m Institut fiir
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

3G Datalink for Wireless GPS
Sensors

Semester Thesis

Schnetzler Christoph
cschnetzQethz.ch

Computer Engineering and Networks Laboratory
Department of Information Technology and Electrical Engineering
ETH Ziirich

Supervisors:

Dr. Jan Beutel
Tonio Gsell

Prof. Dr. Lothar Thiele

June 11, 2018

mailto:Schnetzler Christoph<cschnetz@ethz.ch>

Acknowledgements

I thank Jan Beutel, Tonio Gsell and Akos Pasztor for their support and their
helpful inputs. I thank Thomas Kleier helping me vapor phase soldering the
u-blox SARA-U270 modules.

Abstract

This semester thesis aims to extend the existing wireless GPS rev2 sensor sys-
tem with a software interface for the cellular module. The goal is to exchange
data directly and reliably between the sensor system and the PermaSense data
backend system. The result is a working, well-documented parser which handles
the communication between the cellular module and the GPS sensor system. It
is able to establish an internet connection and can send and receive data over it.
It is though not yet integrated in the existing wireless GPS sensor code.

ii

Contents

[Acknowledgements| i
[Abstract] ii
(1__Introductionl 1
2 Objectives| 2
B_Overview] 3
3.1 PermaSensel 3
3.2 Wireless GPS rev2 sensor system| 4
[3.2.1 System overview|ol 4

[3.2.2 Operating modes| 5

ree Ol . e 6

4__Cellular modulel 7
BT Tnterfacd 7
42 AT commandd o 8
4.2.1 Operating modes| 8

22 Frrors . . . o 10

4.2.3 Response time| oL 11

4.3 URC - Unsolicited Result Codel 11
4.4 Boot phasel 12

[> Code implementation| 13
BI_Overviewl o vt v et 13
5.2 Development environment| 13
5.3 FreeRTOS primitives| 13
B31 Taskd 14

iii

CONTENTS

.5.1 GPRS system architecture overview|

[5.5.2 Cellular network registration|

6 Further workl
6.1 Achieved goals|
6.2 Follow-up|

[r_Conclusion|

(Bibliography/|

[List of figures|

A WGPS Schematics

v

29
29
29

31

32

33

CHAPTER 1

Introduction

Avalanches, rockfalls and receding permafrost boundaries are just a few examples
of what is going on in the mountains. This leads us to the question if these events
are predictable at all.

The PermaSense project has been working for years to record data such
as temperature, humidity, brightness, rock movements, etc., to create a better
understanding of the processes in the high alpine locations and to react early to
possible natural hazards.

In order to collect data, sensors have been installed at some chosen locations
in the Alps which take measurements at regular intervals.

One of these sensors is the wireless GPS rev2 sensor. It collects ground
motion data and stores it either locally or sends it via a cellular module to the
PermaSense data backend system. Up to now, these sensors can only store their
data locally as the software interface for the cellular module is not implemented.

Therefore, the goal of this work is to implement an interface which is able
to establish a direct 3G datalink between sensor and PermaSense data backend
system to exchange data.

CHAPTER 2

Objectives

Extend the wireless GPS rev2 sensor system with a dedicated 3G datalink.
Design an integration concept which guarantees

— efficient operation and monitoring of the system.

— reliable data transfer into the PermaSense data backend system.

Implement and evaluate a prototype system based on the ARM /FreeRTOS
software framework of the wireless GPS rev2 sensor system.

Document the work in a manner that follow-up projects can be built upon.

CHAPTER 3

Overview

3.1 PermaSense

The PermaSense project aims to observe and to understand the phenomena in
high-alpine environments better. This can be, for instance, rockfalls, receding
permafrost boundaries or slope instabilities. For a reliable observation of the
phenomena, a sensing network has been developed. This network consists of
ultra-low power wireless sensor nodes which are sensing a diverse range of pa-
rameters, such as temperature, humidity, light, ground motion, etc. The nodes
allow long term autonomous operations in range of multiple years. Therefore,
the devices are strictly duty cycled and gather data in low rate (e.g. 1/120sec).
Figure [3.1] shows the basic system architecture consisting of a Wireless Sensor
Network, Core Stations and the Data Backend.

@ W — 72— '
S | & E»ﬂ;

Processor Sensor Node
Low-power Radio
'SD Card Storage

Sensor Node
@” S=4

()
Sensor Node @

Sensor Node
Different Sensor Options

Sensor Node Sensor

Figure 3.1: PermaSense System Architecture [19]

3. OVERVIEW 4

3.2 Wireless GPS rev2 sensor system

The wireless GPS rev2 sensor system (WGPS) has been developed to measure
ground motion in high-alpine regions. Tracking ground motion helps to observe
rockfall and debris flow critical regions as well as the movement of boulders at
steep mountainsides. Having long time data over critical regions allows to detect
suspicious behaviors, such as accelerating motion or sudden movements. For
instance, with such information, mountain villages located in danger zones can
be warned or evacuated at an early stage.

3.2.1 System overview

The WGPS device is driven by an ultra-low power STM32L496VG microcon-
troller [2], based on an FPU ARM Cortex-M4 MCU. Its equipped with GPS,
GSM, Radio (TinyNode), an electronic compass, a tilt, a temperature and a
humidity sensor (figure [3.2). The cellular module (called GSM) and the TinyN-
ode are connected over a plug connection. Therefore, they can be plugged in if
needed. It’s powered over a solar panel and needs between 11 and 20 voltage
input. The WGPS device is able to track ground motion with high precision in
range of millimeters. This precision is achieved by using a reference GPS sensor
mounted as closly as possible to the other sensors but at a position which is
known to be static (e.g. solid rock). If the other ones move, we can calculate
the relative movement which is much more precise than just the GPS data itself.
The GPS data is recorded in raw format and no data processing is performed
on the WGPS devices itself. The postprocessing is done in the PermaSense data
backend system.

Sense & Process

Compass GPS

@
(%]
<
=
=]
<
Zz
o
a
@

Temp.
Sensor

Humidity
Sensor

Tilt

b
Sensor Starage

1Interfaces

Flash

Figure 3.2: WGPS System overview [14]

3. OVERVIEW 5

3.2.2 Operating modes

Compared to the basic system architecture (figure , the WGPS devices do
not need any core stations, they directly connect to the PermaSense data back-
end. This allows a simpler installation in the mountains. The WGPS has three
different operating modes.

Network
Mode

Standalone Standalone

Radio - v Cellular Logger
((GSM

Figure 3.3: WGPS operating modes [14]

Standalone Logger Mode

In this operating mode, the WGPS device has no GSM and Radio module at-
tached. Therefore, the device is not able to communicate with the PermaSense
backend system. It stores the measurements on its internal storage. The data
has to be extracted during on-site maintenance. This configuration is for areas
which do not have cellular coverage or which are not intended to be observed
online.

Standalone Cellular Mode

The WGPS device is equipped with a cellular module but has no radio module
attached. With the cellular module, the device is capable of communicating
with the backend system. It can send the recorded measurements and receive
commands from the backend system.

Wireless Network Mode

This is the full configuration which uses radio and GSM. With the radio the
device is able to communicate between multiple WGPS devices. One device
acts as sink and collects all the date. This device is equipped with GSM and
can therefore forward all data to the backend system. The sink can also receive
commands from the backend which are forwarded over radio to the other devices.

3. OVERVIEW 6

Interrupts running at these

Interrupts _ priorities will never be
that do not _ — delayed from executing
call any _ becaus of anything the
FreeRTOS _ = FreeRTOS kernel is doing.
API functions —
can use all _ ISRs that call API functions
interrupt _ — ending in "FromISR" can use
priorities, _ these interrupt priorities, and
and will nest. B will nest.

Figure 3.4: Example interrupt priority configuration [16]

3.2.3 FreeRTOS

The WGPS device needs to take measurements in periodic time steps. But not
all measurements have to be done in the same periodic interval. Sometimes, a
measurement takes some time and we would like to do other work until it has
finished and we can continue. We also want to be able to shut off the peripherals
independently to save energy. We need something which organizes this large
amount of work for us. Therefore, the WGPS system uses FreeRTOS.

FreeRTOS is a real time operating system which is small enough to run on
microcontrollers. It provides real time scheduling functionality, inter-task com-
munication, timing and synchronization primitives. It allows us to write code
in a set of independent tasks. Tasks reduce the dependencies between software
modules and increase the code maintainability. Each task and interrupt is as-
signed to a priority which allows the scheduler to decide which task or interrupt
needs to be executed first. As interrupts need to response very fast to events,
they have always the higher priority than tasks. Means, the lowest interrupt
priority is still higher than the highest task priority. Figure shows a possible
interrupt priority configuration where the maximal system call interrupt priority
is set to four and the kernel interrupt priority is set to zero. FreeRTOS has spe-
cial API functions for interrupts, ending with ”FromISR”. These functions are
located in the interrupt code, but not executed inside an ISR because FreeRTOS
claims to be deterministic and therefore doesn’t allow to call functions which
could cause non-deterministic behavior.

The FreeRTOS primitives used in this project are introduced in section [5.3

CHAPTER 4

Cellular module

The used cellular module is the SARA-U270 from u-blox [4].

