
Distributed
 Computing

Undercover Construction: A Multiplayer

Game with Hidden Aspects

Semester Project

Philipp Friedli

phfriedl@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

June 12, 2018

Acknowledgements

I would like to thank Manuel Eichelberger for his continuous support. His inputs helped in
shaping the game to what it is today. Big thanks goes to all the friends who gave honest
feedback, as well as the Computer Engineering and Networks Laboratory (TIK) at ETH
Zurich for offering this opportunity and to provide the necessary hardware.

i

Abstract

The main ideas behind Undercover Construction, a multiplayer strategic action game, are
presented. Undercover Construction makes use of asymmetry in information to hide progress
from opposing players whilst using a single screen. It uses hidden input and delays to achieve
this. The winning condition is to finish building a tower before all opponents.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

2 Game Mechanics 2

2.1 Gameplay . 2

2.1.1 Actions . 3

2.1.2 Flow of Actions . 4

2.1.3 Status Display . 4

2.2 Hidden Information . 5

2.2.1 Location . 5

2.2.2 Progress . 6

2.3 Strategies . 7

2.3.1 Sneak and Attack . 7

2.3.2 Run and Collect . 7

2.3.3 Wait and Observe . 7

2.3.4 Collaboration . 8

2.3.5 Advanced tricks . 8

3 Implementation 9

3.1 Unity3D . 9

3.1.1 Raycasting . 9

3.2 Controller Assignment and Vibration . 11

4 Discussion 12

4.1 Future Work . 12

Bibliography 14

iii

Chapter 1

Introduction

It is easy to hide information from opponents when gamers are playing on different screens.
When players share a screen, the designer has to decide on what should be displayed. The
longer a game lasts, the more details should be shown to support the players’ minds.

For example, one could expect a player to remember a single item he is holding. But
asking of the player to memorize lots of items, all of which he might only use minutes later
in the game, might leave him frustrated. In Undercover Construction the goal of each player
is to collect items and build a tower without letting the others know as long as possible.
Opponents should not be given the opportunity to interfere. If the game directly displays
somewhere that a player is picking up a specific item, it might reveal his identity too easily.

Each action a gamer can do, can either be visible or invisible. In a game with hidden
aspects, a designer has to carefully weigh the need of displaying something against the
usefulness for the hidden gameplay if he does not. Different approaches to this problem are
presented.

This work explores ideas in creating a game that mixes luck, strategy and skill, while
demanding from the players to hide from each other.

1.1 Related Work

The starting point of this project is Hidden in Plain Sight(HiPS)1, which is a local multi-
player2 video game that consists of multiple mini-games. The main principle is to hide oneself
among many Non-Player Characters (NPC) by not making any noticeable movements which
would reveal the players location.

Our game, Undercover Construction, uses NPCs as a hiding mechanism for characters
similar to HiPS. In contrast to HiPS, the main goal is not simply to find opponents, but to
collect items and build a tower in secret, such that the opponents cannot interfere. Delays
and randomness are used to strengthen the aspects of hiding, luck and the need of planning
ahead.

1https://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/
2Local multiplayer: multiple players play in front of a single screen without any network connection [1]

1

https://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/

Chapter 2

Game Mechanics

This chapter gives an overview of how the game works and what design decisions were made
to shape the gameplay. Section 2.1 describes the inputs the player can give and what rules
and game objectives there are. Decisions about which information is hidden during a match
are explained in Section 2.2, whereas in Section 2.3 some possible ways to benefit from these
mechanisms are explained.

2.1 Gameplay

Wikipedia gives the following definition of Gameplay :

“Gameplay is the specific way in which players interact with a game,
and in particular with video games. Gameplay is the pattern defined
through the game rules, connection between player and the game,

challenges and overcoming them.” [2]

Undercover Construction is played on a static field which is split into an inner arena and
an outer arena, see Figure 2.1. The view is isometric to give an artificial sense of depth [3].

Figure 2.1: Screenshot showing a match of Undercover Construction with three active play-
ers.

