
Institut für
Technische Informatik und
Kommunikationsnetze

LORA-based Data Collection on
DPP

Semester Thesis

Michael Keller

kelmicha@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Jan Beutel
Roman Trüb

Prof. Dr. Lothar Thiele

August 3, 2018

mailto:Michael Keller<kelmicha@student.ethz.ch>

Acknowledgements

I would like to thank the TIK institute for letting me write this thesis and be
part of their research. A special thank goes to my supervisors Jan Beutel and
Roman Trüb for their support during the thesis.

i

Abstract

Climate change affects our world. With the rise of temperature, permafrost
regions get smaller and smaller and leave unstable grounds. In addition block
glaciers begin to melt and move faster. Both phenomena increase the risk of
rockfalls and rock waste avalanches. In some cases the rocks can reach populated
areas and damage houses or infrastructure.

To predict such events ETH, as part of the Permasense consortium [1], is devel-
oping and installing sensor networks in mountain areas, where possible falling
rocks could endanger people and infrastructure. These networks gather data as
the ambient temperature, the movement of the rocks or vibration intensities.

As the nodes are installed in areas where it is not possible to connect them to a
power grid, they run on batteries. These batteries should last as long as possible,
to ensure continuous and low-maintenance operation. To achieve this the nodes
need to be very energy efficient.

A large part of the energy is used for communication between the nodes. There-
fore a communication protocol to gather the data from all nodes needs to be
designed with a radio duty cicle that is as small as possible. This protocol
should also adapt to network changes in case of node or link failures. Dozer is
one possibility of such a protocol [2]. It has been implemented in TinyOS [3] and
is currently used at different test sites in the alps.

The goal of this thesis was to port the existing Dozer implementation to a new
platform. This new dual processor platform separates the application from the
communication part. A communicaiton board featuring a radio capable of FSK
and LoRa modulation has been developed in a concurrent master thesis [4]. The
implemenation was done without any OS support to stay as close as possible to
the hardware and get the best possible timings.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Climate Change and Natural Hazards 1

1.2 Permasense . 1

1.3 Sensor Networks . 2

1.3.1 Data Gathering . 2

1.4 Goals . 2

2 Background 3

2.1 Related Work . 3

2.2 Dual Processor Platform . 3

2.3 Communication Board . 4

2.3.1 LoRa Modulation . 4

2.4 Evaluation Board . 4

3 Dozer 5

3.1 Overview . 5

3.2 Bootstrapping Phase . 6

3.3 Connection Phase . 6

3.4 Normal Operation / Data Sending 8

3.5 Topology Control . 8

4 Implementation 9

4.1 Message Types . 9

4.1.1 Dozer Message . 9

4.1.2 Header . 9

iii

Contents iv

4.1.3 Payload . 10

4.2 File Overview . 11

4.3 Topology Control . 12

4.3.1 Bootstrap . 12

4.3.2 Connection . 13

4.3.3 Data Sending . 13

4.4 Radio Administration . 15

4.5 Radio Specifics . 16

4.5.1 Rx Callback . 16

4.5.2 Tx Callback . 16

4.5.3 Radio Timeouts . 16

4.5.4 Addressing . 17

4.5.5 Channel Activity Detection 17

4.6 Timers . 17

4.6.1 Timer Queue . 17

5 Evaluation 19

5.1 Test Configuration . 19

5.2 Evaluation Board . 19

5.3 Flocklab . 19

6 Conclusion 21

7 Future Work 22

7.1 Testing . 22

7.2 Timing . 22

7.3 LoRa Modulation . 22

7.4 Channel Activity Detection . 23

A How to use 1

A.1 Serial Outputs . 1

B Task Description 5

Contents v

Bibliography 9

Chapter 1

Introduction

1.1 Climate Change and Natural Hazards

With climate change and the rise of temperature natural catastrophes begin to
occur more frequently. In the mountains permafrost and glaciers disappear. The
thawing grounds become unstable, rocks or ice masses may break off and rattle
down the mountain sides to the valley floor. Rock glaciers, which are a mixture of
rock and ice that move slowly down the mountain sides, also thaw and can move
faster with rising temperatures. They push big masses of rock waste downhill,
which could fall off if it gets steep enough and the ice does not hold them back
anymore. Wherever they originate, rock waste avalanches can destroy everything
in their way. They are a great danger for houses and infrastructure situated at
mountain sides or narrow valley constrictions. These events are very hard to
predict. To observe critical sites by measuring key quantities as movement,
vibration or temperature sensor nodes have been deployed by the Permasense
consortium.

1.2 Permasense

The Permasense consortium is a collaboration of different research institutes
and companies, including ETH [1]. They develop, deploy and maintain sensor
networks, that are able to gather data in challenging high mountain areas, as
for example on rock glaciers in the Matter Valley above Herbriggen and Randa.
The data collected by these sensor networks are used to investigate changes of
the environment as the movement of rock glaciers or long term evolution of the
temperature. Algorithms are designed to predict the trend of the movement
and warn the surrounding areas in case of an imminent rock waste avalanche or
similar dangerous events.

