
Distributed
 Computing

Attractive Sports Route Generation

Semester Project

Feiyu Jia

jiaf@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

May 30, 2018

Acknowledgements

I would like to thank my supervisor Manuel Eichelberger for his amazing ideas
and technical guidance during the period of this project. I also want to thank
my family and friends for their support whenever I needed it.

i

Abstract

In previous theses, a website called SmartRoute is made to produce worldwide
routes for different activities according to users’ needs and preferences. In this
work, improvements are made to the website to make it more user friendly and
easier to use. Furthermore, more metrics which improve the route quality are
included, and a mechanism for map database updating is implemented to keep
the necessary data up to date.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Frontend 2

2.1 New Functions . 2

2.2 HTTPS Certificate . 4

2.3 Responsive Website . 4

3 Backend 8

3.1 Weather Information . 8

3.1.1 Weather Gathering and Storage 8

3.1.2 Expected Effect on Route Generation 10

3.2 Route Shape . 12

3.3 Data Updating . 14

3.3.1 Database Writing Mechanism 14

3.3.2 Updating Schedule . 14

4 Results 15

4.1 Performance Measurements . 15

4.2 Quality of Routes . 20

4.2.1 Weather Effects . 20

4.2.2 Reshaping Algorithm Effects 23

5 Discussion and Future Work 27

Bibliography 28

iii

Contents iv

A Declaration of originality A-1

Chapter 1

Introduction

When doing sports, people have their personal expectations towards routes ac-
cording to activities and local topographical features. They may prefer to their
daily routes in the neighbourhood, but it is possible that they get bored one day
and want to try a new route which also meets all their expectations, or when they
relocate to a new place it is more convenient for them to just use a recommended
route instead of exploring one by themselves.

To offer a competitive solution for generating sports routes, a website named
SmartRoute has been developed in the Distributed Computing Group, it offers
users different activity routes according to their desired start/end point, length
and preference towards specific metrics. Thanks to previous theses’ work [1, 2, 3],
SmartRoute could already let the user choose one activity from biking, running,
cycling, hiking and skating, set the desired start/end points and length of route
and indicate how much they care about the importance of environment, view and
elevation. And such routes could be got in almost all over the world as shown in
the last thesis [1].

In this project, the website user interface is enhanced to be more user friendly
and tidy, since the previous version is just a prototype and seems a bit compli-
cated for fresh users. Chapter 2 explains detailed changes made to user inter-
face, newly added functions and the design of responsive website which makes
SmartRoute more attractive.

Chapter 3 contains some changes made to the backend. First, a dynamic
factor–weather information, is now taken into consideration during route gener-
ation and helps to improve the quality of the recommended route, with the use
of information got from Open Weather Map [4]. Second, there is a discussion
about the route’s shape and how to reduce the number of zigzags in a route.
Third, a mechanism is introduced, which aims at updating the map database
regularly to keep the map data up to date.

Chapter 4 shows results of the speed and success rates performance of SmartRoute,
and a quality comparison between routes generated before and after adding
weather factor and route reshape respectively.

1

Chapter 2

Frontend

The previous website interface is shown in Figure 2.1. It can be used in any
browser as long as it supports HTML5 and JavaScript [1]. However, this user
interface still has some problems: the Open Street Map may look unfamiliar to
users, the selection of start and end locations may confuse users since these are
not shown on the map, and the display can not adapt according to the browser’s
size. To make the website interface more user-friendly and attractive, plenty of
improvements have been introduced.

2.1 New Functions

First of all, the Open Street Map is covered by a Google Map’s tile [5] in the
SmartRoute website, it makes the website looked more familiar to users, since
Google Map is more popular than Open Street Map.

Then, some control functions [6] have been added into the map, including:
fullscreen, mouse position, scale line, zoom and zoom slider. With the use of
these, users can choose to see a full screen map, know the accurate coordinates
of the location when they move the mouse over the map, have an intuition about
the real distance between the aimed start and end point, and see map details or
a thumbnail.

