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Abstract

While today network configurations are still largely written manually which tedious and prone to
errors, there is a development towards using network configuration synthesizers that automate
this process by taking a higher level specification of the network and synthesizing configura-
tions from it. But with increasing reliance on network configuration synthesizers for production
networks, it is also important that these tools are bug-free or at least rigorously tested.

We present Grigori, a tool for automatically checking network configurations in a synthesizer-
agnostic way and for generating inputs for the NetComplete network configuration synthesizer
to exercise its internal OSPF and BGP model. It is capable of generating inputs randomly that
cover a large subset of the valid input space and can also generate inputs that exhaust the OSPF
and BGP model which NetComplete uses internally.

We implemented Grigori and by checking the configurations generated by NetComplete from
our inputs, it helped uncover numerous bugs in NetComplete including one bug in the BGP
model code itself. The checking part of the implementation scaled well to all configurations
which NetComplete could synthesize in a reasonable time and it is parallelizable if a further
performance increase is needed.
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Chapter 1

Introduction

NetComplete [2] is a tool for synthesizing networking configurations from existing partial con-
figurations (the sketch) and routing requirements. The resulting configuration has to be a strict
superset of the given configuration sketch and when run on a Cisco router, it has to forward
packets according to the routing requirements.

Where Grigori comes in is checking that the synthesized router configuration is correct. In ad-
dition to that Grigori generates input for NetComplete that covers its internal model. By testing
NetComplete with this input, bugs can be found and ultimately some correctness guarantees
can be made about its operation.

The NetComplete functionality we want to test is OSPF and BGP. The idea for showing that it
performs the way we expect it for those protocols is to first extract a model of how we believe
OSPF and BGP is implemented in NetComplete. In essence the model is the structure of the
SMT that is generated by the tool. To cover all the model, input is generated so that all states in
the model are covered once and the positive states (states where the requirements can be met)
can be synthesized by NetComplete from partial sketches. After showing that the tool generates
configurations for the cases where it should and returns a message saying no configuration ex-
ists for the cases where it shouldn'’t, we then test whether the produced configuration is actually
implementing all requirements by running it in a emulator which runs Cisco router images. If we
can show this, NetComplete correctly implements the extracted model which in turn is a strict
subset of the Cisco model.

We will start by giving a high level overview of Grigori in the following chapter.



10



Chapter 2

Overview

In this chapter first the necessary terminology is defined in section 2.1 which in our case is the
term routing requirement. We motivate the problem and show the workflow of our solution in
section 2.2. Finally in section 2.3 we give a short outline of the rest of the report.

2.1 Definitions

2.1.1 Routing Requirements

Requirements are an important part of Grigori and NetComplete as they are the operator’s way
of expressing his intent for the behavior of the network.

A requirement specifies what should be reachable from where and via which path (and conse-
quently also what should not be reachable). Each requirement has a destination that specifies
which IP network should be reachable and a path which specifies the ways in which to reach
the destination. The path is, depending on the requirement type, either a sequence of router
identifiers or an sequence of requirements. Requirements also have a protocol which specifies
over which protocol the path should be learned.

There are four types of requirements currently supported by NetComplete:

Simple routing requirement A requirement says the destination should be reachable via the
given sequence of router identifiers.

ECMP routing requirement ECMP stands for equal cost multi path. The paths are an un-
ordered list of simple routing requirements. If unobstructed, all paths should be available
at the same time to choose from to reach the destination.

Ordered routing requirement The paths of an unordered routing requirements is an ordered
list of simple routing requirements that should be preferred in that order. The first available
path has to always be taken to the destination.

Any-Path routing requirement For this requirement the paths are an unordered list of simple
routing requirements. If at least one path is available, the path taken to the destination has
to be in the paths list.

2.2 Big picture

As seen in Figure 2.1, Grigori integrates with NetComplete at multiple points.

NetComplete is a tool that takes requirements, the network topology and a partial configuration
file for each router. It fills in the missing parts such that the network in which each router uses
the completed configuration files behaves as expected. Or does it?

This is where Grigori comes in. In order to make sure that the network forwards according to
the requirements it has a component that simulates the network and reports any mismatches
between the forwarding tables and the requirements. Grigori can also generate inputs for Net-
Complete. The goal is to show that NetComplete does the correct thing for all possible inputs
and is therefore operating correctly.

11
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Figure 2.1: Overview of how Grigori integrates with Netcomplete

The reason why Grigori can show correctness beyond what unit tests can do is because it also
tests its own assumptions (the model) against the ground truth which is the emulated Cisco
router image.

Since the input space for NetComplete is infinite, testing all inputs is not possible. To get as
close as possible to those guarantees a combination of random and smart (model covering)
inputs are used here to test both networks that use OSPF or BGP for path selection.

2.3 Outline

In this report we will proceed by first exploring the design space a bit, before showing the design
choices that we picked for Grigori.

To put that in context, the design part (chapter 3) will be followed by an evaluation in chapter 5
where we look at the concrete results we got from it in terms of coverage and bug reports. Also
performance of the implementation will be touched upon briefly in section 5.3.

Having learned a lot during this project, before the concluding remarks in chapter 7, chapter 6
will talk about all the things we would do differently next time and all the things that could still
be done in the future to improve upon this work.



Chapter 3

Design

In this chapter we discuss the design space and decisions, separated into the design decisions
concerning OSPF in section 3.1 and the design decisions concerning BGP in section 3.2.

In general the design decisions for generating random requirements involve weighting coverage
(how much of the possible input can be reached) vs false positives (where the input is not valid
or consistent). In the ideal setting, the whole space would be covered and the checker could
enforce that invalid input does not lead to output. But since finding out if an input is valid is quite
hard so trade-offs have to be made.

For smart inputs (inputs which cover the internal model completely) one of the challenges is
striking the balance between a simple and useful model. Another challenge is covering a given
model with inputs that trigger the internal state.