26 MHz 32 kHz

2GPA
-— Power-On
ANT o Reset
Switch LNA = «
.
D‘;P'—e’;i’_’ > transceiver | SIM
£ SIM card detection
Filter 3GPA — —
UART
Cellular
BaseBand UsB
Processor >
Memory - DDC (FC)
VCC (Supply) Digital audio (S)
_
V_BCKP (RTC) Eona GPIO
——
V_INT (1/0) MRS Antenna detection
-— -—

Figure 4.1: SARA-U270 block diagram [7]

4.1 Interface

The used serial communication interface is UART. The module features the com-
plete functionality conforming to the ITU-T V.24 recommendation [5]. In the
project, only the data lines (Rx, Tx) and the hardware control lines (CTS, RTS)
are used. The modem status and control lines (DTR, DSR, DCD, RI) are pro-
vided but unused. By default, the HW flow control is enabled, the DSR line is
set to ON in data mode and OFF in command mode and the module enters the
online command mode after an ON-to-OFF transition of the DTR line, issuing
an "OK” result code. Result codes are discussed in chapter

The used frame format is 8N1 (8 data bits, no parity, 1 stop bit). 8N1 is already
the default frame configuration and doesn’t need to be changed.

4. CELLULAR MODULE 8

4.2 AT commands

This section gives a short overview about AT commands. All information about
u-blox AT commands can be found in the document “u-blox Cellular Modules -
AT Commands Manual” [6].

4.2.1 Operating modes

The SARA-U270 module has three different operating modes:

e Command mode
e Data mode

e Online command mode

Command mode
In the command mode, the module interprets every received character as a com-
mand to execute. Any communication in the command mode is terminated with

the command line termination character <s3_ character>. By default, this is the
carriage return ’\r’ character. Every command has the following generic syntax:

"AT"<command_name><string><s3_character>
For instance,

"AT+IPR=9600\r"

but <string>can also be empty,

"AT+CGMM\r"

The AT command response comprises of an echo, an optional information
text response string (ITR) and a final result code (FRC).

4. CELLULAR MODULE 9

MCU Cellular Module
—CSfemmad
Echo

Information Text Response

Final Result Code

next AT command

Figure 4.2: AT command response flow chart [17]

The echo is an exact copy of the command which has been sent. The ITR
contains intermediate outputs as well as descriptive outputs. This can be the
manufacturer’s name, the firmware version, stored settings, etc. An I'TR disposes
of the following syntax:

<text><s3_character><s4_character>
The <s4_character>is by default the linefeed character "\n’.

The FRC completes the response and informs about the result of the command.
It has the following syntax:

<numerical_code><s3_character>

The most common FRC’s are “OK” and “ERROR”. All allowed result codes
are listed in table A possible response is, for instance:

AT+URAT?\r +URAT: 1,2\r\n O\r

The module supports verbose or numeric responses. By default, the verbose
response mode is enabled, but parsing text instead of numbers is inefficient.
Therefore, we use the numeric response mode. After reception of the FRC one
should wait for at least 20ms before issuing a new AT command. This allows
the module to transmit buffered URC’s, otherwise collisions between URC’s and
AT commands are possible. URC’s are introduced in section |4.3

4. CELLULAR MODULE 10

Verbose Numeric Description

OK 0 Command executed correctly

CONNECT 1 Data connection established

RING 2 Incoming call signal from the network

NO CARRIER 3 Connection terminated from the remote
part or attempt to establish a connection
failed

ERROR 4 General failure

NO DIALTONE 5 No dialtone detected

BUSY 6 Called number is busy

NO ANSWER 7 No hang up detected after a fixed network
timeout

Command aborted 18 Command execution aborted

Table 4.1: Allowed result codes

Data mode

The Data mode is entered as soon as a connection to a remote host is established
or the result code ”CONNECT” has been received, respectively. In this mode,
the module doesn’t interpret characters to be commands. Instead, every charac-
ter received from the serial interface is being forwarded to the remote host. Every
character received from the remote host is being forwarded to the serial interface.
To exit the data mode, one needs to send +++. This triggers the module to
send "OK”. Only after this message, the data mode is left successfully.

Online command mode

The online command mode is if the module is in data mode but can read and
process AT commands. This mode can be entered over a ON-to-OFF transition
on the DTR line. An ”OK” result code indicates that the online command mode
has been entered.

4.2.2 FErrors

Every AT command has an error response type. The most common error type
is the ”+CME ERROR?”. This error occurs if the issued command couldn’t be
processed successfully by the cellular module. If an error occurs, the module
sends the echo followed by the FRC. By default, the FRC "ERROR” is dis-
played without information about what caused the failure exactly. The numeric
response for an error is 4. To enable the entire error message, one needs to send
the AT command ”4+CMEE” after the module has booted.

4. CELLULAR MODULE 11

Next there is an example of an error response with +CMEE disabled,
AT+CPIN?\r ERROR\r

and with +CMEE enabled,

AT+CPIN?\r +CME ERROR: SIM NOT INSERTED\r

For a better understanding the example shows the verbose and not the numeric
response. In the numeric response "ERROR” would be replaced with 4 and

7?SIM NOT INSERTED” with 10. All possible errors can be found in the ” AT
Commands Manual, Appendix A” [6].

4.2.3 Response time

The cellular module usually replies immediately to an AT command. This means
that in average it takes 10ms and in any case less than one second to respond.
However, there are commands which will need more time to answer. For instance,
the network registration can take up to three minutes until a response is issued.

4.3 URC - Unsolicited Result Code

Beside the normal response message, the module can as well send unsolicited
result codes - URC’s (ﬁgure. URC’s are string messages which are completely
uncorrelated to an AT command execution. The module uses URC’s to inform
if a status changes or a specific event has occurred. This happens when, for
instance, the module has lost its network coverage and needs some time to register
again to the network. URC’s can occur at any time except if the module is in
data mode or if the module is already executing an AT command. URC’s need
to be enabled with AT commands. Most of the URC’s have the same name as
the command that enables it. For instance,

AT+CREG=1
enables the network registration URC with the following appearance,
+CREG: 1

The One is just one possible value of CREG and indicates that the module is
now registered to the home network.

4. CELLULAR MODULE 12

MCU Cellular Module

Final Result Code
Unsolicited Result Code 1

3 Unsolicited Result Code 2

¢ Unsolicited Result Code N
next AT command

Figure 4.3: URC flow chart [17]

4.4 Boot phase

The boot phase of the module can take several seconds. In order to signal the
successful end of the boot phase, the module sends a greeting text. The module
will not response to any AT commands before the greeting text has been sent.
By default, the empty string is sent. The greeting text can be set to any string
with a maximal length of 49 characters.

If the greeting text is used, one needs to consider that the module has an au-
tobauding feature which is enabled by default and allows the module to detect
the baudrate automatically as soon as the first characters have been received.
Therefore, as long as the module hasn’t received anything, it won’t send any-
thing. This means that if the greeting text is used to detect the end of the
booting phase, one needs to set a fix baudrate. Otherwise both sides wait for an
event that will never happen.

In this project, the greeting text has been changed to “ready\r”.

CHAPTER 5

Code implementation

5.1 Overview

If the wireless GPS sensor system is not exactly operating in datalogger mode,
it needs the cellular module to transfer the data to the PermaSense data back-
end system. Up to now, the entire hardware is provided and also the software
is complete except for the software interface between the cellular module and
the WGPS device. This means that actually the WGPS device if fully working
but only in data logger mode. In this project we aim to close this gap and to
implement the interface. As mentioned in the objectives, the interface should
allow efficient operation and give the opportunity to monitor the system.

This chapter is split up in three major parts. In the first one, the development
environment and the FreeRTOS primitives used in the implementation are in-
troduced. In the second part, the interface will be explained more explicitly.
And finally, in the third part, we consider how to establish a reliable connection
between cellular module and the PermaSense backend data system.

5.2 Development environment

The used development and debugging IDE is the Atollic® TrueSTUDIO®) [I]
for STM32 microcontrollers, based on Eclipse, CDT, GCC and GDB. It supports
version control such as Git and the SEGGER J-Link [3] which has been used as
debugger. The entire project is version controlled using Git and the repository
is stored on GitLab.

5.3 FreeRTOS primitives

As the rest of the already existing software relies on FreeRTOS, we need to imple-
ment our interface within this framework. Our implementation uses FreeRTOS

13

5. CODE IMPLEMENTATION 14

tasks, software timers and event groups which are now introduced briefly. More
details can be found in the FreeRTOS reference manual [12].

5.3.1 Tasks

Tasks are the basic elements, handled by the scheduler. Each task can be in one
of four states (running, ready, blocked or suspend) as shown in figure If a
task is in blocking state, then he is not ready to run and waits for an event to
happen. If the event happens, the task is put in ready state by the scheduler. If
it is the only task in ready state and no task is in running state, then the task
is immediately put in running state. Only in the running state, CPU time is
consumed. If more than one task is in ready state, the priority decides which
task is put in running state first. If a task is suspended, it cannot resume by
itself, instead, another task needs to do that. In our implementation we never
use suspend as we always wait for some events to happen and therefore wait in

blocked state.
vTaskSuspend()
/ called

vTaskResume()
- called —-> e .
Suspend Ready Running
-« VTaskSuspend()
called T
Event
Blocking API
vTaskSuspend() function called
called

Blocked

Figure 5.1: Valid task state transitions [15]

5.3.2 Software timer

FreeRTOS software timers are used to trigger an event in a certain time in the
future. If one creates a timer, then one also needs to create a callback function.
The callback function is called after the timer has fired and the code within this
function is executed. Timers can be used for various occasions. For instance, if
one starts to execute a measurement, but one does not know if the execution is
deterministic. A timer can be started before starting the execution and specify
the maximum allowed time the task has. If the task exceeds the specified time,
the timer fires and can abort the execution.

