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Abstract

The Permasense [1] consortium is active in the field of low-power wireless sensor
networks. They are deployed in high alpine areas to collect data such as tem-
perature, vibration and also the displacement of rocks. One goal is to be able to
predict rock waste avalanches and major rockfalls with this data.

To explore the possibilities of the LoRa modulation, a new radio communication
platform was developed in a master thesis in 2018 [2]. The SX1262 radio [3] on
the platform allows to switch between FSK and LoRa modulation on a single
chip. During the same thesis a network flooding protocol called Gloria was
implemented on the new platform. It is based on Glossy [4] and is one of the
first flooding protocols with the LoRa modulation.

During this thesis the existing version of Gloria was extensively tested and im-
proved. Finally Gloria is a highly configurable and independent flooding protocol
which can be used to build higher layer communication protocols on top of it.

A simple version of such a protocol called LWB [5] was implemented with the
help of Gloria. The main goal of this thesis however was not to get a very
sophisticated version of LWB, but to explore the possibilities to extend it with
the help of the LoRa modulation. The extension allows to include nodes into the
LWB network, which are too far away to participate in the Gloria floods of the
basic LWB version. This is done while preserving the stateless concept of LWB.
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Chapter 1

Introduction

This thesis is part of the Permasense research. During a previous thesis [2] a
new communication platform was developed. On top of this platform a network
flooding protocol called Gloria was implemented. It is based on Glossy [4].

This chapter gives an overview of Permasense and some more details on the
already existing hardware and software. Finally it states the goals for this thesis.

1.1 Permasense

The permasense consortium [1] develops, deploys and maintains wireless sensor
networks in high alpine areas. The tasks range from the development of the
hardware inside a node over the implementation of communication protocols to
the evaluation of the data. The data collected can be temperature, vibration
or even GPS. One example of such a network is placed on a rock glacier in the
Matter valley. The goal of these sensors is to gather vibration and GPS data
to predict rockfalls or rock waste avalanches. With this predictions precaution
measures can be taken to protect people and infrastructures in the valley.

1.2 DPP LoRa

The new communication platform features the STM32L433CCU6 microcontroller
from STMicroelectronics [6] and Semtech’s SX1262 LoRa transceiver [3].

1.2.1 SX1262

The SX1262 transceiver offers the possibility to easily switch between FSK and
LoRa modulations on a single chip. It has a receiver sensitivity of down to -
125dBm for FSK and -148dBm for LoRa. The current consumption in receiving

1



1. Introduction 2

mode is only 4.2 - 5.3mA. The transmit power can be chosen in the range of -9
- 22dBm, resulting in a current consumption of 23 - 120mA.

Whereas FSK offers higher data rates, LoRa can be used for communication
over longer distances. LoRa also has the possibility to choose between different
spreading factors (SF). Higher spreading factors allow for even further transmis-
sions with the drawback of a longer time on air. More details on LoRa are given
in [7]. A simple overview which shows the tradeoff between range and time on
air can be seen in Fig. 1.1. For example the time on air for 8bit is 640µs for FSK
with a data rate of 200 kbit/s, 13ms for LoRa with the lowest spreading factor
(SF 5) and can go up to 1s for LoRa with the highest spreading factor (SF 12).

Figure 1.1: Time on air and range comparison of FSK and LoRa. The energy
needed for a transmission is proportional to the time on air.

1.3 Flora

Flora was also developed in the previous thesis [2]. It is a collection of software
written to simplify the use of the new platform. It for example offers drivers
for the control of the radio and a hardware timer. Additionally it features a
command line interface to communicate with the platform over a serial interface.
This allows to start and control measurements externally.

The radio drivers interrupt routine was slightly adapted, to propagate more
information to higher layers of the protocol stack. For example the RxDone

interrupt was extended with a parameter stating if the received messages CRC
code was correct or not. Also the timer module was extended and in all the
drivers some bugs were detected and fixed. For more details see Section 5.2.

1.4 Gloria

A first version of Gloria was also already implemented before this thesis. However
it has only been tested in a table top setup with a couple of nodes. During
this thesis Gloria has been thoroughly tested on Flocklab [8], which offers the
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possibility to use up to 27 nodes. In addition to the bugs that were fixed,
the implementation was improved in terms of stability and performance and
enhanced with some additional features. For more details on the concepts of
Gloria see Chapter 3, for information regarding the implementation Section 5.3.

1.5 Goals

The goals of this thesis were to test Gloria on a larger scale and implement a
simple version of LWB [5] with it. LWB should be extended to make use of
the possibility to easily switch between the FSK and LoRa modulations. This
extension should make it possible to connect nodes to the network which are too
far away for the basic LWB protocol. These nodes should be included into the
LWB schedule with as little overhead as possible. Also the nodes in the network
should remain statless. Meaning they do not know anything about the network
topology. More details on the given scenario and the implementation of LWB
and the extension can be found in Chapter 4 and Section 5.4.



Chapter 2

Background

2.1 Flocklab

Flocklab is a testbed developed and maintained by ETH [8]. It features 27 nodes
in close proximity to each other and since recently also a few nodes further
away. The Flocklab web interface allows to schedule tests without having to
be physically at the test facility. It is possible to track the serial output and
measure the power consumption of the nodes. Furthermore 7 GPIO pins can be
used to generated interrupts or to observe the activity of the nodes.

2.2 Glossy

Glossy [4] is a network flooding and time synchronization protocol. The goal
of network flooding is to distribute a message to all nodes in a multi-hop net-
work as fast as possible, without having to know anything about the network
topology. The basic idea of Glossy is that all nodes which receive the message
retransmit it at the exact same time. This is achieved by a deterministic soft-
ware delay between the reception and the transmission of the message. Due to
the capture effect the messages can be received correctly, even if multiple nodes
send simultaneously. The reliability of Glossy can be increased by listening and
retransmitting multiple times instead of going to sleep after the first received
and relayed message.

Additionally to the fast and reliable network flooding, Glossy also allows the
nodes to synchronize to the initiators time. The flood start can be reconstructed
from the radio interrupts and the slot lengths. If the initiator includes his flood
start time into the message the nodes can also synchronize absolute to the initia-
tors time. This means that they can compensate the offset between their local
time and the initiators time, so that all nodes have the same time reference.

Fig. 2.1 shows an example of a Glossy flood where each node retransmits the
message three times.

4



2. Background 5

Send Receive Listen

Initiator

Relay

Relay

Relay

Slot 0

SW Del

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Figure 2.1: Example of a Glossy flood.

2.3 LWB

The Low-Power Wireless Bus (LWB) [5] is a protocol which exclusively uses
Glossy floods to handle the communication between the nodes. The host node
schedules the communication into different rounds. Each round consists of multi-
ple slots. The time between the rounds is calculated based on the traffic demand
in the network. The different slots per round can be seen in Fig. 2.2.

Round 0 Round 1 Round 2 Round 3 Round 4

Schedule Slot Contention Slot Data Slot Data SlotAck Slot Schedule Slot

Figure 2.2: LWB round breakdown.

The schedule slot is used by the sink to send a schedule to all other nodes.
This includes the round period and the information when a node is allowed to
send. In the contention slot nodes can try to request a data stream from the
sink. As multiple nodes may want a stream, collisions can occur. A stream is
characterized by the amount of data per time a node wants to send. If a stream
request reached the sink it gets acknowledged in the ack slot and the sink starts
to allocate data slots for this node. Nodes that do not get an acknowledgment
back off from the contention slot to reduce contention. A node that has an
allocated data slot in a round, may send its data in this slot. The number of
data slots and which nodes may send in which slot can vary from round to round
and is defined by the schedule. The schedule slot at the end of the round can be
used to adapt the round period according to new traffic demands requested in
the current round.
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2.4 Related Work

Since Glossy [4] showed that concurrent transmissions can be used for very ef-
ficient and fast network flooding, multiple protocols were developed based on
concurrent transmissions. Chaos [9] uses the flooding mechanism of Glossy but
each node adds its own data to the message. Syncast [10] is optimized in terms
of energy efficiency and tries to make synchronous transmission of longer packets
more reliable.

None of these protocols however made use of the LoRa modulation. But [11]
shows that also LoRa is a possible alternative for network flooding protocols
based on concurrent transmission. They also present an alternative which sched-
ules the retransmissions with a slight offset to increase the reliability.