3.1 Generating OSPF input

The model for OSPF is quite simple. The OSPF works is that it performs Dijkstra on a weighted di-
rected graph[3]. From this follows that the corresponding SMT constraints for each requirement
are that the total costs of the paths (which is the sum of the link costs) covered by the require-
ment are higher than the costs of all other remaining paths. For ECMP requirements there is an
additional requirement that the cost of the covered paths have to all be equal and for ordered
requirements the costs have to be decreasing in the order in which they are mentioned in the
paths array.

So to test OSPF, it suffices to cover the input space of requirements and edge weights since it
does not interact with the config in another way.

3.1.1 Random OSPF requirements

From the beginning we made the assumption that the cost of simulating the network and check-
ing it is proportional to the amount of configurations we need to check given a fixed network.
As seen in the results (section 5.3) this assumption holds.

So assume we have two sets of requirements. We could test both sets independently, but this
does not tell us anything about whether the configuration is correct when it is synthesized from
the union of the two sets. So to show correctness we don't get around feeding the union of the
requirements to the synthesizer.

Inversely, if the union of requirement sets is tested (this requires that there exists a configura-
tion where all those requirements are satisfied simultaneously), we can, under some reasonable
assumptions, say that giving any of those sets to the synthesis method as input would also pro-
duce a valid configuration. The intuition behind this is that adding a requirement to the input
can never make the tool's job easier. This has the added benefit that by testing a configuration
that was generated from n requirements, we don’t need to test synthesis on all the 2" strict
subsets of those n requirements. Summarizing, it is best to combine as many requirements as
possible (which don't conflict) in the input to the synthesis, because this maximizes the cover-
age to computing time ratio (assuming that the computing time is proportional to the checked
configurations).

13
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Figure 3.1: The different steps of filling a graph with OSPF requirements until saturation

Guided by this principle we sought to combine as many requirements as possible when synthe-
sizing the graph. To do this, first a spanning tree was generated. On the spanning tree all edges
were covered by a simple routing requirement in both directions. Since itis a spanning tree those
simple routing requirements are always satisfiable. If the original topology was a spanning tree,
this is also the only applicable requirement type. The remaining edges in the graph are used for
other types of requirements (either any-path or ordered requirements) and the preferred path is
always the path that goes along the spanning tree. An example of this can be seen in figure 3.1.
First the a possible spanning tree is generated from the graph.

Because for a given topology there is usually an exponential amount of possible spanning trees
we can't possibly generate all spanning trees and all requirements. For a medium sized graph
of about 30 routers there are approx. 4 Billion spanning trees while the largest graph in topology
zoo has around 10'° trees (this number can be computed as done in the code using Kirchoff's
Matrix-Tree Theorem [4, p. 28]).

Given it is not feasible to cover the whole search space, the next best thing is to uniformly sam-
ple random requirements from the space (a la Monte-Carlo). Of course, here uniformly means
uniform with respect to our own parametrisation for generating spanning trees, if we could
parametrize the requirement space according to model coverage we wouldn't be doing this.
To randomly generate a spanning tree, first the cycle basis is computed. This is a set of cycles
in the graph from which all cycles can be generated via hopping to the same node on another
cycle. A necessary but not sufficient condition for having a spanning tree is to cut all the cycles
in the basis once. Therefor we simply cut all cycles once at a random position and see if we get
a spanning tree. If not we repeat.

This way of generating spanning trees is well suited for random generation. If we want to gener-
ate all possible spanning trees, this method does not work well as one could generate the same
tree more than once with this method. Because at first the plan was to generate trees exhaus-
tively | also wrote a method that generates all possible spanning trees by doing a depth-first
backtracking search (where edge inclusion is the decision), but as mentioned before this is not
feasible even for small examples.

For the remaining non-spanning edges a random bit vector is generated which decided whether
it is part of an ordered or any-path requirement.

How can this cover the case of arbitrary requirements (where for instance an ordered require-
ment has two paths which both have more than length 1)? The key is to think in terms of equiv-
alent requirements. For instance assume that we have an ordered requirement with two paths.
The less preferable path has length 1. In terms of requirements this is stricter than having the
destination moved towards the start along the longer path (see figure 3.2). If the the first require-
ment holds, the second one will always hold since removing links and adding them to the less
preferred path will always make the preferred path more preferable (assuming non-negative link
weights).

ECMP requirements are handled that the start and end is chosen at random from the nodes and
then a random selection of simple paths from the start to the end are used in the requirement.
Note that this only tests the model for ECMP superficially. The reason that ECMP is handled
separately is because you can't apply this requirement implication reasoning from above as for
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ordered or any-path requirements. This has the small benefit that later for BGP requirement
generation, where ECMP requirements are not allowed, we can simply reuse the requirement
generation routine without modification.

While this is a form of random requirement generation and we can use that for testing input,
there are a myriad of drawbacks:

« First of all an undirected graph is always assumed in all operations above. But the network
graph we have is directed and it is not quite clear how to expand the idea above to work
with directed graphs.

+ Given the large amount of spanning trees and requirement type combinations, the fact
that 32 bit seeds are used means that a lot of combinations will never be generated.

» The combination of ECMP with other requirement types was never tested.

* A whole dimension of the input is completely ignored, which is edge weights.

Some of these problems might be fixable (see discussion in section 6.2.1), but only at the cost
of a lot of extra complexity and some not at all.

So essentially all problems here are in terms of coverage meaning that even if we exhaustively
generate all inputs that this method gives us, feed them to the checker and they verify, we still
can't guarantee that OSPF is correctly implemented and works as we expect it to. So seeing the
limitations of this approach, we chose to try to achieve our primary goal by a different means,
which is all the next section is about.