The game is designed for two to four players. In each corner of the field there is a tower
assigned to each participating player. In between, there are black fields that generate and

2

2. Game Mechanics 3

host coins. The middle arena consists of four in-game buttons which can be activated by
standing on them. The active button determines which item is to be spawned on the green
meadow. Multiple identical characters are placed across the playing field. Each player starts
of by controlling one of the characters in its own tower’s neighborhood. The middle arena
hosts exactly as many NPCs as there are active players.

The goal of the game is to build four additional levels of the tower to reach level five.
The starting level is considered as level one. Each level needs another item and each player
requires a different item at the start. The required items rotate for each new level and the
amounts required increase by one. To reach level two a single item is required. The costs in
terms of coins are calculated with the simple formula:

cost = 2 · level − 1, level ∈ {1, 2, 3, 4} (2.1)

2.1.1 Actions

Besides the joystick for movement, five buttons of the gamepad are used. Each of the
following buttons have an action assigned.

• Button A Item interaction and storage
• Button B Attack
• Button X Swap
• Button Y Plant bomb
• Button LB Build tower

The most used action is the interaction with items. This action can add an item or coin
to the bag when standing over it. The same action is used to store items in the tower. Coins
cannot be stored and are always in the bag. A player can hold up to 15 coins and 5 items.
The item bag is like a queue with a fixed size. The oldest item in the bag is discarded when
adding a sixth item. The storage capacity of the tower is unlimited.

The attack action is used less often, but it is a powerful as well as a dangerous action. The
action kills another character with one hit. Killing an enemy-controlled character benefits
the killer by adding items required for the next level to the item bag. The number of items
the player gets is equal to the level his opponent is currently at. By giving a stronger motive
to look for players that are closer to winning, the players that are behind get a chance to
catch up. Players get punished when they kill an NPC. The punishment is the loss of all
coins, which is why attacking random characters is not beneficial. A killed player takes
control of a random character in the outside area after recovering.

An important action in connection with hidden information is swapping. This action
allows the player to swap places with any NPC. Swapping is limited to horizontal and vertical
directions. It requires one coin to swap per default, except when the player needs to swap
out of the middle arena. Then it costs one item to avoid getting stuck in the middle arena
because there are no coins available there. Additionally, this makes obtaining an item a little
more difficult because one needs to collect two items in order to gain one for the tower.

The costliest action is planting a bomb and is used to stop a tower from gaining a new
level during the building process. It requires five coins per default and can only be placed
adjacent to an opponent’s tower. In the game settings one can decide if the bomb should
also have the power to empty the storage of the tower. The explosion of the bomb has no
effect on any of the characters.

The last action is reserved for building the next level of the tower. When all requirements
are met (enough items stored and holding enough coins), the player can start a build process.

2. Game Mechanics 4

The process takes a random amount of time in an interval. The interval grows bigger the
higher the level of the tower is. The upper bound increases in equal steps up to a maximal
building time. The lower bound of the interval is fixed for the whole game. The default is 20
seconds, but this can be changed in the game settings to a value between 15 and 30 seconds.
The maximal building time can be set to a value between 30 and 60 seconds (default 50
seconds). Only the last 15 seconds of the building process are indicated by a visible timer
for the opponents to see (see also Subsection 2.1.3).

2.1.2 Flow of Actions

A game breaks down to the following steps. These steps are in no particular order (or by no
means do they need to be repeated in this exact order).

• Collecting coins

· Collect enough coins for the next moves to take
· Consider that bombs are costly and many swaps may be required

• Collecting required items for next level

· Swap to the middle arena, push correct button, wait for item(s) to spawn, collect
them and finally swap out

· Observe the movements of all characters and try to find opponent and kill him to get
your required item by the amount of his current level

• Store items in tower and start a building process

· Walk or swap to own tower
· Store items
· Start building process once enough items stored and enough coins in bag

• Observe and intervene

· Observe other players and check their progress
· Stop a building process of an enemy with a bomb

2.1.3 Status Display

Even though Undercover Construction’s purpose is to hide information some things are
displayed on screen to assist each player’s mind and help to find out more about enemies.
The provided information during the game is illustrated in Figure 2.1.

