
Distributed

 Computing

Student Democracy with Blockchain
Bachelor’s Thesis

Kaan Sentürk

skaan@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Darya Melnyk, Tejaswi Nadahalli

Prof. Dr. Roger Wattenhofer

March 17, 2019

Acknowledgements

First I want to thank my supervisors Darya Melnyk and Tejaswi Nadahalli for
the opportunity to work on this Bachelor’s Thesis in the Distributed Computing
Group at ETH Zurich. With their support and guidance during my work, I
learned a lot regarding e-voting protocols and blockchain technology.

i

Abstract

With the increasing importance of elections, new innovations like blockchain
technology are analyzed and evaluated for improving our existing voting pro-
cesses. For this purpose we implemented three protocols with HyperLedger Fab-
ric (HLF), a framework for creating custom blockchain networks.

In this thesis we first give a brief introduction into e-voting and blockchain
technology. Then we dive into our adapted implementation of the Open Vote
Network (OVNet), which is a decentralised and self-tallying voting protocol for
small boardroom elections. An application of this protocol was already published
as a smart contract on the Ethereum public blockchain and is now adapted to a
permissioned blockchain.

In the second part we cover a voting protocol for national scale elections,
where we build an improved application of the homomorphic voting system pro-
posed in B.Colin’s thesis [1], which used the blockchain only as an immutable
database to store the hashed voting data. The basis for his work was the multi-
authority election scheme by Cramer et al. [2]. We propose that we use the
network’s consensus mechanism to also leverage the execution of the protocol
itself by defining transactions for each operation of the protocol.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related work 2

3 Preliminaries 3

3.1 E-Voting . 3

3.2 Blockchain . 4

3.3 Transaction Processing . 5

3.4 Smart Contracts and Chain Code 6

3.5 Public blockhains vs. Permissioned blockchains 6

3.6 HyperLedger Fabric . 7

4 Open Vote Network 9

4.1 Preliminaries . 9

4.1.1 ElGamal encryption . 9

4.1.2 Schnorr proof . 10

4.2 Protocol . 11

4.3 Implementation . 12

4.3.1 Assets . 12

4.3.2 Transactions . 13

4.4 Conclusion . 14

5 Homomorphic Voting 15

5.1 Preliminaries . 15

5.1.1 Shamir’s Secret Sharing 16

iii

Contents iv

5.1.2 Pedersen Distributed Key Generation 16

5.1.3 Partial threshold decryption 18

5.2 Protocol . 18

5.3 Implementation . 20

5.3.1 Assets . 20

5.3.2 Transactions . 23

6 Conclusion 26

6.1 Future Work . 26

Bibliography 28

Chapter 1

Introduction

Democracy is a system where people exercise power by voting. The strength of
such a system depends heavily on the trust set into the election process. Citizens
are present when filing out their ballot, but what happens with a ballot after the
vote has been cast? Often citizens just assume that the voting process is safe and
that everything works correctly in postal votings. To make sure that the voting
process is correct, engineers all over the world have been publishing papers of
new voting protocols that guarantee some degree of safety against corruption.
Nevertheless, there is still no single best solution yet. A part of this problem is
due to voting protocols solving different challenges and therefore having different
requirements. Homomorhpic systems for example have the downside that a lot
of non-interactive zero knowlege proofs are necessary to prove correctness, while
e-voting protocols based on mix-net are centralized and depend on the election
authorities.

And with the introduction of Bitcoin [3], there is now a new innovation to
explore. An innovation that removes power from central authorities and dis-
tributes it among multiple peers. This leads to new protocols and new ways
for improvement regarding distributed execution being discovered. A key in-
terest of this thesis is finding and improving multiple protocols with this new
blockchain technology such that we can make new assumptions about the useful-
ness of blockchains in e-voting.

In this thesis we focus on two protocols that already have their implemen-
tations and improve them by using blockchains. In the first part we adapt the
Open Vote Network (OVNet), which was already designed for a public blockchain,
and enhance its access control by using permissioned blockchains. In the second
part we develop two similar protocols, that are thoroughly studied but do not
have their application in a permissioned blockchain yet. The second part builds
upon the work of Berner [1], who proposed a protocol using blockchain as an
immutable hashed copy of voting data. We go a step further and integrate the
whole execution of the protocol into the blockchain.

1

Chapter 2

Related work

A basis for the Open Vote Network (OVNet) was first proposed by by Hao et
al. [4] called two-round anonymous veto protocol, which was significantly more
efficient in terms of number of rounds and computational cost compared to related
work. With the OVNet provided by [5], the protocol got integrated into the
Ethereum public blockchain. With this thesis we improve this protocol regarding
security and privacy by restricting access to the peer-to-peer network and by
hiding transactions and private state variables, which would be publicly readable
in public blockchains.

The implementation mentioned above is just one out of the several applica-
tions on Ethereum. To mention a few, there is PLCRVoting [6], which uses ERC20
tokens in their smart contracts to carry out the election, and there is PublicVotes
[7], which is a publicly verifiable e-voting contract. Other implementation that
use a similar tallying like the OVNet, but build upon other blockchain technolo-
gies are VotoSocial [8] and Follow My Vote [9], which also uses an ellyptic curve
cryptography like the OVNet implementation from McCorry et al. [5] in differ-
ence to our solution. The WaveVote [10] application for example is even build on
top of the OVNet.

The homomorphic e-voting protocol has already been used with different vari-
ations. An implementation with a public blockchain for example was provided
by Polys [11], which also uses Shamir’s secret sharing [12], but integrates the full
protocol into the blockchain in difference to Berner’s protocol. The difference to
our work is the usage of permissioned blockchain to restrict peers in the network
and shield transaction visibility. Another implementation is the platform build
by Voatz [13], a startup that also used HyperLedger Fabric to carry out elections
based on mix-net systems. There are multiple other applications for mix-net sys-
tems and applications without blockchains less related, which renders a detailed
description of all those solutions out of scope for this related work section.

