. The TumbleBit hub would, therefore, be able to infer who got paid
through the hub. TumbleBit requires that the hub operator opens a directed
channel with each recipient, where the full collateral of the allowed pay-
ments is to be deposited. This significantly complicates the operations of
the payment hub because collateral for each channel needs to be managed
independently. Our proposed payment hub allows collateral to be managed
in bulk in a centrally managed smart contract, facilitating the operations of
the hub and allowing a gradual collateral attribution.

Perun [10] is an off-chain protocol to establish "virtual" two-party channels
on top of two-party channels established on-chain, referred to as "ledger"
channels in the work. The motivation is to enable two parties which are un-
connected by an on-chain payment channel to establish an off-chain connec-
tion through leveraging a pre-existing channel. The work describes how an
intermediary with multiple on-chain connections may facilitate these virtual
channel establishments to enable payments between two of its unconnected
peers. The security guarantees provided by Perun do not prevent a client
and an intermediary from successfully double spending the balance of a
ledger channel in a set of virtual channels off-chain, and finalizing the ex-
penditure on-chain. Instead, the security guarantees provide provable misbe-
havior in the worst case through non-repudiable signed messages. Moreover,
the collateral of the intermediary is fragmented across its channels. In con-
trast, our hub construct leverages provable integrity to prevent a malicious
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intermediary from double-spending its balance and being able to finalize
the double spent transactions on-chain.

Plasma [29] is a specification for connecting a UTXO ledger with a parent
account-based ledger, where minting and reclaiming unspent transaction
may only take place on the parent ledger. Parties transact through autho-
rizing spends of their UTXOs towards the intended recipients, as in Bitcoin,
and sending their authorizations to the UTXO ledger network, which then
aggregates the transaction set into blocks and commits to them on the parent
network. With the incorporation of a UTXO model comes all of the ineffi-
ciencies of transaction history validation and the inflexibility of transaction
output expenditure, and in the absence of a consensus mechanism full block
validation is required by clients. As a participant holds more transaction
outputs within the child ledger, their costs for securely using their accounts
increase over time in terms of validation effort and dispute resolution. More-
over, plasma does not specify a mechanism for mitigating risk of reversal on
yet to be finalized transactions, parting its guarantees from those of payment
channel networks. In our work, we design a more efficient bi-modal ledger
structure that mitigates these issues, permitting clients to more efficiently
verify the integrity of their accounts and requiring less on-chain data for
dispute.

2.4 Fundamental drawbacks of existing designs

In the following we elaborate on the fundamental drawbacks of existing
payment channel designs.

2.4.1 Fragmented collateral

Traditional payment channels require collateral to be locked up for every
channel. If one were to construct a payment hub with 2-party payment chan-
nels, the hub operator would be required to lock up a substantial amount
of collateral. Given for example a hub with 1 Million users, and each user
receiving on average 10’000 USD of transaction volume over a period of 1
month, this would require the hub operator to lock up a total of 10 Billion
USD. This amount could be reduced by dynamically adjusting the respective
channels of the users, which however would require costly on-chain transac-
tions. It’s therefore likely that most of the locked up collateral would not be
used frequently.

2.4.2 Expensive Channel Setup

Continuing on the example given in the previous paragraph, a hub oper-
ator with 1 Million users would be required to setup 1 Million on-chain
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2.4. Fundamental drawbacks of existing designs

transactions for each channel setup. This in itself represents a substantial in-
vestment (beyond 1’000’000 USD on Ethereum given the current gas prices).

2.4.3 Costly routing

Locked up funds in traditional payment channels cannot be used directly
with other nodes in the network. Routing payments certainly alleviates this
issue, but still limits the available funds to a particular set of routes.

Route finding itself, has shown to be a significant difficulty in the realization
of two-party payment channel networks. Peers might become unresponsive,
which requires payments to be diverted over newer, possibly more costly
routes.

2.4.4 Online Watchdog requirements

The two parties of a traditional payment channel should remain online to
observe their channel state continuously. That is, because if one party were
to transition offline, the other party could attempt to close the channel with
an outdated state and effectively double-spend a disputable amount. To al-
leviate this online presence requirement, users could outsource the so called
watchdog duty to a third party, which however introduces new trust assump-
tions along with additional costs.

2.4.5 Reduced Privacy

Because off-chain transactions are no longer recorded in the readable blockchain,
one would argue that payment channel networks offer better privacy guaran-
tees than on-chain transactions. Related work however has argued otherwise
and proposed privacy enhanced payment channel designs [23, 15, 2, 32].

2.4.6 Double-Spending Attacks on Blockchain Congestion

Under a congested blockchain, channel termination could result in a bidding
war between a set of participants in a payment channel. Incorrect channel
termination can in particular be aggravated in the event of a mass-exit, where
many participants wish to close their payment channels, and therefore trig-
ger an aggravated blockchain congestion. Note that the respective dispute
resolution mechanism might in some cases not be worth considering if the
disputed value is insignificant.
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Chapter 3

NOCUST Architecture

This chapter presents the non-custodial intermediary construction NOCUST,
denoted as �⊂ for brevity.

3.1 Prerequisite System Model

In the following we outline the considered system model. A �⊂ instance
is designed to operate atop a blockchain layer supporting smart contracts
while its clients communicate directly off-chain.

In our scheme, the blockchain, referred to by BC, is considered as an in-
tegrity protected and immutable root of trust that comprises a decentralized
database containing a global view of accounts, their balances and transac-
tions, and extra associated data. Each account in the ledger is controlled
by its own private key, that only the owner of the account should know. A
transaction from any account cannot be authorized without possession of
its respective private key. Authorized modifications to the ledger are con-
sidered to be globally available after a block is generated, on average every
predetermined block time T. Due to the characteristic of providing an aver-
age block time T, a blockchain can also be viewed as a timestamping service.
In the following sections we refer to the average time for block generation
as an era.

In addition to primitive ledger transactions that transfer balance from one
account to another, our scheme also requires a smart contract execution en-
vironment, such that provided by Ethereum [34]. It’s important to note that
Ethereum’s smart contracts are allowed to hold a balance in the ledger, and
control it according to their programming. We assume that once a smart
contract is published, it cannot be modified, nor can a result outside the
bounds of its correct execution be accepted on the decentralized ledger BC.
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3. NOCUST Architecture

We also assume an underlying communication network, where all the par-
ticipants can communicate directly off-chain (e.g. via TCP connections).

3.2 Overview

The intermediary �⊂ is composed of two fundamental building blocks:

1. an honest verifier smart contract (denoted as V �⊂) that can operate on
any Turing-complete enabled blockchain BC

2. an operator server (denoted as O �⊂) that can be embodied as an internet-
reachable interactive server.

Clients hold their private keys that control their identities and use them to
sign off-chain messages while communicating with O �⊂. They also use the
private keys to control their on-chain wallets and interact with V �⊂.

O �⊂ posses its own private key for its identity, which can perform some
privileged operations in V �⊂. O �⊂ periodically commits to the off-chain ledger
state with V �⊂ as described in Section 3.4.1.