On the left, information boxes for each active player are shown. The upper box shows
the contents of the player’s coin and item bags. The item bag shows symbols of all the items
the player holds. The lower box shows the requirements for the next build level.

On the right, general information is shown that does not change during a play round.
The costs for the action swap are shown in the upper box. The four symbols represent four
swap cases with possibly different costs. A swap can start and end in the outer or inner
arena, or it can have different start and end areas. The costs are configurable in the settings.
The lower box shows the buttons and their respective actions as described in Subsection
2.1.1.

Adjacent to each tower there is a clock that starts counting down when the last 15 seconds
of a build process are reached. In the example of the figure, one can see that Player 1 has
started a build process and is 13.3 seconds from completing it.

2. Game Mechanics 5

Small symbols on the buttons and in the boxes connect the actions with the information
shown. The wheelbarrow represents the items and coins the player carries around. The two
dots with an arrow illustrate the swapping action. The crane is used to indicate the build
button, the build requirements, as well as the build clock. The boxing glove and the bomb
on the button icons refer to the actions attack and bomb, respectively.

2.2 Hidden Information

Undercover Construction gives the players the ability to hide themselves as well as their
progress. The following two subsections give further details of which means the game provides
the players to form strategies.

2.2.1 Location

At the start of the game, the players do not know which character they are controlling. They
know, though, that they control a character close to their tower, which enables them to find
themselves rather quickly.

During the game, players can hide among the many NPCs, which move either hori-
zontally, vertically or diagonally. NPCs also stay still sometimes. If the player moves too
smoothly an enemy can spot him, because his movements differ too much from the other
characters on the field. NPCs only move to point of interests (POI)1 at random. This can
be useful for players to fool or distract others if they assume the NPC movements.

The swapping mechanism is good for fast traveling, but also needed to flee after a
revealing action was performed, such as killing somebody or planting a bomb. Because
swapping is done with characters in line of sight and several swaps might be needed to flee
from a crowded corner, a player must make sure to have enough coins. When NPCs are
swapped to the location of the player, they inherit the direction of the player for a short
while, before they take over control. This makes it more difficult for an observer to notice
when a swap occurs.

Item and coin pickups are delayed for two seconds. A vibration feedback helps
the player to sense when a pickup was successful or not, because the visual feedback is not
immediate. On the other hand, if there is no vibration, it is an indication that someone else
took the item and must be close. NPCs do not pick up items and coins.

The players have to expose themselves eventually, because they either need to kill
someone or swap to the middle arena to get their required items. Attacking is visible and
one becomes prey for the others. Especially if the player guesses wrong and kills an NPC
instead of another player: This is punished by losing all coins, and thus, the player cannot
swap and flee as long as he does not collect new coins.

Inside the arena, a visible button has to be pushed. Because everybody knows the
requirements of everybody, a long stay on a button is a clear indication that a character is
controlled by a player. NPCs push buttons by chance as well, but eventually move away.
Every two seconds an item appears in the middle, if any of the buttons is pressed.

A lucky player might push the button right before such a “spawn interrupt” and his item
gets generated immediately. He has to wait two seconds on the button for each additional
item. The spawned items in the arena have a lifetime of ten seconds before they disappear.

1Point of interests are for example the tower, the item buttons or the items and coins

2. Game Mechanics 6

This is to lower the chance that an NPC stays on a button for a long time and generating
many of the items one of the player needs. The items are randomly placed somewhere on
the green meadow. Waiting another two seconds for the chance of a closer item might be
better than running across the meadow to reach the first item but bears the risk of attracting
opponents.

2.2.2 Progress

Besides hiding the location, there are some ways to hide progress. In this game progress
means collected items and the finished levels of the tower.

While inside the arena, the item bag is not updated visibly, because there are only a
few characters inside and are therefore exposed and an additional visible aid is unnecessary.
Once a player swaps out, the item bag is updated. Since this swap costs one item, the first
item that the player collects is lost. This means that for a successful item pickup, the player
is exposed rather long because he needs to collect two items. But naturally, the first item
does not need to match his requirement and any spawned item can be collected right after
swapping in. When a player thinks he has been spotted, fleeing to the outside is rather easy,
even with this longer exposure.

