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Abstract

In recent years, the popularity of all kinds of embedded systems pow-
ered by an energy harvester has drastically increased. Such devices are
deployed in a large number of applications, such as data gathering, surveil-
lance, photography, entertainment and many more. The increasing usage
demand of such devices raises interests in investigations and improve-
ments on the efficiency of these systems. The goal of this work is to build
a platform that is capable of reasonable modeling of such systems and
comparison of their performance under various conditions. We present
the identification and abstraction of the modeled components and their
functionality on the platform. In order to obtain a meaningful comparison
between different systems, the platform provides various metrics, includ-
ing the probability of depleting the battery.

Apart from building the platform, several experiments are performed
in this work to test the platform’s capabilities.
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1 Introduction

Many works discuss embedded system performances in terms of energy effi-
ciency, self-sustainability and perpetual operation. Serving as a primer example
for this work, [1] provides a model for a nano-sized blimp (depicted in Fig-
ure 1) and examines on its hovering performance. Equipping the blimp with a
small battery and a solar panel as energy harvester allows the possibility of a
long-term operation of up to hundreds of hours.

Figure 1: The nano blimp investigated on in [1].

During sunny days, such a solar powered system is able to work perpetually.
The battery allows the system to also operate at bad weather conditions or,
depending on the size of the battery, even during night. Since the harvested
energy cannot be predicted, there are several ways of modeling such a harvest-
ing source. [1] proposes constant harvesting as well as probabilistic harvesting,
where the intensity of the harvested energy is stochastically distributed. Fur-
ther efficiency studies on battery equipped solar powered devices reached an
analytical solution to maximize the minimum energy consumption [2], leading
to a high service level being as constant as possible. Different harvesting models
are proposed in [2], such as stochastic harvesting (based on historical data) or
energy estimator based on an astronomical model.

Apart from different system setups and harvesting structures, the executed
jobs on the system deliver a mentionable contribution to the overall perfor-
mance. Depending on the scheduling scheme and the periodicity of a task, the
autonomous operation time of the system may differ by a wide range. The pos-
sibilities to arrange a system’s tasks to fulfill its purpose are very large, reaching
from different scheduling, up to battery level dependent decisions whether to
cancel some jobs.

To this date several studies have investigated on specific devices and system
setups. As the number of system models, harvesting models and scheduling
schemes grows larger, the possibilities of combinations vastly expand to an mul-
titudinous amount. Having this many setup possibilities gives rise to the desire
of comparing their performance. In order to make a statement about the perfor-
mance and efficiency of different systems under the same conditions, a platform
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is needed for a competitive comparison. In this work we provide such a plat-
form in the form of a framework. Based on vector and matrix multiplication,
the framework is able to simulate a system’s battery charge level under different
harvesting conditions and job execution conditions, such as the schedule. Focus-
ing on the evolution of the battery charge during the simulation, the framework
provides useful comparison metrics, such as the average time spent in desired
ranges of battery charge or the probability of depleting the battery. Regarding
the harvesting, the framework is compatible with different energy harvesting
models, be it any kind of stochastic harvesting or real-life traces. Furthermore,
the framework can deal with level-dependent battery properties, such as leakage
or thermal behavior.

A crucial point for the creation of this framework is the choice and abstrac-
tion of the important parameters of a system’s battery, a harvesting model and
a job execution. Section 2 fully describes the scope and the modeling of the
components named above. The functionality of the framework with all inputs
and outputs is explained in Section 3. Section 4 provides three experiments
to test the framework’s capabilities, including a comparison between stochas-
tic harvesting and a real trace. An overall bottom line on the achievements in
this work is given in Section 5 and Section 6 exhibits possible extensions to the
framework to further increase its functionality and accuracy.

5



2 Modeling

Building a framework to simulate the operation of an energy harvesting em-
bedded device requires careful modeling. As a first step it has to be decided
which components are to be abstracted from the real process and their scope
in the framework. We identify these components as an energy harvester and a
system with its battery and the job executions. Figure 2 depicts a schematic
interconnection between the main components of the framework.

Battery
Job Execution

System

Energy 

Harvester

Figure 2: Schematic of the framework’s modeled components.

The battery is charged by the energy harvester and discharged by the job
executions. One of the main challenges was to identify and abstract the im-
portant parameters of the components to obtain a model comparable to the
real system. We found an intuitive, simple, yet accurate way to achieve this
goal. Section 2.1 describes the system model, where the battery is modeled as a
Markov chain and other system properties can de specified. Section 2.2 explains
the mechanics of an execution on a system and finally, the energy harvester to
charge the battery is explained in Section 2.3.

2.1 System

As previously stated, one of the most important components of the system is the
battery. As proposed in [1], the battery is modeled as a Markov chain where the
states of the chain correspond to different discrete charge levels of the battery.
The states can be seen as a one dimensional array with increasing battery level,
depicted in Figure 3.