3.2.1 Example Payment Scenario

Bob, a user of a payment hub, would carry out the following steps to transfer
an off-chain payment to another user, Alice. We assume that both Bob and
Alice own at least 1 unit of cryptocurrency (e.g. ether) on the blockchain
BC.

1. Bob and Alice choose to transact through a �⊂ instance.

2. Alice deposits 1 Ether in the smart contract V �⊂. Note that for reception
only, Alice is not required to deposit funds into V �⊂.

3. Bob deposits 1 Ether in the smart contract V �⊂.

4. Bob signs an IOU designated to Alice for 0.1 Ether and sends the IOU to
O �⊂.

5. O �⊂ then notifies Alice of the IOU and awaits a signed receipt from Alice.

6. Alice signs a receipt of the IOU and sends it to O �⊂.

7. O �⊂ confirms the validity of the IOU execution, ratifies it, then sends its
signatures on the IOU to Alice and Bob.

8. O �⊂ synchronizes with V �⊂.

9. Alice may withdraw up to 1.1 Ether from V �⊂.

10. Bob may withdraw up to 0.9 Ether from V �⊂.

12



3.2. Overview

Pi �⊂ Pj

Registration Registration

Admission Admission

EntryEntry Participants join through O �⊂

Deposit Deposit

DepositsDeposits P deposit to V �⊂ on BC

Transfer
Receipt

Confirmation Confirmation

TransfersTransfers Transfers are ratified by O �⊂

Commitment

Enforcement
Proof Proof

Dispute Dispute

SynchronizationSynchronization O �⊂ commits T �⊂ to V �⊂

Withdrawal Withdrawal

WithdrawalWithdrawal P withdraw from V �⊂

Figure 3.1: A sequential view of a NOCUST instance life-cycle. In practical-
ity, transfers, deposits, and withdrawals may interleave post entry. Receipt
of an off-chain transfer is possible after admission and does not require a
prior deposit.

3.2.2 Operational Requirements

To disqualify �⊂ from being a trusted custodian of its user’s funds and the
payments it facilitates, it would have to provide the following guarantees:

• Funds may not be transacted without user authorization.

• Users must always be able to withdraw their off-chain balance to their
on-chain accounts.

These guarantees need to be provided by the system to an honest participant
Pi regardless of the behavior of �⊂ or of any other participant Pj (i �= j). We
prove these guarantees in Section 4.

Moreover, to qualify as an off-chain solution, rather than a side-chain, there
needs to be no reliance on a full consensus mechanism in the second layer
that demands mining or full inspection of the contents of the entire off-chain
ledger by all participants.
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In NOCUST we define how a participant Pi could interact with an intermedi-
ary �⊂ to enact off-chain transactions while satisfying the above requirements
through utilizing the following components:

• A bimodal specialized balance ledger B.

• A specification for V �⊂ to manage BG.

• A specification for O �⊂ to manage BL.

• A specification for interactions between P , O �⊂, and V �⊂.

3.3 B Bimodal Ledger

In this section we present a simple scheme for managing local and global bal-
ance and transaction information in B such that it can be efficiently utilized
to provide the secure operation of a �⊂ instance.

3.3.1 Separation

The bimodal B is separated into the locally stored "off-chain" BL, which
contains information related to balances and transfers performed through
O �⊂, and the globally stored "on-chain" BG, which comprises information on
balances and operations performed through V �⊂. It is important to note that
different parties may have different views of the contents of BL, but contents
of BG are assumed to be globally consistent.

3.3.2 Time Progression

The information in BL is committed to on BG to make the transfers carried
out through O �⊂ enforceable by V �⊂ (ie. allow a Pi to withdraw funds re-
ceived through O �⊂ from a Pj via V �⊂). This synchronization commitment is
sent periodically from O �⊂ to V �⊂, and the duration of this period is referred
to as an eon, where the synchronization occurs at most once per eon. An
eon, within the context of our scheme, is further divided into a fixed number
of eras. Within the context of a blockchain ecosystem, an era represents the
amount of time taken to generate one block BC, and thus commit a set of
modifications to BG. Consequently, an eon represents the amount of time
for a fixed number of blocks to be generated. We also use the term epoch to
denote a quarter of an eon. We use B(e) to refer to the state of the balance
ledger at eon number e as of all eras passed, and similarly for BL(e) and BG(e).

3.3.3 Locally Stored Information

For every eon e, for every Pi, BL(e) can store the following entries:

• Ai(e): Initially allotted balance of Pi for e.
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• Ri(e): Total amount received off-chain by Pi during e.

• Si(e): Total amount sent off-chain by Pi during e.

• Ti(e): The set of off-chain transactions sent or received by Pi during e.

3.3.4 Globally Stored Information

For every eon e, for every Pi, BG(e) can store the following entries:

• Di(e): Total amount deposited by Pi during e.

• Wi(e): Total amount requested for withdrawal by Pi during e.

• X b
i (e): A challenge by Pi against the integrity of its balance in �⊂.

• X d
i (e): A challenge by Pi against the integrity of an off-chain transfer

delivery in �⊂.

Consequently, Ai(e) is calculated as follows in B:

Ai(e) = Ai(e − 1) +Di(e − 1) + Ri(e − 1)−Wi(e − 1)− Si(e − 1) (3.1)

Additionally, For every eon e, BG(e) can store a commitment by O �⊂ to the
contents of BL(e − 1). The underlying data-structure of this commitment is
explained in Section 3.4.1.

3.4 T �⊂ Periodic Commitments

In this section we describe the data-structures and message formats that
enable the efficient provable integrity of a NOCUST eon.

3.4.1 Synchronization Tree-structure

To provably account for the allotted balances Ai(e) of each Pi at the be-
ginning of an eon e, we design a novel Merklelized interval tree T �⊂(e). The
Merkleized interval tree is similar to the augmented merkle tree proposed
by Luu et al. [22], yet built and utilized in completely different means. The
nodes in this Merkle tree [24] are augmented to store the user balances in
an efficient manner that allows V �⊂ to securely verify the correct allotment
of funds by O �⊂. A node tn(e) of T �⊂ is structured as defined in Equation 3.2.

tn(e) =< offsetn(e), informationn(e), allotmentn(e) > (3.2)

offset and allotment are both numeric values, while information is a cryp-
tographic commitment to the information contained within this node. The
values for these fields are defined differently for leaves and internal nodes
as follows.
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A leaf ti(e) is used to represent the off-chain account of a Pi at eon e, whereby
allotmenti(e) is equal to Ai(e) (cf. Section 3.3.3), and offseti(e) corresponds
to the sum of the allotted balances of all participants ordered before Pi (cf.
Equation 3.4).

allotmenti(e) = Ai(e) (3.3)

offseti(e) = ∑
j<i

allotmentj(e) (3.4)

informationi(e) is composed of the cryptographic hash of the blockchain ad-
dress of Pi and the commitment of the last balance update agreed to by Pi
in the previous eon. More precisely,

informationi(e) = {addressi, updatei(e − 1)} (3.5)

where updatei(e) represents the last state update of the off-chain account of
Pi at eon e as described in Section 3.4.3.