This thesis mainly focuses on improving two protocols with permissioned
blockchains and therefore is strongly related to the OVNet implementation and
the Homomorphic E-Voting proposed by Berner [1] with the basis of Cramer et
al. [2].

2

Chapter 3

Preliminaries

3.1 E-Voting

E-voting protocols need to solve some difficult challenges, but will essentially
cover an important role in future elections. For this purpose, the e-voting pro-
tocols need to fulfil multiple requirements and properties. We explain some of
the key requirements a voting system needs to cover and some of the less cru-
cial requirements that we also tried to improve during the implementation of our
applications. This list represents only properties that we have focused on and
should not be considered complete.

Authenticity Only voters that are eligible to vote can cast their votes. Multiple
votes from a voter and a change of an already cast vote is prohibited.
This requirement is fulfilled with access control of participants and protocol
implementation.

Correctness The result of the tally represents the result that the voters voted
for. All cast votes are counted and no single vote has been modified after
being cast. This requirement is fulfilled with immutability of processed
data, queries and transactions that fetch all cast votes and tally the result
again.

Privacy The cast votes of all voters are unknown for authorities and the remain-
ing voters. This requirement is fulfilled with encryption and permissioned
encapsulation of voting data.

Auditing Voters can verify the result of a voting and verify the correct execution
of the protocol. Voters therefore are able to verify the correct handling of
cast votes. This requirement is fulfilled with zero knowledge proofs and
queries of the voting data.

Decentralization Through a decentralized protocol the failure of a system by
a single authority is prevented. The execution of the protocol is handled
by multiple authorities and voters. This requirement is fulfilled with the

3

3. Preliminaries 4

usage of blockchain technology that distributes the trust and execution of
the protocol to multiple peers in a network.

Robustness The system is robust against corruption and external attackers.
The fulfillment of this requirement is improved with access control for par-
ticipation in the network and parameter and error handling of issued trans-
actions.

Simplicity The simplicity covers the understanding of the implementation and
user experience of the election system. The fulfillment of this requirement is
improved with reducing the necessary interactions for voters and decoupling
different phases of the protocol into smaller and simpler phases.

For a deeper introduction into these requirements the Semester thesis of
B.Collin [1] and the requirement set for the protocol specifications in CHVote
[14] are good starting points.

3.2 Blockchain

We define the properties of a blockchain and describe some important concepts to
justify our intention of using HyperLedger Fabric to develop these applications.

A blockchain in its simplest form can be seen as a decentralized immutable
database, managed by a peer-to-peer network. The nodes in the network agree
on the state of the database through distributed consensus mechanisms. The
blockchain is built by coupling multiple transactions into a block and then con-
necting new blocks of transactions in a sequence or chain. Starting at an initial
block, an immutable (append-only) history of transactions is maintained.

The first published blockchain was Bitcoin [3], which is a decentralized finan-
cial ledger, whose main purpose was to replace the role of a central authority in
maintaining financial ledgers by storing transactions. Transactions in Bitcoin are
transfers of value between Bitcoin addresses. A user that owns such an address,
has a private key, which is used for signing new transactions with a signature and
in this way providing a cryptographic proof of the ownership of the address. The
ledger keeps track of all transactions ever issued and allows network clients to
validate each transaction and ensuring that the spent balance is actually owned
by the sender address.

Each block in the Bitcoin blockchain contains in its header a timestamp, a
block number, transaction data, a cryptographic hash depending on the blocks
content and a reference to the previous block hash located in Figure 3.1 inside
the meta data container. Multiple blocks are chained together with references
to previous blocks. By following the transactions in the blockchain, users can
calculate the balance possessed by a specific address. Through the cryptographic

3. Preliminaries 5

Figure 3.1: Simplified model of a blockchain with blocks and its contents

linking of blocks with block hashs, a blockchain is resistant to modifications of
historical data. A change in the content of a previous block that is already
minded and processed, would lead to a new block hash in the previous block and
therefore invalidate reference to the previous block in the current block.

3.3 Transaction Processing

In general a transaction represents a change of assets. A user issues a transaction
that is signed with the private key of the address and then put into a transaction
pool. Miners then confirm the transactions and include them in the block chain
by solving a difficult problem in the distributed consensus algorithms (e.g. Proof
of Work, Proof of Stake, ...). To process this transaction, a fraction of the
transferred amount is marked as reward for processing to create an incentive
for miners. As soon as a miner solves the task for a block, the created block
with a proof of its validity is published among the peers. Since multiple miners
can solve the problem at the same time for the next block, different blocks may
get appended to the locally stored blockchain. Normally the first peer solving
the task will have more time to distribute its block among the peers. This
leads to inconsistency on the state of the blockchain between the peers in the
network, which is solved by accepting the chain with the longest sequence of
blocks. Transactions not being processed by the accepted blocks are placed back
to the transaction pool.

It is important here to note that existing data can be modified by using a
new transaction, but past transactions cannot be modified. This immutability
feature of the blockchain technology could already enhance e-voting protocols by
storing voting data that should not be modified. Nevertheless in this state the
infrastructure still lacks important requirements. Because Bitcoin only supports

3. Preliminaries 6

transactions that transfer asset value, it is hard to abstract the voting data with
balances and asset value. On top of that, other requirements like authenticity,
privacy, and verifiability are also neglected.

3.4 Smart Contracts and Chain Code

Fortunately, the innovation with blockchain did not stop with cryptocurrencies.
A few new architectures were build that supported not only transfers of assets
but also enabled the execution of code. Ethereum for example extended its
functionality with a concept called smart contracts [15]. A smart contract is like
a regular address with a balance. In addition, smart contracts also have storage
for state variables and executable code (Chain Code). Users can invoke chain
code, which then can update state variables or issue new transactions on behalf
of the smart contract.

With this feature of a blockchain, we are already able to solve more problems
regarding e-voting protocols including the key requirements of authenticity, pri-
vacy and verifiability. Since chain code is written in Turing-complete language,
we can execute the protocol by issuing transactions and invoking chain code. The
data structure for voting data is not restricted to cryptocurrencies anymore, since
state variables for different parameters of the voting protocol can be defined.