0 1 2 3 · · · n

Battery level

Figure 3: The Markov chain battery with no transitions. The states of the chain
represent the battery charge level.

Charging and discharging of the battery is easily modeled with transitions
between the states: charging means a transition to a higher state, discharging
means a transition to a lower state. The state 0 represents the empty battery
which means that the system stops operating, when entered. This state is an
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important element for the framework metrics, because it indicates a system
failure. In the framework, the battery takes the form of a horizontal vector bT

whose values bTi represent the probability that the battery is charged at state i.
Every charging or discharging process can be described in a matrix T which is
the transition matrix of the Markov chain. Entry (i, j) is the probability of going
from state i to state j, T is therefore a square and stochastic matrix (every row
sums up to 1) with dimension n × n where n is the number of battery states.
Therefore, entries above the diagonal of T represent charging of the battery,
entries below the diagonal discharging. The battery state after such a process
is calculated by

bTt+1 = bTt · T . (1)

Because of this model based on matrix multiplication, the system operates
in discrete time. Figure 4 shows an example for such a charging and discharging
process on a Markov chain battery. The red arrow represents a task execution
where battery is consumed (see Section 2.2), the green arrows embody stochastic
harvesting (described in Section 2.3).

consumption

harvesting

n− 2 n− 1 n n + 1

1

0.5

0.15

0.25

0.1

Figure 4: The battery modeled as a markov chain. [1]

The main advantage of using a Markov chain is that it allows us to model
state-dependent behavior. For example, if we deal with battery leakage, higher
states experience a higher amount of leakage.

Another property of the system is to set certain battery thresholds which
splits the system in multiple sections. Each section corresponds to a mode
of operation, meaning that the individual tasks may have different execution
behavior (see Section 2.2.1).

Furthermore different systems may handle the same task differently, for ex-
ample because of special hardware properties. The abstracted parameters of a
task (computation time and power consumption on a unit processor, see Section
2.2) are therefore mapped to the system-dependent parameters using a consump-
tion function, another useful property of the framework’s system model.

It can also be specified whether the system can recover from battery de-
pletion or if it experiences an unrecoverable failure. In the case of a persistent
failure, the system model includes an absorbing error state making it impossible
to charge the battery again once it has run out.
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Figure 5: An execution on a full charged battery with 4 energy states in total.
The executed task consumes 2 energy states.

2.2 Execution

In the framework, an execution means the abstraction of executing a single job,
an instance of a periodic task. To keep the abstraction as flexible, simple and
accurate as possible, we decided to abstract the execution with two parame-
ters: computation time and the power consumed during execution. Multiplying
these attributes outputs the amount of energy consumed by the task, i.e. the
discharging of the battery. Executing such a task is a deterministic process.
This makes it very easy to incorporate the process in a transition matrix to
model the discharge on a battery. Every entry in the matrix is zero except for
one of the diagonals in the lower triangle. This diagonal is filled with ones and
it is located in a distance from the main diagonal corresponding to the energy
consumption. If the consumption is higher than the remaining battery charge,
the battery runs out and the matrix maps to the lowest state. This truncation,
proposed in [2], is represented with ones in the first column of the consumption
matrix until the diagonal starts. Figure 5 shows an intuitive numerical example
of equation (1) with a 4 state battery where the execution consumes 2 states
from a full charged battery.

In general, if job i consumes m energy states of the battery, the resulting con-
sumption matrix can be seen in Figure 6a. Figure 6b depicts another exemplary
execution on a battery with 50 states where 7 energy states are consumed.

The tasks are assumed to have a certain periodicity. The smallest period
where a repeating pattern over all tasks occurs is called the hyperperiod. It
will be of importance when calculating the battery steady state distribution in
Section 2.3.1.

2.2.1 Modes

As mentioned in Section 2.1, every task can operate in different modes depend-
ing on the current battery charge. Unifying the battery states of the same
modes results in a sub-chain of operation modes. Figure 7a depicts this sub-
chain, whereas Figure 7b shows a more intuitive battery schematic including
the introduced operation modes.

This sub-graph provides important information for the framework metrics,
such as the average time spent in each operation mode.

Here are two use-cases for such an operation mode property:
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(a) General form of the consumption ma-
trix
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(b) Exemplary execution on a battery with
50 states where 7 energy states are con-
sumed.

Figure 6: The consumption matrices used by the framework to model a job
execution.

Use-case 1: The most obvious use-case is a degraded operation with less
energy consumption when the battery charge is low. The modes are modeled
as a scaling factor of the energy consumption in every battery section given by
the thresholds of the system. As an example on a 50 state battery, Figure 8a
shows normal execution above 50% battery charge, a degraded execution with
half the energy consumption between 25% and 50%, and no execution below
25%. It can easily be seen that the submatrix in the lowest mode is the identity
matrix.