An internal node tu(e), with a left child tp(e) and a right child tq(e), is
constructed per (cf. Equation 3.6) and (cf. Equation 3.7) :

allotmentu(e) = allotmentp(e) + allotmentq(e) (3.6)

offsetu(e) = offsetp(e) (3.7)

informationu(e) is a cryptographic commitment similar to that of an internal
node of a Merkle Tree but with the addition of offsetq(e) as a third middle
value.

informationu(e) = {tp(e), offsetq(e), tq(e)} (3.8)

It’s important to note that the middle value of offsetq(e) is interchangeable
with that of offsetp(e) + allotmentp(e) as they should be equal in correct
instances of this structure.

3.4.2 Proof of exclusive allotment

For each Pi included in T �⊂(e), a proof of exclusive allotment τi(e) can be
constructed. The main goal of this construct is to prove that Pi exclusively
owns an allotment of size Ai(e) within the allotment covered by T �⊂(e).
τi(e) is constructed similar to a regular merkle tree membership proof, whereby
the nodes adjacent to the path from the root to the leaf constitute the mem-
bership proof hash chain. However, in addition to the hashes of the nodes
in the membership proof, a boundary value Ω is required for each node:

Ω(ti(e), tn(e)) =

�
offsetn(e) tn(e) is a left child
offsetn(e) + allotmentn(e) tn(e) is a right child

(3.9)
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The procedure of verifying τi(e) is similar to that of verifying set member-
ship in a merkle tree but the node reconstruction is done so according to
the definitions the T �⊂ structure in Section 3.4.1 in conjunction with the Ω
values. This bounds the size of a τi(e) to O(log |P|).

3.4.3 Monotonic P-State Structure

The information in updatei(e) contained in T �⊂(e) is structured as follows:

updatei(e) = {Ti(e), Si(e), Ri(e)} (3.10)

Ti(e) is committed to using a merkle tree where the leaves are the individual
transfers through O �⊂ authorized by Pi during eon e. A O �⊂ transfer T is a
tuple of the following information:

< eon, sender, recipient, amount > (3.11)

The merkle tree used to create the commitment for Ti(e) need not be aug-
mented. We refer to the standard merkle tree proof of membership that T
∈ Ti(e) as λ(T ∈ Ti(e)).

3.5 V �⊂ On-chain Verifier

The on-chain component V �⊂ acts as the bridge between the O �⊂ ledger BL

and the BC ledger BG. Its procedures are assumed to be executed honestly
by BC, and it supports the following operations:

3.5.1 Commit T �⊂(e)
Committing to a T �⊂(e) may only be done once per eon e during its first epoch
by O �⊂. The commitment requires only submission of the root node of T �⊂(e).
The commitment procedure involves no validation on information, but the
following requirements exist on the offset and allotment of the root node:

offsetroot(e) = 0 (3.12)

allotmentroot(e) = allotmentroot(e − 1) +D(e − 1)−W(e − 1) (3.13)

After validation, V �⊂ stores the node information, making it available to any
P or any other V �⊂ procedure.

Preconditions:

• O �⊂ must not have committed to T �⊂(e)
• �⊂ must not have entered recovery
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Input: troot(e)

1. Verify conditions of Equation 3.12 and 3.13 on troot(e)

2. Store troot(e) as the commitment to T �⊂(e)

3.5.2 Verify τi(e)

This verification procedure enables V �⊂ to verify a τi(e) for any e in which
O �⊂ had committed to a T �⊂(e). This validation acts as a foundation for the
security of NOCUST.

Preconditions:

• O �⊂ must have committed to T �⊂(e)
Input: τi(e)

1. Reconstruct t
�
root(e) from τi(e)

2. output true iff t
�
root(e) = troot(e)

3.5.3 Receive Deposit Di(e)

For a Pi to make a deposit into �⊂, it would simply send a transfer in the BC
ledger with V �⊂ as the recipient. The only requirement on V �⊂ is then that it
adds the value of the transfer to Di(e), where e is the current eon.

Preconditions:

• �⊂ must not have entered recovery

Input: BC transfer T from Pi to V �⊂

1. Set Di(e) to Di(e) + T.amount

3.5.4 Initiate Withdrawal Wi(e)

A Pi can initiate a withdrawal from �⊂ by submitting a request to V �⊂. This re-
quest consists of the amount, to be withdrawn once the request is confirmed,
and of τi(e − 1), where e is the current eon. If any previous withdrawal had
been successfully issued but not yet confirmed, V �⊂ must reject this request.

After calling its own validation procedure, with the stored troot(e − 1) as
reference and τi(e − 1) as input, upon a successful result V �⊂ is required
to set Wi(e) to the requested amount, while upon validation failure, or if
Ai(e − 1) is less than the requested amount, V �⊂ should reject the request.

Preconditions:

• �⊂ must not have entered recovery
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• Pi may not have any other pending withdrawals

Input: τi(e − 1), amount to be withdrawn w

1. Validate τi(e − 1)

2. Validate w ≤ Ai(e − 1)

3. Set Wi(e) to w

3.5.5 Cancel Withdrawal Wi(e)

A malicious Pi may request to withdraw funds from V �⊂ after having spent
them through O �⊂ during e. The O �⊂ can provide τi(e − 1) and an updatei
signed by Pi to V �⊂ to prove that Pi’s balance had fallen below the requested
amount and cancel Wi(e). This procedure can be augmented with a punish-
ment against Pi as a disincentive for misbehavior.

Preconditions:

• �⊂ must not have entered recovery

Input: Pi, signed updatei(e) or updatei(e − 1), τi(e − 1)

1. Verify Sigi(updatei)

2. Validate τi(e − 1)

3. Confirm Wi(e) > Ai(e − 1) + updatei.R- updatei.S

4. Set Wi(e) to 0

3.5.6 Confirm Withdrawal Wi(e)

In eon e, a withdrawal request can be confirmed if it had not been provably
cancelled by O �⊂ and if it was scheduled in eon e − 2 and the first epoch has
passed, or if it had been scheduled in an eon ≤ e − 3.

Upon confirmation of a withdrawal, V �⊂ issues a transfer from the balance
pool it manages in favor of Pi with the requested amount.

Preconditions:

• Wi(s) > 0 for some s ≤ e − 2

Input: none

1. Reject if s = e − 2 and the first epoch of e has not passed

2. Transfer Wi(s) to Pi on BC
3. Set Wi(s) to 0
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3.5.7 Open Balance Update Challenge X b
i (e)

Given a τi(e − 1) and an updatei(e − 1) signed by O �⊂ as inputs from a Pi,
the V �⊂ challenge procedure requires that the hub provides a satisfying τi(e)
V �⊂ before an epoch passes. Otherwise, �⊂ is shut down, and all transactions
since the beginning of e − 1 are reverted.

Preconditions:

• �⊂ must not have entered recovery

Input: At least one of τi(e − 1) and updatei(e − 1)

• Verify τi(e − 1), or Ai(e − 1) = 0

• Verify SigO(updatei(e − 1)), or Ri(e − 1) =Si(e − 1) =0

• Store expected Ai(e) in X b
i (e)

3.5.8 Close Balance Update Challenge X b
i (e)

Given a valid τi(e) as input from O �⊂, V �⊂ marks X b
i (e) as closed if it were

open within the last epoch.