The items stored in the tower are not shown and are stored permanently. The
player needs to remember all stored items, or he runs the risk of collecting items for naught.
Opponents can empty the storage of the tower with a bomb if the option is enabled in the
settings. This gives a bigger incentive to use the bomb. On the other hand, if this option is
disabled, players have a bigger incentive to collect and store items that are not required for
the current level, because they can be used for another level.

A vibration feedback is given to the user when he successfully starts a building process.
The process starts in the background where the required items are consumed and a random
time is selected as described in 2.1.1. The last 15 seconds are counted down by the timer
displayed next to the tower. Opponents can stop the process by planting a bomb. The bomb
requires 5 seconds to explode, which means opponents need to be fast in order to stop the
process. It is possible to stop the timer even from afar by swapping across the field, which
gives the game a sense of action gameplay. But is better to observe the course of action
in order to be ready when the timer starts counting down.

Because opponents react fast, they jeopardize to be found when the timer starts tick-
ing. This gives the building player the opportunity to defend his tower by killing the
approaching opponents. This is the only mean of defense, because a ticking bomb cannot be
stopped.

It is worth to mention, that with such a kill, he gains items that are needed for the level
that is currently building. This can mean two things:

a) build successful: the item is useless for the player, but he also did not receive a further
advantage over the others with the kill

b) build stopped by bomb: the player will be able to build again sooner, because items
for the next build were collected with the kill

Therefore, it is desirable for a player to stay close to his tower during a build process and
kill approaching opponents.

2. Game Mechanics 7

2.3 Strategies

In the following, some possible strategies are explained. These strategies can be mixed and
some might be better suited depending on the progress of the player. The pros and cons for
each strategy are listed in Tables 2.1 to 2.4.

2.3.1 Sneak and Attack

Since all items can theoretically be obtained by killing opponents, a player can avoid the
vulnerable inner arena altogether. But because attacking is very revealing, players will
eventually get themselves into a vulnerable situation outside. Enough coins are needed to
flee, after a successful attack. For an attack to work, the player must be close to the opponent
and should be successful the first time, else he might get killed in reverse.

2.3.2 Run and Collect

This is a more active, action oriented way of playing the game. At first, many coins
should be collected and the player swaps to the inside arena. Ideally, he collects any item
that is already spawned inside. Then, he triggers a single item of his need without revealing
his location for too long. Next, he collects the item, swaps out and stores it. This can be
repeated until enough items are collected. This strategy is a good choice at the beginning
of the game, because only one item is required for the first build. Later in the game it is
wasteful, because each swap to the outside costs one item.

2.3.3 Wait and Observe

This strategy relies on observing the non-hidden information. This includes the dis-
played item and coin bags, the build timer, the attack animation, but possibly also the
vibration of the controllers.

By observing the items of the opponents, a player can guess which player might start the
next build process. Then he can wait for the player to approach his tower and kill him, or
he can at least be ready to stop the building with a bomb. A player with many coins might
indicate that he is using strategy Run and Collect. Since all players know the requirements
of the other players, waiting close to the item button can lead to a successful kill.

When an attack is seen, one can try to find out several things. If a kill goes along with a
drop to zero of someone’s coin count, the player knows that this character is vulnerable and
cannot immediately swap away. One can also identify the player exactly and know which
level this player is at. So, one knows how many items one can gain by attacking this player
and calculate if it is worth the risk and effort. If the kill is successful, one sees an increase
of items in someone’s item bag, also identifying the player.

Also, the noise of the vibration can be used to identify players. Listening to the vibration
can help overcome the vanishing delay of picked up items. If a player suspects a character
to be a player and follows him, he checks if the character interacts with the environment.
Vibration feedback is immediate, whereas an item pickup might be visible too late and
interactions with the tower give no visual aid at all. All of this works better when only two
players play against each other, because keeping track of multiple vibrations is difficult.