Use-case 2: Another important ability for a task with modes is to execute
only in very specific situations, e.g. only between two thresholds. In that case,
the energy consumption would be scaled with zero for all other threshold sections
of the battery as an analogy to not being executed. Figure 8b shows the case
when a task executes only between 20% and 40% battery charge. An example
for this could be a recovery task which does some necessary work before the
battery depletes completely.

2.3 Environment

The environment encompasses everything around the system, meaning for our
framework exclusively the energy harvesting. The harvesting is modeled as a
vector vh with k components describing the battery charging behavior where
the i-th component vh,i of this harvesting vector represents the probability
of gaining i energy states. In other words, the first entry vh,0 of the vector
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empty moden · · · mode1

(a) Sub-chain of the battery including different modes. Certain parts of the battery
with neighboring nodes form a new mode state.

moden

empty

moden1 mode1. . .

(b) Battery schematic including modes.

Figure 7: The battery is split up in sections of different operation modes.

contains the probability of gaining no energy, the second entry vh,1 contains the
probability of being charged by one energy state, and so on. From this vector
it is easy to generate a harvesting transition T h matrix for our Markov chain
battery. The vector is inserted in every row where the first vector element aligns
with the diagonal elements of the matrix. Like that, every state experiences the
same charging behavior. If the battery would be charged to a state higher than
its maximum capacity it is truncated at its maximum state (as proposed in [2]),
since charging a full battery leads again to a full battery.

The framework can work with two different types of harvesting: stochastic
harvesting and real traces. The following two subsections explain the function-
ality of these types.

2.3.1 Stochastic harvesting and the steady state

Stochastic harvesting means that the harvesting vector explained above becomes
a stochastic distribution. See Figure 9 for a normal distributed harvesting vec-
tor with a length of 13, variance 0.3 and the corresponding harvesting matrix
generated from the vector for a battery with 50 states.
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(a) Below 50% the task executes in de-
graded mode, below 25% there is no exe-
cution
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(b) Task execution only between 20% and
40% battery charge

Figure 8: Two use cases of degraded modes with their thresholds.
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(a) Harvesting vector
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(b) Harvesting matrix

Figure 9: A harvesting vector with its generated harvesting matrix for a battery
with 50 states. Note the truncation on the bottom right.

A probabilistic harvesting distribution also leads to a non-trivial probabilistic
battery distribution with probabilities of being in different states of battery
charge. If the stochastic harvesting model is constant over the hyperperiod, the
battery distribution will attain a steady state after some time, independent of
the initial distribution. In other words, a steady state exists if the matrices have
a certain periodicity (note that leakage is constant as well and therefore also
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periodic). We are interested in this steady state for a long-term analysis, e.g.
to make statements regarding a year without simulating a whole year.

For the steady state calculation we first compute the total matrix of the
hyperperiod T tot calculated as

T tot =
∏

frames∈hyperperiod

(T h · T leakage ·
∏

jobs∈frame

(T c,jobi
)). (2)

Equation (2) embodies the battery evolution of one entire hyperperiod. This
is done by applying the harvesting, the leakage and the consumption (i.e. mul-
tiplying the corresponding matrices) in this particular order for a worst case
analysis. If the harvesting is applied first, the battery is charged to its highest
possible level for the current frame. Since the leakage is an increasing func-
tion with increasing battery charge, it will then have the highest effect possible
leading to a worst-case scenario. The consumption is state-independent and can
therefore easily be applied last. Since all results are effected by the matrix order,
choosing it was one of the main design choices during building the framework.

We then solve the steady state equation for bTss:

bTss · T tot = bTss (3)

bTss · (T tot − In) = 0. (4)

These are no more than a set of linear equations. Since T tot is a transition
matrix of a Markov chain, according to [3] one of the equations (i.e. one row
of T tot) is a linear combination of the other equations and can be replaced by
the additional necessary condition

∑
i bss,i = 1 to exclude the trivial solution

of bss,i = 0 for all i.
The steady state analysis leads to some pre-simulation conclusions such as

the average time spent in each battery state or the probability of changing
between modes. Find more details about the steady state metrics in Section
3.2.

2.3.2 Harvesting with traces

We are not only interested in the probabilistic behavior of battery depletion or
operating in degradation. It is also beneficial to know how the system would
have performed on a certain day in the past. For this case we use recorded data
traces from past days. Figure 10 shows an example for a light harvesting trace
over five days in the room G78.1 of the ETZ building (Gloriastrasse 35, 8092
Zrich), a facility of the ETH Zrich.

In this case, the simulation is no longer stochastic but rather deterministic,
since for every step during the simulation it is exactly known how much energy
is harvested and with that how much the battery is charged. For every instant
of time the harvesting vector vh becomes a vector of length nh +1 (nh being the
energy charge intensity) filled with zeros except for the last value vh,nh−1 which
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Figure 10: A 5 day trace of light energy harvesting. Location: office at Glorias-
trasse 35, 8092 Zrich.

is one, meaning that we have a probability of 100% of charging the battery for
nh states.