Preconditions:

• �⊂ must not have entered recovery

• ∃ X b
i (e) not older than an epoch

Input: τi(e), updatei(e − 1)

1. Verify τi(e)

2. Verify Sigi(updatei(e − 1))

3. Verify SigO(updatei(e − 1))

4. Verify updatei(e − 1) is at least as recent as in X b
i (e)

5. Validate that τi(e) ratifies updatei(e − 1)

6. Mark X b
i (e) closed

3.5.9 Open Transfer Delivery Challenge X d
i (e)

Given an updatej(e − 1) signed by O �⊂, and a transfer T
j
i(e − 1) ∈ Tj(e − 1)

as inputs from Pi or Pj, the V �⊂ delivery challenge procedure requires that

the hub provide a satisfying τi(e) and λ(T
j
i(e − 1) ∈ Ti(e − 1)) to V �⊂ before

an epoch passes. Otherwise, �⊂ is shut down, and all transactions since the
beginning of e − 1 are reverted.

Preconditions:
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• �⊂ must not have entered recovery

Input: updatej(e − 1), Ti
j(e − 1), λ(T

j
i(e − 1) ∈ Tj(e − 1))

• Verify SigO(updatej(e − 1))

• Verify λ(T
j
i(e − 1) ∈ Tj(e − 1))

• Store T
j
i(e − 1) in X d

i (e)

3.5.10 Close Transfer Delivery Challenge X d
i (e)

Given a valid τi(e), updatei(e − 1) and λ(T
j
i(e − 1) ∈ Ti(e − 1)) as input from

O �⊂, V �⊂ marks X d
i (e) as closed if it were open within the last epoch.

Preconditions:

• �⊂ must not have entered recovery

• ∃ X d
i (e) not older than an epoch

Input: τi(e), updatei(e − 1), λ(T
j
i(e − 1) ∈ Ti(e − 1))

1. Verify τi(e)

2. Validate Sigi(updatei(e − 1))

3. Validate that τi(e) ratifies updatei(e − 1)

4. Validate λ(T
j
i(e − 1) ∈ Ti(e − 1))

5. Mark X d
i (e) closed

3.5.11 Recover Funds

Had any X b
i (e − 1) or X d

i (e − 1) not been closed for any i within one epoch,
or if O �⊂ fails to commit to T �⊂(e) within the first epoch of e, �⊂ is considered
to have shut down and gone into recovery mode, whereby any Pi may with-
draw all their off-chain funds as of the end of e − 2, and all their on-chain
deposits starting from e − 1 by providing τi(e − 2) to V �⊂.

Preconditions:

• �⊂ must have entered recovery

• Pi may not have previously recovered its funds

Input: τi(e − 2)

1. Validate τi(e − 2)

2. Transfer Ai(e − 2) + Di(e − 2) + Di(e − 1) to Pi

3. Mark Pi as recovered
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3.6 O �⊂ Off-chain Operator

The off-chain component O �⊂ acts as the facilitator of transfers between mem-
bers of P , and is designed to behave as follows:

3.6.1 Admit Pi

On request to enter the managed �⊂ instance from a participant, O �⊂ need
only append the participant to P and acknowledgement its updatei(e) reflect-
ing an empty balance by providing a countersignature on it.

3.6.2 Create T �⊂(e)
After an eon e− 1 is over, O �⊂ creates T �⊂(e) by using all confirmed transfer in-
formation in e− 1. This means that for each Pi, the last updatei(e− 1) ratified
by O �⊂ would be used to construct T �⊂(e) as described in Section 3.4.1.

3.6.3 Commit T �⊂(e)
After the creation of T �⊂(e), O �⊂ needs to commit troot(e) to V �⊂ within the
first epoch of e, or be halted in V �⊂.

3.6.4 Provide τi(e)

After constructing T �⊂(e), O �⊂ communicates each τi(e) to its respective Pi
such that Pi can verify the integrity of its off-chain balance or issue a chal-
lenge if need be.

3.6.5 Deliver Transfers

O �⊂ requires a transfer Ti
j(e) from a Pi to a Pj to proceed as follows:

1. Pi sends a new signed updatei(e) to O �⊂ with Ti(e) ∪ Ti
j(e).

2. Pj sends a new signed updatej(e) to O �⊂ with Tj(e) ∪ Ti
j(e).

3. O �⊂ ratifies both updatei(e) and updatej(e) and sends its signatures to
Pi and Pj respectively.

O �⊂ must enforce that a Pi may only have one transfer ongoing at a time.
Abortion prior to the last confirmation by O �⊂ may be signaled via peripheral
messages.

3.6.6 Credit Deposits Di(e)

O �⊂ is required to monitor V �⊂ and properly credit all deposits Di(e) made
by every Pi or face balance update challenges in the next eon. This is done
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by simply increasing the allotment Ai(e + 1) for a deposit made in e such
that Equation 3.13 holds for e + 1.

3.6.7 Moderate Withdrawals Wi(e)

A malicious Pi may interact directly with V �⊂ to initiate a withdrawal of
funds that were confirmed in e − 1 but were spent in e off-chain. In such
cases, O �⊂ must use the withdrawal cancellation procedure in V �⊂ before
the end of e, or risk the inability to construct an acceptable commitment in
e+ 1. When the withdrawal is correct, however, O �⊂ must debit the allotment
Ai(e + 1) such that Equation 3.13 holds for e + 1.

3.6.8 Close challenges X b
i (e), X d

i (e)

A Pi may issue a challenge via V �⊂ at any moment. O �⊂ needs to monitor V �⊂
for these challenges and issue appropriate responses to close them, or risk
being halted. It is guaranteed that an honest O �⊂ will always have the infor-
mation required to construct a valid call to V �⊂ to close invalid challenges.

3.7 P Clients

Members of P are the main parties interested in transferring funds to each
other in �⊂, and are designed to behave as follows:

3.7.1 Join �⊂
A Pi wishing to join a �⊂ instance during eon e need only do so through
O �⊂ by providing a signed updatei(e) and waiting for acknowledgement in
the form of a countersignature. The update should reflect an empty account
within the �⊂ instance.

3.7.2 Audit τi(e)

Pi must ensure that it always receives a valid τi(e) (acceptable by V �⊂) ev-
ery eon e from O �⊂ to maintain custody of its funds throughout the time
progression and enforce correct transfer delivery by O �⊂.

3.7.3 Send Transfer

A Pi wishing to enact a Ti
j(e) to a Pj during eon e sends a signed updatei(e)

to O �⊂ and notifies Pj that they send a signed updatej(e) to O �⊂ that reflects re-
ceipt. Pi should expect O �⊂ to return its own signature on updatei(e), after Pj
submits its receipt to O �⊂, before proceeding with sending or receiving fur-
ther transfers. Moreover, Pi may not attempt to initiate any other transfers
until O �⊂ countersigns updatei(e).
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3.7.4 Receive Transfer

A Pi notified of a transfer Tj
i(e) by a Pj should hand over a signed updatei(e)

to O �⊂ reflecting receipt and wait for a countersignature on updatei(e) by
O �⊂ to confirm delivery commitment before proceeding with further trans-
fers. Again, Pi may not initiate any other transfers until O �⊂ countersigns
updatei(e).