1

1. Introduction 2

1.3 Sensor Networks

Sensor nodes in hardly accessible high mountain areas run only on batteries. It
is also not possible or very costly to change them regularly. Some small amount
of energy can be harvested for example with solar panels or thermoelectric de-
vices. But for long term autonomous operation the nodes need to be very energy
efficient. A tradeoff between the amount of data samples and energy consump-
tion needs to be found. But the data acquisition and handling is not the only
part where the power used is key. A crucial aspect of low-power operation is
the communication part. Transmitting and receiving with a wireless radio needs
quite some power.

1.3.1 Data Gathering

As the data samples are useless on a node somewhere in the mountains they need
to be collected. Besides the small sensor nodes there is a bigger node, called the
sink, which gathers all the data and forwards it to a radio station connected
to the internet. This could be a station from a radio car or even a station on
the valley floor. The nodes all try to send their data to the sink. If this is not
possible because they are to far away or the connection is disturbed by objects
in between, they send it to a neighboring node which then forwards it to the
next node until the sink is reached. This is also referred to as multi-hop data
sending. To prevent uncoordinated sending and receiving of data, which would
result in many collisions and the need to resend the data, specific communication
protocols have been developed. These protocols coordinate the data collection
of the nodes and try to minimize the time the radio needs to be active to reduce
energy consumption.

1.4 Goals

Since the first deployments of networks a new Dual Processor Platform (DPP)
for the nodes has been developed. The DPP consists of two parts, separating the
application processor from the communication processor. For this DPP a com-
munication board, which features FSK and additionally the LoRa modulation
[5] has been designed in a concurrent master thesis [4].

The main goal of this thesis was to port the existing Dozer implementation
to the new communication board for the DPP. To stay as close as possible to
the hardware and get exact timings no operating system was used. After the
implementation the protocol had to be tested.

Chapter 2

Background

2.1 Related Work

Dozer was proposed as a quite simple and very energy efficient data gathering
protocol. It achieves very low radio duty cicles, but has higher latency compared
to other protocols. It has been deployed on various test sites by the Permasense
consortium and has proven to perform under harsh circumstances in high moun-
tain areas.

As the applications for wireless sensor networks demand increasing computa-
tional resources, there is a trend towards multi processor architectures, to divide
application and communication. This means each processor can be chosen to
suit best to its task and the interference between completely different tasks gets
minimized in comparison to just one processor. The TIK institute at ETH has
developed a way to connect those processors with a minimal overhead in com-
munication. The communication is handled by BOLT, which is a processor that
is only used to handle the communication between the other processors. This
means that the application processors are really independent and can focus on
their tasks. As Dozer is still an exceptional alternative if latency is not critical,
the way to go is to adapt it to the new dual processor platform.

2.2 Dual Processor Platform

The idea of the dual processor platform (DPP) is to separate the application
part of a sensor node platform from the communication part. Each part has
its own processor dedicated to the respective task. The communication between
the two processors is handled by BOLT [6]. Bolt is a stateful interconnect. This
means its also a processor with some memory to store the messages to pass. So
both application parts can independently communicate with BOLT and do not
require to synchronize with each other. This allows for specialized and thus very
energy efficient communication and application routines.

3

2. Background 4

2.3 Communication Board

Important for this thesis is the communication part of the dual processor plat-
form. In a concurrent master thesis a new communication board has been devel-
oped [4]. It features the 32 bit STM32L443CCU microcontroller from STMicro-
electronics with a clock of up to 80MHz [7] and the Semtech LoRa transceiver
SX1262 [8]. The transceiver also supports, additionally to the commonly used
FSK modulation, Semtech’s LoRa modulation.

2.3.1 LoRa Modulation

The LoRa modulation is a registered trademark of Semtech [5]. It is a form of
chirp spread spectrum modulation. The data signal is modulated onto a chirp
signal, that continuously varies in frequency. This results in a much broader
bandwidth, which makes the signal robust to interference and allows the recep-
tion of the signal even if the signal to noise ratio is very small. LoRa modulation
therefore allows for much farther transmission distances as for example FSK
modulation at the same output power.

2.4 Evaluation Board

As the new communication board was not ready at the beginning of this thesis,
most of the time a development kit from Semtech was used. It consisted of the
NUCLEO-L476RG board from STMicroelectronics [9] and the SX1262 evaluation
board from Semtech. The STM32L476RG microcontroller [10] on the Nucleo
board is very similar to the one on the new communication board. This allowed
to run the code on both platforms with only minimal changes.

Chapter 3

Dozer

Dozer is a low-power data gathering protocol developed at ETH [2]. The con-
cepts described in this chapter are the ones from the original paper. They are
also applied in the TinyOS implementation of Dozer and are reused for the im-
plementation done in this thesis.

3.1 Overview

Dozer first builds a tree like network topology, where all data is sent to the root
or sink. If there are node or link failures Dozer adapts the topology so no node
in reach of another one is lost.

Each group consisting of one parent and its children has its own time synchro-
nization. This means there is no global time synchronization, which would be
more complex and costly to implement. The parent periodically sends a mes-
sage called beacon, allowing the children to update their timings. A random
jitter in the beacon send times is used to let the different schedules of the nodes
drift. Otherwise it could happen that active phases of multiple schedules are
very close to each other. If for example multiple nodes then send their beacon at
the same time, the collision could make it impossible for other nodes to receive
the beacons.