After the simulation it can directly be seen at which daytime the system
entered a degraded mode or stopped working due to an empty battery.
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3 Framework setup

This section explains the functionality and usage of the framework. Consider
the diagram in Figure 11 for a general overview of the whole framework. Ex-
planations to every diagram component are found in the following subsections.

Simulator

Mode, Median,
Mean behavior 

Steady state
distribution 

Average time spent
in each mode

Convergence
speed

System

Environment

Executions
Mode

behavior

Computation
Time

Power 

Harvesting
vector 

Consumption
function 

Leakage 

Battery
Thresholds 

Absorbing
error state

Schedule

Probability of
failure

Probability of
changing between

modes 

Figure 11: A schematic overview on the framework’s functionality and basic
features.

Since we have a discrete time simulator, we need to determine a reasonable
time step for energy harvesting and leakage. We introduce this time step as
a frame with the same properties as a frame in the cyclic-executive scheduling
scheme, as introduced in [4]. This means that one harvesting matrix or one
leakage matrix are applied per each frame with the intensity of one frame length.
The tasks on the other hand possess a fixed computation time and are therefore
independent of the frame length. One or several tasks can be executed per
frame, as long as the frame length is not exceeded by the sum of the computation
times. See Figure 12 for an example with three frames of length 4 and three
tasks distributed on them. In this example, harvesting and leakage would be
applied at the times 0, 4, 8 and 12.

The framework can be split up into three main parts: initialization, sim-
ulation and evaluation. The initialization contains all modeling aspects and
generates specific instances of these models, the process is described in Section
3.1. Right after that, depending on the harvesting model, it is possible to gather
important evaluation data through an analytic investigation, shown in Section
3.2. Then, Section 3.3 describes the actual performance of a simulation and
finally, Section 3.4 provides the framework’s metrics based on the simulation.
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Figure 12: An example of frames with task instances.

3.1 Initialization

In the first section of the framework all the necessary matrices are generated
with the given inputs. A crucial input for the system is the declaration of the
leakage amount in each state. This is given in a text file where each leakage
amount is written on a new line. This file will determine the dimension of the
battery as well as the leakage behavior, making it one of the most important
parts of the system instantiation. Furthermore, the individual consumption
function is defined and given to the system as another input. The choice of
non-increasing thresholds and decision whether to include the absorbing error
state are finally needed to instantiate the system. For demonstration purposes,
we generate a sample system with 100 battery states, linear slowly increasing
leakage, one threshold at 25% battery charge and no absorbing error state.

The next step is to generate the tasks. This is done by instantiating each
task with its computation time, power and the behavior in different modes. If no
modes are given, the task execution behavior is mode invariant, which means
unscaled energy consumption (remember that an operation mode scales the
energy consumption). We call this the normal mode. If the number of modes is
less than the number of thresholds in the system, the task won’t execute in the
undefined modes. With the schedule in the form of a look-up table, the taskset
for the system can now be generated with its consumption matrices. The look-
up table maps each task instance to its frame. Our sample system executes
an arbitrary taskset with 1-2 tasks per frame (energy consumption differs by a
factor of at most 4) and a hyperperiod of 6 frames. Below 25% battery charge,
the energy consumption halves.

Finally the harvesting model for each frame has to be defined. This is
done by initializing one or multiple harvesting vectors and giving the intervals
(in number of frames) in which the corresponding harvesting model shall be
constant. So in the case of throughout constant harvesting, there is only one
harvesting vector and the interval is the whole simulation. When using traces,
the harvesting vector changes every frame, so the intervals will only be the length
of one frame. The current version of the framework supports generation of a
normal distributed harvesting vector. We initialize such a normal distributed
harvesting model for the sample system with a standard deviation of 0.3 where
the mode (most likely value) of the distribution is 13 states.
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3.2 Analytically-computed metrics

There are several parameters of interest to compile a reasonable analysis and
evaluation on the performance of a system. In the case of a stochastic harvesting
model, some of them can analytically be obtained before the simulation. First
of all, as described in Section 2.3.1, the total matrix T tot over the hyperperiod
can be obtained and equation (3) can be solved for bTss to obtain the battery
steady state distribution. Our sample system attains the steady state depicted
in Figure 13.
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Figure 13: An exemplary steady state distribution on a 100 state battery. The
red line indicates the battery’s threshold at 25% of charge.

The plot contains spikes in the probability distribution. Their origin lies in
the leakage model where sometimes two neighboring states map to the same
lower state. Steady state is reached regardless of the initial distribution, as
shown in the example with full initial battery in Figure 14.
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Figure 14: Steady state convergence with a full battery as initial condition.
Lighter shades represent earlier iterations.

The color intensity of the curves is a linear rising function in time, meaning
that the distributions evolve proportional to the color intensity.

The speed of convergence to a given precision can be calculated as well.
Consider Figure 15 for a logarithmic plot of increasing precisions and the number
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of iterations until the precisions are reached.
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Figure 15: The average of time spent in percentage for every state.