5. CODE IMPLEMENTATION 15

5.3.3 Event groups

Event groups belong to the synchronization primitives and are used to commu-
nicate events to tasks. They allow a task to stay in the blocked state until a
combination of events has occurred. For instance, if we send an AT command,
we need to wait for a response. This can be either the event “OK” or the event
“ERROR”. Event groups allow us now to block the task until one of them oc-
curs. In order to indicate if a certain event has occurred, event ‘flags’ are used.
A set of events ‘flags’ is called event ‘group’. Setting an event flag or a certain
combination of them, unblocks the task.

5.4 Cellular module software interface

In the second step, we will now step through our implementation. First, we
explain two important control structures which are used in the entire code. Sec-
ondly, we show how we initialized the serial interface between cellular module and
MCU. Thirdly, we consider the command parser and explain how it is thought
to be used. Finally, we introduce our task.

5.4.1 The AtCommand struct and the GSM struct
AtCommand struct

AT commands have different error types, response types, response times, sizes
and names. This means that we need to handle the AT commands differently
accordingly to the given parameters. For instance, some take longer to respond
than others, some have only a FRC as response, some have an ITR followed by
a FRC and there are also special cases where only an ITR is sent. In order to
keep track of all of these different characteristics, we created the AtCommand
struct. This struct stores the error type, the response type, the response time,
the name and its size. Before sending an AT command, this struct has to be
filled such that the parser (see section is aware of what to expect and to
react accordingly.

GSM struct

This struct is the heart of our implementation. It contains the PARSER_REG
variable. This variable is used as a register as every bit indicates a different parser
state. Table lists all used flags. This register keeps track of the actual system
state. At the very beginning, no bit is set. If we start to listen on the serial
interface, we activate the interrupt and then the first bit GSM_IT_ENABLED is
set. Next, if we power on the cellular module, the second bit GSM_RUNNING

5. CODE IMPLEMENTATION 16

Bit Name Description
0 GSM.IT_ENABLED Set if parser is started, interrupts enabled
1 GSM_RUNNING Set if module is activated
2 GSM_GREETING Set if greeting text has been received
3 GSM_COMMAND Set if response of a command is expected
4 GSM_URC Set if a URC is being received
5 GSM_ECHO_OK Set if command echo from GSM Module is ok
6 GSM_FIRST_AFTER_ECHO Cleared if first character after echo is received
7 GSM_ERROR Set if error in the parser pipeline occurred

Table 5.1: PARSER Register

is set to indicate that from now on characters can be received. As we use the
greeting text to indicate a successful startup, we first need to wait for it to be
received. The third bit GSM_GREETING is set if we have received it. If the
first three bits are set, we are ready to start sending AT commands.

During transmission and reception of an AT command, several errors can
occur. For instance, there can be an UART error, an error in the parser or
an error response from the cellular module. Therefore, we store the error type
and its corresponding error code in the GSM struct. If an error is present, the
GSM_ERROR bit in the PARSER_REG is set, also. This bit is set as long as
the error is not handled, and an error handling is pending.

The AT command responses and URC’s need to be stored somewhere. This is
also done in the GSM struct by using two pointers. One points to the beginning
of the ITR string and the other one to the beginning of the URC string. They
both have stored their string size, too. The URC and the ITR pointer are used
in the URC Handler and in the Command Handler.

5.4.2 UART and pin initialization

All information about the STM32L496VG relies upon the information provided
by the STM32L496 datasheet [§], the STM32L496 Reference Manual [9] and the
STM32 HAL driver [10] .

According to the wireless GPS rev2 sensor schematics, see Appendix, the cellu-
lar module is connected over USART2. Therefore, Tx and Rx are on pin PA2
and PA3 respectively. To initialize these pins, we use the UART_HandleTypeDef
struct from the STM32 HAL driver. Because USART2 belongs to the alternate
functions of a pin, we need to change its mode to AF7. In the next step, we need
to initialize the UART itself. As mentioned in chapter the cellular module
uses the 8N1 frame format and therefore we set it accordingly to this. Table
shows the entire setup. The baudrate has been set to 9600 bps but 115200 bps

5. CODE IMPLEMENTATION 17

UartHandle->Instance = USART?2;
UartHandle->Init.BaudRate = 9600;
UartHandle->Init.WordLength = UART_WORDLENGTH_8B;
UartHandle->Init.StopBits = UART_STOPBITS_1;
UartHandle->Init.Parity = UART_PARITY_NONE;
UartHandle->Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
UartHandle->Init.Mode = UART_MODE_TX_RX;

UartHandle->Init.OverSampling = UART_OVERSAMPLING_16;

Table 5.2: UART initialization

works as well.

Further, we need to select the clock source and enable the peripheral clock
for the USART?2. Four different clocks can be used for USART2, PCLK, HSI16,
LSE or the system clock SYSCLK. The clock source is set in the “Peripherals
independent clock configuration register (RCC_CCIPR)” and enabled with the
“APBI peripheral clock enable register (RCC_APB1ENRI1)”. In fact, one does
not have to deal with these registers directly. The clock can be enabled with the
HAL macro, - HAL_RCC_-USART2.CLK_ENABLE() and the clock source can
be selected with the RCC_PeriphCLKInitTypeDef struct. In the last step we
set the interrupt priority of the USART2. This priority has to be chosen very
carefully to ensure that the entire system still works. The interrupt priority is
set with HAL_NVIC_SetPriority() and enabled with HAL_NVIC_EnableIRQ)().

5.4.3 AT command parser

The AT command parser (from now on called parser) is actually only an interrupt
handler. Every time the USART2 interrupt is triggered, the parser is called.
Figure shows the entire structure. It can be split up in four parts as colored
in the figure. Every part will be explained briefly starting with the white section.

Entering interrupt handler

If the interrupt is triggered, we check if an UART error has occurred. If an error
is detected, we check if the cellular module (in figure referred as GSM) is
already running. The GSM_RUNNING flag indicates if the module is running.
The flag is set as soon as the SW_GSM pin (PE10) is set HIGH. This enables the
voltage supply for the cellular module. If the module is not running, this error
can be ignored. If it is running, we call the UART error callback function. The
way how this error is handled needs to be adapted to the already existing code of
the wireless GPS sensor system. For now, the callback function just restarts the
module. Without an UART error, we check if the cellular module is running and
if there are unhandled errors from the parser or from the cellular module itself.

5. CODE IMPLEMENTATION 18

Interrupt Handler

Error o |No Clear
UART Error? GSM Running? interrupt flag <>

No Error Yes

UART Error o>
GSM Running and No : Callback function
no Unhandled Errors?

Yes

Rx interrupt flags set? N—°<>

Yes
Read char Greeting \jatch [Greeting text ok, o
from Register Text Unblock GSM task
Greeting message from GSM | No compare char | Not finished o
module received? with greeting text
URC Yes No match
Start timer, | _No [Already characters| _No AT command response >| ParserError, |
set URC flag received? expected and no URC ongoing? > |Unblock GSM task
| Yes Yes No match
No compare char | Not finished
?) —_—
Oy ctear YeS | URC buffer full? [Echook? FE——— i ecno
buffer Y
es
No echo ok, >
Match [Unblock GSM task
Store char in buffer
Command | Yes Parser Error, >
Not finished| URC message buffer full? Unblock GSM task
< ?
complete? No
Yes
store char in buffer
URC complete, |_ | Stop timer,
Unblock GSM task clear URC flag
&

Switch state
Command ::I

{

Y v
[Wait for s3_character | [Info text response | Final result code
))

o No| s3_character s4_character No o s3_character No e
received? received? received?
Yes Yes Yes
Error, Yes Check if error Is command type |Yes o length of FRC |No _ [change state
Unblock GSM task has been received == CONNECT? correct? to ITR
<> No No Yes <>
Command ok, Yes Is command change state Command ok,
Unblock GSM task type == FRC? to FRC Unblock GSM task
o No & &
Change
state to ITR O— Exit ISR
&

Figure 5.2: AT command parser

5. CODE IMPLEMENTATION 19

Unhandled errors are indicated by the GSM_ERROR flag. We only proceed if
the module is running and no errors are pending. In the next step we check the
Rx interrupt flag to be sure that a new character has been received. If the flag
is set, we read the character from the RDR register.

Now we have to decide where we need to compare this char. If the greeting
text of the cellular module hasn’t been received, then we enter the greeting text
section. If we have sent an AT command, then we expect the cellular module
to response to it and the command section is entered. If no command response
is expected, we have an unsolicited result code (URC) from the module and the
URC section is entered.

Greeting text

We use the greeting text to signal a successful boot (see chapter . It is sent
as soon as the module is ready to receive AT commands. Why do we not handle
it in the URC section as the greeting text is an URC? The reason why, is that
the greeting text is the very first string we receive and therefore we check it at
the very beginning. This avoids sending AT commands before the greeting text
has been received.

In this part, we compare the received character with the corresponding char-
acter from the greeting text. That means, if we receive, for instance, the 5th
character, then we compare it with the 5th character of our greeting text string.
If it is correct and we are not at the end of our string, we leave and wait for
the next character to be received. If it doesn’t match, we set the GSM_ERROR
event flag to unblock our GSM task. We also set the GSM_FRROR flag in our
PARSER register to signal an unhandled error. If the last character of the greet-
ing text has been received successfully, we set the GSM_GREETING event flag
to unblock the GSM task as well as the GSM_GREETING flag in our PARSER
register. This flag is set as long as the module is not powered off or reset. If one
of these events take place, this flag needs to be cleared.