3.7.5 Deposit Di(e)

Clients that wish to deposit into �⊂ must do so only while in possession of a
τi(e), or a ratified updatei(e) if this is the first eon for Pi in �⊂, and only if �⊂
is not in recovery. The deposit is done through sending a BC transaction to
V �⊂.

3.7.6 Withdrawal Wi(e)

To withdraw funds during eon e, clients utilize their τi(e− 1) and not attempt
to overdraw beyond their minimum within the current and past eon, or face
their withdrawals being cancelled by an honest O �⊂, or cancelled by the halt
of �⊂. After the first epoch of e + 2 passes successfully, clients may claim
Wi(e) on BC using V �⊂.

3.7.7 Issue X b
i (e)

If O �⊂ does not provide a valid τi(e) after commitment to T �⊂(e), a Pi should
issue a X b

i (e) using V �⊂.

3.7.8 Issue X d
i (e)

When shown proof of debit (signed updatej(e) by O �⊂) not reflected by an
authorized credit in τi(e), a Pi should issue a X d

i (e) to V �⊂.

Unless Pj is malicious, O �⊂ will not be able to close X d
i (e). Pj should also

issue the challenge in case of Pi’s noncooperation or if a receipt confirmation
is not provided.

3.7.9 Recover Funds

Upon O �⊂’s failure to close any challenge within one epoch and before e ends,
�⊂’s time progression stops at e and it enters into recovery. Every Pi will
need to recover its confirmed off-chain funds through V �⊂.
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Chapter 4

Security Analysis

This chapter presents an analysis of the security guarantees of NOCUST, as-
suming that the underlying layer BC may serve as a recourse for settling
disputes on the integrity of a �⊂ instance. In this model we also assume that
there are costs associated with BC settlement, such as a gas fee paid to per-
form smart contract operations or transactions in the Ethereum network. We
consider these settlement expenses as external to the balance of a Pi in the
system, but have also designed NOCUST to minimize these expenses such
that the amount of information required for dispute settlement is feasibly
transmittable, as bounded in Section 3.4. The NOCUST protocol is designed
to prevent any honest member of P from losing any funds despite a strong
set of adversarial capabilities.

4.1 Threat Model

We assume that there are two classes of users in NOCUST:

1. O �⊂ operators

2. P participants which can receive both incoming and send outgoing
transactions

We will assume the existence of an irrational adversary willing to sustain
financial losses in order to cause honest parties to lose some or all of their
funds in a �⊂ instance.

This irrational adversary may seize control of O �⊂, some or all but one of
P , or a combination thereof, in order to attack an honest Pi not under its
control. The adversary has full control of the identities associated with the
compromised parties and may authorize any messages on their behalf or
front-run any user input, but cannot violate the integrity of the honest users’
identities. Moreover, an adversary may launch denial of service attacks that
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degrade the off-chain communication between O �⊂ and members of P , but
may not compromise an honest Pi’s communication with BC, respectively
V �⊂. In the following discussion, we define malicious behavior as that which
aims to cause an honest Pi to lose control of some or all of its funds in �⊂ or
cause an honest O �⊂ to be forcibly shut down by V �⊂.

4.2 Guarantees

In this section we explain how under the stated threat model, an honest
Pi can securely maintain custody of its funds and ensure that its enacted
transfers are correctly delivered within �⊂, but will not be able to forcibly
enact any new transfer Ti

j(e) in the system without facilitation by O �⊂. We
also demonstrate how an honest O �⊂ can sustain service under the malice of
a subset of P .

We prove the security guarantees of NOCUST through proving that an hon-
est Pi or honest O �⊂ following the prescribed protocol may not end in a
state where they cannot utilize V �⊂ to enforce the integrity of the respective
�⊂ instance. We refrain from building a single comprehensive model of the
system due to the many interactions present, and instead break down the
system into different components and prove their security properties.

We argue that under the stated system model in Section 3.1 it suffices to
prove the sanity of agent behavior in NOCUST due to the presence of V �⊂
and the feasibility of deploying its functionality to operate honestly on BC.

4.2.1 Exclusive Allotment

An important element in NOCUST is the dependence on a valid τi to guar-
antee to a Pi the exclusive allotment of a portion of size Ai in the funds
managed by V �⊂ to Pi alone, therefore, we proceed to prove that no valid
instance of T �⊂ may contain two overlapping allotments, and therefore that
V �⊂ cannot accept an invalid τi.

Proof We proceed to prove, by contradiction, that no valid instance of T �⊂
may be used to construct a τi that permits a non-exclusive allotment.

Assume a valid instance of T �⊂, and without loss of generality let tx and ty
be two successive nodes (y > x) within T �⊂ that have overlapping allotments,
where offsety < offsetx + allotmentx.

Let tu be their least common ancestor with tp and tq as its direct children
such that tp is an ancestor of tx, and tq of ty. Without loss of generality,
assume tp and tq are correctly reconstructible from τx and τy respectively.
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Given τx, constructing tu on the path up to troot will be performed with
knowledge of offsetp and allotmentp (from reconstructing tp) and the bound-
ary value and commitment of tq supplied in τx.

Ω(tu, tq) = offsetq + allotmentq (4.1)

Recall the definition in Section 3.4.1. As offsetq is interchangeable with
offsetp + allotmentp, reconstructing tu will need to be performed as follows
due to the lack of presence of offsetq in τx by substitution in equation 3.8 as
follows:

informationu = {tp, offsetp + allotmentp, tq} (4.2)

Given the correctness of the sub-tree of tp in isolation, it follows that offsetp +
allotmentp = offsetx + allotmentx, and therefore, assuming offsetq was used
in the original commitment to the considered instance of T �⊂, the recon-
structed tu will not match, and the remaining trail of reconstructed nodes
in τx

1 will lead to a t
�
root �= troot, violating the assumption that the instance

under consideration is a valid T �⊂ and that τx is acceptable.

�

4.2.2 Balance Custody

An honest participant Pi of �⊂ maintains custody of its balance in the system
because it may always resort to V �⊂ in case O �⊂ does not provide a valid τi(e)
for any eon e.

A participant must maintain knowledge about its state to preserve its ability
to utilize V �⊂ for dispute regardless of how the other participants and O �⊂
behave. By keeping track of every authorized updatei(e) and every τi(e)
from O �⊂ for each eon e that passes after Pi entered �⊂, Pi may always open
X b

i (e) in case O �⊂ fails to provide a τi(e) with a correct exclusive Ai(e). This
guarantees that Pi is always able to enforce a provably correct update by O �⊂
to its state in T �⊂(e), or halt �⊂.

As a withdrawal Wi(e) may only be initiated through V �⊂, which requires
a verifiable τi(e − 1) to be submitted by Pi, no other Pj may attempt to
initiate a claim for any portion of Ai(e − 1). Moreover, a τi(e) may not
be utilized to initiate any withdrawals until eon e + 1 commences with no
open challenges against the integrity of T �⊂(e). This guarantees that only
uncontested exclusive balance allotments in a correct T �⊂ instance may be
used to enact withdrawals that may not be interrupted by O �⊂ unless they
attempt a double spend.