The total hyperperiod matrix T tot also provides information about the aver-
age time spent in each state. This metric is obtained by summing each column
of T 2

tot, like it is shown in [3]. Figure 16 shows the percentage of time spent in
each state.
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Figure 16: The average of time spent in percentage for every state.

We now can easily point out the average time spent in each mode, for this
purpose consider Table 1. Mode 1 indicates normal operation whereas higher
modes represents degradation. Mode 0 represents the empty battery. Very
small values are rounded to their first appearing decimal to show that they are
non-zero whereas normal scaled numbers are rounded to two decimals.

In almost 90% of the frames the system operates in normal mode, the remain-
ing operation is in degradation. The battery is empty only for an extremely little
fraction of the time. If the system would run over a year, only 28.7 milliseconds
would be spent with an empty battery. Remember that constant harvesting
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Modes Time spent in percentage

0 9E-8

2 10.39

1 89.61

Table 1: The average of time spent in percentage for every mode.

is assumed for this analysis. Furthermore we can determine the probability of
staying in a mode or changing between modes, These relations are shown in
Table 2 where entry (i, j) indicates the probability of changing from the mode
corresponding to the ith row to the mode corresponding to the jth column.

Table 2: The probability of changing between modes.

We see that if the system operates in normal mode (mode 1), there is a
96.8% chance of staying in normal mode. From degraded mode (mode 2) the
chance is almost 50% for both, staying in degradation or changing to normal
operation. Chances for battery depletion from any mode (including mode 0:
being already depleted) are very small.

3.3 Simulation

The simulation section is an integral part of the framework where the battery
distribution is evolved along the given number of frames. Again, as described in
Section 2.3.1, we aim for a worst case analysis and apply therefore harvesting,
leakage and consumption in this order before sampling the battery distribution.
Depending on the initial distribution, a different evolution is obtained. Figure
17 shows a simulation of 12 frames with the steady state as an initial condition.
Since the steady state is always reattained after the hyperperiod (6 frames) the
evolution shows periodic behavior with deviations around the steady state. As
another example, figure 18 depicts the same simulation with a different initial
condition: a full battery. Since we simulate only over 2 hyperperiods, the steady
state is not yet reached.

In order to see the full capabilities of the framework, we also present a
simulation with a trace instead of stochastic harvesting. Figure 19a depicts the
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Figure 17: Battery simulation with the steady state as initial distribution. Note
the periodicity of 6 frames.
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Figure 18: Battery simulation with the full battery as initial distribution

chosen trace and the simulation result, the evolution of the battery level can be
seen in Figure 19b.

Between minutes 60 and 70, the steepness of the slope begins to cease. This
is due to degradation which is entered below a battery charge of 25%.

3.4 Simulation metrics

After gathering the battery distributions from the simulation, we analyze three
stocchastic metrics:

• Mode: The most likely (or most frequent) value.

• Median: The middle value. It divides the area of the distribution in half.

• Mean: The average value given by
∑

value · probabilityvalue

Figure 20 shows the evolution of these metrics during the simulations with
both initial conditions, the steady state (Figure 20a) and the full battery (Figure
20b).

Since the hyperperiod of the sample system has the size of 6 frames, the
metrics show periodic behavior with a period of these 6 frames when starting in
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Figure 19: Battery simulation with a trace as harvesting input.
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Figure 20: Stochastic metrics during the simulation.

steady state. The effect of degradation is clearly visible since the most frequent
value is barely above the 25% threshold whereas the median and mean are
roughly 10% higher. In the simulation with initial full battery, the distribution
drops sharply in the first few frames. The metrics will eventually approach the
same curves as with initial steady state.

When simulating with traces, we can measure similar metrics to the ones
computed analytically:

• Measured time spent in each mode

• Frequency of system failures (battery depletions)
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• Frequency of transitions between modes

Comparing these measured metrics to the predicted values by a given stochas-
tic model leads to a good opportunity of comparing a stochastic harvesting
model with trace data. This will be done in Section 4.1.
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4 Evaluation

Now that we have seen what the framework’s capabilities are we want to per-
form some experiments. Section 4.1 compares stochastic harvesting models to
the traces which the models are generated from. A real use-case where a photo-
graphic sensor is modeled, proposed in [5], is provided in Section 4.2 and Section
4.3 investigates more theoretically on the impact of the threshold choice.

4.1 Stochastic model and trace: comparison

As a first experiment, the harvesting model is compared to a real trace. We
therefore use a trace for the generation of a normal distributed stochastic har-
vesting model and run the simulation with both, the traces as well as their
stochastic harvesting model. The setup is described in Section 4.1.1 and the
results are presented in Section 4.1.2.

4.1.1 Experiment setup

The system and taskset setup is very similar to the sample system setup in
Section 3. The only difference is that the battery is equipped with 1000 states
instead of 100 to increase the resolution of the harvesting. The taskset stays as
before with a hyperperiod of 6 frames.