With all these protocols there are many opportunities for extensions. LWB [5]
or Crystal [12] for example make use of Glossy floods to abstract the complexity
of the multi-hop network. Baloo [13] introduces a middle layer to separate the
flooding part of the protocols from the higher layer part which makes use of
the flooding. This allows to implement multiple flooding mechanisms and switch
between them on a higher layer for comparison or even usage in the same scenario.



Chapter 3

Gloria

Gloria is a flooding and time synchronization protocol based on Glossy (Sec-
tion 2.2). All nodes that receive a message, broadcast it at the same time. This
allows to achieve very fast and efficient coverage of a multi-hop network, without
having to know anything about the topology. It also means that the intermediate
nodes have no state. The concurrent transmissions can be correctly decoded due
to the capture effect.

The basic concepts of Gloria have been developed and implemented in a previous
thesis [2]. But the code has not been tested on a larger scale. During this thesis
the existing code has been extensively tested on Flocklab (Section 2.1). The tests
revealed a couple of major bugs only visible in larger multi-hop networks. For
example, a wrong radio configuration after wakeup decreased the actual transmit
power which lead to a reduced range. In addition to the bug fixes, the protocol
was made more robust and highly configurable for the use in many different
scenarios. At last Gloria has been decoupled from any other code except the
radio drivers and the timer. This makes it an independent building block which
can be used to build higher layer protocols as for example LWB on top of it.

7



3. Gloria 8

3.1 Gloria Terminology

Table 3.1 shows a list of terms used during this chapter. Which parameters can
be set to configure a flood can be seen in Section 3.3.

Term Description

Ack Acknowledgment message. Contains no information
except the destination for the ack.

Ack flood A flood with the possibility to send acks. (see Sec-
tion 3.2)

Ack/Data
(sub)slot

A time slot that is used to send the ack/data message.
It is part of the general slot described below.

Data message The message containing the data that should be trans-
mitted with the flood.

Destination The node for which the message is intended. Does not
relay the message.

Initiator The node that starts the flood.

Normal flood A flood without any acks. (see Section 3.2)

Maximum num-
ber of acks

The maximum number of acks is a configurable param-
eter and defines how many acks a node should send. It
corresponds to the retransmissions for data messages.

Relay A node that does not start the flood and is not the
destination of the flood. It just relays the message.

Retransmissions The number of retransmissions defines how many
times a node should send out a received message. It
can be set at flood start.

Slot A flood is divided into equal parts that are called slots.
They can consist of an ack and a data or just a data
subslot.

Slot limit The slot limit specifies how many slots are contained
in a flood. It is used to set a duration limit to the
flood.

Sync flood A flood with the flood start in the initiator’s time ap-
pended to the message payload. No separate flood but
an extension to the normal or ack flood.

Table 3.1: Terminology of Gloria.
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3.2 Concepts

Slot 0

Data

Slot 0

Data Ack

Normal Flood

Ack Flood

Slot 1

Data

Slot 2

Data

Slot 1

Data Ack

Slot 2

Data Ack

Figure 3.1: Gloria slot layout.

Gloria has two different layouts. One for normal floods and one that allows to
send an acknowledgment interleaved in the same flood. The latter is referred to
as ack flood. The floods are separated into different slots as shown in Fig. 3.1.
In contrast to normal floods, the slots in ack floods contain a data and an ack
subslot.

Details on the different floods are described in the following sections.

3.2.1 Normal Flood

Send Receive Listen

Initiator

Relay

Relay

Relay

Slot 0

Data

Slot 1

Data

Slot 2

Data

Slot 3

Data

Slot 4

Data

Slot 5

Data

Figure 3.2: Broadcast Gloria flood with 3 retransmissions.

A normal Gloria flood is the one that is the most similar to Glossy. It is separated
into slots which are only long enough to send the data message. A node that
received the data message retransmits it starting in the next slot. In contrast
to Glossy, the node does not listen for messages anymore once one was received.
In Glossy the retransmissions are timed by an exact software delay after the
reception. Thus Glossy needs to receive the message for every retransmission.
For Gloria, the retransmissions are all scheduled with a timer relative to the first
reception. This allows it to send in consecutive slots, which reduces the number
of slots needed. As the delay between reception and transmission in Glossy is
highly optimized, it is shorter compared to Gloria. This means that less slots do
not necessarily translate to shorter flood lengths.

As an example, Fig. 3.2 shows a normal flood with three retransmissions. The
initiator sends the data message three times and finishes the flood. All other
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nodes listen for the message and retransmit it also three times. In this case the
flood is a broadcast and all nodes should receive it. Therefore also all nodes
retransmit it. If the flood is no broadcast, the destination node does not retrans-
mit the message. The maximum flood duration can be configured by setting the
slot limit.

3.2.2 Ack Floods

In ack floods the slots are divided into two subslots. One subslot for the data
transmission and one for the transmission of acks. Because the acks are very short
data subslots are usually longer. The length of the flood can also be limited by
setting the slot limit. But as the slots are longer, the whole flood will be longer
for the same slot limit compared to normal floods.

Ack floods are only useful if the message has a destination. For broadcasts
they need more time and energy compared to the normal flood, as the slots are
extended by the data subslots and the nodes listen for acks. But no ack will be
sent as the flood has no destination.

There are two different ack modes. They have the same slot layout but follow a
different scheme.

Ack mode 1

The goal of ack mode 1 is to save energy compared to the normal flood. As it is
not unusual that in this mode the ack does not propagate back to the initiator,
it cannot be used to acknowledge data messages reliably. The concepts of this
mode are explained with the help of an example shown in Fig. 3.3. The maximum
number of retransmissions is set to 3 and the maximum number of acks to 2.
The slot limit is higher than the number of slots needed.

Send

Slot 0

Receive Listen

Destination

Initiator

Relay

Relay

Relay

1

2

4

5

6

Relay3

Data Ack

Slot 1

Data Ack

Slot 2

Data Ack

Slot 3

Data Ack

Figure 3.3: Flood with ack mode 1, 3 retransmissions and the maximum number
of acks set to 2. All nodes are finished with the flood after slot 2.

When the destination (node 4) receives the message it does not retransmit it,
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but starts sending acks in the next ack slot. Any node that has already sent the
data message at least once and receives the ack, stops sending the data message
and retransmits the ack (node 2 and 3). Nodes that have not received any data
message or have not yet retransmitted it and receive an ack, stop participating
in the flood and set the radio into sleep mode (node 4 and 5). As the acks are
very short, a node needs less energy to send an ack than a data message. Also
the nodes which do not send anything at all clearly save some energy compared
to the normal flood, in which they would retransmit the data message.

The maximum number of acks that should be sent can be set independent of the
maximum number of data retransmissions. It makes sense to set the maximum
number of acks lower than the maximum of data retransmissions, because a node
that sends too many acks has again an increased energy consumption.

To prevent nodes that have already sent almost all data messages from also
sending a lot of acks and using more energy than in a normal flood, acks are
only retransmitted in slots before the last active slot. The last active slot is
the slot the last data message would be sent. It is calculated based on the
slot the data message was received (first rx index) and the number of data
retransmissions (max retransmissions). The first rx index for the initiator
is set to -1.

last active slot = first rx index + max retransmissions (3.1)

The last active slot of node 2 is slot 3 (0 + 3) and the first slot it could send an
ack is also slot 3. As acks are only retransmitted in slots before the last active
slot, node 2 does not send any ack. The last active slot of the initiator is slot 2
(-1 + 3). That is why it does not listen for acks in slot 2 and 3.

The examples above show that although the maximum number of acks is a
configurable parameter, the actual number a node can send is also limited by
the number of data retransmissions as shown in Table 3.2.

destination max retransmissions
relay max retransmissions - 2
initiator max retransmissions - 2

Table 3.2: Upper bound on the number of acks a node can send based on the
maximum number of data retransmissions.

The idea behind this was that all nodes that received the message before a
certain node, are already finished with the flood before the node itself. To send
an ack back after all data retransmissions are over would increase the energy
consumption on the node and the other finished nodes would also not profit, as
they already sent the data message the maximum number of times.
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Ack mode 2

As opposed to mode 1 the idea of this mode is that the ack reaches the initiator
of the flood. This means that a data message can be directly acknowledged in the
same flood and there is no need for an extra flood to achieve this. As with ack
mode 1 the concepts are explained with an example in Fig. 3.4. The maximum
number of retransmissions and the maximum number of acks is set to 3.