URC

URC’s have been explained in chapter If no command response is expected,
we enter this part of the implementation. First, we check if this is the first
character we have received for the coming message. If this is true, we start a
Free RTOS software timer and set the GSM_URC flag in our PARSER register
to indicate that an URC is ongoing. The timer is set to ensure that the URC
will finish after some time and not hang up the parser. If the flag is already set,
we don’t need to do it again and can continue. Before we store the character in
our buffer, we check if it’s full or not. If so, we just clear the buffer and continue.
Why are we doing this? URC’s are short messages with a length of about 7 to

5. CODE IMPLEMENTATION 20

15 characters and therefore predictable and an overflow should never happen.
If it happens, then an overflow is avoided. Every URC message ends with the
<s3_character>and until we haven’t received this we leave the ISR. After we
received it we stop the timer, clear the GSM_URC flag and unblock the GSM
task by setting the GSM_URC' event flag.

Important note: If the cellular module is in data mode, all sent characters
from the remote host are directly forwarded to the serial interface. This means,
these characters are considered to belong to an URC and need to be handled in
the URC handler of the GSM task. The maximal length of data which can be
received, depends on the buffer size. If this limit is exceeded, then the buffer is
silently cleared, as mentioned above. Every message sent from a remote host to
the cellular module, needs to end with the <s3_character>, otherwise the parser
won’t be able to recognize a finished message.

Command

Every issued AT command has by default an echo which is sent first, followed by
the optional ITR and ends with the FRC. Therefore, we compare the received
character with our corresponding command character. It’s the same procedure
as with the greeting text. If one character doesn’t match, we raise an error and
unblock the GSM task. If it’s not finished, we wait for the next character. If it fin-
ishes successfully, we set the GSM_ECHO flag and the GSM_FIRST_AFTER_ECHO
flag in the PARSER register. The GSM_FIRST_AFTER_ECHO flag is used to
set the switch statement to its initial state. After the echo we check if the buffer
is full or not. If it’s full, we set the error and unblock the GSM task with the
GSM_ERROR flag. To avoid such an overflow, one needs to adjust the buffer
size to the largest possible output of the used AT commands. But for the sake
of completeness, the overflow is handled. In the normal case, when it is not full
we store the character in the buffer.

The next state is more complicated as the possible answers of the cellular
module are quite different. Normally, the response is composed of an I'TR, fol-
lowed by a FRC or the response contains only a FRC. But if the cellular module
responses an error then the I'TR and FRC are dropped and only the error is
sent. There is also a special case where only an ITR is sent without any FRC’s.
This happens when the module changes from command mode to data mode by
issuing a ?CONNECT”. This would not be a problem but "CONNECT” is send
in verbose format and therefore with full header and footer:

<s3_character><s4_character> CONNECT <s3_character><s4_character>.
Finally, there are also responses which have more than one ITR line. Means, the

<s3_character>is sent multiple times inside the ITR instead of only one time at
the end.

5. CODE IMPLEMENTATION 21

All these cases need to be handled correctly and in order to this a switch
statement is used. The first state which is entered is always the “wait for
s3_character”. As long as this character hasn’t been received, we leave the ISR.
After reception, we know that one part is fully received. This can either be a
FRC, an error, an entire ITR or one part of a multiline ITR. If the received
response matches one of the possible errors, then we raise an error and unblock
the GSM task by setting the GSM_ERROR flag. If the expected response sim-
ply consists of an FRC, we read out the value and unblock the GSM task by
setting the GSM_COMMAND event flag. To signal that the AT command is
finished and URC’s are accepted again we clear the GSM_COMMAND flag in
the PARSER register. The FRC value is stored in the GSM struct in the "fi-
nal_result” parameter. If we expect an ITR, we change the state to ITR. As
mentioned in chapter [£.2] the ITR ends with <s3_character><s4_character>,
therefore we need to wait for the s4_character to be received. This should be the
consecutive character of the s3_character. If the expected response is the special
case "CONNECT”, as mentioned above, we simply stay in the ITR state and
wait for the next s4_character to be received. If it is not a special case, then we
change the state to FRC. Here we wait again until the s3_character is received
as the FRC ends with this character. After reception, we check how long the
response is. The maximal length of an FRC is three. If it’s longer than three,
we have an ITR with multiple lines and therefore we change the state back to
ITR. If the length is within the accepted boundaries, we read out the value,
unblock the GSM task by setting the GSM_COMMAND event flag and clear the
GSM_COMMAND PARSER register flag.

5.4.4 GSM task

In this chapter, we consider the used FreeRTOS task called GSM task. The
goal of this task is to establish an TCP/IP connection to the PermaSense data
backend system, sending all pending data, listen if someone is sending anything
he has to react to, tear down the connection and shut down the cellular module.

This task is thought to be used in the following manner: After a certain time
period, another task calls GSM_powerOn(), leading the GSM task to enter the
ready state. The GSM task then performs all the steps mentioned in the goal of
this task. After he has done everything, he enters the blocking state and waits
until he is set in ready state again.

Figure shows the GSM task flow graph. If the cellular module (called GSM)
is not running, the task enters the block state and waits to be unblocked by the
event flag GSM_RUNNING. If it’s running, then we check if the greeting text has
already been received or not. If not, we block and wait for the GSM_GREETING
event flag to be received. If the flag hasn’t been received within a certain time,
the task is unblocked due to a timeout and we enter the error handler which

5. CODE IMPLEMENTATION 22

RTOS GSM-Task

{

GSM Running?

No Enter block state untill
GSM is running

Yes
Greeting text No Enter blo.ck state.until
already received? greeting text is
received or timeout
Yes -
Timeout
Enter block state Error
until URC, ERROR or ERROR Handler
TIMEOUT occurs
URC
Timeout
URC Handler Command Handler

Figure 5.3: GSM task

then needs to take a decision what to do. For now, we restart the module. If
the task is unblocked by the GSM_GREETING event flag, we continue. Accord-
ing to the AT command manual, one should wait at least 20ms before issuing
a new AT command. Therefore, we enter the blocking state for at least 20ms
and wait if an URC or an error is responded by the parser. If the GSM_ERROR
event flag unblocks the task we enter the error handler. If we are unblocked by
a GSM_URC event flag, we enter the URC handler instead. If a timeout occurs,
then nothing is pending, and we can continue sending AT commands.

In the following the three used handlers will be introduced:

Error handler

All errors are stored in the GSM struct. The variable Error_type holds the in-
formation about the kind of error (UART error, Parser error or GSM error)
which has occurred and the variable Error_code contains more precise informa-
tion about it. All errors need to be handled and this is thought to be done in
the error handler. For instance, one can log the error and then continue or reset
the parser and restart or one can just ignore the error. What is done is strongly
depending on the already existing error handling in the WGPS device code.

5. CODE IMPLEMENTATION 23

URC handler

If an URC has been received, this handler is entered. The URC message is stored
in the aRxURCBuffer. The GSM struct contains a pointer on this buffer and
stores its length. A possible URC is for instance

+CREG: 1

First, one needs to decide which URC’s has been received. The URC handler
checks the length of the URC to already exclude URC’s with the wrong length.
Then, we compare all possible URC’s with the received one and if we find the
right one, we read out the value and decide what action needs to be done.

The URC handler is also entered if the cellular module is in data mode and the
server sends data to the module. This can be a command or similar. Note that
everything sent to the module needs to end with the <s3_character>, otherwise
the parser will fail to detect the end of the message.

Command handler

Command Handler
Fill AtCommand struct
Transmit AT command

Enter ¥
Ny with command name, Set
Switch state GSM?Seaiﬁiimmand() size, type, error type and GSM_COMMAND flag to cellular module

response time ;

Enter blocked state

until GSM_COMMAND, |Error
GSM_ERROR event 4’T\meou(ERROR Handler
flags or timeout

iGSM_COMMAND
Increment switch state
state +=1

Figure 5.4: Command handler flow graph

Exit Command Handler

In the GSM_CommandHandler() all AT commands are send and handled. To be
able to leave the function after a finished command and to guarantee that URC’s
are handled in time we use a struct statement. This allows us to jump to the
command we want to send. Up to now the switch is split into six sections (Ini-
tialization, Cellular network registration, Internal PDP context activation, Data
connection, Data mode, Close data connection and End). The initialization is
used to enable the numeric error response such that more precise error responses
are send by the module. The cellular network registration, the internal PDP
context activation and the data connection are explained in a separate section,
see chapter In the data mode we send our data to the remote host we have
established a connection with. If we have send and received everything we need
to enter the close data connection part, where we exit the direct link mode and

5. CODE IMPLEMENTATION 24

close the used socket. Entering the "End” state turns off the cellular module
and the UART interface.

To send an AT command we use the GSM_SendAtCommand() function which
takes the command name, it’s size, type, error type and maximal response time as
input. These parameters can differ between AT commands. In the function these
values are stored in the AtCommand struct and we set the GSM_COMMAND
flag to indicate that a response is expected. Next, we use the HAL driver function
HAL_UART_Transmit() to send the command to the cellular module. If this was
successful we enter the block state and wait to be unblocked. This can be through
the GSM_ERROR event flag, the GSM_COMMAND event flag or by a timeout.
If we get a timeout or an error, we enter the error handler, else we increment the
switch state and leave the function. The switch state can be set or read with the
GSM_CommandHandlerState() function.

5.5 Datalink

In this part, we derive a solution how we can establish a reliable datalink between
cellular module and a remote host. To test the datalink, YAT has been used as
dummy remote host. YAT is a terminal which can listen and send data to a
defined port and therefore acts as a simple server.

There are two possible ways how the cellular module could be used on the
wireless GPS rev2 sensor system. Either it’s always on or its duty cycled. Ob-
viously, duty cycling will be much more energy efficient. The problem is the
reachability. The server won’t be able to send commands to the wireless GPS
sensor system if the cellular module is in sleep mode or turned off. How does
the server know when to send commands if needed? Omne possible solution is
that after the cellular module established a connection it sends all data and then
sends a special preamble to indicate that it now waits a certain time to receive
commands from the server. The server can now send any commands it wants
to. After a certain command or time, the cellular module disconnects and turns
off. This way it’s like a receiver indicated communication between server and
cellular module.