It is also helpful to know a user’s current position since it helps propose
nearby routes. In order to do that, the geolocation function [7] is used to find
the user’s location. Then the map centre is adapted to that point. However,
most browsers forbid the obtainment of user’s location using HTML5 geolocation
API from pages delivered by non-secure connection, like Hyper Text Transfer
Protocol (HTTP). To use geolocation in the SmartRoute website and increase
the SmartRoute website security, the web server is upgraded to support Hyper
Text Transfer Protocol Secure (HTTPS). More details are discussed in Section
2.2.

Some symbols are added to mark the position of start/end point in order to
help users have a direct feeling about the chosen locations. A red 4 is used to

2

2. Frontend 3

Figure 2.1: A screenshot of the previous SmartRoute website

2. Frontend 4

mark the start point, while a red 5 is used to mark the end point, these two
triangles are merged into a red hexagon if the user chooses to make the end point
coincident with the start point. Moreover, a ”Clear Map” button is added to
clean these symbols and the generated route when the user wants to get a new
route with different parameters.

Besides, the weighting of different parameters during route generation may
be confusing for fresh users, so brief explanations are shown. Users can see them
when the mouse crossed the different importance in laptops’ browsers, or click
to see in mobile phones.

The setting for environment importance is put in the backend of SmartRoute
with a default value to use moderate importance, since it is strange to ask users
how much they want to do this activity after a specific activity is selected.

An example of the modified frontend displaying a running route with different
start and end point in the vicinity of Zurich is shown in Figure 2.2. Another
example displaying a cycling route with the same start and end point in the
vicinity of Geneva is shown in Figure 2.3.

2.2 HTTPS Certificate

Hyper Text Transfer Protocol Secure (HTTPS) is a secure version of Hyper
Text Transfer Protocol (HTTP). It encrypts communication between the user’s
browser and the web server. For the SmartRoute website, s Secure Sockets
Layer (SSL) certificate which supports the use of Transport Layer Security (TSL)
protocol is chosen to use.

When a HTTPS connection is required, the SmartRoute website initially
sends its SSL certificate to user’s browser, then the SSL handshake is initiated
between the browser and the website. This handshake generates shared secrets
to establish a unique secure connection between the browser and the website.

In order to make SmartRoute support the use of geolocation and ensure the
security of users’ private data, the web server is upgraded from HTTP protocol
to HTTPS protocol, and a SSL certificate is qualified from Let′sEncrypt [8].
Besides, a user’s permission is necessary when the geolocation is used in browsers.

2.3 Responsive Website

To make the website adaptive to different screen sizes and a variety of devices,
responsive design is used for suitable display methods for different display sizes.
The user interface design is done with CSS. Several display plans are defined
according to the screen size. Besides this, related positions of buttons or sliders
also change corresponding to this size. The website may look differently in

2. Frontend 5

Figure 2.2: A screenshot of the frontend showing a running route in the vicinity
of Zurich

Figure 2.3: A screenshot of the frontend showing a cycling route in the vicinity
of Geneva

2. Frontend 6

various browsers or operating systems. However, it is verified that SmartRoute
looks nice in several popular browsers, including Firefox, Chrome and Safari.
Figure 2.4 shows how the website looks like when the size of browser becomes
smaller. Figure 2.5 shows how the website looks like in mobile phones.

Figure 2.4: A screenshot of the SmartRoute website with smaller browser’s size
with Firefox

2. Frontend 7

Figure 2.5: A screenshot of the SmartRoute website on a mobile phone with
Safari

Chapter 3

Backend

3.1 Weather Information

The previous version of SmartRoute does not take dynamic situations into con-
sideration, for example, weather conditions. However, varying weather modes or
temperatures may affect users’ preferences to routes. Besides, some parameters
may become more or less significant in specific weather modes. In this section,
weather information gathering, storage, and usage are discussed.

3.1.1 Weather Gathering and Storage

The Java API of Open Weather Map [9] is used to get current weather mode
and temperature information from Open Weather Map [4], which is a global
geospatial platform offering worldwide current weather conditions and forecasts.
Since the maximum number of obtained weather information is constrained to
60 requests per minute for each API Key, it is unrealistic to get weather infor-
mation for each user request. Instead, a database storing weather information
of 10761 positions is deployed on the server to gather weather information per
latitude/longitude degree on the continents once per hour. When the user needs
to generate a route, weather information whose gathered location is nearest to
the route’s start point is used.