3.5 Public blockhains vs. Permissioned blockchains

In a public blockchain anyone with the correct software can participate in the
network. This makes sense, since currencies aim to be universal. The problem is
that for some applications including e-voting, a public blockchain comes with a
few limitations:

Security: Allowing everyone access to the network exposes additional risk. Vul-
nerabilities can be exploited easily, since the chain code of smart contracts
is publicly available. For particular use cases, it is necessary to allow only
eligible voters to participate in the network.

Privacy: Public blockchains are transparent and transactions are visible for
anyone in the network. This can lead to knowledge about certain actions
of voters like the participation in a particular voting.

Poor performance and Scalability: Consensus mechanisms for public
blockchains are very expensive, since all transactions are processed on all
nodes in the network. The throughput is low and the scalability is very re-
stricted. In a country with millions of voters, the validation of transaction
in a national scale election could already be impossible.

3. Preliminaries 7

Cost: To process pending transactions an incentive system for miners is cre-
ated in public blockchains such that a transaction fee is due on correct
mining of a block. This can lead to high fees on applications with high
transaction volumes like in e-voting protocols.

Because of these limitations, companies have developed new blockchain archi-
tectures that trade openness for privacy and security and in this way leverage the
usage of blockchain technology for custom applications. One of these architec-
tures are permissioned blockchains, where nodes need permission to participate in
the network. Transactions and assets have access control for CRUD operations.
This leads to participants being authenticated parties. For some e-voting proto-
cols this makes sense, since voters are verified if they are eligible to participate in
an election. Therefore the security and privacy of such blockchain applications
is increased with permissioned blockchains.

Another advantage of permissioned blockchains is that different consensus
protocols can be used due to the number of nodes being limited and known.
Protocols like Practical Byzantine Fault Tolerance [16] can be used to increase
performance and reduce cost. Furthermore, incentivized miners are not needed
to maintain the network, since voting authorities and voters that build a con-
sortium have an interest in executing the voting protocol and therefore making
cryptocurrencies and transaction fees inutile.

3.6 HyperLedger Fabric

HyperLedger Fabric (HLF) is one of the best known frameworks for creating such
custom permissioned blockchains. The modular architecture of HLF provides
developers a way to customize consensus mechanisms and membership services.
We can customize the architecture of the blockchain to our needs and handle
access control for participants in our network very efficiently. Another strength of
HLF is that developers can define their own transactions and specify the visibility
of those transactions in different channels for different participants connecting to
peers of the network.

The organizations in the consortium that build the HLF network are called
members and those members setup their peers to participate in the network.
Peers are identities that are created with a HLF component called Certificate
Authority that creates cryptographic signatures. Peers inside a member orga-
nization are organized in channels and receive transaction requests from clients
inside this channel. Those requests are then delegated to other peers and dis-
tributed in the network. All peers maintain one ledger per subscribed channel and
handle different functions in the consensus mechanism of the distributed ledger
technology (DLT). Unlike public blockchains, the members can setup different

3. Preliminaries 8

type of peers that have different roles. The possible peer types and their main
roles are listed below:

Endorser peer:

• receives and validates transaction requests from clients

• executes chain code and simulates result of transaction without up-
dating the ledger

Anchor peer

• receives updates from orderer peers

• distributes updates to all other peers

Orderer peer

• central communication channel for network

• validates result of chain code execution and updates ledger in a channel

• distributes updates

Altough it would be possible to scale the network and create multiple mem-
bers with multiple peers and different roles, we did not focus on the scalability
but on the proof of concept of the voting protocols. In a real life scenario we could
build a network, where we setup endorser peers and anchor peers for every local
community and combine multiple local communities in a region with channels.
One Orderer peer per regional communities could then be assigned for distribut-
ing updates in a national scale. Other possibilities of building good networks
and a detailed explanation of all components can be found in the introduction to
HyperLedger Fabric docs [17].

Chapter 4

Open Vote Network

The Open Vote Network [5] is a decentralized and self-tallying voting protocol.
It is suitable for smaller boardroom elections and has been developed such that
the protocol execution can be implemented in smart contracts. In general, the
participants of a boardroom election are publicly known and the scale is limited.
The initial implementation was published as smart contract for Ethereum [15].
The main strength of the Open Vote Network lies in the independence of a single
authority when calculating the tally of the election, since the tally is decrypted by
the voters themselves. Instead of trusting a single server architecture to provide
the correct protocol for the election, it relies on the distributed consensus mech-
anism of the Ethereum blockchain. Due to public blockchains having limitations
like security, privacy and cost like described in the preliminaries, we decided to
use HyperLedger Fabric (HLF) to create a custom permissioned blockchain.

4.1 Preliminaries

In this section, we assume that for two primes p, q with p = 2q− 1, a finite cyclic
group Gp of prime order p and a generator g are given.

4.1.1 ElGamal encryption

The ElGamal encryption [18] is a public-key encryption that builds upon the
Diffie-Hellman key exchange [19, 20]. The ElGamal encryption contains three
steps.

Key encryption We choose a random private key s ∈ {1, . . . q}. The public
key is then determined with the generator and published publicly.

h = gs

9

4. Open Vote Network 10

Encryption The encrypted ciphertext c of a message m consists of the pair
(x, y). The message m must be an element of the finite cyclic group Gp. First,
the sender chooses a random value r ∈ [0, q − 1] and determines the encrypted
parameters.

• x = gr mod p

• y = m · hr mod p

Resulting in the ciphertext c = (x, y)

Decryption For the decryption we then can determine the message m with
the private key s as follows

m =
y

xs
mod p

The correctness of the equation follows by substituting

y = m · hr mod p = m · (gs)r mod p

m = m · gsr · (grs)−1 mod p

4.1.2 Schnorr proof

The Schnorr proof [21] is a proof of knowledge for discrete logarithms in a finite
cyclic group Gp with a generator g. The proof can be made non-interactive via
the Fiat-Shamir heuristic.