What can be done if its’ kept always on? The nice way would be if the server
could establish a TCP/IP connection with the cellular module. The problem
is that normally the network operator allows connectivity only in one direction.
Means, only the module can establish a TCP/IP connection not the other way
around. If there are special contracts or the possibility at all providing both
direction hasn’t been investigated due to lack of time. A possible solution is that
the module uses its keep alive mode which keeps the TCP connection open such
that both can send any time they want. Disadvantage is that the server has
occupied sockets and the module wastes lot of energy to keep it open. Another

5. CODE IMPLEMENTATION 25

way could be to call the module or send a SMS to it to inform that it should
establish a connection to the server.

5.5.1 GPRS system architecture overview

Before we talk about establishing a TCP/IP connection we first need to under-
stand how the mobile network works and what is different to the normal IP based
internet. Figure gives an overview of the mobile network which is interposed
between the cellular module and the IP based internet network.

ISDN

REMN PSTN

(((0 BTS
MSCIVLR
- | sms-msc
BSC T

SGSN }
N EIR
Data Network
GPRS GGSN Internet
backbone

Cellular module

Other GPRS
operators

Data Network

GPRS NETWORK X.25

Figure 5.5: GSM and GPRS system architecture [1§]

The cellular module needs to connect to a Base Transceiver Station (BTS).
The BTS forwards the received signals to the Base Station Controller (BSC).
Depending if the received signal is circuit switched traffic or packet switched
data the BSC forwards it to the Mobile Switching Center (MSC) respectively
the Serving GPRS Support Node (SGSN). The BSC is respounsible for setting up
and disconnecting Circuit Switched (CS) and Packet Switched (PS) connections
to MSC respectively SGSN. The SGSN handles the packet data protocol (PDP)
contexts. The GPRS backbone is now connected to other GPRS operators or
via a Gateway GPRS Support Node (GGSN) to an external data network. For
instance, the IP based internet data network. The GGSN assigns IP addresses
to mobile devices as the cellular module. This allows now to communicate over
the internet and to establish a TCP/IP connection.

5.5.2 Cellular network registration

This section provides an overview about the GSM/UMTS network registration
on the cellular module. First, we need to decide which Radio Access technology
(RAT) we want to use. This can either be GSM, UMTS or GSM/UMTS in

5. CODE IMPLEMENTATION 26

dual mode. By default, it’s in dual mode and we let it like this as it switches
automatically between the best available. Next, we can choose which operating
bands we want to use (800, 900, 1900, 2100 MHz etc.). The cellular module
can store the network settings in its non-volatile memory (NVM) and therefore
only needs to be changed once. The module is able to perform the network
registration automatically based on the stored settings. Automatic registration
is enabled if the command “AT+COPS=0" is send. The automatic registration
is stored in the NVM. If the module is registered in GSM either GPRS or EDGE
is available depending on the signal quality. If in UMTS then WCDMA, HSDPA,
HSUPA or HSDPA /HSUPA can be available.

In our implementation we have the automatic registration enabled. There-
fore, if the module is switched on it tries to establish a network registration
either in GSM or in UMTS mode. If both are available, UMTS is preferred. We
enable the “+CREG” URC which informs us if the registration was successful.
If we have received the corresponding URC, we continue with the Internal PDP
context activation. Figure shows how the network registration should be
performed and how the +CREG URC’s need to be handled.

- Read +CREG

) EEEE—
Module poweron | ______

——

DTE is requested to
intervene

AT+CREG=1

!

i
1
1
1
i
1
1
1
1
1 @
1
1
:
i NO
i
I
AT+COPS? i OK,module is registered
' for CS on the HPLMN
i
i NO
1
i
1
1 Wait, module is
i searching for a network
i
i
1 NO
YES NO i
i
1 Registration denied.
AT+COPS=0 1 .
or ! Intervention may be
AT+COPS=1,... H required
1
' NO
1
i
Wait for URC RO Wait
+CREG (1) Everytime a URC
+CREG is received,
[0}

take a decision N

OK,module is registred
for CS on a VPLMN

Figure 5.6: CS and PS network registration flow chart [17]

5. CODE IMPLEMENTATION 27

5.5.3 Internal PDP context activation

Before we can use TCP/IP we need to create a packet switched data (PSD)
profile. This profile is used to set PDP context parameters for an internal context.
This is, the protocol type (IPv4, IPv6), the APN together with username and
password, the DNS address, the authentication, the IP address (dynamic, static)
and the Quality of Service parameters (precedence, delay, reliability, peak rate,
mean rate, delivery order, etc.). The profile can be stored in the NVM. Once
configured one can activate the PDP context with the specified profile.

In our implementation we first register the cellular module to the general
packet radio service (GPRS). GPRS allows 2G and 3G networks to transmit IP
packets to networks such as the internet. Next, we load our PSD profile and
activate the PDP context. After the activation we have an IP address assigned
to our module.

5.5.4 Data connection

In order to transfer data reliable, we use TCP/IP. Therefore, we create a socket
on the cellular module. For the next step we need the IP address and the port
from the remote host we want to connect to. We can do that with a DNS
lookup or we hardcode the IP address and the port. As we used YAT as dummy
server to test the connection we hardcoded the IP and the port and established
the connection. If the connection is successful we get an OK as response. In
the next step we enter the direct link mode. This pushes the module in data
mode (see chapter . After “CONNECT” is received everything send to the
module is forwarded to the server. If we want to close the connection, we send
+-++ to exit the data mode and then we close the socket. Figure shows how
the cellular module boots and establishes a TCP/IP connection with YAT.

5. CODE IMPLEMENTATION

Cellular Module Running

AT command: AT+CGMM

Response:
SARA-U270
0

AT command: AT+CGMI

Response:
u-blox
0

AT command: AT+CMEE=1

Response:
0

AT command: AT+CREG=1

Response:
0

AT command: AT+CREG?

Response:
+CREG: 1,0
0

URC: +CREG: 1

AT command: AT+CREG?

Response:
+CREG: 1,1
0

AT command: AT+COPS?

Response:
+COPS: 0,0,"Swisscom",0
0

AT command: AT+UREG?

Response:
+UREG: 0,2
0

AT command: AT+URAT?

Response:
+URAT: 1,2
0

AT command: AT+CGATT?

Response:
+CGATT: 1
0

AT command: AT+UPSND=0,8

Response:
+UPSND: 0,8,0
0

AT command: AT+UPSDA=0,2

Response:
0

AT command: AT+UPSDA=0,3

Response:
0

AT command: AT+UPSND=0,8

Response:
+UPSND: 0,8,1
0

AT command: AT+UPSND=0,0

Response:
+UPSND: 0,0,"10.185.2.127"
0

AT command: AT+USOCR=6

Response:
+USOCR: 0
0

AT command:
AT+USOCO0=0,"82.130.102.220",
10000

Response:
0

AT command: AT+USODL=0

Response:
CONNECT

URC: COMMAND FROM REMOTE

HOST

AT command: +++
Response:

URC: 0

AT command: AT+USOCL=0

Response:

28

Figure 5.7: Boot, network registration, PDP context activation, socket creation

and connection

CHAPTER 6

Further work

In this chapter we will briefly summarize what has been done and what hasn’t,
as well as hints how to proceed with this work.

6.1 Achieved goals

The software interface between cellular module and MCU has been implemented.
The interface is able to transmit all kind of AT commands and to react to the
necessary requirements. It is able to detect URC’s and provides an interface
which allows an easy handling of them. The interface is also able to detect data
transmitted by the remote host. Up to now there are no action taken if such
data is received. The interface just outputs the received message and continues.
All kind of errors are caught and are forwarded to an error handler. This error
handler takes decisions how to handle the specific error.

As the goal was to implement and to include the interface in the already ex-
isting WGPS software we only managed to implement the interface. It’s not
included yet although everything is prepared such that the integration is the
next logical step.

6.2 Follow-up

According to the objectives, this work is designed in a way that follow-up projects
can be built upon. Therefore, special care has been taken such that everything
is implemented in a structured and generic way so that modification can be done
as simply as possible.

29

6. FURTHER WORK 30

Defines

The code uses no hard-coded values for AT command settings which can be
changed. All of these values are mapped with defines. Therefore, if one changes
for instance, the s3_character, the only thing needed to adapt to is the corre-
sponding define. All defines are located in the header file “gsm.h”.

TODO’s

If one wants to integrate the provided code into the wireless GPS sensor system
code, there are several places where one needs to adapt the code. For sake of
simplicity, the TODO’s mark these places. Every TODO contains also a short
text which explains what is thought to be adapted.

README’s

The repository on Gitlab contains README’s which explains what needs to be
done in more details.

Code comments

The code contains comments everywhere where it could cause understanding
problems.

Inclusion into the wireless GPS rev2 sensor system code

This part will give a short summary of what needs to be done in order to integrate
the code into the GPS sensor system code. The code is already implemented
with FreeRTOS. The most difficult part will be to adjust the interrupt and task
priority so that it harmonizes with the other interrupts and tasks. Then, one
needs to select the appropriate clock source for the USART2.

As the wireless GPS sensor system can enter the sleep mode, one needs to
consider that some variables may need to be volatile such that the value is stored
before entering sleep mode. Next, one needs to define how the data is provided
to the task and how it needs to be sent such that the PermaSense data backend
system is able to process the data.