3.1.2 Smart OSPF inputs

In order to say something about the correctness of the OSPF synthesizer we need to first model
OSPF. While the model described at the beginning of the section is useful to understand how it
works, to efficiently cover it we need a model that is closer to the actual implementation. If we
can show that the implementation works according to the model and that for all points in the
model the synthesized output performs as expected in the Cisco emulator, we can guarantee
that our model of OSPF is a strict subset of the model that Cisco has for OSPF. In other words:
our model is a useful simplification of the real thing.

Note that this implementation specific model can not be used to test other implementations
of OSPF synthesizers as it assumes the verifier treats same cases the same. Assume a pro-
gram that hard-codes solutions to all of the finite set of problems. As the model space for OSPF
(graphs, weights) is infinite and we can only test a finite set of cases, we can never distinguish it
from a correct program. From a practical perspective though this is not such a large problem be-
cause the missing guarantees can be achieved via unit testing and our model was more or less
directly translated from the SMT-generating code in NetComplete so it is reasonable to assume

P

®<® @O

(a) Requirement 1 (b) Requirement 2

Figure 3.2: Requirement 1 is stricter than Require-
ment 2. If it holds, Requirement 2 automatically also
hold.
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if type(req) = simple then
Vp € pathsgye, : cost(p) < cost(req.path)
else if type(req) = any-path then
Vp € pathsgyer, Vo' € req.paths : cost(p) < cost(p’)
else if type(req) = ordered then
Vp € pathsgyer, V0 € req.path : cost(p) < cost(p’)
Vp,p' € req.paths : index(p) < index(p’) == cost(p) < cost(p')
else if type(req) = ECMP then
Vp € pathsgyer, V0 € req.path : cost(p) < cost(p’)
Vp,p' € req.paths : cost(p) = cost(p’)
end if

Figure 3.3: Our model of OSPF

that the model reflects the implementation. In addition to that the randomness in the random
tests from the previous section should get rid of the fear of hard-coded solutions.

The OSPF model that was extracted from the implementation can be seen in figure 3.3. It treats
each requirement type differently and adds constraints for each requirement that is added. In
the following the start and destination of the requirement will be called A and B respectively.
For simple routing requirements it adds constraints for all paths leading from A to B that the
mentioned path has the lowest weight globally. For ordered paths it adds constraints that all the
mentioned paths have a lower weight than all the paths from A to B that are not mentioned and
the weights of the mentioned paths are strictly monotonically increasing. any-path constraints
are similar, but without the explicit ordering within the group of mentioned paths. ECMP adds
restrictions that each of the mentioned paths has the same weight and that no other path from
A to B has a lower weight.

From the given model we can see that there are multiple cases that exercise the generated SMT.
First of all, for each requirement type, there is the case that there are no other paths between the
source and the destination. Then of course there are the cases where there are other paths than
the ones mentioned in the requirement. For the ordered requirements the paths are also treated
differently according to their order in the paths list. So all we need to do here is basically to show
that the synthesizer can enforce the given partial path ordering for every type of requirement in
both cases where there are additional paths and where there are none.

The best way to show if a certain configuration can be generated by the synthesizer is to have
the concrete link weights set in a way that the remaining symbolic weights can only take one
possible value.

In order to cover the model points, a particular graph was chosen with multiple different paths
between two nodes (see figure 3.4). For each of the non-simple requirements the cases of cov-
ering all possible paths and not all possible paths were covered. So for instance for ordered
requirements there is a case where a certain ordering is enforced on all paths and a case where
a certain ordering is only enforced on a subset of all paths. Also the preset weights were setin a

&)—@

<t o

(a) A flexible topology with 4 distinct paths from R1 to R7. Two (b) Graph used to test a simple routing
paths are partially overlapping. requirement with no other paths.

Figure 3.4: The two graphs used to test the OSPF model



3.2 Generating eBGP inputs 17

way that there is only one possible way of setting the remaining weights so that the requirements
can be met.

For simple requirement a graph with two nodes and one edge was done to check the case where
the simple requirement is on the only path and one case was done where the simple path was
one of the possible paths in the graph from above. Again, here the graph was given weights so
that there is only one way to set the weight.

3.2 Generating eBGP inputs

The way in which BGP works is that at every router BGP advertisements are received from neigh-
boring routers and those advertisements are filtered after being received and before being sent.
Each router can only forward one advertisement per destination so if multiple advertisements
with the same destination make it past the input filter, the router selects one advertisement
based on attributes of the advertisements. This function is called the select function.

In our model the select function compares the advertisement pairwise and once it finds a point
in the select function hierarchy where they differ it selects one of the paths according to the
current point. The select function hierarchy is:

1. Highest local-pref value is selected

2. Shortest AS-path is selected

3. Lowest MED is selected (for routes coming from the same AS)

4. Advertisements received via eBGP are preferred over ones received via iBGP
5. Lowest IGP metric is selected

6. Lowest router id acts as a final tie-breaker

Note that the tool also supports a rule which would be situated between point 2 and 3 in the se-
lect function which selects paths with the lowest origin type (in ascending order: IGP, EGP and
incomplete), but unless the route is redistributed from OSPF (and hence its origin type incom-
plete) nowadays all route origin types are IGP. NetComplete cannot synthesize configurations
that specifically trigger this rule as it does not know how to redistribute routes from OSPF to
BGP. Therefore this step is left out in our select function model.

It is important to keep in mind that the announcement originates from the destination, so the
path and consequently the packets go in the reverse direction of the announcement.

Before and after the select function the input function and output function respectively is ap-
plied which consists of route maps. A route map is a sequence of match predicates that the
advertisement is evaluated against consecutively until a match is found. If no match is found
the advertisement is dropped. If a predicate matches the associated actions are performed. Ac-
tions can drop an advertisement or modify its attributes.

The concatenation of input function with the select function and then the output function will
be referred to as the BGP function here.