2. Game Mechanics 8

2.3.4 Collaboration

Collaboration between players against someone else is a common strategy in games. In a local
setting players need to talk to each other and the target can listen to the conversation.
Nevertheless, it can be used in this game. When a player is close to finishing a game, players
need to stop his build attempts with bombs. This is harder to prevent for the defender if he
gets attacked by multiple players, even if he knows that he will get attacked. Inexperienced
players can keep themselves alive when playing together. There is of course always the risk
of getting betrayed by team players.

Pros Cons

Can be used at any stage of play Relies heavily on successful kills

Fleeing is important

Table 2.1: Pros and cons of Sneak and Attack

Pros Cons

Good starting strategy

Active and hard to follow for others

Wasting items with swapping

Ignoring opponents

Table 2.2: Pros and cons of Run and Collect

Pros Cons

Adaptive

Useful in any situation

Passive and relies on others

Hard to keep track

Table 2.3: Pros and cons of Wait and Observe

Pros Cons

Stop good players late in the game

Chance for inexperienced players

Risk of betrayal

Opponents can hear strategy

Table 2.4: Pros and cons of Collaboration

2.3.5 Advanced tricks

The following tricks can be used with any of the strategies:

• Do not start building immediately and collect not currently required items. Allows to
build levels consecutively which is surprising.

• Collect more items if the course of events allows it and do not store all of them. Since
the oldest items is used for swapping out of the arena, one is more agile in the middle
arena.

• Try swapping with a suspicious character. If the swap does not work, the character is
controlled by a player.

• Place yourself on a button and swap with NPC inside the arena. Needs NPC to be in
line-of-sight and its movements on the button afterwards are unpredictable.

Chapter 3

Implementation

This chapter presents some interesting parts concerning the implementation of the game.

3.1 Unity3D

The game is developed using Unity3D1. Unity is a cross-platform2 game engine. A free
personal license can be obtained and is therefore a great way to start exploring game design.
Numerous tutorials, good documentation and a large community facilitate game development
for beginners.

C# is the high-level language used for programming scripts. The editor provides pre-
designed objects and components, which are highly customizable. Objects are placed into
scenes which can represent for example a single level or a settings menu.

Undercover Construction uses only two scenes: the title screen and the game scene. The
title screen is used for the joining routine for players who want to participate. A settings
menu is accessible as well and is loaded inside the same scene. In the settings, some variables
can be changed, such as the number of NPC characters or the maximal required time for a
tower to build its next level.

When the player starts the game, the scene for the game is loaded. The information from
the title screen can be shared and is used for the preparation of the game scene.

3.1.1 Raycasting

Raycasting, and in Undercover Construction’s case Physics 2D Raycasting, is a powerful tool
to implement interaction between objects. Unity describes the process as follows:

“A raycast is conceptually like a laser beam that is fired from a point
in space along a particular direction. Any object making contact

with the beam can be detected and reported.” [4]

Raycasting was used in this project for three things (see Figure 3.1):

1. Interaction with tower for storing and building
2. Collision avoidance for NPCs
3. Swapping characters

1www.unity3d.com
2Unity supports 27 platforms, such as Windows, Mac OSX and Linux

9

www.unity3d.com

3. Implementation 10

Figure 3.1: Top: Schematic representation of applying raycasting 1) to interact with objects
and 2) to detect walls for collision avoidance. Bottom: Use of raycast for swapping (from left
to right): Swapping to inner/outer arena, swapping across field and simple swapping across
short distances

Rays are cast in the direction the character is currently looking. The programmer receives
an array holding all the physical elements the ray hits along the way. Layers can be defined
and put on each object in the environment. A ray can then be instructed to only interact
with objects on the defined layers.

For interaction with the tower, a layer tower is defined and set on the tower objects.
When the player asks to store items in the tower, a ray is cast and travels a certain distance
the programmer chooses. The distance can therefore be used to define how close a player
needs to be in order to perform the store action. If the player is close enough, he will receive
the tower object on which he can request to store the items he is holding.