Protocol To prove the knowledge of s = logg h the prover executes following
protocol:

1. the prover chooses random value r ∈ Gp and sends t = gr to the verifier

2. the verifier replies with a random challenge c ∈ Gp

3. the prover calculates x = r + cs and sends the response x to the verifier

The verifier validates the proof if gx = thc

4. Open Vote Network 11

Fiat-Shamir Heuristic The Fiat-Shamir heuristic [22] is a technique for mak-
ing interactive zero knowledge proofs non-interactive by choosing a cryptographic
hash for the challenge in proof of knowledge. The Schnorr proof gets altered to
following protocol to make it non-interactive:

To prove the knowledge of s = logg h the prover executes following protocol:

1. the prover chooses random value r ∈ Gp and sends t = gr to the verifier

2. the prover chooses c = H(g, h, t), where H() is a hash function

3. the prover calculates x = r + cs and sends the response x to the verifier

The verifier validates the proof if gx = thc

4.2 Protocol

The Open Vote Network is a two-round protocol for voters with an optional third
round for vote commitment. In the first round, all voters sign up for a particular
voting instance and present their intention to participate in the election. In the
second round, the voters broadcast their votes. With the self-tallying property of
the protocol, every voter is able to tally the result of the election by themselves.

Setup For the election a finite cyclic group Gp of prime order p and a generator
g ∈ Gp is specified by an authority or distributed by n voters. A list of eligible
voters (P1, P2, . . . , Pn) is established and each voter Pi selects a private key xi ∈R
Zq. The ZKP (xi) is a Schnorr proof made non-interactive with thie Fiat-Shamir
heuristic like explained in the preliminaries.

Round 1 / Sign up Every voter Pi broadcasts his voting key gxi to the bulletin
board together with a zero-knowledge-proof ZKP (xi) to prove the knowledge of
a secret key. At the end of the sign up phase all voters validate the zero knowledge
proofs of the other voters and compute a list of reconstruction keys:

Yi =

i−1∏
j=1

gxj/

n∏
i+1

gxj

By setting Yi = gyi , we can ensure that
∑

i xiyi = 0.

Round 2 / Voting: Every voter broadcast their vote gxiyigvi , where vi ∈
{0, 1}, and a one-out-of-two zero knowledge proof to show a valid vote vi with
the Cramer, Damgard and Schoenmakers (CDS) [23] technique.

4. Open Vote Network 12

Tallying: All zero knowledge proofs are then verified and the tally is computed
homomorphically with

∏
i g
xiyigvi . Since

∏
i g
xiyi = 1, we can calculate the result

with the discrete logarithm of g
∑

i vi . The discrete logarithm is bounded by the
number of voters and thus easily solvable.

For the tally to be computed correctly and the election to succeed, it is
necessary that all voters who sign up for the election, cast a vote in the voting
phase. Note that the last voter who casts his vote could calculate the tally and
its result before publishing his vote. This problem is tackled with an additional
round, where voters commit to their vote.

4.3 Implementation

To adapt the Open Vote Network to the HyperLedger Fabric framework, we
implemented the protocol by defining the assets that are stored in the distributed
ledger and the transactions that change these assets.

4.3.1 Assets

In a financial ledger we have a transfer as an asset and the transfered amount as
a field in the asset. Similarly we create assets for a voting system by defining the
asset model for the permissioned blockchain.

Participant The participant asset defines a user in our network that is con-
nected to a real identity. We differentiate between an AdminParticipant, who
participates as an administrator and therefore can create a voting with eligible
voters, and a VoterParticipant, who can be an eligible voter for some voting asset
instance. Only the identity that has the correct access rights can see and interact
with its participant instance.

participantKey: key of participant instance

Voting The Voting asset is one instance of an election. Only AdminPartici-
pants can create a voting asset. Read and update is enabled also for VoterPar-
ticipants, since voters can calculate the tally by themselves.

votingKey: key of voting instance

state: current phase of the election

whitelist: array of eligible voters

order: order p of the finite cylcig group Gp

4. Open Vote Network 13

gen: generator g in Gp

tally: homomorphic tally of the votes

Voter The Voter asset is one instance connecting a participant to a specific
voting instance. In this way we have a platform that enables the creation of
multiple votings by allowing a participant to have one voter instance per voting if
eligible. The voter asset is publicly readable, but creation and update is restricted
to the identity with the correct assess rights.

voterKey: key of voter instance

publicKey: public key of voter for encrypted messaging

hash: challenge used in ZKP (xi)

sig: signature used in ZKP (xi)

reconstructedKey: key for decryption of tally

vote: encrypted vote

hashedVote: commitment to vote

voting: reference to voting asset

participant: reference to participant asset

4.3.2 Transactions

For the transactions that we want to create, we have a specific flow for the voting
protocol.

CreateVoting: The CreateVoting transaction is straightforward, since the pa-
rameters given with the transaction call are just stored in a new voting asset.
Only AdminParticipant can issue this transaction.

EnableVoter: An additional transaction for adding eligible voters if not al-
ready added during the CreateVoting transaction. Only AdminParticipant can
issue this transaction.

StartSignup: The StartSignup transaction can be issued to update the state
of a voting asset. Before this transaction is issued, the CreateVoter transaction
cannot be issued. Only AdminParticipant can issue this transaction.

4. Open Vote Network 14

CreateVoter: The CreateVoter transaction checks whether the voting asset is
in the SIGNUP state and creates the voter asset with references to the participant
and the voting asset. Only VoterParticipant can issue this transaction.

StartVoting The StartSignup transaction can be issued to update the state of
a voting asset. In this transaction all voters private key is checked for validity with
Schnorr proof explained in the preliminaries section. Before this transaction is
issued, the Vote transaction cannot be issued. Only AdminParticipant can issue
this transaction.

Vote The Vote transaction checks whether the voting asset is in the VOTING
state and updates the voter asset of the participant regarding the specified voting.
Only VoterParticipant can issue this transaction.