Each node wakes up periodically at the beginning of an interval to send its
beacon. As there is no global time synchronization the interval start and end
times are different for each node, but the interval length is the same. The interval
starts with sending the beacon message. The rest is divided into slots of equal
length. A parent advises each of its children a different slot, so the child knows
when it can send data to the parent. The first slot after the beacon is sent, is
used as contention window for new nodes to connect. The composition of the
Dozer interval is also shown in Fig. 3.1.

5

3. Dozer 6

B
Cont. Slot 1 Slot 2 Slot n

Figure 3.1: Overview of the Dozer interval.

3.2 Bootstrapping Phase

A node that is not connected to the network, does not send a beacon, but starts
listening for activity on the channel. If it receives no message in this time, it
reduces the listening time and tries again at the beginning of the next interval.
The listening time gets reduced until a minimum is reached. The node then
listens for only a short time at the beginning of each interval. This is done to
minimize the energy consumption of a disconnected node, while still preserving
the chance of connecting to the network, if another node gets reachable.

If the node detects activity on the channel, it starts listening for the whole
next interval. This time it specifically looks for beacon messages. Each beacon
contains information about the potential parent that sent it, which is used to rate
it. The rating criteria are the distance to the sink and the amount of children
already connected to that node. All the potential parents get stored, to be able
to quickly connect to another parent if the current one is lost.

Figure 3.2: Dozer bootstrapping phase with decreasing listening times for the
case that no channel activity was detected.

3.3 Connection Phase

The connection procedure is shown in Fig. 3.3. After listening for beacons the
node tries to connect to the node with the best rating. It starts listening, when
the next beacon of this node is meant to arrive. If the correct beacon is received,
it sends an activation message. The activation message does not contain any
information. It is just used to signal the potential parent, that a node wants to
connect to it. If multiple nodes send an activation message at the same time,
the potential parent possibly can not receive the messages correctly but it still
detects that the channel is busy. The parent then starts listening for connection
requests. After the activation message the child sends the connection request
with a random delay. The random delay should prevent collisions if multiple

3. Dozer 7

nodes want to connect. Upon reception of a connection request the parent stores
the ID of that child and responds with a handshake message, containing the slot
number for this child to send data. No handshake is sent if the parent has no
more free child slots. The sink accepts multiple connections per interval and
again starts listening for connection requests after a sent handshake. All other
nodes only accept one new child per interval. Once a node is connected to a
parent it starts sending its own beacon.

Parent

Child C

HB

Figure 3.3: Dozer connection phase. The gray areas mean that the node is
receiving.

3. Dozer 8

3.4 Normal Operation / Data Sending

A node that is connected to a parent wakes up to receive its parents beacon, uses
it to correct the relative timing to the parent and calculates the time to send
data. Parallel to sending data to its parent it sends its own beacon and receives
data from its children.

The parent node wakes up at the beginning of an occupied data slot and starts
receiving. Data messages in contrast to the others are always acknowledged, so
that no relevant data is lost. If the data transmission from a child is finished the
parent waits until the next occupied slot starts, to receive data from the next
child. An example of the data sending sequence can be seen in Fig. 3.4.

B A A

D

A A A

D

D D

Parent

Child 1

Child 2

Slot 1 Slot 2

Figure 3.4: Dozer data sending phase. The gray areas mean that the node is
receiving.

3.5 Topology Control

If some expected beacons from a parent do not arrive or the data messages do
not get acknowledged, the parent gets marked as not reachable. In this case the
node tries to reconnect to the next best rated potential parent. In case of no
more known potential parents, the node goes back to the bootstrapping phase.

From time to time a node listens for beacons from stored potential parents to
update their rating, or even for beacons of yet unknown nodes. This allows the
node to reconnect without using to much energy, that would be needed for the
bootstrapping.

Chapter 4

Implementation

This chapter describes the details of the implementation done in this thesis. It
is assumed that the reader is already familiar with the concepts of Dozer as
explained in Chapter 3.
The topology control and the radio administration details have been ported from
the TinyOS implementation with only minor changes. The differences primarily
lay in the radio handling and the usage of timers as described in Section 4.5 and
Section 4.6.

4.1 Message Types

4.1.1 Dozer Message

The different message types and their composition is shown in Fig. 4.1. The main
message type is the dozer message. It consists of the header the payload and some
metadata. Only the header and payload part are actually sent. The metadata
part contains information that is added after the reception of a message. This
is the receive time, the size of the received message and the measured RSSI and
SNR.

4.1.2 Header

The source field contains the ID of the node that sent the message, the destination
contains the address of the node that should receive it. The address can either
be a node ID or the broadcast address, if the message is for all nodes.
The ack field is used to signal the receiver, if a message should be acknowledged
or not. During the data sending phase the child can also use it to signal the
parent, that this is the last message sent.
The type defines what kind of payload is contained in this message.

9

4. Implementation 10

Source

Dest

Ack

Type

Header

Payload

Metadata

Message

Header

Data msg

Beacon

Con req

Handshake

Payload

Ack

Activation

Slot

Handshake

Seed

Hops

Load

Beacon

Lsd

Ack byte

Origin

Data

Ack

Seq Nr

Data msg

Rec time

Size

RSSI

SNR

Metadata

Timestamp

Figure 4.1: Message types.