Send Receive Listen

Destination

Initiator

Relay

Relay

Relay

1

2

4

5

6

Relay3

Destination

Initiator

Relay

Relay

Relay

1

2

4

5

6

Relay3

Slot 0

Data Ack

Slot 1

Data Ack

Slot 2

Data Ack

Slot 3

Data Ack

Slot 4

Data Ack

Slot 5

Data Ack

Figure 3.4: Flood with ack mode 2, 3 retransmissions and the maximum number
of acks set to 3. All nodes are finished with the flood at the end of slot 5.

The main difference to mode 1 is that nodes wait for an ack, even if they are
finished sending the data message (node 1). They listen during the ack slots until
an ack is received or the slot limit is reached. The ack is retransmitted even if
the node has not sent any data messages upon ack receive (node 5). Nodes that
receive an ack without having received a data message stop participating in the
flood and set the radio into sleep mode (node 6).

In this mode the maximum number of acks a node can send is not limited by
the maximum number of data retransmissions. A node keeps sending acks until
it has sent the maximum number of acks or has reached the slot limit.
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3.3 Flood Configuration

This section describes the different parameters that can be set before starting
a flood. For more details on how, the data types of the parameters and the
possible values see Section 5.3.1.

3.3.1 General Gloria Parameters

This are the parameters that should be set for every flood, independent if the
node is the initiator or not.

Ack Mode

Allows to select one of the two ack modes or the normal flood. More details on
the different modes can be found in Section 3.2.2.

Marker

A timestamp used to define the flood start. If the marker is in the past the
initiator does not send. All other nodes start to listen anyhow, when low power
listening (see Section 3.3.3) is disabled.

Maximum Number of Acks

Similar to the maximum number of retransmissions (see Section 3.3.1) this is the
maximum number of acks that should be sent. This parameter is only relevant
for ack floods.

Maximum Number of Retransmissions

This parameter allows to set the number of retransmissions for the data message.
It is an upper bound as further retransmissions can be prevented if an ack is
received or the flood has reached the slot limit. More retransmissions mean
more redundancy and increase the probability that a flood is successful.

Slot Limit

The number of slots for the corresponding flood can be limited by setting the slot
limit. This parameter is used to control the maximum flood duration. More slots
usually translate to a higher probability that a message reaches its destination.
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But the probability also saturates for high slot counts as the flood dies out if the
nodes have sent the message the predefined number of times.

Sync Flood

For sync floods the timestamp of the flood start in the initiator’s time is appended
to the payload. It can be used by all receiving nodes for absolute synchroniza-
tion to the initiators time. For low power listening (see Section 3.3.3) also the
receiving nodes need to know if the flood is a sync flood. For more details on
the flood start see Section 3.5.1.

3.3.2 Gloria Tx Parameters

The important parameters for the initiator are explained in this section.

Destination

If the flood should not be a broadcast, the node ID of the destination can be
defined. If it is zero the flood has no destination and is a broadcast.

Message Type

The message type parameter is not used during the flood run, but is meant to
identify the payload on a higher layer protocol.

3.3.3 Gloria Rx Parameters

In this section the parameters only needed for the receiving nodes are explained.

Guard Time

This parameter allows to set a guard time for the reception. It will be appended
to the beginning and the end of the listening period defined by the rx timeout
(see Section 3.3.3). If low power listening (see Section 3.3.3) is enabled, the guard
time is added at the beginning and the end of each listening slot. If the listening
slots get too long, so that they overlap or the time between the slots is to small
to go to standby and receive mode again, the node will listen continuously.
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Figure 3.5: Comparison of low power listening and the normal continuous listen-
ing.

Low Power Listening

Low power listening allows a node to save energy by listening only a short interval
for each slot instead of the whole time. This only works if the receiving node
knows the exact length of the message. Else it could not calculate the slot lengths.
With low power listening enabled the nodes do not listen for the predefined rx
timeout (see Section 3.3.3). Instead they listen for a short period in every slot
until the slot limit is reached. Fig. 3.5 shows the difference of the listening
periods with and without low power listening.

Rx Timeout

The duration for the initial listening period is defined as rx timeout. If it is set to
zero the radio listens until a package is received successfully. The radio continues
listening if it receives a message with a CRC error and the timeout has not yet
expired. The timeouts to listen for acks or for low power listening are calculated
during the flood. This parameter is not used if low power listening is enabled.

Sync Timer

Gloria has a built in option to adapt the timer offset for absolute synchronization
to the initiator’s time. The offset is then calculated and adapted during the flood.
The adaption is only possible for sync floods, as it needs the information from
the appended timestamp. If the timer synchronization should include drift, the
calculation and adaption of offset and drift need to be done on a higher layer
protocol as for example in Section 3.5.2.

3.4 Finished Flood

This section describes which information is provided by Gloria, after a flood is
finished. More details about the implementation can be found in Section 5.3.1.
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Ack Destination

The ack destination tells the nodes for which one the ack was intended. The
destination node of the data message adds the node ID of the initiator to the
ack, before sending it. This can for example be important for contention periods,
where multiple nodes start a flood with the same destination. The destination
node then acknowledges the first received flood.

Source

The flood also contains the node ID of the initiator.

Received Marker

The received marker is the timestamp that was appended to the payload in a
sync flood. It contains the flood start in the initiator’s time (see Section 3.5.1).

Reconstructed Marker

As a message is received the actual start of the flood is reconstructed in the local
time. This reconstruction is based on the header / Sync Word valid interrupts
from the radio (see Section 3.5.1).

3.5 Gloria Timing

3.5.1 Flood Start

Send Receive Listen

Initiator

Relay

Slot 0

Data

Slot 1

Data

Flood Start Radio Interrupt

Interrupt DelaySlot LengthFlood Overhead

Figure 3.6: Flood timing.

Fig. 3.6 shows the timing values needed to reconstruct the flood start on message
reception. The radio interrupt is triggered by a correct reception of the header
for LoRa and the Sync Word for FSK. The interrupt delay has been measured
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and found to only depend on the modulation setting. This means it is different
for LoRa and FSK but also for different data rates (FSK) or spreading factors
(LoRa). The slot length can be calculated from the message size as explained in
Section 3.5.3. The flood overhead is a constant for each modulation setting. It is
needed to make sure a node has enough time to initialize the flood before starting
it. Because of this, the flood start is not equal to the first transmission. The
timestamp of the flood start in the initiator’s time is the one that gets transmitted
in sync floods. It is saved as received marker. Based on the parameters explained
above the flood start can be reconstructed in the local time on the other nodes.
The reconstructed flood start is saved as reconstructed marker.

3.5.2 Synchronization

For absolute synchronization to the initiator, the reconstructed and the received
marker can be used. Absolute synchronization means that the timers are set to
the same value. The difference between the two markers is the offset the local
timer has in comparison to the timer at the initiator. This is only possible if
the flood is a sync flood, else no timestamp is appended to the flood. Absolute
synchronization can be important if for example sensor data should be labeled
with a timestamp. The timestamps of the data collection then are all in the
same time reference.

If relative synchronization is enough, it is not needed to send sync floods. In
contrast to the absolute synchronization timer values are not the same, but
the nodes can still schedule the next communication relative to the last one.
An approximation of the synchronization error can be calculated by taking the
difference from the expected flood start and the reconstructed marker.

3.5.3 Flood Duration

As a flood is separated into different slots, the maximum duration of a flood is
given by the length of the slots and the slot limit. The slot limit is a parameter
that can be configured and therefore allows to set a limit on the flood duration.

The data subslot length is determined by the chosen modulation and the payload
size. For sync floods the payload is increased by the timestamp size. Ack subslots
are only dependent on the modulation, as the ack message is always of the same
size. The total slot length is the addition of the ack and data subslot lengths.
The flood length can then be calculated by the number of slots and an additional
overhead at the beginning. The overhead is used to initialize the flood and make
sure the nodes have enough time to go into rx or tx mode.

The calculations of the data and ack subslot and the total slot lengths is shown
below.

data slot length = data time on air + data slot overhead (3.2)
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ack slot length = ack time on air + ack slot overhead (3.3)

slot length = data slot length + ack mode ∗ ack slot length (3.4)

Where the ack mode parameter represents a bool to differentiate between normal
and ack floods.