StartTallying The StartTallying transaction checks whether all registered vot-
ers have broadcasted their vote and all votes are valid. AdminParticipants and
VoterParticipants can issue this transaction.

There are some additional transactions implemented, two for checking the two
zero knowledge proofs for valid secret keys and valid votes, and one transaction
for computing the tally from the broadcasted votes.

4.4 Conclusion

With the Open Vote Network adapted to HyperLedger Fabric, we provide an
implementation that increases security and privacy through explicit handling
of access control in the blockchain architecture. Additionaly, a permissioned
blockchain lacks the necessity of cryptocurrency payments for transactions or
execution of code, since miners do not need to be to incentivized. Members in
the consortium that have an interest in the execution of the protocol handle the
mining of the transaction by themselves.

The problem with OVNet is the limitation on the number of voters and scal-
ability issues due to necessity that every voter needs to participate in the decryp-
tion phase. This aspect could be improved in a future work. Another point that
could be improved upon are the key parameters used in the protocol. Currently
the standard variable types with 64 bit are used for numbers like the prime order
or the generator. Extending these variables and the transactions to support ar-
ray types would increase the security of the protocol greatly. The focus lied here
mostly on access control and leverage of privacy and usability.

Chapter 5

Homomorphic Voting

The OVNet is limited in its scalability and therefore only suitable for boardroom
elections. To improve and provide different protocols using blockchains, we want
to introduce an alternative implementation building upon Berner’s thesis [1].

The protocol proposed by Berner is a voting system with distributed homo-
morphic encryption and threshold decryption. This allows removing trust from
a single authority while at the same time keeping the protocol scalable regarding
the number of voters. The initial implementation only used the blockchain as
an immutable database to store the hashed voting data. We propose that the
blockchains consensus mechanism can also enforce the execution of the whole
protocol. For this purpose we filtered out the main components of the protocol
and implemented two versions that differ in the key generation for the election
system.

In the first voting system we have a Shamir’s secret sharing [12], where an
independent authority generates a random polynom of grade t, a secret key s
and a public key h for the election. This version uses a different key generation
mechanism than the work of Berner. The protocol is faster since there is no need
for distributed generation of shares. The disadvantage is the trust set in a single
authority and the fact that the private key is known to an authority.

In the second improved version we use Pedersen’s distributed key generation
[24, 25] for generating a random polynom of grade t and shares for the decryption.
In this way the private key is never generated.

5.1 Preliminaries

For this preliminaries section we assume that a finite cyclic group Gp of prime
order p satisfying p = 2q − 1 for another prime q , a generator g, a secret key
s ∈ [0, q − 1] and numbers n, t with t ≤ n is given. The generation of this
parameters is explained later in the protocol section.

15

5. Homomorphic Voting 16

5.1.1 Shamir’s Secret Sharing

The basic idea of Shamir’s Secret sharing [12] is that each point of a polynom
of grade t− 1 can be reconstructed with t random points on this polynom. The
secret key can then be generated at position x = 0 of the polynom. To determine
secure parameters for the encryption system, the values must be chosen such
that the decisional Diffie-Hellman (DDH) [19, 20] assumption is satisfied. To
generating a secret key we proceed as follows:

1. We choose a random polynom s(x) of grade t − 1, where t denotes the
threshold for the minimum number of subkeys necessary to determine the
private key

s(x) = a0 + a1x+ a2x
2 + · · ·+ at−1x

t−1 mod q, 0 ≤ ai < p

2. The private key s equals s(0) and is kept secretly. The public key is pub-
lished to the blockchain.

h = gs mod p

3. For all n decryptors a value xi with i ∈ [1..n] is randomly selected and a
pair (xi, s(xi)) is created. While xi is published publicly, the share s(xi) of
the i-th decryptor is encrypted.

To determine the private key from the shares, we construct the polynom with
lagrange interpolation at x = 0. The lagrange polynom is calculated with the xi
values publicly available for each decryptor:

λi(0) =
k∏

j=1,j 6=i

−xj
xi − xj

mod q

In this equation the product is taken from k decryptors, which needs to be at
least the threshold t to determine the correct private key:

s(0) =

k∑
i=0

s(xi)λi(0) mod q

5.1.2 Pedersen Distributed Key Generation

The Pedersen DKG [24, 25] is a distributed version of Shamir’s Secret Sharing
[12], where each decryptor executes a Shamir’s Secret Sharing. Every decryptor
creates a polynom and shares for the other decryptors.

5. Homomorphic Voting 17

1. Every decryptor Di receives a value xi publicly on the bulletin board with
i ∈ [1..n] and every decryptor Di selects a random polynom of degree t−1.

si(x) = ai0 + ai1x+ ai2x
2 + · · ·+ ait−1x

t−1 mod p

The coefficients aik are kept secret and every decryptor Di sends the value
si(xj) with j = 1, . . . , n encrypted with the signature to the decryptor Dj .

2. Every decryptor Di evaluates hi(x)

hi(x) = gsi(x) mod p = gai0 · gai1∗x · · · · · gait−1x
t−1

mod p

The coefficients hit of hi(x) are then published to the public bulletin board,
where hi0 = gai0 , hi1 = gai1 , . . .

3. Every decryptor Dj validates the hit with the received shares si(xj) and
reports decryptors with invalid provided shares.

hi(xj) = gsi(xj) =

t−1∏
t=0

(hit)
xtj

If a corrupt decryptor Di is reported from multiple decryptors, the param-
eters are reinitialized such that hit = 1, ait = 0 for t ∈ [1..(t − 1)] and
si(xj) = 0 for j ∈ [1..n]

4. The decryptors Di determine their private share.

si =
n∑
j=1

sj(xi) mod p

And every decryptor validates the public key.

h =

n∏
j=1

hj0 mod p

From this part the same last two steps like in the Shamir’s Secret Sharing
can be executed to calculate the lagrange interpolation for the position x = 0.
The disadvantage in this case is that the private key will get generated. Another
option is to prevent this by executing a different protocol and generate only
partial decryption. A protocol that does this is explained next.