4.1.3 Payload

The payload part of the message depends on the message type. It is implemented
as a union, which means that a message has just one of the available payloads
active at a time. The different possibilities are shown on the right side of Fig. 4.1.
The activation and connection request messages are not listed separately as they
have no payload.

Beacon Message

The hops field indicates the distance between the sender and the sink, the load
how many children are already connected to the sender. The seed and lsd values
are used to calculate the next beacon receive time.

4. Implementation 11

Handshake Message

The handshake message contains only the slot number, that the parent allocated
for this child.

Data Message

All data messages get numerated to tell them apart. This information is stored
in the sequence number field. Additionally the data message contains the ID of
the originating node and the timestamp, when it was generated. The data field
is an array of data bytes.

Acknowledgment

The acknowledgment message only contains one byte, which is used by the par-
ent, to tell the child how many more data messages it can store in its data
queue.

4.2 File Overview

/

lib

dozer

circular queue.c

circular queue.h

dozer.c

dozer config.h

dozer constants.h

dozer.h

dozer messages.h

dozer radio admin.c

dozer radio admin.h

dozer radio.c

dozer radio.h

dozer topology.c

dozer topology.h

dozer utils.c

dozer utils.h

timer queue.c

timer queue.h

...

4. Implementation 12

The main part of the implementation is divided into two parts. The topology
control in the dozer topology files is the heart of the implementation. It handles
the bootstrapping, manages all important information about potential parents
and triggers the radio administration to send or receive packages at the right
times. To get the timing as good as possible error estimation and drift corrections
for beacon receiving are also done by the topology control.
The radio admin files contain the radio administration part. It handles the
message sending and receiving, chooses what to do after a successful or failed
send or receive and signals the topology control if the receive or send task was
successful.

The platform specific radio handling, as the configuration or the handling of the
interrupts, is done in the dozer radio files.

High level configurations for the protocol can be done in dozer config.h. More
detailed configurations are in dozer constants.h. The different message types are
defined in the dozer messages.h file. The typedefs for the parents and children,
the node configuration and the available states for the state machines are stored
in dozer.h.

The circular queue is used to store the data messages. The timer queue handles
the different timers.

4.3 Topology Control

The topology code builds around the beacon timer. The beacon timer fires
periodically and initiates the bootstrap phase, the connection to a parent or the
sending of a beacon to potential children. The sink does not need to connect to
another node and just sends its beacon. All other nodes first check if they are in
bootstrap mode. If this is the case they start the bootstrap overhearing phase.

4.3.1 Bootstrap

The bootstrap phase is built as a small state machine with three states, as shown
in Fig. 4.2. The node begins the bootstrap phase in the waiting state and starts
listening for activity. If nothing is received the listening time gets reduced until
it reaches a minimum. The listening start time gets shifted by half the minimum
each time the beacon timer fires. When it reaches the end of the interval it is
reset to the interval start. This is done to listen at different times relative to the
interval start, increasing the chance to receive something.

If something is received the node goes into the activity detected state. The
next time the beacon timer fires, it goes into the bootstrap state off and starts
listening for beacons for the whole next interval. All potential parents, from
which a beacon was received during this time, are rated and stored. The most

4. Implementation 13

important rating information is the distance to the sink, the second one is the
number of children already connected to the potential parent. In case of a tie
with those two rating informations the node ID of the potential parents is used
as a last resort to separate them.

parent rating = distance to sink ∗MAX CHILDREN2 + 1+

load ∗MAX CHILDREN+

ID%MAX CHILDREN

A node goes back to the bootstrapping state waiting if the connection to the
parent is lost, or the connection attempts to all stored parents fail.

no channel

activity

detected

channel

activity

detected

beacon

timer

�red

no beacon

received while

overhearing

beacon

received while

overhearing or

connected

Waiting Activity

detected

OFF

connection to

parent lost

if not connected

start overhearing

periodically listen

for activity

Figure 4.2: State diagram for the bootstrap phase.

4.3.2 Connection

After the sending of a beacon the node listens for channel activity. This is done
by RSSI detection. If the value is above a certain threshold, it is assumed, that
the channel is busy. The node then starts listening for connection requests.

4.3.3 Data Sending

Each child gets a slot allocated from the parent when it is allowed to send its data.
After sending a data packet it waits for an acknowledgment. The parent includes

4. Implementation 14

the information about how many more messages it can store in the message queue
in the acknowledgment message. If this is zero, the last queue entry was filled
with the last sent message. In this case the child stops sending data and tries
again in the next interval. The parent does not send an acknowledgment at all
if the data queue was already full upon data reception.

4. Implementation 15

4.4 Radio Administration

The radio administration is built as a state machine as depicted Fig. 4.3. Most
of the time it is in the idle state. It gets called by the topology control to send /
receive a beacon or to send / receive data messages. In case of a receive, transmit
or timeout interrupt from the radio it checks the current state, continues to the
next state and signals the topology control what happened. It also checks if it
is in the correct state before sending something.