3.2.1 Random eBGP requirements

Similar to the random OSPF requirement the first idea was also to generate random BGP re-
quirements in order to catch bugs. This is harder than doing the same thing for OSPF because
the model is more complicated and in addition to the topology and requirements, the sketch is
an important part of the input, which adds another set of dimensions to the possible input.
Because the general problem of truly random BGP input seems to be complex | decided to
use one general semi-symbolic sketch for all inputs and combine it with topology-zoo sourced
topologies and random requirements.

To increase the amount of things that are tested and venture into the unit testing area, the
method that generates the general semi-symbolic sketch takes an optional random number gen-
erator which causes it to instantiate the route map randomly.

Despite its simplicity, this quite basic testing already uncovered a few bugs and helped us better
understand the problems that come up when generating configuration sketches. For instance
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we found out that the method of checking if the requirements are implementable which was
called before calling the actual solver gave false positives as well as false negatives.

To generate the BGP requirements, the random (non-ECMP) OSPF requirements from the pre-
vious section were taken and put through a procedure that changed the protocol of the require-
ment and the destination. Apart from that the topology had to be changed to put each router in
a separate AS and connect the routers with eBGP sessions instead of OSPF connections.

The main challenge in using OSPF requirements directly is that BGP and OSPF implementable
requirements are not a strict subset or superset of each other. For instance, BGP does not sup-
port ECMP while OSPF is in general less powerful. In our case ECMP is not a problem since
those requirements are generated separately in the OSPF requirement generation process. The
cases where a set of requirements can only be implemented using BGP are not discussed here
since the OSPF-requirement generation method does not generate them, this is one of the lim-
itations of the BGP random requirement generation process.

Right now, whenever NetComplete fails to produce a working configuration, it eliminates re-
quirements using a coin flip for each one. This reduces the requirements by about half on av-
erage and decreases the chance of a conflict due to requirements. That NetComplete fails to
synthesize a configuration can happen due to many reasons, one being existing bugs (in both
Grigori and NetComplete) but also due to the fact the randomly chosen sketch happened to not
be sufficiently general. Only producing a warning avoids producing too many hard errors for the
same condition and also avoids false negatives.

The problem with the random BGP requirements is similar to the OSPF case: coverage. While
the method of generating the input is simple, the generated input only covers a very small part
of the input space and the model. With the given setup only a limited number of route maps
are created and mostly it suffices to set the /ocal pref in the route map in order to achieve the
requirements. This means the select function is seldomly exercised beyond point 1.

3.2.2 Smart eBGP inputs

To test/verify the BGP select function is implemented correctly we have to show that each stage
can be triggered, that NetComplete can synthesize all stages correctly and that the ordering of
the stages is correct. The select function is checked at a single router so because of that the
topology centers around that router and it has multiple neighboring routers it can receive from
and one client AS (router) it announces its selected route to.

The different setups can be seen in figure 3.56. For the setups with simple requirements the
tested router 'R1’ has two neighbors, one from which it receives the announcement and the
other which it announces it to. A variation of the same topology with additional connected but
non-participating routers is also tested. These tests are to make sure that the case where the
select function does not have to be invoked works. For the other case the central router has two
or three iBGP neighbors (which are virtually connect full mesh) each of which have one eBGP
neighbor from the same AS. This setup allows enough flexibility in the sketch to test all of the
stages of the select function. In the case when stage 4 of the select function has to be tested the
topology is slightly modified such that one of the internal routers is omitted and 'R1’ is directly
connected to its eBGP neighbor.

To test that each stage can be triggered we have to use the sketch to force the decision to be
made at that level. This can be easily done by having the decision factors at all other stages set
to equal except at the tested one. To test that NetComplete can correctly synthesize the con-
figuration at each level the parts of the sketch that are needed to set the decision variable are
left symbolic for NetComplete to set correctly such that the requirements are satisfied. In the
implementation, only this second method is used because the check will afterwards automati-
cally determine if the symbolic parts were set correctly (in which case they are set to the same
values as we would have set manually in the sketch).

This test alone does not yet guarantee that the ordering is correct. Each configuration can be
mapped to avector of length 6 that indicates whether the comparison at the bitindex would be in
favor of the preferred path, not in favor or equal for both paths. To guarantee that the ordering of
the select function is implemented correctly one would have to check all possible combinations
(3%) and determine if the expected result is produced (alternatively to only check the ordering
assuming the other tests succeed, testing only a subset of those combinations would also work).
This is not done here (we assume the ordering is correct from what we see in the code where
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Figure 3.5: The different topologies used to test the BGP select function. The missing routers in
AS 20 are needed to test the rule that announcements are preferred when received via eBGP
over iBGP.
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the BGP model is implemented), but would be an obvious next step in our work.

Note the currently no any-path requirements are used at all in testing of the select function.

In the current implementation, Grigori only tests the select function. Testing the route maps
would also have to be done for complete check of the BGP function. This is left for future work.
Once the BGP function is verified, it remains to show that if each router correctly implements
the BGP function in the sense of the requirements, that the requirements are globally met. This
can be shown via the following inductive reasoning.

Inductive reasoning why it suffices to test the eBGP implementation on one router

A set of requirements is valid if there is no subset that directly causes another subset to not
be realizable on the given topology. In other words, non-conflicting: requirements on which
a correct synthesis method would return sat.

We say a network is correct, if for all valid sets of requirements and all possible ways of link
failures: the requirements are simultaneously met by the announcements that arrive at the
respective requirement destination.

We say a router is correct, if for all valid sets of requirements and all possible ways of link
failures: applying the internal BGP function to all incoming announcements produces an
outgoing set of announcements that entail the requirements.

We have to show that a network consisting of correct routers implies a correct network.

Base case (-1) In a network with one router, all requirements would have path size 0 and
therefore there are no possible requirements which means the network is correct by defi-
nition.

Base case (0) Take a network with two routers. there are four possible requirement com-
binations: none, a-b simple, b-a simple and both. Since the routers are correct they only
announce the path to them if the corresponding requirement exists. If the connecting link
fails, there is no connectivity and all requirements are also met. The whole network is there-
for correct.