The duration of the whole flood can then be calculated as follows.

flood duration = flood init overhead + slot limit ∗ slot length (3.5)

More details on the slot overheads and the initial flood overhead can be found
in Section 5.3.3.

3.6 Ack Mode Comparison

This section compares the two ack modes described in Section 3.2.2. First three
different examples are discussed and in the second part an estimate on the energy
consumption is given.

3.6.1 Examples

Figs. 3.7 to 3.9 show the same setup with a slightly different evolution of the
flood. The goal is to acknowledge the message reception. This means that for
ack mode 1 two floods are needed, whereas for ack mode 2 it can be done in one
flood. The dark gray part between the floods for ack mode 1 marks the time
overhead needed to start the second flood. The initiator and the destination are
separated by two hops. All floods are sent with two retransmissions, one ack for
ack mode 1 and two acks for ack mode 2. The slot limit is set to three to have
one slot more as hops.

The data slots of the second flood for ack mode 1 are shorter as the ones for
ack mode 2, as they contain only the information for an acknowledgment. In
contrast one less slot is needed for ack mode 2 than for the two floods in ack
mode 1 and the overhead for starting the second flood is zero. This results in
less total time needed with ack mode 2 for short floods. But as the floods get
longer (more hops) the shorter data slots get more important and eventually
ack mode 1 needs less time. The data message length also plays a role, as the
difference between the data slot lengths depends on the difference between the
data message and the acknowledgment message length, which is sent in the data
slots of the second flood.

In the first example in Fig. 3.7 the message always is successfully received at
the next hop. The first two slots are almost identical for both modes. The
initiator listens once more for ack mode 2. To propagate the ack back to the
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Figure 3.7: Ack mode comparison example 1.

initiator ack mode 2 needs three retransmissions of an ack. Ack mode 1 has four
retransmissions from which 3 are longer than an ack. Also more time is spent
on listening in the second flood for ack mode 1 than in slots 2, 3 for ack mode 2.
In the end ack mode 2 needs less energy as ack mode 1. The total time needed
is for this short example also less with ack mode 2.
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Figure 3.8: Ack mode comparison example 2.

Fig. 3.8 shows the same example but this time the data message is note correctly
received at node 2 in the first slot. Also the ack gets lost once. Until the data
subslot of slot 2 the two modes are again identical except for one listening period.
For mode 1 the nodes do not listen or send in the last ack subslot. This time
the number of retransmissions after the data arrived is the same. But they are
longer for ack mode 1. Also ack mode 1 has more listening periods than ack
mode 2. Again ack mode 2 is more energy efficient.

The third example in Fig. 3.9 shows the case, where the data message does not
arrive at the destination in the first three slots and for ack mode 2 the ack does
not arrive at all. For ack mode 1 the second flood is not initiated. Nodes 1 and
2 need some energy for listening, but nothing is transmitted. There are three
more retransmissions for ack mode 2. As sending is far more expensive than
receiving, ack mode 1 uses less energy in this case. And as the ack did not reach
the initiator for mode 2, the whole process has to be repeated for both modes.

As long as the floods are expected to be successful ack mode 2 needs less energy.
But it can take up more time, if the data message length and the number of hops
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Figure 3.9: Ack mode comparison example 3.

increase. When there is a lot of interference and the floods are likely to fail, ack
mode 2 can waste some energy for the partial back propagation of the ack.

3.6.2 Energy Comparison

To compare the energy consumption for the different ack modes a measurement
was performed. The settings are shown in Table 3.3. One of the 26 nodes was
selected as destination for all floods. The other 25 nodes alternating sent one
flood with each ack mode. This resulted in 60 floods per node and ack mode.

Nodes 26
Floods 1500 per setting
Retransmissions 3
Acks 3
Powers 22dBm / 0dBm
Modulations FSK 200kbit / LoRa SF5
Payload 12B

Table 3.3: Measurement setup parameters.

Figs. 3.10 and 3.11 show the average energy consumption per flood. Whereas the
analysis for Fig. 3.10 was based on GPIO pin toggles, Fig. 3.11 shows the result
of an analysis based on performance counters. Especially for the FSK modula-
tion the two results differ significantly. The GPIO pins are set a little longer
than the receptions or transmissions actually last. This leads to longer listening
and sending times for the calculations with the GPIO pins as for the perfor-
mance counters. But also the performance counters are not exact as the current
consumption is assumed to be of perfect rectangular shape and the ramping is
disregarded. This means these results are only a rough estimate. For LoRa these
effects are not so relevant as the overhead for the ramping or the pin toggles is
smaller compared to the time on air. The measurement shows that the energy
used for ack mode 1 is definitely the lowest of the three modes. Compared to
ack mode 0 it uses around 55% of the energy for LoRa and around 69% for FSK.
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Figure 3.10: Average energy consumption per flood. Calculated based on the
GPIO pins.

For this setup even the average energy for ack mode 2 is lower than without ack.
Concerning that ack mode 2 already achieved that an acknowledgment reached
the initiator this is even better. To get the same result with the other two modes
two floods would be needed.
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Figure 3.11: Average energy consumption per flood. Calculated based on the
performance counters.

3.7 Characterization and Evaluation

This section describes the results of a comparison of FSK and LoRa. The first
two subsections show the results of a larger measurement. The reliability is
compared for different transmit powers in Section 3.7.1. The synchronization
precision is shown in Section 3.7.2.

Section 3.7.3 gives a comparison to Glossy and the Section 3.7.4 shows some
more measurements where a selected parameter was sweeped.

3.7.1 Reliability

The reliability is measured as the percentage of nodes which successfully received
the flood.

Fig. 3.12 shows the nodes that participated in the measurement. The initiator
was node 1 in the upper left corner. The parameters for the measurement are
listed in Table 3.4. The 3000 floods are per power and modulation setting.

Fig. 3.13 shows the reliability of the floods for the different power settings. For
LoRa the reliability does not significantly change as for 0dBm half of the nodes
is already reached within one hop. Meaning that the network has at most two
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Figure 3.12: Measurement setup.

Nodes 24
Floods 3000 per setting
Retransmissions 3
Powers [dBm] 0, 10, 22
Modulations FSK 200kbit, LoRa SF5

Table 3.4: Measurement setup parameters.

hops. For FSK the reliability is better with higher power settings. For lower
power settings the link quality for the single hops degrades and the messages
may not reach the next node, even with multiple retransmissions.

3.7.2 Synchronization Precision

The synchronization precision is extracted from the same measurement as de-
scribed in Section 3.7.1. All nodes that received the flood toggled a GPIO pin
after a predefined time interval. The GPIO event was logged by Flocklab to-
gether with the respective timestamp. The synchronization error was calculated
as the difference between the pin toggle of a receiving node and the toggle of the
initiator.

The resulting average error can be seen in Fig. 3.14. There is a variation between
the nodes which is due to hardware differences on the nodes and the accuracy
limit on Flocklab. But the average is below 1.5µs for all nodes.
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Figure 3.13: Comparison of the reliability for FSK and LoRa with different
transmission powers.

Figure 3.14: Average synchronization error.

The standard deviation (Fig. 3.15) is in the same order as the average error for
FSK. For LoRa it is a lot higher. This is because of a broader distribution of the
synchronization but also because of more spikes in the measurement. It is not
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clear if the spikes are due to variations from the radio interrupt or due to mea-
surement uncertainties on Flocklab. The higher deviation for node 11 and FSK
however is due to synchronization problems on Flocklab. Spikes with a similar
pattern were observed in other measurements independent of Gloria. For more
information about the Flocklab synchronization problems see Appendix A.1.

Figure 3.15: Standard deviation of the synchronization error.

Figs. 3.16 and 3.17 show the distribution of the synchronization error for the
LoRa and FSK modulation respectively. The y-axis is plotted in a logarithmic
scale. For FSK node 11 has been removed as it had synchronization problems
introduced by Flocklab. The bins are 10µs wide. The plot for FSK contains
206021 samples, whereas the one for LoRa contains 222585. The difference is
due to the missing samples from node 11 an due to the setting that only nodes
which received the flood toggle the pin.

The bin with far the most occurrences is the one between -5 and 5 µs for both
modulations. The plots show that the distribution is a bit broader for LoRa
than FSK but also that there are more spikes.
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Figure 3.16: Distribution of the synchronization error for LoRa SF5.

Figure 3.17: Distribution of the synchronization error for FSK 200kbit without
node 11.