Let us get started with the trace data. We use the same data as mentioned
in Section 2.3.2, the room G78.1 in the ETZ building at ETH Zrich. Out of
30 days of trace data, we use a two hour trace slice of every day which is from
12AM to 2PM, meaning we have 30 2-hour slices for the simulation and to
generate the stochastic model. Figures 21a - 21d show the slices of the first
4 days, discretized in minutes. All values are scaled such that the maximum
value occurring in these 30 days is set to 100 states. Non-integers are rounded
down for a worst case analysis. Apparently, with a closer look at the slices, the
days seem to split into two groups: high energy harvesting days, hence called
high days, and low energy harvesting days, called low days. Consider Appendix
A.1.1 for all 30 slices and Appendix A.1.2 for the first 10 slices compared to each
other in one graph to point out the clear difference between high and low days.
Motivated by this observation, we create two stochastic harvesting models, one
for the high days and one for the low days. The decision for a day to be either
high or low is made by checking whether its mean is above or below 50 states
which is half the maximum value. After separating the days in a high and a low
group we finally generate the two stochastic normal distributed models with a
maximum-likelihood estimation, shown in Figure 21e.

As expected, the two stochastic models clearly differ from each other leaving
a gap in between them. The actual experiment takes now place as follows:
We use both stochastic models to generate the analytical metrics (average time
spent per mode, average probabilities of changing between modes). After that
we run the simulation with all 30 traces and take the average of all high days
and all low days of the metrics named above. These averages of the actual
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Figure 21: Traces from 12AM to 2PM on 4 consecutive days in October 2017.
All values are normalized to the maximum value occuring in all 30 days.

measurements are then compared to the analytical results to see whether the
stochastic competes well with the real data. Every simulation starts at the mean
value of the steady state distribution of its corresponding stochastic model.

4.1.2 Experiment results

As a first analysis we investigate on the average time spent in each mode. The
modes of the system are the empty battery (mode 0), normal operation (mode
1) and degraded operation (mode 2) where each task consumes half the energy
of the consumption in normal operation. Figure 22a compares the analytical
calculated average time spent from the high stochastic model and the averaged
actual measurements from all the high days whereas Figure 22b shows the same
data for the low model and the low days.

The stochastic model for the high days matches the actual measurement
pretty well. The model predicted that 100% of the time will be spent in normal
operation (to a precision of 1013) and the measured data with the traces aver-
ages at 99.86%. The remaining 0.14% were spent in degradation, below 25%
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Modes Time spent (model) [%] Time spent (traces) [%]

0 0.00 0.00

2 1E-13 0.14

1 100.00 99.86

(a) High days

Modes Time spent (model) [%] Time spent (traces) [%]

0 21.51 97.15

2 65.81 0.69

1 12.68 2.16

(b) Low days

Figure 22: Comparison between the analytical average time spent generated by
the stochastic model (middle column) and the average of the actual measure-
ments (right column).

battery charge. For the low days we see a worse performance of the low model’s
prediction. While the model predicted a distributed detention time over all
modes (with 65.81% for degradation), the measured data provided a one-sided
result with the battery being empty for 97.15% of the time.

In order to further assess the performance of the stochastic models we exam-
ine the probabilities of changing between modes. We therefore again calculate
them analytically with the model data and compare them to the averaged mea-
sured probabilities. Figure 23a and 23b show the comparison of the high days,
Figure 23c and 23d display the result of the low days.

Starting in normal operation (mode 1), the high model again shows good
transition predictions: In most of the cases the system stays in normal operation.
In a very few cases during the measurements the system entered degradation and
stayed there in 50% of these cases. This differs from the predicted probabilities
which state to immediately go back to normal operation, but matches the the
observations about the average time spent in Figure 22a. This discrepancy
can be explained by the properties of a trace: it is more likely to get similar
consecutive values instead of high transients all the time, leading to a higher
entry (i, i) in the probability matrices (the stochastic model is independent of
the iteration before). Since the battery was never depleted during the high days,
no data is provided for the first row representing the empty battery.

Let’s focus on the low days, starting with the empty battery. Here the
stochastic model predicted a probability of 0.919 of staying empty and the
measured data provides a probability of 0.996. Similar precision is also seen
in degraded operation. We measured an almost 0.5 chance for staying there
or changing to the empty mode, the model predicted probabilities of 0.605
(staying) and 0.395 (change to empty). The measured data provided very few
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(a) High days - Stochastic model (b) High days - Trace

(c) Low days - Stochastic model (d) Low days - Trace

Figure 23: The probabilities of changing between modes. Entry (i, j) represents
the probability of changing from the mode in row i to the mode in column j.

transitions from degradation to normal operation as well. The model performs
worse at the transition probabilities from normal operation. The prediction
states a probability 0.409 of going to degration and a 0 probability of depleting
the battery, the numbers for the measured data are 0 and 0.281, respectively.
Staying in normal mode matches the prediction quite well again. Note that
97.15% of the measured data in the low days stayed in the empty mode, so
there was only little data available for the second and third row in the probability
matrix.