Weather information is gathered from places where SmartRoute can be used
and the weather is not almost the same during the whole year. In that case,
the latitude’s scope is between −70◦ to 70◦, and some regions are excluded, like
Mideast and some tropical islands. When routes need to be generated in these
areas, no weather information is taken into consideration. In order to get the
coordinates of the land instead of the ocean, the Matlab function landmask [10]
is used to determine if places given specific coordinates are land or ocean.

To differentiate weather information’s gathering time and location, each of
them needs a unique ID. A 12 digits number is designed to represent it, the first
six digits represent the number of hours between current time and midnight,

8

3. Backend 9

January 1st, 1970, the 7th and 8th digits are the absolute value of the position’s
latitude, the 9th to 11th digits are the absolute value of its longitude, the last
digit takes integer from 0 to 3 depending on signs of latitude and longitude as
shown in Table 3.1. A weather information ID’s example is shown in Figure 3.1.

Value Latitude Longitude

0 non-negative non-negative
1 non-negative negative
2 negative non-negative
3 negative negative

Table 3.1: The rule of last digit for weather information’s ID

The weather information gathering task is distributed into smaller ones to
get per minute in order to not exceed the data limitation, and with the use
of crontab, the weather information is set time to obtain automatically in the
server. Moreover, all points get the latest weather information once per hour.

Figure 3.1: An example of a weather information’s ID

After obtaining weather information, it is stored in a MongoDB database
system [11] in the JavaScript Object Notation (JSON) format as shown in Listing
3.1. When the user sets parameters to generate a route in SmartRoute, matched
weather information with closest obtained time and nearest location is retrieved
from the database by the use of the rule of weather information’s ID. Considering
database’s capacity and time effectiveness of current weather, these weather
informations are stored for two days.

{ "_id" : NumberLong("423486360061"), "weaMode" : 721, "Temp" :

288.08 }

{ "_id" : NumberLong("423486360011"), "weaMode" : 701, "Temp" :

288.75 }

3. Backend 10

{ "_id" : NumberLong("423486370091"), "weaMode" : 802, "Temp" :

288.696 }

{ "_id" : NumberLong("423486370081"), "weaMode" : 801, "Temp" :

291.15 }

{ "_id" : NumberLong("423486370071"), "weaMode" : 800, "Temp" :

288.546 }

Listing 3.1: An example of weather information encoded in a JSON document

3.1.2 Expected Effect on Route Generation

After obtainment of weather information, it is designed to optimise routes offered
by SmartRoute in several respects.

First, two new weights – surface weight and forestry weight – are gained with
the use of tags offered by Open Street Map [12] for each node [2]. Surface weight
contains information about a path’s surface condition, since it is inconvenient
for users if a path with muddy surface is recommended under raining or snowing
conditions. Instead, the use of asphalt, paved and concrete paths is encouraged.
When utilizing surface weight, historical weather modes are also taken into con-
sideration, since the road may still be muddy because of previous day’s raining.
Forestry weight contains information about whether the path is in forest or not,
and its aim is to encourage users to use forestry roads when raining or extremely
hot weather. Considering the joined effects of surface weight and forestry weight,
routes with forestry shadow and without muddy surface are recommended if it is
raining. After adding these two weights, the node information in JSON format is
as shown in Listing 3.2. The usage of newly added time information is discussed
in Section 3.3.1. The user can decide whether weather information needs to be
counted or not, if yes, corresponding weather preference can be set, then this
preference is used as preference for surface weight and forestry weight in certain
weather modes.

{

"_id" : NumberLong(1463979399),

"time" : NumberLong(17638),

"coordinates" : {

"type" : "Point",

"coordinates" : [

12.3466969,

55.6155932

]

},

"height" : 2.010454444799877,

"neighbors" : [

{

3. Backend 11

"nID" : NumberLong("3389543578"),

"bikeWeight" : 9,

"cycleWeight" : 16,

"elevationWeight" : 0.1376064668812846,

"hikeWeight" : 5,

"skateWeight" : 16,

"viewWeight" : 1,

"runningWeight" : 9,

"forestryWeight" : 0,

"surfaceWeight" : 10,

"distance" : 31.562429428100586

},

{

"nID" : NumberLong(288941213),

"bikeWeight" : 9,

"cycleWeight" : 16,

"elevationWeight" : 0.11440948370598938,

"hikeWeight" : 5,

"skateWeight" : 16,

"viewWeight" : 1,

"runningWeight" : 9,

"forestryWeight" : 0,

"surfaceWeight" : 10,

"distance" : 15.54236888885498

}

]