Inductive step Now take a correct network of n routers. By adding a correct router R_new
and connecting it to an arbitrary non-zero set of routers, the new valid requirement sets will
be a super-set of the existing valid requirement sets. Since the routers are correct they will
ignore the added topology for the set of requirements that was valid before the adding of
R_new and will work as before, hence be correct.

All requirements that contain R_new in one of its paths can be rewritten as the requirements
with the path containing R_new going up to R_new and an extra routing requirement that
has the paths going from R_new or from the start if R_new is not in the path. For all those
requirements whose paths end in R_new the advertisement reaches the start of the path
since if it reaches the router before R_new because the network is correct. Since R_new is
correct, it sends an announcement to its neighbor where it is not dropped. For the require-
ments with paths starting in R_new the advertisement reaches R_new since it reaches the
neighboring router and from there is forwarded to R_new because it is correct.

For link failures we are only interested in links that were added with R_new (other link fail-
ures are covered by the correctness of the old network via the equivalency before). If the
link fails there, the relevant path is obviously broken and not relevant for the requirement
any more. The advertisement also doesn’t reach the start of the path any more, but this is
expected behavior.




Chapter 4

Implementation

This chapter looks at the practical side of implementing a system that checks if a network ful-
fills certain requirements. The overview in section 4.1 provides a general summary of the im-
plementation and the technologies used. This is followed by section 4.2 which goes into more
detail about how the forwarding state is extracted from the routers during simulation and how
it is checked if a set of requirements are met on a given forwarding state.

4.1 Overview

The project was implemented in python in order to integrate well with NetComplete (also as at
the time of writing NetComplete does not have a non-programmatic user interface). The actual
implementation was done in about 1500 lines of code with another 800 lines of code for unit
tests.

For the graph library, NetComplete's NetworkGraph was used which is a subclass of the
DiGraph class from the NetworkX library. For the communication with the router the pexpect
library was used.

The Cisco routers were emulated using dynamips which can run Cisco router images.

4.2 Instrumentation

Checking if a given setup runs correctly involves extracting a forwarding state from the emulated
routers and making sure that all requirements hold. Then all possible link failure combinations
are induced and for each one conformance to the requirements is checked again.

There are, however, some subtleties that have to be taken into account. First of all, we treat BGP
requirements as strict, meaning that any prefix which is advertised due to a BGP requirement is
not allowed to be advertised by BGP on routes which are not covered by requirements with that
destination. For prefixes that are not a destination of any requirement, advertising them via BGP
emits a warning. This is supposed to encode the idea that for BGP it is undesirable if prefixes
are advised without the knowledge of the AS owner, because in practice this constitutes a BGP-
Hijack. But we can't treat this case as an error since the given configuration sketch might already
contain unrelated parts that advertise different prefixes. This means the network operator is not
forced to write requirements for the whole existing configuration but can do it gradually.

In order to extract the forwarding state the output from the Cisco management consoles has
to be parsed for all involved routers. In order to extract all the relevant information the com-
mands show ip cef and show ip route were used. While show ip cef provides a nice
machine-readable representation of the forwarding state, it does not contain extra information
like via which protocol the information was learned. To get this auxiliary information the show
ip route command was used and the information was combined.

From a practical standpoint the Cisco management console complicates some tasks by for in-
stance printing all previous interactions with the console at every login (which posed the prob-
lem of reading non-fresh information) or by outputting some non-printable characters when pag-
ing through a list, but this was not a major hurdle.
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The other part of the instrumentation was concerned with taking down and restoring links. To
have a correct timing, first the forwarding tables were read. Then the link failure for the next to
be checked state was introduced (restoring the taken down link from the current session) and
then the conformance check was done. To ensure sufficient time between checks so that the
link failures have enough time to propagate, the time of the start of the operation is recorded
and after the check the program waits until enough time has passed. In practice the time we
need to wait between failures is quite long (currently 1.6 minutes) so the program always has to
wait. Because we assume the time to read out the forwarding states is more or less constant,
we have a constant time between the link failure and reading the states for the checks.

The part that checks if the forwarding is correct does two things. For one it traverses the routers
one by one to see if it can get from the source to the destination of the path by following the
prefix. Note that the advertised prefix has to be larger or equal to the prefix that is searched
for in order for the checker to be satisfied. In addition to that it splits the prefixes of the BGP
advertisements it sees at each router on the path into the destination network and the rest. The
destination network is marked as belonging to a requirement. This allows the tool to handle
subnet aggregation. If there are any non-marked advertisements left, those will be reported as
warnings or errors according to the policy mentioned above.



Chapter 5

Results

Inthis chapter Grigoriis evaluated based on its checking results. The first part concerns the gen-
eral results in section 5.1 of applying the checking function to what NetComplete made from our
generated input. From a practical standpoint, section 5.2 where the found bugs are discussed, is
surely important. Finally, no evaluation would be complete without talking about performance,
which is what section 5.3 is about.

5.1 Coverage

All of the tests were run with link fail depth 1. This means for testing as described in the instru-
mentation section at first everything was run without failures and then each link was taken down
individually but never more than one at a time. For correctness guarantees the link failure depth
would have to be increased (for a more detailed discussion see section 6.2.1).

5.1.1 OSPF

Apart from the issue with ECMP, no other problems were detected with OSPF. All of the smart
OSPF tests were run without a failure. Using the tool to generate random OSPF requirements |
generated 33 configurations (this means that 7 cases which tested ECMP failed to synthesize).
The configurations are for two topologies, the first of which is very small with 7 routers. The
second which is slightly larger at 14 routers. Using any topology larger than that would have not
been feasible, already a topology with 34 router would have taken hours per configuration for
the non-ECMP requirements.

All of the 33 test cases succeeded. This does not guarantee that everything is correct and leaves
the possibility that we didn't look hard enough or in the right places i.e. the generated tests don't
exercise the part the contains the bugs. But the fact that only 1 OSPF related bug was found with
two independent methods of generating tests suggests that there is a chance of having a correct
OSPF implementation.