CHAPTER 7

Conclusion

In this work we proposed an integration concept which allows efficient commu-
nication with the cellular module. Also, we proposed an efficient monitoring
based on the FreeRTOS task which allows us to monitor unsolicited result codes
(URC’s), all kind of errors and the result of sent AT commands. Although never
tested with the PermaSense data backend system itself, we were able to establish
a reliable TCP/IP connection with a dummy server, hosted on a computer and
to exchange data in both directions. As this work is thought to be continued, the
entire code is designed in a manner that follow-up projects can be easily build
upon. Comments and TODO'’s help to understand what needs to be done and
how the code should be understood. No hard-coded values are used for values
which can be changed on the cellular module. Defines are used instead, to apply
the changes globally.

The proposed code is completely embedded in the ARM /FreeRTOS software
framework and has been developed and tested on the wireless GPS rev2 sensor
system. Therefore, the integration in the already existing wireless GPS rev2
sensor system code is straight forward.

31

[1]

[11]

[12]

[13]

Bibliography

Atollic TrueStudio, http://www.st.com/en/development-tools/
truestudio.html

STM32L496VG microcontroller, http://www.st.com/en/
microcontrollers/stm321496vg.html

SEGGER J-Link EDU, https://www.segger.com/products/
debug-probes/j-link/models/j-1link-edu/

U-blox SARA-U270 GSM Modulehttps://www.u-blox.com/de/product/

sara-u2-series

ITU-T Recommendation V24, 02-2000. List of definitions for interchange
circuits between Data Terminal Equipment (DTE) and Data Connection
Equipment (DCE)

u-blox Cellular Modules, Data and Voice Modules, AT Commands Manual,
Document number: UBX-13002752, Revision R56, 22-Nov-2017

SARA-U2 series, HSPA modules with 2G fallback, Data Sheet. Document
number: UBX-13005287, Revision R19, 26-Feb-2018

STM32L496xx Datasheet. Document number: DS11585, Revision 8, May
2018

STM32L496 Refrence Manual. Document number: RMO0351, Revision 6,
April 2018

Description of STM32L4/1L.4+ HAL and low-layer drivers. User manual.
Document number: UM1884, Revision 7, September 2017

Mastering the FreeRTOS Real Time Kernel, A Hands-On Tutorial Guide.
Richard Barry, 2016

The FreeRTOS Refrence Manual, API Functions and Configuration Op-
tions. Version 10. Amazon Web Services, 2017

Shockfish SA. Tinynode 184. http://www.tinynode.com/?q=product/tinynodel84 /tn-

184-868

Functional Specification of the next-gen WGPS device, wgps_rev2_fs.pdf.
Akos Pasztor, ETH Zurich TIK, 2016

32

http://www.st.com/en/development-tools/truestudio.html
http://www.st.com/en/development-tools/truestudio.html
http://www.st.com/en/microcontrollers/stm32l496vg.html
http://www.st.com/en/microcontrollers/stm32l496vg.html
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.u-blox.com/de/product/sara-u2-series
https://www.u-blox.com/de/product/sara-u2-series

BIBLIOGRAPHY 33

[15] https://www.freertos.org/RT0S-task-states.html, online, 08.06.2018
[16] https://www.freertos.org/a00110.html, online, 08.06.2018

[17] AT Commands Examples, Examples for u-blox cellular modules, Applica-
tion Note. Document number: UBX-13001820, Revision R11, 22-Sep-2016

[18] http://www.telecom.tuc.gr/~perak/speech/DSR-issues/
report-html/, online, 10.06.2018

[19] PermaSense Data Management: System documentation and tutorial for on-
line data access. Samuel Weber, Jan Beutel, Christoph Walser, 2014

https://www.freertos.org/RTOS-task-states.html
https://www.freertos.org/a00110.html
http://www.telecom.tuc.gr/~perak/speech/DSR-issues/report-html/
http://www.telecom.tuc.gr/~perak/speech/DSR-issues/report-html/

List of Figures

[3.1 PermaSense System Architecture [19]|. 3
.2 WGPS System overview [14]|. 4
[3.3 'WGPS operating modes [14]|. 5
[3.4 Example interrupt priority configuration [16J| 6
{1 SARA-U270 block diagram [T]]. v o v oo oot 7
{4.2 AT command response flow chart [17] 9
.3 URC flow chart [IT]| o o v oo 12
[5.1 Valid task state transitions [15| 14
5.2 AT command parser| 18
B3 GSMtaskl 22
b.4 Command handler flow graph| 23
[5.5 GSM and GPRS system architecture [I8| 25
[5.6 CS and PS network registration flow chart [17][. 26
5.7 Boot, network registration, PDP context activation, socket cre- |
[ation and connectionlo 28

34

APPENDIX A

WGPS Schematics

14 € 4 I
OODr_om.>~_>_«0®CCOO|IOW/N>m;_\me\wwm_m‘__\s\h rOo/wuow.—ea/noa/m:twwc_mcw/ww:wwNF_,_wn_/wEwEJOOD/wOv_N/mL@mD/“O 94
L Jo | obed loizsed sodly Aqumeiqd | py L€:/1:GL L10Z0LEL eled
pOQUOS AHAIOBUUOD-HOS 193US MILHLT :Kojeloge | jeusod G0l A9y ZAIY-SdOM usquinu Bumelq
a yo1inz A3ojouyda] Jo aIn}Isu| |eI3P3] SSIMS
0°C SdS SSO|DIIAA DSUBSBWIID | younz anyasydoH aydsiuydral aydsissouaspiy
osloig E E E youmzH LA 0307 osuasewId
MITATIAQ 7
— T zxe oo
asidySdD T > osindl SdD da_gsn 9
XL SdD I > XL SdD N gsn S
X4 SdO - Xd SdD — v 10J02UU0D
SdD MS <1 SdD MS L— ¢
- 4sn pue
_ _ _ _ LvE Ad K4 19MOJ
O¥I OVIN_ssedwro) > OdI DV ssedwo) asn Asd L
Ow: qxﬂmmaaﬁoo > OMM X mmmanU 5
SO DVIN ssedwo) ' SO DVIN ssedwo)
2 SO IX ssedwo) (1 SO IX ssedwo) —
ISON ML |
SOS N ¢
20(Y2S'SdD-HOS P-DDAN
SdD = Bopo6TXsdlS = 1MS
39p06-7XS-dIS sodwng
oL| oL LASHY € 19891
_ 6 || 6 _ L z MS POy
— L MS 8 || 8 ML MS L 1oy sodung
A SO L | L] 2 A SO L —r
X s L < § 9 /|9 X SO ML
ISON ML | S ||g ISOW WL
OSIN 'L v ||V > OSIN ML —
MOS ML € lle 3OS ML N LASHY OL
4 4 JTIAT NL <} ATIAH NL
b L
e N— = asind L sdD
& 20UPSIIL m:o_m ImiAce S S A . - - -
’ HAOW_ L7109 NL <} HAOW 1109 NL
SOV 1109 NL 3OV 1104 NL
~ 0OldD NL OldD NL
o o o o ANI 17109 NL AaNI 1709 NL
= ON9TXPN —— = O[BWOJ9TX[ON —— o=y 1109 NL | 0=y 17109 NL
OSIN IdS NL OSIA IdS_NL
ww mw mw ww ISOW 1dS NL | ISON 1dS NL
ALA NSO 2T T — — 1z z ALAd NSD - - 2R E TN
ASA_NSD 0z 6L — — 6L 02 > dSa NSO 90(YASdPONAULL-HOS
ana wso 8l Ll +— — Il 8l { > aod WsH apoNAurL
WSO MS | 9l Gl +— — Gl 9l NSO MS
NSD 109Ra vl €L — — € bl > INSD 109Rq
S WSO ¢ 2L L — oz SId NSD ASTISNES < | N ERINEE
BLY) IR ok @ | — ke Ok L SID WSO LVEA ASNAS LVEA dSNAS
XL WSO | 8 L — — . 8 XL NSO = = =
x4 NSD 9 S — — S 9 { > X4 WSO I TEINGE @ | EBIED
= ¢ ¢ % LVLS dmd < ¢ LVLS dMd
v z I 5 4
20(YISTNSD-HOS 1 1 1 1 20cTUO-) 20(YdSAMd-HOS
INSD NSO NI Ad S WSO NI Ad NI Ad IS NTAd W DuE%ooM AMd
14 € 4 l

14 €

N
—

20QY9S’ NOIN-HOS\ZAe) sdb ™ ssajaum 2 100\s1oaloid\qod\BupieauiBua\asuaSEWID-\SUBWNIO\SONR\SIBSN\:D 9|14

L Jo Z obed loizsed sodly Aqumeiqd | py L8151 LLOZOVEL PRA ||\ = = = = = = =
20QUOS'NON-HOS 398US MLHLT :AojeiogeT | ewod GO0l Aoy

ZAIH-SAOM :Jaquinu Bumelg

y211nZ ASojouydal JO 31N}IISU| [BISPS SSIMS
02 SdD SSOJAIIA\ BSUBSBWIIDY | younz sjnyssysoH ayasiuydsl aydsissousSpiy