}

Listing 3.2: An example of a node encoded in a JSON document

Secondly, the visibility is not so ideal in fog, raining or snowing. In this case,
only a part of the view weight is used. It is set that 20% of the view weight is
taken into account when it is foggy, and 50% of the view weight is used when it
is raining or snowing.

Thirdly, extreme temperatures may influence a user’s preference towards el-
evation. For example, it becomes easier to get sunstroke when the temperature
is quite high. Under this circumstance, users are encouraged to use flatter paths
when the temperature is above 35◦C to keep away from sunstroke. And it is
recommended to use steeper paths when the temperature is below 0◦C to do
more exercise to protect against the cold. Also, there will be less windy since
users move slower in this case.

3. Backend 12

3.2 Route Shape

From Figure 3.2, we can see that the previous routing algorithm may produce
plenty of zigzags. This is kind of annoying for users in practice, since they may
have to make many sharp turns within short distances. To reduce the number
of zigzags in a route, a reshaping algorithm is implemented.

Figure 3.2: An example of a route with zigzags

SmartRoute generates a route consisting of a set of nodes. Every two neigh-
bouring nodes are joined by a line, and there is an angle between two joined
lines. A large angle indicates that user needs to make a sharp turn. Those an-
gles can be calculated by the difference of bearings, while the bearing is able to
be computed given the coordinates of a line’s start and end points [13].

A window with certain length l is used to constrain the observed scope to a
local sub-route, then we sum up the angles within this scope. If the sum exceeds
a threshold, a conclusion is made that this sub-route contains too many zigzags,
and needs to be smoothed. To smooth a zigzag path, another path which can
link the zigzag’s start and end point more directly is searched. If such a new
path exists, the old one is deleted and the route is relinked. Then, the window is
shifted to next sub-route, which starts from the next node of the last sub-route,
and repeated until completes the whole current route’s searches. The window’s
length l is set to be 300 m, and the threshold of the angle’s sum is 360◦. Figure
3.3 illustrates the main procedures for reshaping a route.

3. Backend 13

Because the new path has a shorter distance, the final route’s length may be
smaller than the desired one. In this case, the difference between the real length
and the desired one is checked, if it exceeds the tolerance, the path is extended.
The extended place is approximately 1.5 km away from the route’s end point if
the route’s length is greater than 1.5 km, or the end point if the length is smaller
or equal to 1.5 km. In the end, it is verified that the length tolerance scope is
less than 5%.

Figure 3.3: Illustration of the reshaping algorithm

3. Backend 14

3.3 Data Updating

The node information is obtained through Open Street Map [12], and Open
Street Map data is updated every day. Specifically, some new nodes are added
while nodes which are out of date are deleted. In order to use the up-to-date
nodes’ information, we update the database regularly in a back process without
huge inference with database’s usage.

3.3.1 Database Writing Mechanism

As introduced in the previous thesis [1], a MongoDB database system [11] is
used to store all nodes’ information. When a node needs to be stored, MongoDB
checks whether there already exists a node with the same ID. If such a node
already exists, then the node’s information is updated to the current one while
the old one is deleted. If not, a new node is inserted into MongoDB. With the
use of this writing mechanism, we can update or add nodes’ information, but if
some nodes are deleted from Open Street Map, we need to find another way to
remove the corresponding nodes from the database.

For this, a timestamp is added to each node, which indicates the number
of days between current time and January 1st, 1970. When updating the map
data, the node’s timestamp is also updated to the current one if this node is still
used in the latest map. If a node’s timestamp is not updated after one iteration
of the map data’s updating, we delete it from the database.