Idle

Beacon

sent

Await

RSSI

Await

connection

request

Handshake

transition

Handshake

sent

Await

Beacon

Activation

transition

Connection

request

transition

Connection

request

sent

Await

handshake

Receive

buffer

Send

buffer

send

beacon

channel

busy

connection

request

received

send beacon

send

handshake

sink

not sink

channel

free
rx timeout

beacon

received and

not connected

send

activation

send

connection

request

random

back off

receive

beacon

rx timeout

handshake

received

rx timeout

beacon

received and

connected

beacon sent

handshake

received

no beacon

received

beacon

received

beacon

received

receive

buffer

send

ack

rx timeout or

slot ended or

buffer full

receive

buffers
to many

ack's missed or

slot ended or

all messages

sentsend

buffer

wait for

ack

send

buffers

States
calls from

topology

control

calls to

topology

control

Legend

send

connection

request

Figure 4.3: State diagram for the radio administration.

4. Implementation 16

4.5 Radio Specifics

The dozer radio files contains the platform specific radio commands. The dozer send()
and dozer receive() functions first check if the radio is idle. If not they return
an error. Else the radio is set in send or receive mode with the timeout speci-
fied. The dozer tx callback() and dozer rx callback() functions are triggered by
the radio interrupts if a message is successfully sent or received. If the send or
receive times out a timeout interrupt occurs and the dozer timeout() function
gets called.

4.5.1 Rx Callback

The dozer rx callback() function first checks the destination field in the message
header. If the message is not for this node it continues listening.

Another field of the message header is used to request an acknowledgment for the
message. This field is also checked and the acknowledgment is sent if requested.
If an acknowledgment is received it gets passed to the handle ack() function of
the dozer radio admin file.

If the message is for this node and no acknowledgment is requested the message
is forwarded to the dozer rx done() function of the dozer radio admin file.

4.5.2 Tx Callback

The dozer tx callback calls the dozer tx done() function of the dozer radio admin
file, except when an acknowledgment was sent. In this case the dozer rx done()
function gets called with the message that requested the acknowledgment.

4.5.3 Radio Timeouts

For most of the receive and all send commands a timeout is also given. The
timeout is passed on to the radio, which then triggers an interrupt if the message
could not be sent or no message was received before the timeout. The radio
timeout timer runs with a 64 kHz clock leading to a resolution of 15.625 us.
The current implementation however only uses millisecond precision for radio
timeouts.

The receive timeout sometimes does not trigger an interrupt. If this happens the
state machine can get stuck in one state. To prevent this an additional timer
gets started at the beginning of a receive command. In case the interrupt does
not occur the timer will fire and call the timeout callback.

4. Implementation 17

4.5.4 Addressing

The radio offers to filter incoming messages by their address. To use this feature
a configuration register needs to be set and the filtering address to be specified.
Unfortunately this did not work, as the radio still passed on all received messages,
even if the address was wrong, or the message was received with a CRC error.
In the end an address field was added to the dozer message, that gets checked
in the receive callback function.

4.5.5 Channel Activity Detection

The radio has the ability to get the RSSI value any time, when it is listening.
Measuring the RSSI only once after the beacon sending, as it is done in TinyOS,
was not enough to get a good result for the channel activity. The node now
listens for some milliseconds and checks the RSSI again and again. If it once is
larger then the predefined threshold, it is assumed that there is activity on the
channel. Unfortunately this consumes more energy as the radio needs to be in
receive mode, while checking the RSSI value. But as the RSSI values measured
are not what was expected in terms of difference between a busy and a free
channel, this was the method with a better success.

At the end of the thesis it was detected, that the unexpected behaviour may be
caused by a too low transmit power. For higher transmit powers it should be
possible to perform a single RSSI snif as in the TinyOS implementation.

4.6 Timers

The TinyOS implementation makes heavy use of timers. The microcontroller on
the new board however did not have so many independent hardware compare
registers. On the other hand some compare registers were only 16 bit wide. As
a clock in the MHz regime should be used, to allow for very precise timings, this
was not enough. It would have been possible to chain timers to build a 32 bit
timer out of two 16 bit ones, but in the end it anyway was not possible to map
all needed timers to a compare register. The solution to this problem was the
implementation of a timer queue.

4.6.1 Timer Queue

The timer queue allows to have multiple timers running concurrently, while only
using one hardware compare register. All the timestamps when a timer should
fire are stored in a sorted queue. Additionally to the timestamp the queue entry
also contains the timer name and a pointer to a callback function. The name

4. Implementation 18

is used to be able to stop a timer without having to know the timestamp. The
different possible timer names are declared in the timer queue.h file. The callback
function is triggered when the corresponding timestamp is reached. The current
entry then is discarded and the compare register is reloaded with the next value
from the queue.

If the next value has already passed, the callback nevertheless gets executed and
the timer advances to the next timestamp. This could happen if a timer with
an already passed timestamp gets inserted, or if two timestamps are too close to
each other. The callback then is a bit too late but gets executed to prevent the
protocol from getting stuck.