3.7.3 Comparison to Glossy

To compare the performance of Gloria to Glossy some measurements of Glossy
on the CC430 radio were redone as for Gloria. In total six measurements with
different retransmissions were performed. The measurement setup was chosen
as close as possible to the Glossy one, but is not exactly the same. The nodes
used can be seen in Fig. 3.18. The initiator was node 28. For the Glossy mea-
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surement node 6 was not available and for Gloria node 14. Also there were 4
more nodes outside the building for Glossy. They have not been considered for
the analysis. The parameters for the measurement can be seen in Table 3.5. For
each measurement one retransmission was selected and 10000 floods were sent.

Figure 3.18: Measurement setup.

Nodes 26
Floods 10000 per measurement
Retransmissions 1 - 6
Power 12dBm
Modulation FSK

Table 3.5: Measurement setup parameters.

Fig. 3.19 shows the average reliability for the different measurements. The re-
liability for Gloria is up to 1% below the one for Glossy. Especially for higher
retransmissions. Also the reliability is lower for higher retransmissions for Glo-
ria. This could be due to external interference, as the different measurements
with the different retransmissions were performed after each other. It is not clear
what makes the difference between Glossy and Gloria. More measurements with
the exact same setup and measurements of the link reliability between the nodes
need to be done, to get a better understanding.
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Figure 3.19: Reliability of Glossy and Gloria for different retransmissions.

3.7.4 Parameter Sweeps

This section shows some more measurements where a parameter was sweeped.
The measurements have less iterations than the ones above and are thus less
meaningful. But they show the general behaviour if a parameter is increased or
decreased.

Except for the parameter that is sweeped, the values set are those shown in
Table 3.6.

Parameter Default Value

Slot Limit 32
Retransmissions 3
Power LoRa SF5 0dBm
Power FSK 200kbit 22dBm
Number of Nodes 26
Iterations 100 per setting

Table 3.6: Paramter sweeps setup.

Retransmissions

Fig. 3.20 shows the reliability for different retransmissions. For 1 retransmission
it is significantly lower for FSK. After that it still increases but not so fast.
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Figure 3.20: Retransmission sweep.

Slot Limit

The reliability saturates at around 8 slots for both modulations. After that it
stays constantly high as shown in Fig. 3.21.

Figure 3.21: Slot sweep.
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Powers

The reliability for the power sweep in Fig. 3.22 is worse than shown in Sec-
tion 3.7.1. It is not clear why this is the case, but it could be due to more
interference.

In general it can be seen that the reliability for FSK goes down for decreased
transmit powers. For lower powers the link reliability between two nodes gets
worse. This also decreases the general reliability. Also the decrease in range for
lower powers means that there are not always multiple paths from the initiator
to each node.

For LoRa the power does not really matter, as the nodes are close enough to
have a good link reliability even for lower powers.

Figure 3.22: Power sweep.



Chapter 4

LWB

For this thesis a simple version of LWB was implemented on the new commu-
nication platform [2] with the help of Gloria. Additionally it was extended to
make use of the radio’s possibility to switch between different modulations with
different range.

Section 4.1 describes the problem statement for the LWB implementation. The
actual implementation of a simple LWB version together with the extension is
explained in Sections 4.2 and 4.3.

4.1 Problem Statement

H

FSK

Figure 4.1: Simple LWB network.

For the simple LWB implementation done in this thesis and also the original
LWB, all the nodes need to be able to participate in the network floods with
the chosen modulation. An example of such a network can be seen in Fig. 4.1.
The host node is marked with an “H”. In this network all nodes are connected
to each other with FSK modulation. It could be any other modulation but for
this example it is assumed to be FSK. This means that a flood initiated by any
node in the network should reach all other nodes.

The example network is now extended with more nodes that are out of range
for FSK (Fig. 4.2). The only possibility to include those into LWB would be

31
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Figure 4.2: LWB network with remote nodes.

to flood the network with a LoRa modulation that can reach those nodes. But
LoRa modulations are far more expensive in terms of time and energy than FSK.
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Figure 4.3: LWB network remote nodes and indicated bridge nodes.

The solution to this problem was to define clusters of nodes in the FSK network
which can communicate to the remote nodes with a LoRa modulation. A version
of such a clustering is shown in Fig. 4.3. These nodes are called bridge nodes
and should handle the communication with the remote nodes. The idea was to
include the communication from bridge to remote nodes into the LWB rounds
in a similar manner as in the already existing LWB implementation. For this
thesis it was assumed that the bootstrapping and clustering is already done. This
means that the assignment of the nodes and the partitioning of the network into
clusters is known at the host.

Actually the problem is not limited to FSK and LoRa modulations. It could
also mean that the flooding network is connected by a LoRa modulation with a
low spreading factor and the communication to the remote nodes is done with
a higher spreading factor. But to keep it simple it is assumed that the flooding
is done with FSK and the long range communication to the remote nodes with
LoRa.
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4.2 Simple LWB

Schedule Slot Contention SlotBasic Round Data Slot Data Slot

Round 0 Round 1 Round 2 Round 3 Round 4

Figure 4.4: LWB overview.

LWB schedules its communication into different rounds. Each of these rounds
is divided into slots as shown in Fig. 4.4. The schedule slot is used by the host
to send a schedule and a synchronization timestamp to all other nodes. In the
contention slot nodes can try to request a data slot. If they get a data slot
assigned they can send their data to the host.

4.2.1 Slots

This section describes the different slots and the according messages that are
transmitted in more detail. The content of the messages that are sent in the
different slots can be seen in Fig. 4.5.

Schedule Slot Contention SlotBasic Round Data Slot Data Slot

Round Period

# Acks

# Data Slots

Node ID

Stream Size

Stream ID

Stream PeriodID ID ID

Node ID

Payload

Packet ID

Ack Ack Ack

Stream Req

Figure 4.5: Basic round with message layout.

Schedule Slot

The schedule slot is used by the host to broadcast a schedule message to all nodes.
The first element in this message is the round period. It is given in seconds and
allows the nodes to calculate the start of the next round by adding it to the
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start of the current round. The number of data slots indicates how many data
slots are scheduled in this round. For each data slot the host appends a node’s
ID to the schedule to indicate which node is allowed to send in this slot. The
last parameter is the number of acks appended to the schedule message. These
acks are used to acknowledge stream requests piggy-backed to a data message as
explained in Section 4.2.1.

The schedule is sent as a broadcast sync flood to allow all other nodes to syn-
chronize to the host’s time.

Contention Slot

In the contention slot the host node is listening for stream requests by the other
nodes. In this slot multiple nodes may send at the same time. If a node has
no stream request to send, it listens for other floods and retransmits the first
received one. To be able to tell a node that its stream has arrived at the host
the contention slot is built as an ack flood of mode 2 (see Section 3.2.2). If the
stream request is not acknowledged the node backs off for a random amount of
rounds to reduce contention. The maximum number of rounds to back off is a
parameter of the protocol.

Each stream request is identified by its node and stream ID. The stream size is
the number of bytes of one packet and the stream period is the time between
two packet generations. To revoke an already assigned stream, a node can send
a stream request with the same node and stream ID but with the period set to
zero.

Data Slot

If a stream request reached the host, the host may allocate a data slot for this
node. The nodes then can send a data message in the allocated slot. The data
message consist of the node ID and a sequence number called packet ID. Each
packet is identified by those IDs. The payload contains the actual data.

If a node wants to request a stream and already has at least one allocated data
slot, it can piggy-back a stream request to a data message. As the data trans-
missions are not acknowledged, this stream request gets acknowledged by the
host with the next schedule. Moving the stream requests to the data slots, de-
creases the contention in the contention slot and increases the probability that
the stream request arrives, as there is no contention in the data slots.
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Gloria

ManagerData Generator Scheduler

Figure 4.6: The different building blocks of LWB.

4.2.2 Building Blocks

As can be seen in Fig. 4.6, LWB consists of three building blocks and Gloria
underneath it. The scheduler is only active on the host node. Only the data
queue of the data generator is used on the host node to store the received data.
On all other nodes the scheduler is disabled but the data generator periodically
generates data. The manager is responsible to keep track of the time, initiate
the Gloria floods and handle the finished floods.

In the rest of this section the functionality of the different blocks is explained in
more detail.