4.2 Traces: real example

Now we want to address our attention to the simulation of a real use-case. [5]
investigates on the performance of a solar-powered data sensor with different
energy management configurations. The sensor takes environmental images and
stores them on an SD card. In this experiment we simulate this sensor with
trace data of 45 different days between 8AM and 8PM. The setup is described
in Section 4.2.1 and the results are presented in Section 4.2.2

4.2.1 Experiment setup

[5] introduces different energy management configurations. We perform the sim-
ulations with the configuration which is used as the baseline for all comparisons.
Taking an image requires 4 tasks to be executed. These tasks and their energy
consumption are depicted in Table 3.

All 4 tasks are executed with a single energy burst from the battery. For
our simulations the sensor takes 30 images per minute and its battery can store
834mJ of energy. We add two degraded modes which reduce the rate of taking
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Table 3: The tasks for taking an image described in [5].

the images, such that there is more waiting time to charge the battery. The
first degraded mode is entered below 40% battery charge and drops the job
execution rate by 25%. Below 20% battery charge, in the lowest mode, the rate
is halved compared to the initial rate. See the experiment’s schematic battery
and operation modes in Figure 24.

50% rate 75% rate 100% rate

Figure 24: Battery schematic for the experiment. As the battery level lowers,
the frequency of taking images lowers as well.

The harvesting consists of trace data from 45 consecutive days, October 13th

2017 to November 27th 2017. Every simulation starts with the mean charge of
the steady state battery distribution generated by the stochastic model of all 45
days (the same way as in the first experiment). In this way the initial battery
charge attains 91%. Note that the stochastic model is generated for the single
purpose of finding the initial battery charge. During the simulation we keep
track of the mode in which the system operates and after running all 45 days,
the proportion of each mode can be determined. The simulation is discretized
in steps of 30 minutes.

4.2.2 Experiment results

Figure 25 depicts the operating modes as percental appearance in all 45 days,
i.e. for each point of time the graph shows how frequent each mode was.

During the first 4 hours the system always stayed in normal operation. At
12AM (lunchtime) the system enters the first degraded mode on some days,
reaching a peak fraction value of 35.56% at 2PM. After 2PM we see further
degradation from the first to the second degraded mode, but the fraction of
normal operations stops dropping and starts to stay constant between 57.78%
and 62.22% until the end of the day. After 6PM, when a lot of people left the
office, the fraction of battery depletions rises up to 31.11%.

Since we are using the same trace data set as in the first experiment, we
know that there are high and low harvesting days. With that fact given, we can
interpret that the system always operates in normal mode during the high days
and slowly enters the degraded modes during the low days. Since we are starting
every simulation with an almost full battery, we don’t see any degradation in
the first 4 hours, even for the low days.
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Figure 25: The percentage of days the system operated in each mode. In degra-
dation 1 the job execution rate drops to 75%, in degradation 2 to 50% of the
initial rate.

4.3 Varying threshold

The third experiment shall give insights on the impact on battery depletion and
operation in degraded modes under varying the mode threshold. The setup is
described in Section 4.3.1 and the results are presented in Section 4.3.2.

4.3.1 Experiment setup

The taskset for this experiment consists of ten tasks with linear rising energy
consumptions where the lowest and the highest consumption vary by a factor of
10. There will be two thresholds splitting the battery into four parts: the normal
mode, the empty mode, and two degraded modes. The higher threshold will
always be two times as high as the lower one to reduce the threshold variation to
one free parameter. Degradation implies no execution for some tasks, reducing
the number of executed tasks in the lower modes. In normal operation mode,
all of the ten tasks are executed. After passing below the first threshold of the
battery level, the number of executed tasks reduces to five and below the second
threshold (in the lowest mode before battery depletion) two tasks remain to be
executed (see Figure 26).

10 Tasks5 Tasks2 Tasks

Threshold 1Threshold 2 

Figure 26: The system battery with the corresponding operation modes in this
experiment’s setup. The thresholds will be varied. Threshold 2 is always
Threshold 1

2 .

No absorbing error state is assumed, meaning that the battery can be recharged
after depletion and does not lead to a persistent failure of the system. We as-
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sume constant stochastic harvesting. The consumption and harvesting intensity
are tuned such that with no degradation we have a battery depletion probability
of 50%. As a first step the steady state battery distribution for a random sched-
ule is calculated. We use 8 frames with 1-4 tasks per frame. Finally the actual
experiment simulation is carried out: Each task is executed (always starting
from steady state) and the resulting battery distribution is analyzed. We are
interested in two kinds of failures:

• Battery depletion: The probability that the execution of each task leads
to an empty battery.

• Degradation: The probability that certain tasks are not executed, meaning
the probability of being in one of the two degraded modes.