3.3.2 Updating Schedule

Because of the database updating’s huge needs for memory resources, the speed
of route generation slows down if the database’s updating works at the same
time with route generating. In order to make sure the database updating does
not interfere with SmartRoute route generating tasks, the updating can proceed
during the night. Also, crawler tasks for each continent are separated into smaller
ones to complete, each of them contains crawler tasks for some countries. It is
verified that every task can be finished during the night or only uses a small
amount of memory resources during the day. The tasks of downloading the latest
map data are also made into subparts, because the data source – Geofabrik [14]
– set a data download’s limitation to allow downloading approximate 50 files at
one time.

With the use of crontab, the update runs automatically in the background.
One iteration of updating is done every 3 months. All areas are updated at the
same frequency, which is identical to Open Street Map [12].

Chapter 4

Results

4.1 Performance Measurements

In order to measure the performance of SmartRoute, the same randomized
benchmark from the previous thesis [1] is used. To avoid fine tuned test datasets,
random points are chosen with the help of a random coordinate generator –
GeoMidpoint [15]. An example of chosen points is shown in Figure 4.1, it can
be seen that some points are in the ocean. The aim of including these points is
to test the speed of returning an empty route when no route exists.

Figure 4.1: An example of 150 random points selected within 1000 km of Zurich

SmartRoute recommends the best route within k candidate routes. The time
of generating a route linearly increases with the value k. In order to get a route
with high quality as soon as possible, the effect of k is tested. 30 random points

15

4. Results 16

within 100 km of Zurich are chosen as the start/end point of the route. Tests are
divided into four groups according to the desired length, that is, smaller than
10 km, between 10 km and 25 km, between 25 km and 50 km and larger than
50km. In each group, several desired lengths are selected, and several values of
k are tested for each length. The upper bound of k is manually set to avoid
spending long time to return a route. All five activities have been tested for each
k and each desired length. The quality of routes is quantified by the average
route’s weight per meter. Because of that, only successful responses are counted.
Results are shown in Figure 4.2.

After analysing the result of Figure 4.2, the value of k is chosen to be the
inflection point or the point at which the average weight growing speed slows
down. That is 350 for a route whose length is less 10 km, 200 when length is
from 10 km to 25 km, 30 for a route with desired length between 25 km and 50
km and 15 if the route’s length is larger than 50 km. It can be seen in Figure 4.2
that the average weight does not always increase with the growing of candidate
paths’ number, the reason is that SmartRoute contains some random factors,
for example, one part of routing algorithm is RandomPoints [1]. Although each
datapoint in Figure 4.2 is the mean of hundreds of tests, it still cannot avoid the
bias caused by random factors.

After setting the value of k, the success rates for different activities are tested.
30 random points are generated within 100 km of Zurich, each of them is set to be
start and end point for a 15 km route. Table 4.1 shows the number of requests
which can return a recommended route for each activity. It can be seen that
hiking and running have the highest success rates while skating only returns 7
non-empty routes. This is because footpaths suitable for hiking and running are
able to be found almost everywhere, but it is difficult to find usable routes for
skating which have both high quality surface condition and light traffic.

Activity Requests Successful Requests Success Rates

Biking 29 16 55.17%
Running 29 18 62.07%
Cycling 29 15 51.72%
Hiking 29 21 72.41%
Skating 29 7 24.14%

Total 145 77 53.10%

Table 4.1: Summary of successful requests for different activity

In general, there are several possible reasons that SmartRoute returns an
empty route or cannot response successfully. First, the start or end point is not
on the land, for example, the start or end point is in the ocean or lake. Second,
the start or end point is selected in an area where has no path nearby. Third,
there is no suitable path for a specific activity, for instance, skating needs paths

4. Results 17

(a) A line chart for desired length less than 10 km

(b) A line chart for desired length between 10 km and 25 km

(c) A line chart for desired length between 25 km and 50 km

(d) A line chart for desired length larger than 50 km

Figure 4.2: The recommended route’s average weight with different numbers of
generated candidate paths

4. Results 18

with high quality surface condition, and sometimes it may be difficult to find
one. Fourth, SmartRoute sets penalty for particular routes, like SmartRoute
never recommends to use private routes. Fifth, a long route tends to use loops,
however, since SmartRoute forbids using repeated paths in local area for better
user experience, it is not easy to find one which meets almost all requirements
in long distance and does not contain too many loops.