1A symmetric argument can be made for τy
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4. Security Analysis

Proof We proceed to prove how an honest Pi in NOCUST can protect its
funds through modelling the state of a Pi’s custody as a finite state ma-
chine whereby Pi may always reach a custodian state. A Pi is considered
a non-custodian in eon e if e − 1 had passed successfully ( �⊂ did not enter
recovery) without Pi learning a valid τi(e − 1) that exclusively accounts for
its confirmed balance, assuming Pi joined �⊂ prior to e − 1.

s0start

e − 1

s1

s2 e

O �⊂ �→ V �⊂: T �⊂(e)

O �⊂ → V �⊂: T �⊂(e)

O
�⊂ →

P
i : τi (e)

Pi → V �⊂: X b
i (e)

O �⊂ → V �⊂ → Pi: τi(e)O �⊂ �→ V �⊂: τi(e)

Figure 4.1: A finite state automaton capturing the custodian state of an
honest Pi during an eon e. Given a O �⊂’s commitment to T �⊂, an honest Pi
may always guarantee its knowledge of a valid τi(e) either cooperatively
with O �⊂ or through V �⊂. Terminal states denote which eon’s balance Pi is
given custody of.

It’s straightforward to infer from the automaton in Figure 4.1 that a Pi may
always reach a state of custody from s1 given that O �⊂ commits to T �⊂(e)
within the first epoch. Recall that if O �⊂ does not commit to a T �⊂(e) within
the first epoch, the �⊂ instance is halted, and therefore Pi retains custody of
the previous allotment Ai(e − 1) which it may claim through V �⊂’s recovery.
This may also happen if O �⊂ ignores Pi’s challenge. �

For simplicity we omit states and transitions whereby Pi does not receive a
valid τi(e) from O �⊂ and chooses to not resort to V �⊂ to demand its broadcast
within the next epoch, as this behavior does not describe an honest Pi.

It is important to recall what V �⊂ accepts as a valid response from O �⊂ to a
X b

i (e) as stated in Section 3.5. The updatei(e − 1) in the commitment must
be as recent as that submitted in X b

i (e) by Pi, and must bear Pi’s signa-
ture. This prevents O �⊂ from attempting to commit an outdated state, and
provides Pi sufficient knowledge to enact any future delivery challenges.

4.2.3 Double-spend Futility

In the following discussion we refer to a double spend as any endeavor by
the adversary controlling a Pi, with or without control of O �⊂, to attempt
any of the following:
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1. Double spend Pi’s balance in BL

2. Spend Pi’s balance in BL and withdraw it from BG

In case the adversary lacks control of O �⊂, attempting to double spend only
in BL will be trivially prevented by an honest O �⊂, and attempted with-
drawals in eon e from BG of funds spent in e − 1 will also be cancelled by an
honest O �⊂ through V �⊂.

Moreover, even with control of O �⊂, an adversary may not double spend in
the current eon e and be able to construct a valid T �⊂ in the next eon e + 1
correctly satisfying every member of P , as a valid instance of T �⊂ guarantees
exclusive allotments, the sizes of which must correspond to the confirmed
balances expected by each honest member of P .

Proof Let Pi and O �⊂ be under the control of the adversary A such that
the running balance of Pi during eon e is double spent towards a subset of
P whereby Equation 4.3 holds by the end of e. A must construct a valid T �⊂
for e + 1 to commit the transfers in e and successfully double spend, while
avoiding the halt of �⊂ by an honest Pj.

Ai(e + 1) = Ai(e) + Ri(e)− Si(e) +Di(e)−Wi(e) < 0 (4.3)

However, using Equation 3.13, validated by V �⊂:

∑
j

Aj(e + 1) = ∑
j

Aj(e) + Rj(e) +Dj(e)−Wj(e)− Sj(e)

= ∑
j

Aj(e) + ∑
j
Dj(e)−Wj(e) + ∑

j
Rj(e)− Sj(e)

= allotmentroot(e + 1) + ∑
j

Rj(e)− Sj(e)

(4.4)

With Equation 4.4 in mind, if A were double spending in BL by not updating
Si(e), then ∑j Rj(e) − Sj(e) > 0 would follow, and allotmentroot(e + 1) <

∑j Aj(e + 1) would lead to a challenge in e + 1 by the affected honest Pj
whose allotment is incorrect, foiling as well any concurrent double spend in
BG.

Moreover, if A were double spending in BL and updating Si(e) such that
∑j Rj(e)− Sj(e) = 0, and/or double spending through Wi(e) in BG, then an
allotmentroot(e + 1) would be rejected by V �⊂ in violation of Equation 3.13. �

4.2.4 Operational Integrity

An adversary in control of some participants in P may maliciously open a
set of challenges against O �⊂ using V �⊂. In NOCUST, there is no way for
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4. Security Analysis

V �⊂ to verify whether a participant is opening a challenge maliciously or
not, and therefore O �⊂ must answer every challenge opened. However, it is
guaranteed that an honest O �⊂ is able to close any challenge opened in V �⊂,
and a dishonest O �⊂ that misconstructs a T �⊂(e) will not be able to answer
correct challenges in e.

The information required by an honest O �⊂ to close a X b
i (e) is τi(e), which

is constructed by O �⊂, and the updatei(e − 1) used in the construction. The
additional piece of information required to close a X d

i (e) is λ(T
j
i(e − 1) ∈

Ti(e − 1)), which also has to be known by O �⊂ to construct T �⊂(e). Therefore,
O �⊂ will always possess sufficient knowledge to close any open challenges,
and will successfully do so if the committed T �⊂(e) corresponds to the latest
ratified contents of BL(e − 1), given the honesty of V �⊂ in managing the pool
of funds in the �⊂ instance on BC.

Proof We proceed to prove how honest O �⊂ in NOCUST can maintain func-
tionality under a subset of malicious users in P , and how a dishonest O �⊂
that attempts to compromise transfers will lead to the �⊂ instance being
stopped through a proof by case analysis, where we model the provability
of a O �⊂’s integrity as a finite state machine whereby transfers are facilitated
by O �⊂ in e and committed during e + 1 in T �⊂(e + 1). A server is defined as
maintaining provable integrity during eon e so long as it is able to close any
challenge Xi(e) using V �⊂.

estart e + 1

s1

s2*

s3Xi(e + 1)

P
i →

O
�⊂ : T i

j

Pi → V �⊂: Wi

P j
→
O �⊂

: T
i

j

O �⊂ → V �⊂: T �⊂ � Ti

Pi �→ O �⊂

O
�⊂
→

V
�⊂

:
T �⊂

��
T

i j

O �⊂ →V �⊂: T �⊂ �� Ti
j

O �⊂ →V �⊂: T �⊂ � Ti
j O

�⊂
→

P
i /P

j :
T

ij ∈
T�⊂

O
�⊂ →

V
�⊂ : T�⊂ �

T i
j

O �⊂ →V �⊂: T �⊂ �� Ti
j

O
�⊂
→

V
�⊂

:T�⊂
�
T

ij

Figure 4.2: A finite state automaton capturing the provable integrity of O �⊂.
An honest O �⊂ may not find itself in a state whereby it cannot prove its
integrity in eon e + 1 after committing to its e operations, while a dishonest
O �⊂ that attempts to reverse transfers or incorrectly enforce them will find
itself unable to do so. *There exists a transition from s2 to Xi(e + 1) on (O �⊂
→ V �⊂: T �⊂ � Ti) omitted for clarity.
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4.3. Privacy

The automaton presented in Figure 4.2 specifies how an honest O �⊂ may
always behave in such a way that allows it to retain provable integrity in
e + 1 regardless of the behavior of members of P .