5.1.2 BGP

Testing BGP was a way more bumpy road than OSPF. In the beginning it was not clear how to
correctly set up the sketch and what NetComplete needed versus what it already provided. Also
there were instances where it would not complain when the configuration was slightly off.
After a lot of trial and error (and some bug fixing) we managed to get all smart BGP test cases to
succeed. As of writing, MED selection is not implemented yet and there is a bug where the syn-
thesizer won't generate the correct OSPF requirements. Because of that the test cases which
cover the MED stage are not correct and the test cases that depend on ECMP OSPF require-
ments being synthesized fail to generate configurations. Otherwise all the test cases that are
expected to produce a configuration, produce one.

With the random BGP routing requirements we trade some security that it will synthesize for a
bit more coverage via the randomized route maps. Since the randomization is relatively crude,
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this means that we waste a lot of effort trying to synthesize configurations that can never satisfy
the requirements due to the structure of the sketch.

When generating the random requirements, in expectation (for the non-trivial topologies) about
two out of ten configurations could be synthesized for a subset of the requirements. So after
some synthesizing of random requirements for different topologies we ended up with 18 con-
figurations to test, 10 of which were for a very simple topology where we might find fewer bugs,
but the synthesis takes less time. The other topologies were the same as used for random OSPF
requirement synthesis.

From those 18 tested eBGP configurations, sadly, none of them passed the test. Most likely the
tool is still missing some checks to ensure the requirements can be satisfied, and most of the
failures are probably due to NetComplete not complaining enough (getting the input sketch for
BGP right is surprisingly tricky, as experience with writing the smart requirement generation has
shown). It is an ongoing work to debug the reasons for failure and we expect to find at least one
or two actual synthesis bugs this way.

5.2 Found bugs

Apart from some trivial bugs and regressions a total number of 15 bugs where found in the
implementation. Some bugs were fixed as of writing, other bugs are currently being investigated.
Here are the bugs that were fixed roughly sorted by time of discovery:

1. The ECMP settings were left at the default. In Cisco this means that a maximum of four
parallel ECMP paths are allowed [1]. This hard limit was never enforced by NetComplete.
As a temporary fix the limit of ECMP paths was increased to the maximum (32) and it was
made sure that the random requirements would not have more than 32 paths. The com-
plete fix would be to encode that restriction in SMT and setting the largest needed value
in the configuration.

2. There was a bug in a preliminary check before BGP synthesis where it crashed because
an assumption was baked in about the content of a list.

3. A bug was that when calculating the OSPF graph, it would include all routers (even ones
in other ASs). This was fixed by only considering routers where OSPF was enabled.

4. Another bug was that the ordering of the requirement was not preserved before generat-
ing the SMT for the select function. This could mean that it would sometimes synthesize
the constraints that lead to the exact opposite order.

5. When propagating announcements, the original AS path was replaced by an AS path con-
taining only the originating AS, destroying a potential initial AS path length (by replacing
[10, 10, 10] with [10]) and the initial hops.

6. The mostimportant bug found was a bug in the actual model code. The problem was that
the SMT written in a way that the tool was wishfully looking for any match in the select
stages instead of stopping at the first point where the preferred path lost a comparison to
the less preferable path and return unsat. This bug has been fixed.

7. Before the fix, the IGP cost was not correctly calculated and there was no way to get the
OSPF requirements that had to be fed to the OSPF synthesizer in order to get the desired
result (see select function stage 5).

8. In some cases eBGP routes were not preferred over iBGP routes.

9. During OSPF requirement generation a bug was uncovered where NetComplete crashed
if the paths list of an ECMP requirement only contained one simple routing requirement.

10. There was a bug where some partially evaluated state was not discarded between calls to
synthesize so calling it twice for the same graph sometimes resulted in synthesis failures.

11. Network strings where not correctly handled in prefix lists leading to extra prefix lengths
being appended in the configuration.
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\\ Figure 5.1: A graph in which one
@\ any-path requirement (turquoise)
® forces the other any-path routing

requirement (orange) to act as an
ordered routing requirement

The following bugs were reported and but not yet fixed so they might contain duplicates, false
negatives, or collection of multiple bugs.

12. The preliminary check turned out to be too strict for some cases. This was in the case
where two requirements seemed to conflict but didn’'t. Take for instance the example in
figure 5.1, from the requirements it seems that the path T — C — K would be possible, but
it should not be taken since BGP requirements are strict. To be satisfiable this forces the
second any-path requirement (orange) to become an ordered requirement where the path
C — G — K should be preferred over C — K. The check failed every time something like
this was encountered.

13. A bug was that it NetComplete does not provide a warning if the given configuration is
not synthesizable without route maps and no route maps are given. This bug might be the
consequence of another bug that is reported here.

14. When getting the needed OSPF requirements from the BGP synthesizer it won't distin-
guish the case where the OSPF requirements are needed for tie breaking (emitting an or-
dered routing requirement) or simply to make sure that the select function is triggered be-
low the OSPF stage (emitting an ECMP routing requirement) and always returns ordered
routing requirements.

15. All the tested random BGP requirements that produced a configuration didn't verify. This
problem is most likely a combination of providing wrong input to NetComplete, missing
sanitization in NetComplete and bugs in the synthesis. But because we don't know the
exact reason yet, these failures are listed collectively as a bug.

5.3 Performance

Since the project consists of two separate components there are many distinct possible perfor-
mance bottlenecks. For checking small graphs (< 20 routers), which should be enough to check
NetComplete exhaustively the performance is good enough.

The non-random tests have topologies with few routers and links and can therefore be checked
efficiently. The configuration synthesis is also quite fast for these cases.