; STOMS Atd
:108f01d LS
JI[[0.3UOIO0IITJAI 7 E 3ngoq % S1d s1ojoede)) diyn-reoN

10§ AMS
= 4dgy = asn ms
9LDAIGHTZENLS
e 1IN0 2€0SO o G ToE N U0ty 9L
= = [HI89LTE ¥13d Y <OldO NL >] - = = =
T T 1de1 [28 €13d e —C AMIAT NI] n901 H001 - — —_
N 213d L 910=—
ALAITINSLAY an _H_H L13d < NSO PRd_| ELO)
vms \ 90 D o RURCLORE 013d 48€90a4d €1 plRLS
? 63d YOTTT g1 SSA SSAQD
- Tasay 83d aqn Aca v | 99° @ a3
13d L v
d L _
- - M - 93d 2 Aea as—" S0Kd as S
= = =— 1S¥N 63d r— za as o
J HL vh pad kb ads V) 5 as g
[Se) 1d dS 8 = Q
01009-€Hd £3d OSIN/oa™as =
¥4 - -
A S e B Z3d A = oy a4 ISON/AND as
(SRS HS (LHJ)LNO 0SO-LHd 13d AILAMZOWNSLIAV MOS0
Hoots 1 £ (OHAINI 0SO-0Hd 03d 8 ——— o R
< J9p]o! 001
o = 29 lams = ¢ = w NS Nrgwsn PSR
A | Zc [(LVIS ¥Md —4 5§10d(510d)LN0_2E0SO510d iz A GREHT0 P SO G B N
TeRq as 1o] 74ad (PLOJNI2e0s0riod g NI 2£050 TSI b
o= £lad £10d 5
£MON/4 _ ORI 65 ¢lad ¢lod 1<5g D as
PN ____ b= HRE 5 £d ds
A0LT I1ozzng 0zo1g £MS oLad 010d <ig TG asiaca
QI 1050 odct 69d <igg Ia_as
AAN— 8ad 80d iy OGS =
NN P /ad 10d [-
= 9ad 90d
A 1 sad §0d SeTeS ©
2 e ¥ad ¥0d
¥ 3nga(10§ SAHT oSN €ad €0d ®
zad zod ; 5
3 1ad 10d — =
= R R 1g~] 04d Cos YTIAI008EAdY 5Q5 Q| uomaatoid
sLoAYGHIZENLS T T [TSONTHS NI >—er) 518 (ainsive EE=S .
@ ¢ _OSIN 1dS NI } e~ vied (MTOMSMOLNY LV T INESI S
5 YSSA VA —= [MOS TdS NL > Ze"| €lad (OIAMS-SINLNELYd B
&% SSA daA 5 ano [OR 1108 NL)—2e 2led Zlvd 4a_asn
5, SSA QoA —; - o B — < bhad Lvd Wd dsn
&5 SSA QaA ¢ = PPy —5] 018d olvd
77— SSA QoA = vas 55" 68d 6vd
5 SSA aan 7 Atdbg— 13534 108 ¢ - ca™1 88d 8vd
EEIUUOR |y XELHS aan [X188 > 28] 2y 4SN ASd
Lvan —5 0 | L {xXasdd | 9dd 9vd
o Wizs asind 8D sad Svd
7 AR A CEL | SIS 5ol (1SHLrN)Yad vd
da1n T OMS 68 ANmmP>mm_O<I._.-OD._.3mm_n_ M«M ("0¢1 2Sed 1e [enuew uoneISojur
L L ; |
SR o e S A
A SO ML oad ovd _S1D WSD] i i
m:_& Jamod NOIN Josuag \A:ﬂ—g—ﬂm » Oh_\:.m\—Oﬁ—EO,H MN
vin

€ 4 3
20QU0S " YMd-HOS\ZAal sdbssajaum™ /| 0o\s1oaloid\qod\BuneauiBus\asuaseulIa d\Sjuawinooq\Soxe\sJasN\:D 94
& &= g lozsed sy :Aqumeia | O pv IS2VGL 210Z0LEL ereq
20QUOS"HMd-HOS MLHL3 :AojelogeT | ewsod GO'L :AeY ZAIH-SAOM Jaquinu Bumesqg
yo1inz A3ojouyda] Jo aIn}Isu| |eI3P3] SSIMS a
0°'C SdS SSOIBIIAN OSUBSBWID | yo1inz ajnyssydoH ayasiuyra] aydsissouadpiy
aom.—o‘_n_ E
A1ddng Jamog 3 3 N N N -
E\woww H_H 4 E\h/o% 4
ano 4n0z¢ VCZIONS
— 8707 LT —
I_I| 844N N3 m DD 9
<Eo0m
1Nno NI w
mmooommﬁmn; 6N |_|
4SN ASd
nduj AG gSN
o)
dug| Ad11
1LD
- - - - = = = . . AS€
— — — e e = = AE9 A€9 % 1 . 41001
. anoge~L anzy | Meig EmmMN m._n,__w dNOY e —*TxorVeza m_mmwll ast
% 1 T+ 690 T gy ¢4 1L ST . 610 T+
9001 e hre ano 29001 _| w001 5| aoUMd § olse
S=— 107 1a YZO—=— €20 % 1 TIEe dl/ss v
7 WINI oa N MV NS 3ASN3SA
|| L
6d 1004 N3
1n AUQ0T | 3 €
— 7 (0] ¢NI 5 190 STy
CLVIS¥Md |- 1VIS INI — \ANANS = 57 Hd NIA
MAVSTIZSAL LN LI 1 0DA0YOrSSdL 9N 1
Iox971dnNIAl Jomod 991nog jnduy NI Ad q
K1opeq woiy nduy pajosjoid
[14dsNas >
N o~ w
: ang qu01 %1
A€9 WW m 810! LID ovl &
ozl oo - LaS V9ZIONS
1995 T (s aSNES] Civan asnas | : rax/
f < Wﬁmvmxmzoﬁoox<§ \Cuﬁmmwo JUAUIINSBIA ommﬁO\/ c“ﬁw <
ﬁ X
MSTO %l 4 |_r
W/ Aed N[Ad LVE Ad W
|_| AST'0 8d
Atd a3e)[0A WRISAS JO JUSWAINSEIA] JUALIND) JUSWIAINSBIJN ATL)[0A WISAS A0T - A11 :nduy K1opeg
14 € c 3

14 € 4 3
20QUIS'SdD-HOS\gAs sdb ™ ssajaum™ 2 L oo\s1oeloid\god\Burisauibus\asuaseuwIad\sjuawndoqQ\So)e\SIasN\:D 9|14
L Jo v obed lozsed sosly Aqumeld | © pv €161 Z10ToL'El eked
20QUdS'SdO-HOS 18dUs MILHLT :AojesoqeT | jeuuod S0l A8y CNATH-SdOM Jaquunu Bumesq
yaunz %MO_OCSUU._. J0 91N1I}su| |elopad SSIMS
0°C SdS SSO|DIIAA DSUBSBWIID | younz anyasydoH aydsiuydral aydsissouaspiy
uom.—o‘_n_ E
ssedwio) 2 SO 7
NI N
>— ON aNs ON —
€| L e
3 3 2] 3N N
== = (14
|_,| 6 ON ._.mn_<<\2“zmu oz do1 + Ul +ugQT + NI
Zosindowi o3 4 ‘sdeo Sunesuodwos-amyeroduroy
AU001 cl) - = “Q)eInode
8 9 e 8s|ndl Sd9 8z Les|ndawi | MMIMMw H@N “90UB)SISAI 29 FOUBIONPUL MO
aNo dNO — 1Esa SN aan —< A 8D
= [xdsdo > axy
— RON L 0as/Iasvas) = (xsdo } m axL INV A %1
SO DVIN_ssedwio) OV SO OVIN_INI ¢ VINS o 13s3d 44 O0OA ST R (U1
SO TX ssedwio) X SO X INI _ _ £y
[DS uHL > 0dS/1ds OVIN AQHd S)OO 5o NI 1N0 00A - - = = = =
a o) . E R A - =
ol aaA aaa e = BUUIUY SID dXo8 A OOA AT w00 mwmm M%umw ELO) ALY
ALOLOEWST LSWN-VAT == == LSO dnoceL-
11N 0k 6 qU00T anor1 VIAS Iopun 104e] Surnoi uo mod ou - 0rn = G2 €0 ced €D 0£d LEOFT
SEO==t€D [IWOE< ‘PP aaIm - = 20
g < :9oueIeso mod raddoo - Ted MS NSO Atd)
Sunnor jysrens - Sdo 10§ A1ddng A€ d[qeyonms
xir uB1saq g0d 10109Uu0) VNS 0011190 | d8£90ad SRS |
0 T
pany 10N
A€d W2 0015
0l s
NO sAem[e ‘9]qeyolIms oq 0) Papadu jou si ssedwo)-g 10mog moT-eny 10y A]ddng
A€d
hQHQEOHQEWNE € 29 J19)PW0.I9[98 (JE mmNQEQulmﬁ Agd I[NPOJAl SdD

v 3 z b
20QUOSNL-HOS\ZAes sdb~ssajeam 2 L oo\s1oaloid\qod\BuLisauiBus\asusSeULIS \SJUSWNI0(\SOYB\SIaSN\:D 9|4
& &= § ofed lozsed sy :Aqumeia | O pv IS2VGL 210Z0LEL ereq
00QUOSHL-HOS 1193US MLHIZ Acjesoge] | yewsod G0l A9y ZATH-SOM Uequinu Bumeig
yo1inz ASojouyda] Jo 33N}ISU| [BIIPS SSIMS a
0°C SdS SSO|DIIAA DSUBSBWIID | younz anyasydoH aydsiuydral aydsissouaspiy
ol E
SI0SUIS LI 7
A€9
quo01 | Auool | 4uoor | duoor | moot any L
WO== 140 0rO 6£0 €0 wo
10302UU0D JBAU JV0) B[]
AINSZOTOHS INTE
[GE
o}
R I — —
MS ITIL A€d dgeooddy WL AMS |
o
s10su9g 1] 10j a3eijoA A1ddng A€ d1qeyoNMg v_%wm s
LTIL Agd AEd
J10J05UUOD BIA) UIBW WO PIAIOIAI A€
/ Y
g)))))) g
= w = w
SSAQ SSAV SSAQ SSAV
zr | ANO3 0 e—xom Zzr | INO3 SO e—xom
5 PAsY ISON ——Tsom T 7| Prsd ISON - —s—Tsom T
T Py OSIN —5—GsrRT [PAsY OSIN ——5stwon
— WMd MOS : — WMd 3OS ——
6 7 SDSI 6 7 DS IL
aaAa aany QaaAd aaAvy
0€8VOS 0€8V0S
€In 3. | zin 3. |®
MS ITIL Aed MS ITIL A€d
v JuowuSI[E JUAIAPIP ,06 [HM SIOSUDS 1], B[] SI0SUIS LT
v 3 z b