Next, tests are run in different geographic regions. We select 150 random
points within 1000 km of Zurich, 200 random points within 2500 km of Denver
and 100 random points within 1000 km of Brasilia respectively. Random points
are used as start and end points of the route, the route’s length is set to be 5
km, 15 km, 30 km and 50 km, and the activity is chosen from biking, running,
cycling, hiking and skating. A histogram of the response time is shown in Figure
4.3. There is a peak around 30 s in Figure 4.3(a) and 4.3(c), the reason is that
the timeout in this test is set to be 30s, then most failed requests returns empty
route messages. Table 4.2 shows a comparison of success rates and average
time between different geographic areas. Among the 8940 requests, 55 failed
requests take more than 32 seconds, 10 of them happen within 2500 km of Denver,
while the rest of them are within 1000 km of Zurich. The possible reason for
SmartRoute spending more time to generate routes in Europe is that the map
data is denser in Europe than in other regions.

Location Requests Successful Requests Success Rates Average Time[s]

Zurich 2980 1386 46.51% 7.10
Denver 3980 1403 35.25% 2.15
Brasilia 1980 934 47.17% 1.17

Total 8940 3723 41.64% 3.58

Table 4.2: Comparison of success rates and average request time in different
geographic regions

Then, SmartRoute is made to generate routes with long distances. The
start and end points of routes are 150 random points selected within 1000 km
of Zurich. The desired lengths are 80 km and 100 km respectively, and the
activities are chosen from biking, running, cycling, hiking and skating. In order
to give SmartRoute enough time to generate a long route, the allowed timeout
is changed from 30 s to 60 s in this test. In practice, the timeout adapts to the
desired length, in order to offer SmartRoute more time to generate long routes.
Table 4.3 shows the corresponding success rates and average time. It can be
seen from Table 4.3 that the success rates are low, this means that to really get
a route this long, one may have to wait quite long time in expectation.

4. Results 19

(a) A histogram for all requests’ time

(b) A histogram for successful requests’ time

(c) A histogram for unsuccessful requests’ time

Figure 4.3: Response time for routes with length of 5 km, 15 km, 30 km and
50 km, activity of biking, running, cycling, hiking and skating acquired in 450
random points

4. Results 20

Length Requests Successful Requests Success Rates Average Time[s]

80 km 745 213 28.59% 31.36
100 km 745 140 18.79% 36.92

Table 4.3: Success rates and average request time when generating long routes

4.2 Quality of Routes

The quality of routes is hard to be quantified, since a good route should consider
all parameters which are set by users and have a nice shape, and there is no
specific criteria for them and can only be observed manually or measured from
single respect. In this section, some routes are generated in selected areas to
compare the effects of weather information and the reshaping algorithm.

4.2.1 Weather Effects

To test whether weather information can affect route generation in SmartRoute
as expected, several tests are run under manually set weather modes or temper-
atures. In these cases, all parameters except the compared factor are the same
within each group.

When the weather condition is raining or extremely hot, forestry paths should
be encouraged to use as discussed in Section 3.1.2. There is an example under
extremely hot condition as shown in Figure 4.4. Figure 4.4(a) shows the route
when the weather importance is 0, in other words, no weather information is
taken into consideration during route generation, and forestry paths are not en-
couraged to use specifically. Figure 4.4(b) shows the one when the user indicates
a great preference towards weather condition, forestry paths are highly encour-
aged to be used when weather mode is extremely hot. It can be clearly seen that
forestry weight helps the user to choose routes with shadow under particular
weather conditions.

If the weather condition is raining or snowing, SmartRoute encourages the
user to use paths without muddy surface. Figure 4.5 shows two running routes
generating with or without weather preference under snowing condition respec-
tively. Figure 4.5(a) shows when the weather is not a considered factor during
route generation, no preference towards paths’ surface is shown. In this case, the
route’s average surface weight is 0.137. Figure 4.5(b) shows when the weather
is a significant factor during route generating, SmartRoute helps the user to
choose paths with good surface conditions. The average surface weight of the
recommended route is 0.189, it means this route contains more paths with good
surface conditions, like asphalt, paved and concrete, the result can reach the
intended objective discussed in Chapter 3.1.2.