Collision avoidance is similar in concept. NPCs continuously cast rays and will notice
when a wall is in front of them. The returned object also contains information about the
distance and the location of the other object. NPCs can then be instructed to change
direction if some conditions are met. Swapping can easily be implemented by replacing the
position of the raycasting player with the position of the NPC that got hit, and vice versa.

3. Implementation 11

3.2 Controller Assignment and Vibration

During development, different problems concerning the controls and vibration occurred. For
the controls, Unity’s out-of-the-box support for gamepads is used with the Input Manager3.
The vibration feature is enabled with a C# wrapper around XInput for .NET applications
(such as Unity3D), because Unity does not provide easy to use vibration capabilities with
controllers. The wrapper is called XInputDotNet4 and is open-source under the MIT License.

Figure 3.2 shows that the detected controllers are not always recognized as Controller 1,
Controller 2, etc. In the example of Figure 3.2, Unity would refer to the two controllers as
Joystick 3 and Joystick 4 for the controllers at array indices 2 and 3, respectively. Detecting
the input of Joystick 1 for player one would always return an empty value. To solve this,
the recognized controllers are detected and a map from player number to joystick number is
generated.

Figure 3.2: Debug output showing that the attached controllers might not start at index
zero

XInputDotNet ’s vibration method uses the so called PlayerIndex to associate the vi-
bration command to the controller. As it happens, the index of a controller in Unity (as
mentioned above) and the PlayerIndex might not match. This mismatch is solved by a join
routine in the title screen as depicted in Figure 3.3.

Figure 3.3: Join Routine: A player has to press A to join. He is asked to press B until his
controller vibrates. After confirming with A, the player is ready. With B he can undo the
join.

To avoid the above problems it might be desirable to ignore Unity’s input management
and build a custom solution exclusively using XInputDotNet. How this can be done is de-
scribed in an online tutorial [5].

3https://docs.unity3d.com/Manual/class-InputManager.html
4https://github.com/speps/XInputDotNet

https://docs.unity3d.com/Manual/class-InputManager.html
https://github.com/speps/XInputDotNet

Chapter 4

Discussion

Undercover Construction uses different concepts to integrate asymmetric information in the
gameplay. The straightforward approach is to not show any information on screen. As soon
as multiple gameplay elements come together, it is not practical to conceal all information,
because players get overwhelmed.

This works shows that some trade-offs must be made and that there is room between the
two extremes “show all” and “show nothing”. Delays in displaying information introduces
an asymmetry in information, because an observer cannot easily link cause and effect. The
responsible character can already be far away after an item disappears for example.

Play rounds with friends showed that the game has to be explained thoroughly for a first
play. The mix of hidden and disclosed information is unusual and people are not used to it.
It is best to play a test round first and explain some possible strategies, because experienced
players are in a significant advantage. The good news is that players get accustomed to the
gameplay fast.

The following section explores how the ideas presented can be expanded.

4.1 Future Work

A video game is never really finished, and extensions are always possible. Many ideas to
adapt and extend Undercover Construction have been collected during development.

Representations of the world wonders could replace the simple towers. Each wonder
could be requiring different resources and could be equipped with unique powers (ideally
using hidden information). Taking the “Great Pyramid of Giza”1 as an example, one level to
build might be the grave chamber which needs a dead body as resource and not a conventional
item like stones. As a special power an Egyptian god might be called to destroy a level of
an opponent’s wonder.

The combat system in Undercover Construction is as simple as it gets and leaves room
for improvement. Straightforward modifications could be a health system with a possibility
to defend in contrast to the one-hit-kill principle of Undercover Construction. Variations of
attacks could be implemented, such as attacks from afar by using thunderbolts or the like.
These ideas could be linked well with the powers of the wonders as suggested above.

As a mean of defense the idea to create walls is promising, because it gives a range
of applications during gameplay. First, it could be used as a shield against an approaching
character and second, it could defend the tower against bombs. Furthermore, a player could
build walls all around him and shield himself from any attack for a while. This is useful

1https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza

12

https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza

4. Discussion 13

when standing on an item button to spawn multiple items or simply when one desires to
collect coins in peace for a while.