Finally we take the maximum value for depletion and degradation over all tasks
for a worst case execution scenario. This procedure is performed for threshold
levels between 0% and 100% (0% and 50% for the lower threshold, respectively).

4.3.2 Experiment results

The battery states representing the degraded modes can be seen as a buffer zone
between normal operation and the empty mode. Stopping certain executions
in the degraded modes has a buffering effect on entering the empty mode. As
this buffer zone increases in size (with rising thresholds), the battery depletion
probability will therefore lower. At the same time, since more tasks stop their
execution if the degraded modes expand, the degradation probability increases
as well. Figure 27 depicts this relation between threshold and battery depletion
probability and degradation probability, respectively.
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Figure 27: The impact of varying the threshold on the battery depletion proba-
bility and the degradation probability.

As the threshold increases the probability of battery depletion drops rela-
tively fast and the degradation probability rises with an similarly steep slope.
With thresholds at 20% and 10%, the failure probability is in the magnitude of
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10−6 and the degradation probability is at 0.893. This means that the intro-
duced buffer has a very strong effect, in most of the cases the system operates in
a degraded mode (some tasks are dropped) which successfully prevents battery
depletion.
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5 Conclusion

In this work we present a framework capable of comparing the performance of
different system setups, harvesting models and scheduling schemes. A Markov
chain is used to model the battery, allowing us to include state-dependent prop-
erties such as leakage or thermal behavior. For the modeling of the energy
harvesting, the user can choose between a stochastic harvesting model or a
real trace for evaluating a system’s performance on a certain day in the past.
The tasks are abstracted with computation time and power dissipation, the
product of these values equals the consumed energy from the battery. Due to
state-dependent battery dynamics, one can define different modes for each task,
lowering its computation time or shutting the task off completely on certain
battery levels. The tasks can be initialized in the desired schedule.

The variety of the framework allows flexible comparisons between all com-
ponents named above. For instance, different execution times (with adapted
power) or individual battery dynamics can be compared. Precisely speaking,
the framework provides the following metrics for an evaluation:

• Stochastic harvesting:

– Steady state battery distribution

– Speed of reaching steady state

– Average time spent on each state/mode (including depleted battery)

– Probability of changing between modes or staying in a mode

– Mode, median and mean behavior of the battery distribution

• Harvesting with traces:

– Measured average time spent in each mode

– Measured frequency of changing between modes or staying in a mode
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6 Future Work

During the process of careful planning and setting up the framework’s compo-
nents, some features are left to be done in the future. In this section we propose
possible extensions for a future reader, in order to increase the framework’s
capabilities and accuracy. Section 6.1 proposes a hysteresis mode behavior
to achieve a greater flexibility when working with different operation modes.
Section 6.2 elucidates possibilities of reducing manual work with proposals for
further automation.

6.1 Hysteresis

We presented a system model with a battery that is capable of executing task
in different modes dependent on the current battery level. As a next step, one
could consider the transients between these modes and differentiate whether the
system enters a mode from a higher or from a lower battery level. This reasoning
results in the concept of a hysteresis region for every mode transient that behaves
differently if entered from lower or higher battery levels. Consider Figure 28a
for a battery schematic with the hysteresis extension for one degraded mode.
The battery now has more states than before, since differ between degraded
operation after normal operation and degraded operation after being empty. We
call those degraded sections deg+ and deg−, where deg+ represents degradation
entered from normal operation and deg− when entered from a depleted battery.
The underlying sub-chain resulting from the hysteresis property can be seen in
Figure 28b. Some transitions are now missing, since it is not possible to change
from deg+ directly to deg− and vice versa. Another missing transitions are the
ones from the empty state to deg+ and from normal operation to deg−. The
resulting transition matrix is shown in Figure 28c, where it is clearly stated
which sub-matrices are the zero matrix of appropriate dimension.

The matrices A, B, C, D remain unchanged, since they do not map to
or from a degraded mode. The degraded modes deg− and deg+ encompass
the same number of states. To obtain the probability of being in state i ∈
degradation, one has to add the ith states of both deg− and deg+.

The example presented in Figure 28 contains one degraded mode. Note that
this concept may even be extended to n modes with hysteresis behavior.

6.2 Further automation

At the current version, the user has to manually input the schedule in form of
a look-up table that maps the task instantiations to the frames. It would be
conceivable to implement functions that output a desired scheduling scheme.
Another extension for further automation would be the ability to generate a
larger diversity of harvesting vectors. These features would further increase the
usability and flexibility of the framework.
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(a) The impact of varying the threshold on the battery depletion probability and the
degradation probability.
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(b) The possible transitions when the degraded mode has hysteresis characterization.
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Figure 28: Illustrations for introducing a hysteresis mode behavior with one
degraded mode.
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A Figures

A.1 Stochastic model and traces: comparison

A.1.1 Trace data
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A.1.2 High vs. low traces
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Figure 37: The 2 hour slices between 12AM and 2PM over 10 days. It can
clearly be seen that the days split up into a high and low harvesting group.
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