4. Results 21

(a) A running route generating without weather preference under extremely hot condition

(b) A running route generating with high weather preference under extremely hot condition

Figure 4.4: An example of forestry weight’s effect

4. Results 22

(a) A running route generating without weather preference under snowing condition

(b) A running route generating with high weather preference under snowing condition

Figure 4.5: An example of surface weight’s effect

4. Results 23

In specific weather condition, weather mode makes difference to the view
weight as discussed in section 3.1.2. Figure 4.6 shows an example that different
percentages of view weight are taken into consideration, and Table 4.4 lists the
average view weight per meter for each route in different weather mode. Figure
4.6(a) shows the route generating under fog, while only 20% of view weight is
included in this circumstance. Figure 4.6(b) shows a route when there is snowing,
at this time, half of original view weight is counted. Then, if the weather has no
negative effect on field of vision, view weight is 100% counted, a result is shown
as Figure 4.6(c). It can be seen that specific weather modes can weaken the
effect of view weight as desired.

Weather Mode Foggy Snowing Clear

Average View Weight 2.326 2.634 2.791

Table 4.4: Route’s average view weight in different weather mode

Temperature also makes influence to route’s preference as listed in Section
3.1.2. Figure 4.7 shows three routes generating under three different temper-
atures. If the temperature is lower than 0◦C, SmartRoute encourages to use
steeper routes to keep warm as shown in Figure 4.7(a). In contrast, if the lo-
cal temperature is too high, flatter paths are more frequently used during route
generation, as shown in Figure 4.7(c). The default case is when the tempera-
ture is between 0◦C and 35◦C, no influence caused by temperature works on the
elevation importance, Figure 4.7(b) illustrates that case. To offer an intuitive
comparison, Table 4.5 lists the three routes’ average elevation weight per meter
respectively. From previous thesis [2], it can be known that the elevation weight
is proportional to absolute elevation between two points, in other word, higher
elevation weight indicates steeper paths. As shown in Table 4.5, SmartRoute
encourages using steeper paths at low temperature, and discourages the use of
them at high temperature as desired.

Temperature -10◦C 20◦C 40◦C

Average Elevation Weight 0.675 0.595 0.529

Table 4.5: Route’s average elevation weight at different temperature

4.2.2 Reshaping Algorithm Effects

As illustrate in Section 3.2, a reshaping algorithm is implemented to reduce the
number of zigzags in recommended routes. Figure 4.8 shows two routes generated
with or without use of the reshaping algorithm. All other parameters are the
same in this example. It can be seen that some zigzags are deleted and nodes
are linked by smoother paths.

4. Results 24

(a) A running route generating under foggy condition

(b) A running route generating under snowing condition

(c) A running route generating under clear condition

Figure 4.6: An example of weather mode’s effect towards view weight

4. Results 25

(a) A running route generating when temperature is low

(b) A running route generating when temperature is moderate

(c) A running route generating when temperature is high

Figure 4.7: An example of temperature’s effect towards elevation weight

4. Results 26

(a) A running route generating without reshaping algorithm

(b) A running route generating with reshaping algorithm

Figure 4.8: An example of reshaping algorithm’s effect

Chapter 5

Discussion and Future Work

Due to the limitation of the web server’s memory resources, the weather’s effect
towards view weights is just simply represented by different percentages of view
weight. Although more rigorous way is to calculate several view weights with
different visibility and store in the database, then decide to use which one ac-
cording to current weather mode. With more potential memory in the server,
this way can be used to replace the current one.

About the shape of route, a reshaping algorithm is implemented to reduce
the number of zigzags. Currently the window length is set to a fixed number.
However, an idea is to make the length adapt to the average distance between
two neighbouring nodes within one area, since the density of nodes is varying in
different places. Although the window can help constrain the scope to a local
area to optimise the shape, the global shape should also be considered, since
sometimes there may be a case that sub-route within a small area is nice for
users, but the conjunction between two adjacent paths forces the user to take a
sharp turn.

And there are still plenty of improvements which could be done about a
route’s shape. SmartRoute generates routes by connecting several sub-routes.
This opens the possibility that a node may be used several times in one route
if it appears in several sub-routes, although repeated nodes have been forbidden
to use when generating sub-routes. New methods could be found to reduce the
number of repeated nodes in one route.