€ z L
20QUOS NSD-HOS\ZAl sdb ™~ ssajaum 7 1 00\s1oaloid\god\BueauiBus\asuaseulIad\Sjuawinooq\Soxe\sJasN\:D 94
L o0 9 ebed lojzseq sody Aqumeld | p py L€/1:GL L10ZOL'EL :ekea
20QUOSINSD-HOS 183us MLHL3 :Aojeloger | newloy G0'L A8 ZAIY-SdOM Hequunu Bumeig
yo1inz A3ojouyda] Jo aIn}Isu| |eI3P3] SSIMS
0°C SdS SSO|DIIAA DSUBSBWIID | younz anyasydoH aydsiuydral aydsissouaspiy = - - _
ANOASYLIOATYLNS | T $00-0LT0-VIVS |
osloid E aND g0 IsAld ano ano
Ienp)H 7 v VOOA 2 I wso Acd L ano ano B
L 0L G6
_ 6o~ aNO aNo —p¢
g~ 8 A £ { ddd WSO » 59| ANO aNo —=
VIAS 1opun 1oAe[Sunnoi uo mod ou - M.V ‘9 v Z | ASA WSO /9 anNo anod 26
IOE< GIpIA OTL - ' 99 | ANO aNS =5
g | < :0dueredd mod 1addoo - - L1N - G9 anNo ano 06
Sunnox yySrens - — — 79 aNo ano 53
«uBis0] G0 1019503 YINS ANDASYLIOATPLNS &9 mnw mnw o9
5~ ONO 800A — _w>z\ 19 | ano ano |28
VOOA {INSD Agd 09 98
= = = = = = l aNo AND
= T N = _ 6 ano ano 28
S00-0LZN-VIVS 51 ¢8 oV <g—t—{ s> WSO 85 | ano ano 28
d d d - —
droor | dduy | deer | dce VINS Jogt L3AINY 130 8SNA [~e . Tu.wl LA £ ano ano 28
pIRIYS 1 T T S T 5" LNV +0_asn S 5 aNO aNo —=
H 01S -a8sn <) 91N AR AN —2
i . = . anNo ano
&) Is _ 0} :Suryorew-[oA
|z 1sy (22 . S isyTis aoa AL OTBAT RN & ano ano =
1| 2 10 5 ge] M0 Wis R | G aNo anNo —7
'e on & &= O WIS ¥sa =5 - A aNo —7
1| 2 00A 5 7 WISA dla =g o 77— aNo aNo —==
| ddA 55 %.v 130 WIS SLO B 0 . anNo ano
| VY| ol 6 (014 175
........ B SLY =g I S aNO aNo —2
3 , ——< X10703002 axy — —\N\N— anNo ano
19p[oy Emoﬁm 61 3 il m (HITSD | m e zL
=~ 551 YM st _ <_SId WSD_|] ON© AASY —g-
— 51 H10_se N 133y A%A XL WSO] AASY —&-
=%t axy_sel NO dMd D0A ansy —-
L8 axL szl c (34 £9 oo ansy -
Lty GE SAT 0) A€ :BuIyoIRW-[0Ad] 28 o
i YOIdD e Te— Q0N ansd —&-
€0Id9 A.w _ aAsy 5
vas 20IdD ez = DHIOT A AASY —=
NSO 1Rg | | €6
INSD 19930 S5 108 LOIdD i~ 1 INCA - aAsy =
uonP gOd INSO véin 1 as1n
S[NPOIN JNSD Aq paonpoid st a3e)0A AT 8AEd SATd
folie) 000 . . duT'T n n
a i A£9 A£9 % 1 IS Anoo1 | Anoo1
4u00l | 4u00l | 4u00l | duool | dnot | = o m%wu_ N mtww quor | duool noLb noLp~L Ye1k ¥2ss e | holj AST asz
SO €60 4%} 1$0—— [qfe == o _— 9D S¥D T AT o AN ans op | %ul_H+ 6Y0—T+
NI =g AR GAIT 57 & LS !
T ino N ¢ ¢ c c AAAAT e T MSA NGHS =g
AOAA0ETSLSdL AUO8T
sn ero—= [| 150c8 MR
L = == d-L-SMDE01AS A9d#8SASILILT vin
SATd WSD Ag€d NSD Agd e ! S TR

sioyoede)) dig)-1eaN

La

10309UU0J BIA g UTeW WO} PIAIddAI A1apeq woiy aSejjoA Ajddng

A1ddng J9mo0d NSO

€

20QU0S 9pPONAULL-HOS\ZAs sdB ™ ssajaum™ 7 L oo\s1oeloid\god\BuLiaaulBus\asuaseuIa 4\SJUaWNO0\SONE\SIaSN\:D

ol

/. Jo , obed

00QUOS OPONAUIL-HOS :199US

lojzsed soqy

MLHLE

Aqumesa | o pY

:Aiojesoge] | jewltoq

GO’ A8y

LEL1:GL PATAV o

CN\IH-SdOM

:Jaquinu Bumelg

:aleq

0°¢ SdS SSI|aIIp\ 9sudsewlad

younz A8ojouyd3a] Jo 91nN}Isu| [eI3P34 SSIMSG
Yo1nNz 3|Nydsyd0H ayasiuyda] ayasissouadpiy

44001 44001
vcuf_‘ cmof_‘ h

l——||—|||-

aom.—o‘_n_ E
dpONAuL], 7
Atd
Aroyduad 2p N, 10] s10310edes diyo-reaN
72€9-015-8160 Suniey
= 7Xs-dIS
= =)
oL
ponif 10N . m
LL/A0LT-LOETdDON ALAYZINS LAY 1y
SSA — mBJv — 9
S
DOYUd DL
E l L13Sdd DL M
axy Ldvn DL
aan z
= 4 E dxL 1yvn SL L
N
vIS
A€d Atd
d10v7SA panif 10N
¥T€9-715-8160 Suney
1 dNO Dd < _ — meing - = 7X,dIS
— N ON ==,y ATIAT NL 43¥A° 3 2oaviz9d AAOW 1108 NL S
—— ON ON = |y gg™1 e vl €0av/e'9d Z MOV 1708 NL | — vl
A _ o=t 0810 POQV/rad (el TSRSORESIN — €l
(OO NIL > Se™1 CYLIvOred §0av/s'9d ~ - —
Haryad NI AEd [ANI1708 NL)>——=%= LYL/0VO/Eed 00va/90aV/9'9d B { OT ITOg NL > TASTNRO] L
St WL9'Ld 1OVQ/LOAY/L'9d (=i AN — ol
R DS R g Wionesd J3WAT 3 O 6
HdWAd NI WS = SN IS NLo° HNOS/Z'sd vl d _ — 8
- LOWIS/L'Sd (AAV AR S __>smdrsdd | L
L
= R o PONIS L Pl 131S10°6d axin ok DOMI DL g
__ Q_m.v ERELT FAXHN <4 SINL NI S
WA LASdyd DL 1] Lsyu HOL /A LIDAYVL DDA 14
o auor 31001 nooI = g~ aNO SWL (=g [} g
i SID (44 990—=— ||_I|_|| BouA IaL = z
—_— A001< 14 € TOOL DDA
—— SSA @d mw> T 2 00A oaL b
RV aan 2 7Yl 62T [4 [0L NL
6 v Hdlddd NL Agd 43 Y8T9PONAUIL €18
SO0 0S 5o N d8€90dd ea RE RE J——
za_as MW sO £-dIS
1a_as (g
osIw/oa_as - €
— OSIA IdS NL —
ISOWN/AND ads = OSIN 1dS NL z
ISON 1dS NL N 1dS N.L —
HOSHIO fr— 3TN TR TS N SON IS N r
T9PIOY ASOPIN ST oS TaS NT L oS WS NL D |_| s
\ A€d
14 € z L

	Acknowledgements
	Abstract
	1 Introduction
	2 Objectives
	3 Overview
	3.1 PermaSense
	3.2 Wireless GPS rev2 sensor system
	3.2.1 System overview
	3.2.2 Operating modes
	3.2.3 FreeRTOS

	4 Cellular module
	4.1 Interface
	4.2 AT commands
	4.2.1 Operating modes
	4.2.2 Errors
	4.2.3 Response time

	4.3 URC - Unsolicited Result Code
	4.4 Boot phase

	5 Code implementation
	5.1 Overview
	5.2 Development environment
	5.3 FreeRTOS primitives
	5.3.1 Tasks
	5.3.2 Software timer
	5.3.3 Event groups

	5.4 Cellular module software interface
	5.4.1 The AtCommand struct and the GSM struct
	5.4.2 UART and pin initialization
	5.4.3 AT command parser
	5.4.4 GSM task

	5.5 Datalink
	5.5.1 GPRS system architecture overview
	5.5.2 Cellular network registration
	5.5.3 Internal PDP context activation
	5.5.4 Data connection

	6 Further work
	6.1 Achieved goals
	6.2 Follow-up

	7 Conclusion
	Bibliography
	List of figures
	A WGPS Schematics