• Given no interactions between O �⊂ and Pi during e, or given only an
updatei(e) signed by Pi, but no updatej(e) signed by Pj, an honest O �⊂
may wait for Pj or discard Ti

j. No X d
i (e + 1) may be opened as Pi and

Pj would not possess an updatei(e) signed by O �⊂ containing Ti
j(e). A

X b
i (e + 1) may be closed with the submission of a τi(e) reflecting the

correct Ai(e + 1).

• Given an updatei(e) signed by Pi and an updatej(e) signed by Pj, an
honest O �⊂ may discard or synchronize Ti

j(e), or commit to its deliv-
ery by sending a countersigned update to Pi and/or Pj and then must
synchronize its delivery in T �⊂(e + 1). The hub retains sufficient infor-
mation to close any X b

i (e + 1) or X d
i (e + 1) in V �⊂.

• While in a state of provable integrity, O �⊂ can justifiably cancel any
malicious withdrawal by a Pi using V �⊂ in order to guarantee being
able to satisfy the allotment constraint defined in Equation 3.13 in e+ 1.

Moreover, a dishonest server which tries to debit a Pi without authorization,
or without crediting the corresponding Pj in case of a Ti

j, may not find itself
in a state of provable integrity in e + 1.

• Given no interactions between O �⊂ and Pi during e, the hub cannot
construct a valid T �⊂(e + 1) containing an updatei(e) signed by Pi. As
O �⊂ cannot forge Pi’s signature, it cannot close a X b

i (e + 1).

• Given only an updatei(e) signed by Pi, the hub cannot construct a valid
T �⊂(e + 1) containing an updatej(e) signed by Pj. A X d

i (e + 1) on Ti
j(e)

by a custodian Pi will not be closeable by O �⊂.

• Once the hub delivers a countersigned updatei(e) and/or updatej(e)
(s2 → s3) to either Pi or Pj respectively, it may not back out of enforc-
ing Ti

j(e), as O �⊂ will not be able to close a X b
i (e+ 1), and/or X b

j (e+ 1),
if it commits an outdated state in T �⊂(e + 1).

4.3 Privacy

In this section, we discuss the privacy provisions of NOCUST. In the course
of running the protocol, participants acquire proofs of correct operation
from and concede state updates to O �⊂, while broadcasting some of that
information to V �⊂ on BC. As the security of the protocol depends on non-
repudiation and the forced revelation of information, we explore what each
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party in the protocol maintains knowledge of and can learn throughout NO-
CUST.

4.3.1 O �⊂ Knowledge

The operator O �⊂ maintains knowledge of all transfers and balances in �⊂.
This is a requirement in NOCUST to enable O �⊂ to facilitate transfers and
synchronize between BG and BL every eon, while retaining provable in-
tegrity. As such, an adversary in control of O �⊂ has complete knowledge
of all off-chain information. Interestingly, at eon e, O �⊂ need only maintain
knowledge of e and e − 1 to be able to construct T �⊂(e), void any malicious
withdrawal Wi(e) and close any challenge X b

i (e), X d
i (e) by a Pi. A O �⊂ can

erase e − 2 at the end of eon e − 1 to maintain a form of forward secrecy on
the contents of BL in e − 2 without losing operational efficacy, which would
retain privacy on all transfers enacted off-chain prior to e − 1 if O �⊂ were
compromised in e.

4.3.2 P Knowledge

Throughout its participation in a �⊂, a Pi obtains a τi(e) for every eon e,
and constructs various Ti

j(e) messages for different Pj. A τi(e) reveals the
allotment intervals at each height of T �⊂(e), but does not reveal individual
account addresses or any transfer details. Therefore a Pi can learn that
it has some neighbor account with a certain balance, and learn how the
allotted intervals are designated at each level of T �⊂(e), without learning the
identities of which members of P these allotments are made to. To enact a
transfer Ti

j(e), Pi needs to sign a new updatei(e) and send it to O �⊂, and Pj

needs to sign a new updatej(e) and also send it to O �⊂. Pi and Pj need not
learn any information about the balance or transfer history of each other to
construct these messages, but need to know the full details of the transfer
Ti

j(e) to ratify it in the state update authorizations they concede. Moreover,
to enact a delivery challenge on a transfer Ti

j(e − 1), Pi and Pj need to share
τi(e) and τj(e) in order to validate that the transfer was misenforced by O �⊂.

4.3.3 V �⊂ Knowledge

The privacy of the deposits, challenges and withdrawals conducted through
V �⊂ is scoped by the underlying BC layer. In NOCUST we do not rely on
any privacy of BC operations. Closing a balance update challenge X b

i (e)
requires that a Pi learn the τi(e) used in the closure in order to maintain
custody of its account, which reveals Ai(e). Therefore deposits may be used
to guess a portion of a Pi’s balance in BL without interaction with O �⊂, while
closing a X b

i (e) reveals Pi’s balance in e, and initiating a Wi(e) reveals Pi’s
balance in e − 1. It’s noteworthy that a Pi wishing to mask its balance may
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assume multiple identities on BC (and consequently in O �⊂) and fragment
its deposits and withdrawals over them. However, we leave an extensive
analysis for future work.

4.3.4 Comparison to the Privacy Provisions of Two-Party Pay-
ment Channels

The guarantees provided in NOCUST are not trivial to compare with those
of two-party channel networks. A party’s maximum total balance may be
inferred from the amount committed to a channel, as the commitment may
only be in favor of one party or the other, and the exact amount can be
learned from an on-chain withdrawal which necessitates the broadcast of the
latest off-chain state. The leakage of the off-chain balance during attempted
withdrawals is similar in NOCUST and two-party channels, but inferring the
maximum off-chain balance prior to broadcast is not as simple in NOCUST
due to the increased number of participants without leakage from O �⊂. As
we have not described the enactment of payments across multiple instances
of �⊂, we may only draw a rough comparison between linked payments
involving more than one intermediary in two-party channel networks and
a payment within one �⊂ instance. The added privacy cost of being able to
reach different recipients in a two-party channel network is to involve more
intermediaries in the payment, while the added privacy cost in the current
version of NOCUST is to have one party join the other party’s �⊂ instance
and still involve only one intermediary. The exact information leakage to be
compared depends on the implementation details of the two-party channel
and its linked payment mechanism. We leave an extensive comparison for
future work.
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Chapter 5

Evaluation

In the following section, we evaluate the NOCUST model in terms of practi-
cality and usability in the real world and further compare it to the previous
state of the art. The basis for the comparison is a payment channel network
whereby an entity in place of �⊂ runs and maintains a channel for each mem-
ber of P .