5. Homomorphic Voting 18

5.1.3 Partial threshold decryption

We assume to have a ElGamal encrypted message tc(tx, ty)

1. Every decryptor Di takes his share si and generates a subkey wi

wi = txsi mod p

With this subkeys we can reconstruct the message without determining the
private key by solving

txs =
k∏
j=1

wλii mod p

tm = ty · txs mod p

In this way tm is the decryption of tc and the private key s has never been
determined.

5.2 Protocol

1. Decision of election parameters: The authorities decide on a finite
cyclic group Gp of prime order p, such that p = 2q − 1 for another prime q. A
generator g for a subgroup of Gp is created such that g is a quadratic residue of
Gp, meaning for a random integer x, the generator g satisfies:

x2 ≡ g mod n

In this way the generator g, creates a subgroup of Gp that only contains quadratic
residues. Meaning that with the information of gr mod p being a quadratic
residue or not, there is no additional information gained for the value of gsr

mod p and the subgroup contains at least q elements. The secret key s has to be
chosen in the interval s ∈ [0, q − 1].

2. Key generation: In this step of the process our two versions differ. In our
first implementation we use the Shamir’s Secret sharing, where a single admin
authority creates a secret key and distributes the shares to the decryption author-
ities. The distribution of the shares needs to be private between the authority
and the decryptors, for this the shares are encrypted via ElGamal encryption.
The downside to this protocol is that the private key is known by the admin
authority and even is determined by the decryption authorities when decrypting
the tally.

5. Homomorphic Voting 19

In the second implementation we improve this aspect and determine the pri-
vate key of the election with Pedersen’s distributed key generation protocol ex-
plained in the preliminaries. The advantage is that with the partial threshhold
decryption also explained in the preliminaries, the private key is never fully de-
termined, since we use partial subkeys to decrypt the tally of the election.

The result of both protocols is a secret key s and public key for the election
system that can be used to cast votes, where

h = gs

3. Voting and Tallying: When the setup for the election system is done,
voters Vi can cast their votes encrypted with ElGamal encryption system ci =
(xi, yi) and the public key of the election. In order to tally encrypted ciphertexts,
the messages that represent the votes need to have a special form. For this
purpose we choose a value m0 from the finite cyclic group Gp that represents the
binary value 0. The inverse m1 = m−0 1 then represents the binary value 1 for
elections with two vote options.

The tally of all votes can then be computed homomorphically without de-
crypting the votes beforehand

tx =

n∏
i=1

xi mod p ty =

n∏
i=1

yi mod p

4. Decryption: After the tally has been computed we have an ElGamal en-
crypted message tc(tx, ty).

With a zero knowledge proof the decrypting authorities proof that the used
share is valid. For the proof a Schnorr proof made non-interactive with the
Fiat-Shamir heuristic can be used.

logg g
si = si = logtxwi

If all shares are valid the encrypted tally can be decrypted by reconstructing the
private key with Lagrange interpolation like explained in the preliminaries with
Shamir’s secret sharing or with partial threshold decryption to determine the
decrypted tally without calculating the private key with Pedersen’s distributed
key generation. This leads to a decrypted message tm = m1y−n, where y is the
number of yes (binary 1) and n is the number of no (binary 0) votes.

To receive the tally out of this message the value y − n) can be determined
via the discrete logarithmus, which is a hard problem. But since the number of
voters is relatively small, we can calculated the discrete logarithm for example
via baby-step giant-step algorithm [26].

5. Homomorphic Voting 20

5.3 Implementation

To adapt the protocol to HyperLedger Fabric, we take a similar approach like
in the Open Vote Network example. For this we first define what assets the
ledger maintains. In a second step we focus on the defined transactions for the
blockchain, their implementation and how they update the assets.

5.3.1 Assets

We have three different asset types that interact with each other. First there are
the participant assets, which are actors inside the business network application
that represent the outside identities. Then we have the voting assets that repre-
sent the election system split up in a publicly available asset called PublicVoting
and a private asset called SecretVoting, which is only available for specific Ad-
minParticipants. As last asset type there is the voter asset types, which is also
split up in a publicy available asset called PublicVoter and a private assets called
SecretVoter that are only available for VoterParticipants with the correct access
rights.

AdminParticipant: The AdminParticipant is an administrator/authority for
the election system. With the role of an administrator we can create voting assets
and new elections.

participantKey: key of participant instance

VoterParticipant: The VoterParticipant is a participant inside the network
that represents an outside voter. Every voter is an AdminParticipant and can
therefore create its own elections, since the VoterParticipant inherits from Ad-
minParticipant.

participantKey: key of participant instance

PublicVoting: An instance of the PublicVoting asset is always created to-
gether with an instance of the SecretVoting asset. It represents one specific
election and contains all necessary parameters for the successful execution of the
protocol. Everyone can create an instance, but only the creator of the instance
is able to update the particular PublicVoting and SecretVoting instance.

The necessary parameters are a unique identifier for referencing particular
instances, a state enumeration parameter that indicates the current phase of
the election, decryption parameters that are necessary for the decryption phase,
execution parameters like the prime order p of the finite cyclic group G, the
generator g and the threshhold t, and result parameters for the tally.

5. Homomorphic Voting 21

Depending on the key generation process (Shamir or Pedersen), different ac-
cess control permissions for updates of the asset instance is established.

votingKey: key of voting instance

state: current phase of the election

whitelist: array of eligible voters

decryptors: array of participating decryptors

points: points for lagrange interpolation of the decryptors

votes: array of valid votes m0,m1, . . .

order: order of the finite cylcig group G

sub: order q of the subgrouf of Gp

gen: generator g in G

threshold number of decryptors needed for decryption

publicKey: public key of the election for encrypting votes

tallyX, tallyY: homomorphically tallied ElGamal encrypted votes

SecretVoting: The SecretVoting asset contains further data for the election
system that need to be kept private and hidden from voters and other authorities.
Here we store the coefficients of the randomly generated polynom for the e-voting
protocol. Depending of the key generation (single or distributed), the shares are
also stored in this asset.