In the current version of SmartRoute, user feedback has not been taken into
consideration yet, but it could be useful to get user’s feedbacks and recommend
routes according to their historical routes and interests. Or another metric like
path’s attractiveness or popularity could be added as an attractiveness weight
to each node in the database.

Moreover, there is the case that a user deviates from the purposed route in
practice. A dynamic method may be used to adapt routes according to a user’s
current location.

27

Bibliography

[1] Weinbuch, J.: Worldwide Sports Route Generation. Semester Thesis, ETH
(2017)

[2] Dammann, S.: Outdoor sports route generation. Bachelor Thesis, ETH
(2017)

[3] Schulze, J.: Smart running route generation. Master Thesis, ETH (2016)

[4] Open Weather Map Contributors: Current Weather Data. https://

openweathermap.org/current/ Accessed 2018-05-30.

[5] Google Map Contributors: Google Map. https://www.google.com/maps/
Accessed 2018-05-30.

[6] Open Layers Contributors: OpenLayers Control API. http://openlayers.
org/en/latest/apidoc/ol.control.Control.html Accessed 2018-05-30.

[7] Open Layers Contributors: OpenLayers Geolocation API. http:

//openlayers.org/en/latest/apidoc/ol.Geolocation.html Accessed
2018-05-30.

[8] Let’s Encrypt Contributors: Let’s Encrypt. https://letsencrypt.org

Accessed 2018-05-30.

[9] Singh, A.K.: Owm Japis. https://bitbucket.org/aksinghnet/

owm-japis/ Accessed 2018-05-30.

[10] Greene, C.: Matlab Function Landmask. https://ch.mathworks.com/

matlabcentral/fileexchange/48661-landmask/ Accessed 2018-05-30.

[11] MongoDB Contributors: MongoDB. https://www.mongodb.com/ Accessed
2018-05-30.

[12] Open Street Map Contributors: Open Street Map. https://www.

openstreetmap.org/ Accessed 2018-05-30.

[13] John M.: Calculating a bearing between points in location-aware
apps. https://software.intel.com/en-us/blogs/2012/11/30/

calculating-a-bearing-between-points-in-location-aware-apps

Accessed 2018-05-30.

28

https://openweathermap.org/current/
https://openweathermap.org/current/
https://www.google.com/maps/
http://openlayers.org/en/latest/apidoc/ol.control.Control.html
http://openlayers.org/en/latest/apidoc/ol.control.Control.html
http://openlayers.org/en/latest/apidoc/ol.Geolocation.html
http://openlayers.org/en/latest/apidoc/ol.Geolocation.html
https://letsencrypt.org
https://bitbucket.org/aksinghnet/owm-japis/
https://bitbucket.org/aksinghnet/owm-japis/
https://ch.mathworks.com/matlabcentral/fileexchange/48661-landmask/
https://ch.mathworks.com/matlabcentral/fileexchange/48661-landmask/
https://www.mongodb.com/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://software.intel.com/en-us/blogs/2012/11/30/calculating-a-bearing-between-points-in-location-aware-apps
https://software.intel.com/en-us/blogs/2012/11/30/calculating-a-bearing-between-points-in-location-aware-apps

Bibliography 29

[14] Geofabrik Contributors: Geofabrik. http://www.geofabrik.de Accessed
2018-05-30.

[15] GeoMidpoint Contributors: GeoMidpoint. http://www.geomidpoint.com/
random/ Accessed 2018-05-30.

http://www.geofabrik.de
http://www.geomidpoint.com/random/
http://www.geomidpoint.com/random/

	Acknowledgements
	Abstract
	1 Introduction
	2 Frontend
	2.1 New Functions
	2.2 HTTPS Certificate
	2.3 Responsive Website

	3 Backend
	3.1 Weather Information
	3.1.1 Weather Gathering and Storage
	3.1.2 Expected Effect on Route Generation

	3.2 Route Shape
	3.3 Data Updating
	3.3.1 Database Writing Mechanism
	3.3.2 Updating Schedule

	4 Results
	4.1 Performance Measurements
	4.2 Quality of Routes
	4.2.1 Weather Effects
	4.2.2 Reshaping Algorithm Effects

	5 Discussion and Future Work
	Bibliography
	A Declaration of originality