Data Generator

The data generator replaces an actual application that would for example read
out and process sensor data. It generates the first data packet and one stream
request at the start of the protocol. The data period of the stream request is a
random number between the round period and five times the round period. It is
for example between 5 and 25s if the round period is set to 5s. The payload of the
data messages is fixed to 16 bytes. The next packet generations are scheduled
with a timer each data period. The packet contains a sequence number and
the node ID for identification. The payload is constructed from those two and
contains no relevant information. The packets are stored in a FIFO order linked
list (see Section 5.4.1) called data queue.

Additionally to the data generation, the data generator also decides how many
streams should be requested from the host. If the number of messages in the
data queue exceeds a certain limit, a second stream is generated to reduce the
backlog. The period of the second stream is set to the round period. When the
queue size is back at a lower limit the second stream gets canceled. The limits
for requesting a second stream or canceling it again are predefined constants.
The number of streams a node requests is limited to the one for the periodic
data generation and one for reducing the backlog.

The data generator also keeps track of the backoffs for the stream requests. They
are set if the stream request was not acknowledged and are reduced at the end



4. LWB 36

of each round.

The host uses the data generator to store all the received messages during a
round. At the end of a round they are printed via the serial interface and removed
from the queue. From the serial output file the data packets that arrived at the
host can then be reconstructed at the end of a test.

Scheduler

The scheduler is responsible to keep track of all the stream requests that arrived
at the host. It checks if a received request has already been received before. In
this case the request gets updated. If it has not been received before it gets
stored in a stream queue (see Section 5.4.1). Each stream has a backoff value
assigned to it, which indicates when the next data slot for this stream should
be scheduled. The backoff gets initialized with the stream period, when the
stream is first received. At the end of each round the scheduler iterates through
all stream requests and removes those with a period of zero. For all others the
backoff is reduced by the round period.

The round period is fixed and set at the start of the protocol. Based on the
round period the scheduler can calculate the amount of data slots that fit into
a round. The maximum amount is also limited by a constant to make sure the
schedule message does not get too long.

To determine the schedule, the scheduler iterates through all received stream
requests and allocates a data slot for each stream with a backoff of zero or
below. The backoff for scheduled streams gets increased by the stream’s period.
This mechanism ensures that each node gets enough but not too many data slots
assigned. If so much data is generated that it is timewise not possible to schedule
enough data slots, the streams are handled in FIFO order. This also means that
a node whose stream request is at the end of the stream queue may never get a
data slot allocated.

While iterating through the streams the scheduler also checks if one of them
has not yet been acknowledged. This happens if the stream request was piggy-
backed to a data message. A stream ack then gets appended to the schedule. The
number of acks that can be appended to the schedule is limited by a predefined
constant.

Manager

The manager handles the different slots in a round. It calculates the start times
of the corresponding floods and makes sure the flood is correctly configured.
Despite the fact that some messages can have different lengths, the slot lengths
are equal for every round. This allows to calculate the start time of the next



4. LWB 37

slots by summing over the times of the previous slots.

On the host node, the manager gets the schedule from the scheduler, copies it
to the flood message and starts the round by sending the schedule message. All
other nodes start to listen for the schedule. If it is successfully received it gets
stored and is used to schedule the next slots in this round. Else a node can not
participate in this round and listens for the schedule again at the beginning of
the next round.

For contention slots the manager checks with the data generator if there is an
unacknowledged stream request that should be sent. The same applies to data
slots with data messages if the node is the intended sender. If a node has nothing
to send it starts listening and participates in the floods initiated by others. The
host node saves the information from received stream requests and data messages.
All other nodes do not save any information about other nodes.

4.2.3 Time Synchronization

With each sync flood in a schedule slot the nodes receive information about the
absolute time synchronization to the host from Gloria (see Section 3.5). The
received and the reconstructed markers are saved. At the end of each round the
nodes try to adapt their timer to synchronize as good as possible to the host’s
time. If the number of saved markers is below a threshold, only an offset cor-
rection calculated from the latest markers is performed. Once there are enough
markers available, the timer’s offset and drift are compensated with linear re-
gression as explained in Section 5.4.2. Section 5.2.2 gives more details on the
timer configuration.
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4.3 Long Range Extension

Schedule Slot Contention SlotBasic Round Data Slot Data Slot

Schedule Slot Contention Slot DataLR ContentionLR Schedule LR DataLR Round

Figure 4.7: Basic LWB schedule compared to the long range extension.

The basic idea for the long range extension is to handle the remote nodes the
same way as all others. As they can not participate in the normal floods, their
communication needs to be scheduled in separate slots. Fig. 4.7 shows the ad-
ditional slots that were inserted into the basic LWB round. They are similar to
the ones that are already present in the basic schedule.

4.3.1 Long Range Rounds

The remote nodes have a different round period than the basic ones. This long
range period has to be a multiple of the basic round period. It is fixed at protocol
start by setting a constant which defines the multiplication factor.

Only the remote nodes which are connected to the same cluster can be active in
the same round, as the scheduler selects one bridge node per round. The bridge
nodes handle the communication with the remote nodes. They are alternated
to distribute the energy overhead for long range communication between them.
The communication between the bridge and remote nodes is done with Gloria
floods consisting of only one slot and thus only one transmission. Those floods
can easily be extended to consist of more slots and retransmissions for more re-
dundancy or to acknowledge the messages between the remote and bridge nodes.

Basic

Round

LR

Round

Basic

Round

LR

Round

LR

Round

LR

Round

Figure 4.8: Example of a division of the rounds into basic and long range rounds.

If for example the network has two clusters as in Fig. 4.3 and the long range
period is three times the normal period, the rounds would be distributed as in
Fig. 4.8. The first round is a basic round without any long range slots or long
range communication. In the second round there are allocated long range slots
and one of the bridge nodes in the first cluster takes care of the long range
communication. In the third round then a node from the second cluster acts as
bridge. The fourth round is identical to the first one. For the fifth and sixth
round the bridge nodes are changed.



4. LWB 39

In the current implementation it is not possible that multiple bridge nodes are
active in the same round. This could lead to unwanted interference if they were
active in the same slots or to very long rounds if each had its own long range slots.
This means that the long range period must be larger than the normal period
as soon as there are at least two clusters. This approach keeps the overhead for
long range schedule and contention slots small compared to basic rounds. As a
drawback the remote nodes have a higher latency.

4.3.2 Long Range Slots

Schedule

# LR Ack

LR Bridge

Stream Req

Node ID

Stream Size

Stream ID

Stream Period

ID ID ID

Node ID
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Packet ID

LR Schedule
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Figure 4.9: Long range round with message layout.

Fig. 4.9 shows the message layout for the different slots in a long range round.
The messages are equal to the basic ones for the contention and data slots.

Schedule Slot

The schedule message contains the same general schedule information as in basic
rounds. It is extended by a long range schedule the node ID’s and the acknowl-
edgments for the remote nodes. The long range schedule contains the same
information as the general one adapted to the remote nodes. For example the
period is longer. There is one additional parameter which defines the bridge
node for this round.

Long Range Schedule

The bridge nodes takes the schedule message and reduces it to the important
information for the remote nodes. They do not need to know the general schedule
or anything about the allocation of data slots and the acknowledgments for
normal nodes. In the end the bridge node sends out the long range schedule, the
node ID’s for the allocated long range data slots and the acknowledgments for
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the remote nodes. As the long range data slots are scheduled before the normal
data slots the remote nodes do not need to know how many normal data slots
were allocated in this round.

Long Range Contention and Data

The long range stream requests and data messages are identical to the normal
ones. When a bridge nodes gets a data message or a stream request from a
remote node it stores it until the next normal contention or data slot and then
relays it to the host. To be able to do this in the same round the long range
slots are scheduled before their normal counterparts. The bridge nodes remove
any messages from remote nodes at the end of the round.

4.3.3 Long Range Building Blocks

The basic building blocks are the same for the long range extension as for the
basic implementation. This chapter describes the adaptions made to them.

Data Generator

The data generator works the same way on the remote nodes as on all other
nodes. An adaption made for the long range case is the handling of data messages
from remote nodes at the bridge nodes. These are added to the head of the data
queue and not as the others to the tail. This assures that they are relayed in the
same round as a bridge node always gets at least as many data slots allocated
as it should receive data messages from remote nodes.

Scheduler

The scheduler is extended with queues for stream request from the remote nodes.
It has one queue for each cluster in the network to be able to find the relevant
stream requests for a cluster faster.