As the queue should be as simple as possible, to reduce time overhead after firing,
there is no check if a timer has already been inserted into the queue. It would
therefore be possible to have multiple timers with the same name in the queue.
In the current Dozer implementation it has been taken care to only insert one
timer with the same name at any time. If there would be multiple timers with
the same name in the queue, that would be no problem, except if a timer should
be stopped. In the case of a stop call, the queue gets traversed until the timer
with the specified name is found. It then gets removed and the function returns.
This means that only the one with the smallest timestamp gets removed.

Chapter 5

Evaluation

5.1 Test Configuration

For the test a function which generated data messages was included. Each mes-
sage was marked with the node ID and a sequence number. The function was
called each interval and generated ten messages each time. With an interval
length of 10 s this gives an average of one message per second.

5.2 Evaluation Board

Most of the time during this thesis the code was tested on the evaluation board.
The test setup contained three boards plugged in to the same PC and lying on
the same desk. To simulate a multi-hop network topology the address control
mechanism was slightly adjusted. The sink and one other node ignored messages
from each other and continued receiving as if nothing happened. This resulted
in a linear topology of the three nodes.

With only this three nodes the protocol performed very good. In the case that
two nodes directly connected to the sink, all messages arrived at the sink and
the topology was stable.
For the multihop configuration the topology was not perfectly stable, which was
because of the fact that all nodes received all messages, leading to collisions and
data misses.

5.3 Flocklab

At the end of the thesis one bigger successful test over one hour was possible
on Flocklab. Seven nodes were included, four of them connected directly to the
sink, two had to connect to another node. This led to a maximum of one hop.
More would have been preferable but the reach of the nodes was so good, that
it was difficult to generate more hops.

19

5. Evaluation 20

Table 5.1 shows the number of messages that arrived at the sink / node 3. The
nodes 20, 23, 25 and 32 were directly connected to the sink, nodes 7 and 11 over
one additional hop. The main reason, that packages did not arrive at the sink,
was that a node was not connected for a longer time and its data queue was full.
So it had to throw away messages. The results are not very good but 1 hour is
also not a very long time for dozer to stabilize its topology. Especially node 11
reconnected multiple times to different nodes. Nodes that were stable connected
to the sink as 20 and 23 achieved a very high data arrival rate.

Origin Number of messages
7 1950

11 108
20 3529
23 3428
25 2352
32 1896

Table 5.1: Number of messages per node that arrived at the sink.

Chapter 6

Conclusion

The Dozer data gathering protocol has proven to be very energy efficient. It is
already in use in various test sites and it should be possible to also use it in the
feature. To achieve this, Dozer has been implemented on a new dual processor
platform during this thesis. The concepts have been ported from the previous
TinyOS implemenation.

The version running on the new platform includes the connection, topology con-
trol and data gathering parts. Additional features as for example the ability to
send commands to the nodes, or the gathering of status information can be built
on top of the current version.

Unfortunately there was not enough time to repeatedly test the protocol on
Flocklab. The testing that could be done in the end of the thesis showed that
the implementation works, but it needs to be tuned to the new platform and
some bugs may still exist. It is very important to extensively test the code on
Flocklab, to be able to adapt all timing calculations to the platform and remove
the last problems of the implementation.

21

Chapter 7

Future Work

7.1 Testing

Unfortunately the new communication board was only integrated into the Flock-
lab testbed [11] at the end of this thesis. This did allow to run the code in a
larger topology, to fix some bugs, but time was to short to really test it. It would
be very important to extensively test the implementation on Flocklab. It may
be that the code works fine for smaller set-ups and shorter time, but fails after
some time or with more nodes involved.

7.2 Timing

As the timers now run with a 8 MHz clock, the timings can be much more
accurate. A next step would be to measure and exhaust the guard times used.
Until now the timings have been adopted from the TinyOS implementation,
which only uses 32 kHz timers. It should be possible to decrease the radio duty
cicle by leveraging the faster timers.

7.3 LoRa Modulation

The communication board used for this thesis was also developed to look into
the LoRa modulation. The switch from FSK to LoRa is not that complex.
There are a few radio configuration registers, that need to be set correctly. The
configuration functions are the same as currently used for the FSK modulation,
only the parameters need to be changed.

The RSSI check done after sending the beacon could be a problem, as the LoRa
modulation has a very low SNR. The radio features a channel activity detection
mode specially for the LoRa modulation, which could be used instead.

To decide which modulation or even frequency to use at runtime, would be

22

7. Future Work 23

another idea. This is a challenging task for which the possibilities need to be
explored first.

7.4 Channel Activity Detection

In some last tests it was possible to do the activity detection with only a single
RSSI sniff. The reason why it was not stable before is, that the transmit power
was to low. As there was no time left to test it, the final version is still with a
longer sniff time. To make the single sniff more reliable adding some payload to
the activation frame would be the way to go.

Appendix A

How to use

The code can be found in [12]. To get it running on the new platform or the
development kit please refer to [13].

A.1 Serial Outputs

There are several serial outputs that should help debugging. They have different
priorities. The function dozer print() in the file dozer utils checks the priority
and prints the string. The most important outputs, which are enabled at the
end of this thesis, are all state changes in the bootstrap and radio administration
state machines, the sending and receiving of data messages, the last sequence
number of generated data messages and the outputs if failures occur. The sink
does not generate data, it instead prints and deletes all the messages in its data
queue. Fig. A.1 and Fig. A.3 show the connection and data sending between two
nodes. The ubuf stands for ’used buffers’ and if the sink has some messages in
the queue it will print them afterwards, as in Fig. A.2.