Surprisingly, for larger problems the times for both the synthesis (of BGP as well as OSPF config-
urations) and checking increases sharply, but due to different reasons. The problem here is that
the time to actually generate the configuration is not negligible, which contradicts our assump-
tion from the beginning. As a consequence, with this extra knowledge we would have probably
made different design decisions (for details see section 6.2.2).

5.3.1 Generating the testing configurations

Generating the configurations for testing takes a significant part of the total amount of time to
check a configuration.

For one, NetComplete takes quite some time to generate OSPF configurations with a lot of re-
quirements. As an example, generating one configuration for the graph Geant2009 (about 30
nodes) with a lot of requirements takes several hours. This could surely be optimized as for the
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smaller examples it can be seen in the logs that the time spent in z3 is on the order of millisec-
onds while the time spent in processing the requirements is on the order of seconds.

The problem is that the synthesis time depends strongly on the number of requirements that are
given and the random requirement generation process is geared towards generating as many
requirements as possible for the given topology. How the synthesis time of NetComplete de-
pends on the amount of given requirements is something that would have to be determined.
For BGP random requirements, the picture is similar even though configuration synthesis of BGP
is slightly faster then the OSPF counterpart. What makes the BGP synthesis perform so badly in
our case is the fact that there are many retries and also a lot of wasted effort on non-satisfiable
inputs. The way the retries happen is that if the synthesis fails for the given set of requirements it
roughly halves the size of input requirements leading to a maximum of log r tries per attempted
configuration synthesis, where r is the amount of requirements initially given as the input to
NetComplete. Further, due to the extra OSPF synthesis step sometimes needed this number
doubles: every time the configuration can’t be synthesized with the enable_igp flag turned off,
it retries with the flag turned on.

It is important to note that generating the requirements themselves (the part that Grigori does)
takes only a fraction of a second even for larger graphs.

5.3.2 Simulating the Network and checking the requirements

Because extracting the forwarding state from all routers takes relatively little time compared
to the time the network takes to converge in the following discussion the time for checking a
network under a given set of link failures is constant (the concrete value is 1.5 minutes). Since
the link fail depth is 1 this means that checking a configuration currently takes n - 1.5 minutes
plus some setup cost for the simulation. Starting the simulation itself takes about 15 seconds
per router (as a new router is started every 15 seconds) and then the network needs time to
converge initially (the concrete value the simulation waits is 2 minutes). To test the network with
link fail depth n takes O(2™) time and since most used topologies are not trees, n is usually a lot
larger than the amount of nodes. As an example, a very small graph with 7 nodes that was used
for some of the tests has 13 edges which means testing one configuration on that graph with
link-fail depth takes 14 - 1.5 + 7 - 0.25 + 2 (which is about 25) minutes. For link fail depth n = 13
there are about 8000 failure states that need to be ckecked, so if checking each failure takes 1.5
minutes this means the simulation would have to run for 200 hours which is more than a week.
For larger graphs this number grows accordingly. Of course this testing can be parallelized, but
it has to be taken into account that only one instance of dynamips will ever run at a time, so one
cannot trivially exploit thread level parallelism for the simulation. One would have to isolate the
different dynamips instances using either VMs or containers.

Tables 5.1 and 5.2 show some statistics on the actual computation time of checking a link fail-
ure. While the time measurement are coarse (seconds) and they aggregate the times for both
reading the forwarding state and checking the requirement conformance, they still show the big
picture.

First and foremost they show that the checking times are dominated by connecting to the
routers and reading the tables. This is visible by the fact that there is no significant time dif-
ference in checking a single ECMP requirement (in the test cases > 9) compared to checking
the non-ECMP test cases which contain a lot more requirements (the first Compuserve test case
has 22 requirements).

The tables also show that the time to check a failure is proportional to the amount of routers
in the graph, with about 1 second per router. This seems like a large number but there is no
reason to be concerned as we would expect that the 1.5 minute mark is surpassed at about 70
routers which is currently a lot more than Grigori can handle. Also the growth is linear while, as
seen, most other times grow much faster with graph size so in practice this should never pose
a problem.

The python script to read the values from the saved output of running network . py is provided
in the Grigori source tree. Note that the script subtracts 5 seconds from the measurement for
every error that happens on connection establishment. This is because sometimes the connec-
tion to the router fails and the retry timeout in pexpect is set to 5 seconds. In the processed
values the standard deviation is roughly the measurement precision, which makes sense. The
reason the connection fails is because sometimes the router spits out a status update during
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the time when we connect which causes pexpect to see an unexpected output.

Due to the fact that it is unfeasible to synthesize configurations for large topologies (see preced-
ing section) the effect of increasing topologies on runtime of the requirement checking could
not be determined precisely here. A rough estimate is that the total complexity should be in the
order of O((n + m) - 2") where m is the amount of nodes and n the amount of edges in the
network.
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Chapter 6

Further areas for improvement

Since the scope of this project is quite limited, there are a lot of things that are left open for future
work and investigation. In the following sections the most important places forimprovement are
grouped together by the part of Grigori they are in and highlighted in a few paragraphs each.

6.1 Instrumentation Improvements

6.1.1 Testing a configuration with up to n simultaneous link failures

Right now, while taking down links in the simulation, only one link is taken down at a time. For
the result of the test to be correct in the sense of “for all link failures” also combinations of link
failures have to be taken into account. This means that all 2™ link failure combinations have to
be tested instead of just the n + 1 that are currently tested.

Alternatively, instead of inducing up to n link failure where n is the amount of edges, when testing
requirements with a maximum of m paths, one could induce 2™ link failures and have a correct
result (under some reasonable assumptions).

Right now the code is written in a way that takes a list of link failures so it would be relatively
easy to extend it to fill that list with more than one link failure at a time. Note that this would add
to the testing time which was one reason why it was not implemented.