The algorithm to calculate the round schedule first of all checks if this round
should be a long range round or not. It goes through all clusters in the network
in round robin order. If not clusters are left the rounds are normal ones until
it starts again with the first cluster. The number of normal rounds between the
long range ones is given by the multiplication factor for the long range round
period (SLWB LR ROUND MULT) and the number of clusters in the network.

normal rounds = SLWB LR ROUND MULT− number of clusters (4.1)
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For long range rounds the scheduler iterates through all streams from remote
nodes the same way as described for normal streams in Section 4.2.2. For each
long range data slot assigned, also a normal data slot for the bridge node is
allocated. This allows the bridge node to relay the data from the remote node
in the same round. After the scheduler is finished with the remote streams it
iterates through the normal ones. The time left for normal data slots is reduced
by the already scheduled long range data slots and the corresponding data slots
to relay the data.

Manager

The manager is extended to handle also the long range slots. Nodes that are not
remote nodes nor the assigned bridge node for this round, skip the long range
slots. For the long range schedule slot the manager makes sure that only the
relevant information from the schedule is relayed to the remote nodes.
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4.4 Characterization and Evaluation

This chapter shows the results of a 30min measurement of LWB. The measure-
ment setup can be seen in Fig. 4.10. Table 4.1 shows the parameter settings for
the measurement. For the normal flooding, FSK was used with a transmit power
of 22dBm and for the long range communication, LoRa with 0dBm. The data
period was fixed to 9s for the remote nodes and set to a random value between
3 and 18s for all others.

Figure 4.10: Measurement setup for LWB.

Normal Nodes 22
Remote Nodes 4
Clusters 2
Round Period 3s
LR Period 9s
Data Period 3 - 18s
LR Data Period 9s
Powers 22dBm / 0dBm
Modulations FSK 200kbit / LoRa SF5

Table 4.1: Measurement setup parameters.

Four nodes where chosen to act as the remote nodes. They would have been
able to participate in the normal LWB floods, but were set to only listen for
LoRa transmissions, to simulate the behavior of nodes that are further away. To
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handle the communication with the remote nodes the network was divided into
two parts indicated by the blue line in Fig. 4.10. The nodes marked with a “B”
acted as the bridge nodes for the left or right cluster respectively.

Figure 4.11: Number of messages in the queue. The dashed lines mark the
remote nodes.

Fig. 4.11 shows the number of data messages in the queues on the different
nodes for each round. The remote nodes are indicated by dashed lines. At the
beginning all nodes start to generate data and try to request a stream. If they get
a stream the queue size stays stable. The backlog can be reduced by requesting
a second stream. When it is below 2 the second stream is canceled by the nodes.
After around 25s all nodes have at least one stream. After 45s all nodes could
reduce the number of messages in the queue to one or two. If a node missed a
schedule and had more than 2 messages in the queue it requested again a second
stream. The figure also shows that remote nodes are not discriminated.

The percentage of messages that were correctly received at the host is shown
in Fig. 4.12. It can be seen that nodes 7 and 11 are not that good connected
to the network as the rest. The remote nodes may have worse reliability as
a message first needs to arrive at the bridge node and then via flooding at the
host. On the other side the reliability for the nodes 6 and 16 is in the same range
as for the normal nodes. This means that the bridge nodes have to be chosen
carefully and if the links between bridge and remote nodes are not perfect, an
acknowledgment mechanism has to be introduced to increase the reliability. In
the current implementation the floods between the bridge and remote nodes only
have one slot and no acks. They could easily be extend to make use of ack mode
2 to make sure that the data at least reached the bridge.
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Figure 4.12: Percentage of successfully received packets at the host.
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5.1 File Overview

This is an overview of the files used for the implementation of Gloria and LWB
and other files referenced in this chapter. The top folder (flora) is the git repos-
itory [14].

flora/

lib/

arch/

stm32hal/

hs timer.c

flocklab/

flocklab.c/h

protocol/

gloria/

gloria commands.c/h

gloria constants.c/h

gloria helpers.c/h

gloria radio.c/h

gloria structures.h

gloria time.c/h

gloria.c/h

simple lwb/

helpers.c/h

linked list.c/h

slwb commands.c/h

slwb constants.c/h

slwb data generator.c/h

slwb manager.c/h

slwb network.c/h

slwb scheduler.c/h

slwb structures.h

slwb timer sync.c/h

slwb.c/h

radio/

semtech/

sx126x/

radio.c

radio.h

flora radio.c/h

time/

hs timer.h
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5.2 Flora

This section describes the radio interrupt handling and the timer used for the
Gloria and LWB implementation. The interrupt routine was enhanced and the
possibility to compensate the drift with the timer was introduced during this
thesis.

5.2.1 Radio Interrupts

Figs. 5.1 and 5.2 show the interrupt handling from the radio. The lowest level
represents the actual interrupts from the radio (Radio Interrupts). They are
handled in the RadioIrqProcess function in the radio.c/h files. As all interrupts
from the radio are mapped to one pin that toggles, it is necessary to check in the
interrupt register which interrupt was triggered. Each interrupt is assigned to
one bit in the interrupt register. It is possible that multiple bits are set. This is
represented by the stacked blocks on the lowest level in the figures. For example
when an RxDone interrupt occurs, it is necessary to check the HeaderError and
CrcError bits, to know if the reception was correct or not. This information
is passed on to the next higher level as a function parameter, indicated by the
True/False markers on the arrows.

The second level is the Flora level. These functions are defined in the flora radio.c/h
files. The RxSync function gets the capture timestamp from the timer and stores
it for later use. It does not trigger anything on a higher level. The other functions
invoke the callback functions on the next higher level and pass on the param-
eters. The callback functions must be set before each radio command as they
get removed once an interrupt occurred. This can be done with the functions
provided in the flora radio.c/h files.

Figure 5.1: Interrupt handling part 1.
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Figure 5.2: Interrupt handling part 2.

The rest of this section explains the handling of the different interrupts in more
detail. For more information on the radio interrupts see the radio documentation
[3].

TxDone

The TxDone interrupt is triggered once a transmission is finished. It is just passed
on to the layers above.

RxDone

When an RxDone interrupt occurs the HeaderError and CrcError bits are also
checked. The information from those is passed on as a parameter to the RxDone

function on the Flora level. From there the callback is triggered with the same
information.

Sync Word / Header Valid

These interrupts are triggered once the radio receives a valid Sync Word for FSK
or a valid header for LoRa. They invoke the RxSync function on the Flora level,
which saves the timer’s capture timestamp. The timestamp can for example be
used for synchronization. The RxSync function does not have a callback on a
higher level.
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Timeout

The Timeout interrupt triggers the RxDone or TxDone function on the Flora level.
Which one is determined based on the current radio status. The callback on the
highest level however is again the same (TimeoutCallback).

HeaderError

The HeaderError can also occur on its own (without a later RxDone). It is then
passed on to the RxError function and to the TimeoutCallback with the Error

parameter set to True.

CadDone

The CadDone interrupt is passed on with the parameter Detected from the
CadDetected interrupt.

PreambleDetected

There is one more interrupt that is not currently handled and thus not shown in
the figures.

5.2.2 Timer

The timer is based on a 32bit counter register with a software extension to
64bit. In the current implementation it runs on the same frequency as the
microcontroller, which is 8MHz. This means that one clock cycle or timer tick
is equal to 125ns.

The actual counter value is not visible to higher layer software. Instead the
timer returns a 64bit virtual time. This virtual time is based on the counter
value, the software extension and the drift and offset values. The drift and offset
are initialized as 1 and 0 respectively and may be adapted with the functions
provided in the hs timer.c/h files. The calculation of the virtual time can be
seen in Eq. (5.1).

virtual time = (sw extension|counter value) ∗ drift + offset (5.1)

The | stands for a bitwise or operation. The software extension is shifted by 32
bits before the calculation.
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5.2.3 Flocklab Pins

To be able to set the Flocklab pins and use them for debugging, the files flock-
lab.c/h were generated. They offer various functions to set, reset or toggle Flock-
lab pins. The interrupt routine for GPIO actuations from Flocklab is also defined
here. It does not do anything in the current implementation.

The current pin usage is shown in Table 5.1.

Pin Name Usage

INT1 Set to toggle after each Gloria flood.
LED1 Is high if the radio is in tx mode.
LED3 Is high if the radio is in rx mode.