1

A. How to use 2

Figure A.1: Console output of the sink.

A. How to use 3

Figure A.2: Sink print off the messages in the queue.

A. How to use 4

Figure A.3: Console output of a node connected to the sink.

Appendix B

Task Description

5

 Seite 1/3

Computer Engineering and Networks Lab

ETZ G 75

CH-8092 Zurich

Dr. Jan Beutel

Gloriastr. 35

+41-44-6327032

+41-44-6321035

beutel@tik.ee.ethz.ch

www.tik.ee.ethz.ch/~beutel

Semester Thesis Project
For

Michael Keller

Supervisor: Jan Beutel, Roman Trueb, Reto Da Forno

Start Date: June 18, 2018
Initial Presentation Date: June 18, 2018

Final Presentation Date (tentative): July 25, 2018
End Date: August 3, 2018

LORA-based Data Collection on DPP

The PermaSense project develops, deploys and operates wireless sensing systems customized
for long-term autonomous operation in high-mountain environments. Around this central

element, we develop concepts, methods and tools to investigate and to quantify the connection

between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics.

t

In this thesis project we aim at implementing a port of the Dozer [7] data collection protocol for
the 3rd generation Dual Processor Platform (FLORA DPP) currently being developed. This
platform is based on a recently released long-range, low-power, sub-GHz RF transceiver by
Semtech (SX1262) and an ARM processor. The SX1262 transceiver incorporate different
modulation modes (LoRa, (G)FSK, OOK) and an extremely high link budget at a very low power
consumption (~4mA RX mode). In this project we first want to develop a basic data collection
functionality based on the existing TinyNode/TinyOS implementation of Dozer using a statically
set modulation mode. In a further step it is the possible to explore other modulation options
and/or modifications to Dozer such as adaptive slot lengths, bidirectional data transfers etc.

Semester Thesis Project LORA-based Data Collection on DPP

 Seite 2/3

The first part of this work will be based on the existing TinyOS/TinyNode implementation of
Dozer and leverage the basic software support for the FORA DPP platform developed in a
parallel thesis project by Markus Wegmann. For this second step it will be necessary to profile
the network wide system behavior using our FlockLab testbed. Additionally, an ongoing thesis
project by Jonathan Candel, comparing Glossy and Dozer performance based on models and
experimental evaluation on the FlockLab testbed may be a valuable resource.

The driving application scenario is drawn from our ongoing work in environmental sensing using
standard constant data rate sensors, GPS sensors and specifically the geophone sensing
platform developed in a project by Akos Pasztor.

Thesis Project Assignment

 Formulate a time schedule and milestones for the project (duration 7 weeks). Discuss
and approve this time schedule with your supervisor.

 Familiarize yourself with relevant past works within the project and the significant
literature in the field. Search for new approaches and examine which concepts and new
components could be of use here. Position your work within this context.

 Develop and implement a basic data collection system based on the current
TinyOS/TinyNode implementation of Dozer on the FLORA DPP platform based on a static
parameter configuration.

 Characterize the performance of this prototype in a suitable test setup.

 Perform extensive performance testing using our in-house FlockLab testbed.

 Optional: Explore different dynamic extensions such as adaptive slot length,
bidirectional data transfer etc.

 Document your project with a written report, a short initial presentation, a final
presentation and if applicable a demonstration of the prototype. As a guideline, your
documentation should be as thorough to allow a follow-up project to build upon your
work, understand your design decisions taken as well as recreate the experimental
results.

Project Organization

General Requirements

 The project progress shall be regularly monitored using your time schedule and
milestones. Unforeseen problems may require adjustments to the planned schedule and
milestones. Discuss such issues openly and timely with your supervisor.

 Use the work environment and IT infrastructure provided with care. The general rules of
ETH Zurich (BOT) apply. In case of problems, contact your supervisor.

 Discuss your work progress regularly with your supervisor. In excess to such meetings, a
short weekly status email to your supervisors is required containing your current
progress, problems encountered and next steps.

Handing In

Semester Thesis Project LORA-based Data Collection on DPP

 Seite 3/3

 Hand in two paper copies as well as a single PDF file of your project report including the
signed plagiarism statement.

 Clean up your digital data in a clear and documented structure using the GitLab
repository provided.

References:
[1] https://www.tec.ee.ethz.ch/education/student-theses/general-information.html

[2] https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-
abschluesse/leistungskontrollen/declaration-originality.pdf

[4] Jan Beutel, Stephan Gruber, Andreas Hasler, Roman Lim, Andreas Meier, Christian Plessl, Igor
Talzi, Lothar Thiele, Christian Tschudin, Matthias Woehrle and Mustafa Yuecel: PermaDAQ: A
Scientific Instrument for Precision Sensing and Data Recovery under Extreme Conditions.
Proceedings of the 8th International Conference on Information Processing in Sensor Networks
(IPSN), p. 265-276, April 2009.