In support of the wall idea above, a clock item comes to mind. The wall must expire
sometime. To overcome this, a clock item could be introduced that can be used on a wall
to extend its lifetime. The clock might also come in handy to decrease the build time of
the player’s own tower or increase the build time of the opponent’s tower. As a new hidden
information mechanism, the developer can allow the use of the clock on an enemy tower at
all times, such that the player cannot know, how long the next build will last.

An adaptive playfield could enforce other mechanics in the game. For example, could
the field gradually get destroyed with cracks in the floor which one can only overcome by
swapping. Clouds could pass by and give players an opportunity to hide under it.

The vibration issues described in Chapter 3.2 sometimes caused that the rumbling of two
controllers got mixed up. This could be used as a game mechanism where each player feels
the vibrations of another player and he is only allowed to kill said player. So, observing
becomes twofold: First, find a character that is not an NPC and second, try to figure out if
its actions match the vibrations you feel.

Figure 4.1: Concept showing that the
middle arena could be used for mini
games such as Rock-Paper-Scissors. Here:
Player 1 and Player 2 fight over the win of
an item.

An ambitious concept for combat is the inte-
gration of mini games. The reward for winning
a mini game is an item. Imagining the middle
arena as a second screen running games within
the game, a player has to enter the screen and
win the short game that will start there. If no
other player enters the screen within a count-
down, either no game will start and the player
gets the item for free, or he will need to play
a single player game such as a puzzle. On the
other hand, if more players enter the screen, a
multi-player game for two, three or four play-
ers will start. The mini games could be as sim-
ple as the well-known Rock-Paper-Scissors game
or more sophisticated like a top-view car racer
like Retro Racers2. The conceptional photo col-
lage in Figure 4.1 shows how this could look like
with Rock-Paper-Scissors. Certainly, many mini
games of existing games could be adopted. Nin-
tendo’s mini game collection seriesMario Party3

and Wario Ware Inc.4 come to mind.

2https://loadupgames.itch.io/retro-racers
3https://www.mariowiki.com/Mario_Party_(series)
4https://www.mariowiki.com/WarioWare_(series)

https://loadupgames.itch.io/retro-racers
https://www.mariowiki.com/Mario_Party_(series)
https://www.mariowiki.com/WarioWare_(series)

Bibliography

[1] Josh Glazer, S.M.: Overview of Networked Games. In: Multiplayer Game Programming
– Architecting Networked Games. (2015)

[2] Wikipedia: Gameplay. In: https://en.wikipedia.org/wiki/Gameplay. (2018)

[3] Davison, A.: An Isometric Tile Game. In: Killer Game Programming in Java – Java
Gaming & Graphics Programming. (2005)

[4] Unity: Unity Documentation – physics2d.raycast. In: https://docs.unity3d.com/

ScriptReference/Physics2D.Raycast.html. (2018)

[5] McCauley, L.: Xbox360 Gamepad Input & Management – Unity Tutorial. In: https://
lcmccauley.wordpress.com/2015/04/20/x360-input-tutorial-unity-p1/. (2015)

14

https://en.wikipedia.org/wiki/Gameplay
https://docs.unity3d.com/ScriptReference/Physics2D.Raycast.html
https://docs.unity3d.com/ScriptReference/Physics2D.Raycast.html
https://lcmccauley.wordpress.com/2015/04/20/x360-input-tutorial-unity-p1/
https://lcmccauley.wordpress.com/2015/04/20/x360-input-tutorial-unity-p1/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work

	2 Game Mechanics
	2.1 Gameplay
	2.1.1 Actions
	2.1.2 Flow of Actions
	2.1.3 Status Display

	2.2 Hidden Information
	2.2.1 Location
	2.2.2 Progress

	2.3 Strategies
	2.3.1 Sneak and Attack
	2.3.2 Run and Collect
	2.3.3 Wait and Observe
	2.3.4 Collaboration
	2.3.5 Advanced tricks

	3 Implementation
	3.1 Unity3D
	3.1.1 Raycasting

	3.2 Controller Assignment and Vibration

	4 Discussion
	4.1 Future Work

	Bibliography