A single instance of an election is divided into two instances of the PublicVot-
ing asset and the SecretVoting asset, because at the time of development of this
application, there was no possibility to specify different access permissions on
different attributes of an instance.

votingKey: key of voting instance

secretKey: secret key of the election

shares: shares of the private key

coefficients: coefficients of the generated random polynom

The SecretVoting asset is empty if the private key, the random polynom and
the shares are generated distributed via Pedersen’s DKG. The fields are therefore
declared optional. In the version with Pedersen’s DKG, the SecretVoting asset is
ignored.

5. Homomorphic Voting 22

PublicVoter: An instance of the PublicVoter asset is created together with an
instance of the SecretVoter asset on sign up of a VoterParticipant to a partic-
ular election. In this way our application can have multiple elections, since we
generate for each election a new voter pair referencing a particular voting for a
VoterParticipant. The PublicVoter asset defines publicly available attributes of
a voter, encrypted parameters for shares and votes and parameters necessary for
zero knowledge proofs for the voter’s secret key and for the validity of the vote.

Note that (messageX, messageY) is the ElGamal encrypted share of the voter
on the election’s private key and that (voteX, voteY) is the ElGamal encrypted
vote of the voter. The (voteX, voteY) for all voters is homomorphically tallied
in the tallying phase and the result is then stored in the corresponding instance
of the PublicVoting asset.

voterKey: key of voter instance

publicKey: public key of voter for message encryption

hash: challenge used in ZKP (xi)

sig: signature used in ZKP (xi)

shareHash: challenge used in ZKP (si)

sigHash: signature used in ZKP (si)

point: interpolation point for share si

messageX, messageY: encrypted share distributed from authorities

voteX, voteY: encrypted vote

decryptor: published part of key when participating in decryption

lagrange: published lagrange coefficient when participating in decryption

voting: reference to voting asset

participant: reference to participant asset

SecretVoter: The SecretVoter asset contains further data for a voter in a par-
ticular election that need to be kept private and hidden from the other partici-
pants in the network. Here we store the secret key of the voter and the share on
the private key of the election used in the decryption phase if the voter wants to
take part in the decryption.

voterKey: key of voter instance

5. Homomorphic Voting 23

Figure 5.1: Timeline of transactions and effect on assets

secretKey: secret key of voter for private messaging

share: share of private key

voting: reference to voting asset

participant: reference to participant asset

5.3.2 Transactions

For the transactions we can see in Figure 5.1 that AdminParticipants and Voter-
Participants interact with the blockchain and execute the voting protocol by
issuing new transactions. Those transactions either create new instances of a
specific asset, update an existing instance of an asset or have no effect on the
asset.

Note that in the figure the rows of the table do not represent blocks of the
blockchain but the effect of a transaction on the assets. Multiple transactions
could be mined together depending on the data payload of the transactions in
the block.

CreateVoting: The CreateVoting transaction can only be issued by an Ad-
minParticipant and is the initial transaction to start an election. Depending

5. Homomorphic Voting 24

on the application either a Shamir’s Secret Sharing (SSS) or Pedersen’s DKG
(PDKG) with multiple authorities is executed after checking the validity of the
parameters. The shares si of the private key s. The transaction then creates new
PublicVoting and SecretVoting instances with the created election parameters.

StartSignup: The StartSignup transaction can only be issued by an Admin-
Participant and comes like in Figure 5.1 after CreateVoting and before Creat-
eVoter. The only purpose of this transaction is to move the election system to
the next phase and allow VoterParticipants to sign up to the particular voting
referenced with the votingKey parameter.

CreateVoter: The CreateVoter transaction can only be issued by a Voter-
Participant if the voting instances are in the correct phase. The CreateVoter
transaction creates two instances, one for the PublicVoter asset and one for the
SecretVoter asset. Multiple parameters for voter signature and zero knowledge
proofs are generated and stored in the blockchain.

StartVoting: The StartVoting transaction is issued by AdminParticipants.
First the private keys of the signed up voters is tested for its validity with
Schnorr’s zero knowledge proof. Next the shares are encrypted and distributed
among the voters. If all proofs are valid and the distribution of the shares is
handled successfully, the election is moved to next phase.

Vote: The Vote transaction is issued by VoterParticipants and can only be
executed after a StartVoting transaction like in the figure 5.1 shown. The vote is
encrypted with ElGamal encryption [18] and the public key of the voting instance.
Then a zero knowledge proof is executed to test the validity of the cast vote. At
last step the encrypted share received from the authorities is decrypted and stored
in the PrivateVoter instance.

StartTallying: The StartTallying transaction is issued by AdminParticipants.
First all cast votes are checked again for their validity. Then the encrypted votes
are homomorphically tallied together like explained in the preliminaries. The
resulting encryption tc(tx, tx) with

tx =
n∏
i=1

xi mod p ty =
n∏
i=1

yi mod p

is then stored in the PublicVoting instance and therefore visible for everyone.
Note that the cast votes are stored in the PublicVoter instances, which are also

5. Homomorphic Voting 25

publicy readable. In this way voters can tally the votes themselves and check for
the correct result.

SetDecryptor: The SetDecryptor transaction can only be issued by VoterPar-
ticipants that are decryption authorities and therefore also eligible for decryption.
With this transaction a voter declares his participation in the decryption phase
by creating a zero knowledge proof for the validity of the share.

StartDecrypting: The StartDecrypting transaction can be issued by any par-
ticipant after the necessary threshold of decryptors is reached. First the validity
of the provided shares and subkeys are tested. Then the tally is decrypted to-
gether with the provided subkeys and the result is published to the PublicVoting
instance, which represents the bulletin board.

The StartDecrypting asset is very similar to the SelfDecrypt transaction,
which does not write anything to the PublicVoting instance. It is used to re-
tally the votes and check for correctness of the execution.