[5] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell, Georgia
Giannopoulou, Federico Ferrari, Jan Beutel and Lothar Thiele: Bolt: A Stateful Processor
Interconnect. Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2015), Seoul, South Korea, p. 267-280, November 2015.

[6] R. Lim et al: FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. Proc. IPSN/SPOTS 2013.

[7] Nicolas Burri, Pascal von Rickenbach and Roger Wattenhofer: Dozer: Ultra-Low Power Data
Gathering in Sensor Networks. International Conference on Information Processing in Sensor
Networks (IPSN), Cambridge, Massachusetts, USA, April 2007.

Bibliography

[1] “Permasense,” accessed July, 2018. [Online]. Available: www.permasense.ch

[2] “Dozer: ultra-low power data gathering in sensor networks,” accessed July,
2018. [Online]. Available: https://dl.acm.org/citation.cfm?id=1236417

[3] “TinyOS,” accessed July, 2018. [Online]. Available: www.tinyos.net

[4] “Master thesis markus wegmann,” accessed July, 2018. [Online]. Available:
https://gitlab.ethz.ch/tec/students/projects/2018/ma mwegmann

[5] Semtech. (2015, May) LoRaTM Modulation Basics. Document Version
2. [Online]. Available: https://www.semtech.com/uploads/documents/
an1200.22.pdf

[6] “Bolt: A Stateful Processor Interconnect,” accessed July, 2018. [Online].
Available: https://dl.acm.org/citation.cfm?id=2809706

[7] “Stm32l443ccu microcontroller,” accessed July, 2018. [Online]. Available:
https://www.st.com/content/st com/en/products/microcontrollers/
stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/
stm32l4-series/stm32l4x3/stm32l443cc.html

[8] “Semtech sx1262 transceiver,” accessed July, 2018. [Online]. Available:
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262

[9] “Nucleo-l476rg board,” accessed July, 2018. [Online]. Available:
https://www.st.com/content/st com/en/products/evaluation-tools/
product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/
stm32-mcu-nucleo/nucleo-l476rg.html#quickview-scroll

[10] “Stm32l476rg microcontroller,” accessed July, 2018. [Online]. Available:
https://www.st.com/content/st com/en/products/microcontrollers/
stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/
stm32l4-series/stm32l4x6/stm32l476rg.html

[11] “Flocklab,” accessed July, 2018. [Online]. Available: https://gitlab.ethz.
ch/tec/public/flocklab/

[12] “Code repository,” accessed July, 2018. [Online]. Available: https:
//gitlab.ethz.ch/tec/research/dpp/com boards/dpp2 lora

9

www.permasense.ch
https://dl.acm.org/citation.cfm?id=1236417
www.tinyos.net
https://gitlab.ethz.ch/tec/students/projects/2018/ma_mwegmann
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://dl.acm.org/citation.cfm?id=2809706
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x3/stm32l443cc.html
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x3/stm32l443cc.html
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x3/stm32l443cc.html
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html#quickview-scroll
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html#quickview-scroll
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-l476rg.html#quickview-scroll
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l4-series/stm32l4x6/stm32l476rg.html
https://gitlab.ethz.ch/tec/public/flocklab/
https://gitlab.ethz.ch/tec/public/flocklab/
https://gitlab.ethz.ch/tec/research/dpp/com_boards/dpp2_lora
https://gitlab.ethz.ch/tec/research/dpp/com_boards/dpp2_lora

Bibliography 10

[13] “Dpp2 lora: Getting started,” accessed July, 2018. [On-
line]. Available: https://gitlab.ethz.ch/tec/research/dpp/com boards/
dpp2 lora/wikis/home

https://gitlab.ethz.ch/tec/research/dpp/com_boards/dpp2_lora/wikis/home
https://gitlab.ethz.ch/tec/research/dpp/com_boards/dpp2_lora/wikis/home

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Climate Change and Natural Hazards
	1.2 Permasense
	1.3 Sensor Networks
	1.3.1 Data Gathering

	1.4 Goals

	2 Background
	2.1 Related Work
	2.2 Dual Processor Platform
	2.3 Communication Board
	2.3.1 LoRa Modulation

	2.4 Evaluation Board

	3 Dozer
	3.1 Overview
	3.2 Bootstrapping Phase
	3.3 Connection Phase
	3.4 Normal Operation / Data Sending
	3.5 Topology Control

	4 Implementation
	4.1 Message Types
	4.1.1 Dozer Message
	4.1.2 Header
	4.1.3 Payload

	4.2 File Overview
	4.3 Topology Control
	4.3.1 Bootstrap
	4.3.2 Connection
	4.3.3 Data Sending

	4.4 Radio Administration
	4.5 Radio Specifics
	4.5.1 Rx Callback
	4.5.2 Tx Callback
	4.5.3 Radio Timeouts
	4.5.4 Addressing
	4.5.5 Channel Activity Detection

	4.6 Timers
	4.6.1 Timer Queue

	5 Evaluation
	5.1 Test Configuration
	5.2 Evaluation Board
	5.3 Flocklab

	6 Conclusion
	7 Future Work
	7.1 Testing
	7.2 Timing
	7.3 LoRa Modulation
	7.4 Channel Activity Detection

	A How to use
	A.1 Serial Outputs

	B Task Description
	Bibliography