5.1 Usability

In this section, we discuss the usability of NOCUST as an off-chain payment
solution. We explore the advantages in terms of the requirements placed on
the operator of a �⊂ instance, and those placed on a Pi.

5.1.1 Collateral Lockup

In a payment channel based network, the locked collateral in each channel
is effectively isolated. Therefore, a microtransaction service would have to
pre-allocate collateral to each recipient in anticipation of his or her expected
transaction volume to eliminate counter-party risk and avoid classification
as a credit network. When that collateral is exhausted, the hub would have
to retrieve its funds from other channels and consolidate it into recipient
channels, either directly through withdrawal or through a highly coordi-
nated rebalancing operation. The first procedure is relatively expensive and
requires on-chain operations proportional to the number of users, while the
second procedure depends on the channel clients, which are unreliable, and
will not guarantee significant consolidation of all funds. As more users join,
the network becomes prone to more fragmentation of collateral. Given e.g. 1
Million users, and an average of 10’000 USD of transaction volume towards
these users (over a given time span), a P would be required to lock up 10
Billion USD worth of collateral. However, in NOCUST, the intermediary
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does not need to lock up such insurmountable collateral to provide finality
within two eons.

5.1.2 Entry Barrier

One other valuable addition in terms of usability is the ability by a Pi to
enter into a �⊂ without the need to broadcast any messages to BC and imme-
diately start receiving payments, unlike in payment channel networks. This
possibility of easy entry into a NOCUST system enables participants to join
any number of hubs that they want, without having to incur any costs.

5.1.3 Potential Throughput

The throughput in terms of off-chain transactions per second achievable
within a NOCUST system is only limited by the implementations of the O �⊂
and P specifications, which may take the form of a distributed system capa-
ble of matching the performance of today’s commercial custodian payment
solutions.

5.2 Risk

In this section we briefly present some of the important operational risks that
come with running, and using, an off-chain payment solution that NOCUST
mitigates.

5.2.1 Channel Monitoring

The main risk associated with the participants of an off-chain solution is the
requirement that users must always stay online to monitor their payment
channels, or outsource this operation, to guarantee that the channel does not
successfully terminate with an outdated state. A Pi in NOCUST need only
come online once per eon at least to audit its account or issue the appropriate
challenges. This mitigates the associated cost with maintaining watch of a
Pi’s balance.

5.2.2 Transfer Delivery

To guarantee, or emulate, faster transaction finality, the hub may put up col-
lateral that can be claimed by the recipients in case of failure within two eons.
Through leveraging the same commitment scheme in Section 3.4.1 used to
enable the delayed delivery mechanism, the hub can allocate collateral in
bulk that can be claimed only by each recipient in case the delayed delivery
system fails. Recipients then know an upper-bound to the money they are
guaranteed to receive, even in case of failure, and can then calculate the risk
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involved with accepting payments, even when the total amount in the back-
log of the delayed delivery system exceeds the collateral. This amount need
only cover operation within two eons. This takes the rigid requirements
of payment channels, and relaxes them such that liabilities can be properly
negotiated in a granular manner, such that even the delivery guarantees of
payment channel networks can be reached, while still eliminating the in-
conveniences of shuffling around and consolidating locked collateral, and
keeping control of funds within the hands of the users.

5.2.3 Ledger Integrity

An intermediary managing a set of payment channels with collateral in them
may suffer a devastating attack, due to natural disaster, nuclear warfare or
otherwise, that would leave the operator paralyzed and/or suffering from
data loss. This leads to an interesting situation whereby the intermediary
may not be able to terminate its channels to recover funds properly due to
its data loss, or rightfully reclaim some of the collateral that it is owed in a
channel, as the counter-parties of P may possess more up to date informa-
tion. A malfunctioning NOCUST O �⊂ need not suffer these financial losses
as the V �⊂ guarantees a commitment to the contents of BL in e − 2 regardless
of the state of O �⊂.

5.2.4 BC Congestion

Under a congested BC, a bidding war for correct channel termination may
occur between a set of participants in a payment channel based intermediary.
This can be likened to what is described as a mass-exit. During operation, a
NOCUST intermediary O �⊂ may not be able to retain ledger integrity by uti-
lizing V �⊂ while BC is congested. However, rather than a malicious Pi being
allowed to double spend their balance in �⊂, the failure safety mechanism
of V �⊂ will be triggered, voiding the withdrawal and rolling back to the last
commitment.
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Chapter 6

Future Work

In this section we discuss future work we believe would contribute to the
efficacy of the proposed solution in different ways.

Cross-Instance Operations An interesting venue to explore would be a
specification for NOCUST instances to communicate with each other such
that a Pi of one �⊂ instance could transfer funds to a recipient Pj of another
�⊂ instance securely. It would be interesting to consider how NOCUST in-
stances could employ Two-Party channels to facilitate such operations, as
such a hybridization of solutions might lead to an elegant solution that del-
egates the routing concerns from participants to O �⊂ operators.

Privacy Enhancements The operations performed in NOCUST using the
data structure presented in Section 3.3 employ only asymmetric cryptog-
raphy to provide authentication. It would be interesting to see a similar
mechanism that utilizes zero-knowledge proofs, such as in the Zcash [33]
protocol, to provide the same security guarantees while improving privacy.

Exchange Operations The specification in this work for NOCUST allows
the bi-directional transfer of balances in a �⊂ instance. The augmentation of
the protocol to allow securely exchanging, or swapping, one form of balance
for another would certainly be a very interesting future contribution on top
of NOCUST.

Trusted Execution Environments The only checks that V �⊂ performs on
the T �⊂ are simple constraint verification. It would be interesting to explore
augmenting V �⊂ to accept only T �⊂ commitments generated within a trusted
execution environment.
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Chapter 7

Conclusion

In this work we presented a basis for establishing a non-custodial 2nd-layer
financial intermediary that can securely facilitate payments between partic-
ipants in its off-chain network without reliance on a consensus mechanism
as in side-chains, but rather on a practical challenge-response protocol that
leverages a simple and reliable data-structure.

Our construction NOCUST features multiple novel properties for off blockchain
payments: (i) users can join the payment hub without the need for a costly
on-chain transaction, (ii) locked up collateral in the hub can be zero up to
the transaction volume of a disputable time window (to achieve trustless
operation), (iii) the hub’s collateral can be effectively managed in bulk, sig-
nificantly reducing the management costs of the operator, compared to a
two-party payment channel hub. We’ve moreover shown how users of a
NOCUST construction can securely maintain custody of their funds, even
under the hub’s adversarial behavior or unavailability.

NOCUST empowers the individual to become it’s custodian. In the future,
we envision users to hold significant off-chain funds, as these can be trans-
ferred faster and at a lower cost than regular on-chain transactions. Even
in the case of blockchain congestion or excessive transaction fees, the users’
funds liquidity is guaranteed.
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