6.1.2 Test conformance to a sketch

Making sure that the resulting sketch corresponds to the original sketch modulo the symbolic
parts is another low-hanging fruit in this area. For this to work one would have to compare the in-
ternal representation of the configuration from before and afterwards. Right now this test would
fail because for some things extra parts are added to the configuration like export route maps
(which also makes sense). Maybe that could be handled in a way that adding things to the sketch
could produce a warning and removing things from the sketch would produce an error.

6.1.3 Reusing the instrumentation code

The instrumentation part that checks correctness of a configuration is NetComplete-agnostic
and can be used to check configurations generated by any Network Synthesis tool or even man-
ually generated ones, given routing requirements are provided in the NetComplete format.

It would be imaginable to integrate this componentinto other tools that need to ensure a correct
network forwarding state and where the user can provide it with a set of routing requirements.
Right now the error reporting of the checker could also be made more useful by automatically
getting the relevant information from the router (for instance exacting BGP session information)
and pinpointing the the error more closely by traversing the path in reverse order and showing
the exact location of the announcement drop.
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6.2 OSPF checking improvements

6.2.1 Finding out how to expand the model coverage for OSPF

Right now it is a open question how one could best improve on the current OSPF random re-
quirement generation. There are multiple shortcomings that would need to be fixed to make it
practical, the most pressing of which are:

+ ECMP would have to be mixable with the other requirements

» Thedirected graph property would have to be taken into account. Requirements don’t have
to be bidirectional.

» Currently ordered and any-path routing requirements never have more than two paths. It
should be possible to combine multiple of the current requirements that start at the same
node into equivalent requirements with more than two paths (or possibly choose whether
they should be combined or not)

It is possible that most of these objectives could be met by having a function that can quickly
check if adding a certain constraint makes the configuration unsat. This could then be used
to randomly add (directed) requirements with decreasing probability (sample the amount of re-
quirements with a geometric distribution). If adding a requirement makes the requirements un-
sat, backtrack and keep going. One could also randomly pre-populate some edges with weights.

6.2.2 Determining the actual cost of testing for a given input

As seen, the implicit assumption that the time NetComplete takes to synthesize a configuration
is negligible, is not correct. To make the best possible design decision is has to be understood
exactly how the checking cost behaves with variations in input. Currently only small graphs are
used (with amounts of requirements that are dependent on the size of the graph).

All we know is that increasing graph size is very bad for performance as the synthesis time of
NetComplete grows a lot. It is not clear if this is due to the amount of requirements passed in, or
if the synthesis time was a lot smaller how much time the checking component of Grigori would
take. All we know is that using a lot of requirements saves us 2!%I configuration generations,
that the synthesis time increases with the amount of requirements and that the checking time
increases exponentially with the amount of edges.

By knowing which term explodes first, and why, one might be able to tune the requirement gen-
eration to be able to test larger topologies (or test the current topologies in less time).

Itis left open for further research to systematically gather data on how much time the combined
system of NetComplete and Grigori (the checking component) takes as a function of the input
requirements and the graph.

6.2.3 Testing negative examples in the smart requirement generation part

To make sure that OSPF works correctly one would also have to show that for impossible re-
quirements NetComplete returns unsat. The smart way of generating requirements could be
extended that (where applicable) for every existing test case there is a test case where the graph
is populated with edge weights that make synthesis impossible.

6.3 eBGP checking improvements

6.3.1 Finding out whether BGP can implement more requirements that
OSPF

While it is clear that BGP is more powerful than OSPF, it is not immediately clear that there are
requirements that can be implemented using BGP but not using OSPF. The thing is that BGP
is very good at restricting access (dropping advertisements) but might not be better at provid-
ing connectivity. My current experience would let me venture a guess that they can actually
implement the same requirements (apart from ECMP), but that would have to be proven.
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6.3.2 A better design of the smart BGP requirement generation

The current design of the functions that generate the smart requirements is very poor. The cy-
clomatic complexity is through the roof and debugging it is a pain. The main problem stems
from having different topologies for each configuration and handing them all in one function.
A better design would be to have one graph where there are four paths from ‘R1' to the AS where
the destination is advertised from (see figure 6.1). One of them would be a direct connection
while the other ones would be via iBGP neighbors. Then one could have one function per select
function stage that either sets the comparison to “greater than”, “less than” or “equal to” for that
stage and then those functions could be composed in a reusable way.

This would also allow to generate testing configurations for arbitrary configuration vectors (in
which at each index the result of the comparison function at the corresponding stage is given)
as described in section 3.2.2.

6.3.3 Any-Path requirements as smart BGP requirements

While the any-path requirements are not restrictive enough to actually test the stages of the
select function, there should still be a test case where symbolic values are concretized by having
any-path requirements. While no matter which path is selected, the requirement will always be
satisfied, it is still important to test that everything works with any-path requirements.

6.3.4 Adding OSPF to BGP checks

Right now to verify the BGP implementation, OSPF is only involved as a side product of stage 5 of
the select function. Having independent OSPF requirements mixed with the BGP requirements
would be a good thing to do to test the overall system. Of course this adds extra dimensions to
the input ...
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Chapter 7

Conclusion

In conclusion, Grigori was useful in its purpose of finding bugs in the synthesis of NetComplete.
While it proved to be harder than expected to synthesize good random requirements for both
ECMP and BGP, a valid point in the design space was explored by balancing coverage and syn-
thesis success probability.

The satisfying part about the testing result is that a number of medium to high profile bugs were
found and fixed. Another aspect of the evaluation showed that the current performance it not
great, butwhen taking the synthesis speed of NetComplete into account, the overall overhead of
the checking is acceptable. Also the fact that huge topologies cannot be checked efficiently by
Grigori is not a showstopper because the purpose of it is to debug NetComplete, not a specific
network configuration.

Looking forward, a few interesting possibilities to expand the project either in in scope or im-
prove it in quality open up. One example would be to test the combination of BGP and OSPF
with random requirement or to use the checking part of Grigori in another context and maybe
improve its usefulness when it comes to helping a human debug the situation.
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