Chapter 6

Conclusion

We started with the intention to discover the blockchain technology for e-voting
protocols. For this purpose, we analyzed and evaluated possibilities for improve-
ment on two different protocols. We realized that openness can be traded for
security, privacy and robustness with permissioned blockchains. We used Hyper-
Ledger Fabric to create two such blockchains for e-voting.

We developed a new application for the Open Vote Network protocol that
does not depend on cryptocurrencies and is free of transaction fees. At the same
time we handled access control and made the system more secure against external
attacks. The Open Vote Network is a great protocol for small boardroom elec-
tions, but has its limitations concerning voter count. In a second part, we wanted
to improve a protocol that was build for large elections and thus implemented an
alternative version of the Homomorphic Voting protocol proposed in [1].

In both implementations we focused on the key requirements and improved
authenticity, security and privacy by defining transactions and their visibility for
different participants in our network.

6.1 Future Work

There are multiple improvements that can be made for both implementations.
Currently, these are proof of concepts and could be tested and improved for their
performance. A frontend for both implementations can be built for real users.
Different subtasks in the setup and execution of the protocol could be outsourced
to different authorities, which would increase the decentralization of the protocol
by reducing the trust set into AdminParticipants.

Since the implementations are only proof of concepts we stored multiple key
parameters like the prime order p of the finite cyclic group Gp with standard 64
bit data type LONG. The security could be improved greatly by extending those
parameters to arrays and adapt the transaction and cryptographic operations to
these array data types.

26

6. Conclusion 27

More security and zero knowledge proofs for the correct execution of the
protocol could be added. We only focused on the most important proofs and
neglected some zero knowledge proofs regarding intermediate results and valid
key generation from the authorities.

Bibliography

[1] C. Berner, “E-voting under the hood,” Distributed Computing Group. ETH
Zürich, Jul. 2018.

[2] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally ef-
ficient multi-authority election scheme,” in Proceedings of the 16th Annual
International Conference on Theory and Application of Cryptographic Tech-
niques, ser. EUROCRYPT’97. Berlin, Heidelberg: Springer-Verlag, 1997,
pp. 103–118.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Oct. 2008.

[4] F. Hao, P. Y. A. Ryan, and P. Zieliński, “Anonymous voting by two-round
public discussion,” IET Information Security, vol. 4, pp. 62–67, 2010.

[5] F. H. Patrick McCorry, Siamak Shahandashti, “A smart contract for board-
room voting with maximum voter privacy,” in Financial Cryptography, 2017.

[6] ConsenSys, “Plcrvoting,” [Online] Available: https://medium.com/metax-
publication/a-walkthrough-of-plcr-voting-in-solidity-92420bd5b87c. ac-
cessed 17. March 2019.

[7] “Publicvotes,” [Online] Available: https://medium.com/@DomSchiener/publicvotes-
ethereum-based-voting-application-3b691488b926. accessed 17. March 2019.

[8] “Votosocial,” [Online] Available: https://votosocial.github.io/. accessed 17.
March 2019.

[9] “Followmyvote,” [Online] Available: https://followmyvote.com/. accessed
17. March 2019.

[10] “Wavevote,” [Online] Available: https://github.com/descampsk/wavevote.
accessed 17. March 2019.

[11] “Polys,” [Online] Available: https://docs.polys.me/technology-whitepaper.
accessed 17. March 2019.

[12] A. Shamir, “How to share a secret,” inMassachusetts Institute of Technology,
Cambridge, USA, Nov. 1979.

[13] “Voatz,” [Online] Available: https://voatz.com/faq.html. accessed 17. March
2019.

28

Bibliography 29

[14] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis, “Chvote system specifi-
cation,” IACR Cryptology ePrint Archive, vol. 2017, p. 325, 2017.

[15] V. Buterin, “A next generation smart contract and decentralized application
platform,” in Ethereum White Paper, Jul. 2015.

[16] B. L. Miguel Castro, “Practical byzantine fault tolerance,” in Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge USA,
Feb. 1999.

[17] “Introduction to hyperledger fabric docs,” [Online] Available:
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html. accessed
17. March 2019.

[18] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” in IEEE Transactions on Information Theory, vol. 31.
IEEE, Jul. 1985.

[19] D. Boneh, “The decisional diffie-hellman problem,” in Stanford University.

[20] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans.
Information Theory, vol. 22, pp. 644–654, 1976.

[21] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of
Cryptology, vol. 4, pp. 161–174, 1991.

[22] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-
tification and signature problems,” in CRYPTO, 1986.

[23] B. S. Ronald Cramer, Ivan Damgard, “Proofs of partial knowledge and
simplified design of witness hiding protocols,” in Advances in Cryptol-
ogy—CRYPTO, Vol. 839 of Lecture Notes in Computer Science, Springer-
Verlag, 1994.

[24] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in Lec-
ture Notes in Computer Science, vol. 547. Springer, Berlin, Heidelberg,
May 2001.

[25] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” in Lecture Notes in Computer Science, vol. 576. Springer,
Berlin, Heidelberg, May 2001.

[26] J.-S. Coron, D. Lefranc, and G. Poupard, “A new baby-step giant-step algo-
rithm and some applications to cryptanalysis,” in CHES, 2005.

	Acknowledgements
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 E-Voting
	3.2 Blockchain
	3.3 Transaction Processing
	3.4 Smart Contracts and Chain Code
	3.5 Public blockhains vs. Permissioned blockchains
	3.6 HyperLedger Fabric

	4 Open Vote Network
	4.1 Preliminaries
	4.1.1 ElGamal encryption
	4.1.2 Schnorr proof

	4.2 Protocol
	4.3 Implementation
	4.3.1 Assets
	4.3.2 Transactions

	4.4 Conclusion

	5 Homomorphic Voting
	5.1 Preliminaries
	5.1.1 Shamir's Secret Sharing
	5.1.2 Pedersen Distributed Key Generation
	5.1.3 Partial threshold decryption

	5.2 Protocol
	5.3 Implementation
	5.3.1 Assets
	5.3.2 Transactions

	6 Conclusion
	6.1 Future Work

	Bibliography