Table 5.1: Flocklab pin usage.

The general pin assignments for Flocklab can be found in the Flocklab wiki [15].
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5.3 Gloria

5.3.1 Gloria Parameters

Before starting a flood certain settings for the flood need to be configured. Every
setting can be adjusted in the gloria flood t struct. To start the flood a
pointer to the struct is, together with a pointer to a callback function, handed
over to the gloria run flood function. When the flood is finished the callback
function gets executed. The necessary information such as if a message was
received, if the message was acked or the received message itself are also stored
in the gloria flood t struct.

An overview of the flood struct can be seen in Table 5.2. Additionally to the
parameter name and the data type, the “Usage” column states what kind of
parameter it is. “Rx” or “Tx” stands for parameters that need to be configured
before listening or initiating a flood. Possible values for those parameters are
listed in the “Values” column. “Int” stands for internal and means that the
parameter is used during the flood. On the other hand “cb” stands for callback
and marks the parameters which might be interesting for higher layer protocols
after the flood is finished. Some parameters as for example msg received are
used during the flood but are also important after the flood is finished.

Additional to the parameters in the gloria flood t struct, three parameters
can be configured in the gloria header t struct shown in Table 5.4. These are
the message type, the destination and if the flood is a sync flood. The actual
payload of the message is copied to the payload array. Both header and payload
are part of the gloria message t struct shown in Table 5.3.

The rest of this section explains the implementation details that are required
to successfully use Gloria. If a parameter has already been described in the
Chapter 3, a link to the relevant section is given.
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Parameter Name Data Type Usage Values

ack counter uint8 t int
ack message gloria ack message t int / cb
ack mode uint8 t Rx / Tx 0 - 2
acked bool int / cb
band uint8 t Rx / Tx 0 - 51
callback void* Rx / Tx
crc error bool cb
crc timeout bool cb
current tx marker uint64 t int
data slots uint8 t Rx / Tx 0 - 255
first rx index int8 t int / cb
flood idx uint16 t Rx / Tx 0 - 216-1
guard time uint32 t Rx 0 - 232-1
initial bool Rx / Tx True / False
last active slot uint8 t int / cb
lp listening bool Rx True / False
marker uint64 t Rx / Tx 0 - 264-1
max acks uint8 t Rx / Tx 0 - 255
max retransmissions uint8 t Rx / Tx 0 - 255
message gloria message t* Rx / Tx *
message size uint8 t int
modulation uint8 t Rx / Tx 0 - 10
msg received bool int / cb
payload size uint8 t Rx / Tx 0 - 251
power int8 t Rx / Tx -9 - 22
received marker uint64 t int / cb
reconstructed marker uint64 t int / cb
remaining retransmission uint8 t int / cb
rssi int8 t cb
rx timeout uint32 t Rx 0 - 2097151750
slot index uint8 t int / cb
snr int8 t cb
sync timer bool Rx True / False

Table 5.2: Gloria flood struct.

Parameter Name Data Type

header gloria header t
payload uint8 t[255-GLORIA HEADER LENGTH]

Table 5.3: Gloria message.
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Parameter Name Data Type Config Values

dst uint8 t Tx 0 - 255
slot index uint8 t
src uint8 t
sync uint8 t: 1 Rx / Tx 0 / 1
type uint8 t: 7 Tx 0 - 127

Table 5.4: Gloria header.

ack counter:
The ack counter is used during the flood to make sure that at most max acks

number of acks are sent.

ack message:
Contains the ack that should be sent. It consists only of the destination described
below.

ack message.dst:
Section 3.4
The destination for the ack message is the node ID of the initiator. It is only
valid if an ack has been received during this flood. Check the acked parameter
to see if this is the case.

ack mode:
Section 3.3.1.

acked:
Bool that tells if an ack has been received. It is important to check the ack message.dst

parameter to be sure for which node the ack was intended.

band:
The band parameter is used to select one of the predefined frequency settings in
the variable radio bands in the file radio constants.c. The settings consist of the
center frequency, the bandwidth and the associated duty cycles and maximum
transmit powers.

callback:
The callback parameter saves a pointer to the callback function. The function
gets executed as soon as the flood is finished. It has to be specified at flood start
and handed over to the gloria run flood function.

crc error:
If crc error is true at least one message (ack or data) was received with wrong
payload CRC.

crc timeout:
If crc timeout is true at least one message (ack or data) was received with
wrong header CRC.
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current tx marker:
The current tx marker gets calculated for each slot and marks the beginning
of the transmission. The beginning of the reception is scheduled earlier to make
sure the radio is ready to receive the message. How much is defined by the
rxOffset constant (see Section 5.3.3) for each modulation setting. If a guard
time is specified the offset is increased by its value.

data slots:
Section 3.3.1
The data slots parameter is used to set the number of data slots, which is equal
to the slot limit. In the actual implementation there are no subslots but the data
and ack slots are independent slots as shown in Fig. 5.3.

Send

Slot 0 Slot 1 Slot 2

Receive Listen

Slot 3 Slot 4 Slot 5

Destination

Initiator

Relay

Relay

Data Ack Data DataAck Ack

Figure 5.3: Ack flood with slot numbering as implemented.

first rx index:
The number of the slot the data message was received. It is set to -1 for nor-
mal and -2 for ack floods at their beginning. It is needed to calculate the
last active index and can also be used to for example make an estimation
on the distance to the initiator on higher layer protocols. For ack floods it is
always even as all data slots have an even slot number.

flood idx:
This parameter is for debugging and measurement purposes only. It allows to
assign each flood an ID to be able to separate the floods for analysis.

guard time:
Section 3.3.3
The guard time needs to be specified in timer ticks (see Section 5.2.2).

initial:
Set initial to 0 if this node should listen for a flood and to 1 for the initiator.

last active slot:
It contains the index of the slot in which the node takes its last action. This can
be sending or listening. For the initiator it can be calculated at flood start. For
all other nodes it is set to 0 at flood start and is calculated on message reception.
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The value that gets calculated depends on the flood type. For ack mode 2 it is
set to the slot limit and the flood is only stopped earlier, if all acks were sent.
For normal floods and floods with ack mode 1 it marks the slot the last data
message should be sent. An example of its calculation for ack mode 1 can be
seen in Section 3.2.2.

lp listening:
Section 3.3.3

marker:
Section 3.3.1

max acks:
Section 3.3.1

max retransmissions:
Section 3.3.1

message:
The message contains the gloria header t and the payload for the flood. It
actually gets transmitted. The memory for it also needs to be allocated for
listening nodes as the received data gets copied there.

message ->header.dst:
Section 3.3.2

message ->header.slot index:
Each message header contains the slot index of the current slot, so that the
receiving nodes know how many slots are left and when the flood started.

message ->header.src:
Section 3.4

message ->header.sync:
Section 3.3.1

message ->header.type:
Section 3.3.2

message ->payload:
The payload to transmit is stored as an uint8 t array and has to be copied
before the flood is started. For sync floods the sync timestamp is also stored
in the payload and the bytes that can be set are reduced by its length. The
length of the timestamp can be set as explained in Section 5.3.3. See also the
description on the payload size below.

message size:
The size of the actually transmitted packet. Consists of the payload size the
size of the header and the timestamp length for sync floods. In contrast to the
payload size it does not need to be set at flood start but gets calculated during
the flood.
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modulation:
The possible modulation settings are predefined in the constant radio modulations

in the file radio constants.c. There are two versions for FSK with different data
rates and seven for LoRa with different spreading factors.

msg received:
This parameter indicates if the flood message was successfully received. It is
always true for the initiator.

payload size
The size in bytes of the payload to send should be equal to the number of bytes
copied to message->payload. The maximum payload size is

255− GLORIA HEADER LENGTH (5.2)

bytes for floods without an appended timestamp and

255− GLORIA HEADER LENGTH− GLORIA TIMESTAMP LENGTH (5.3)

bytes for sync floods. The payload also needs to be known at the receiving nodes
for low power listening. If low power listening is disabled, the payload needs
only be specified for the initiator. GLORIA HEADER LENGTH and GLO-
RIA TIMESTAMP LENGTH are constants defined in the gloria constants.h file.
The timestamp length can be adapted under certain constraints as explained in
Section 5.3.3.

power:
This parameter is used to configure the transmit power in dBm that should be
used for sending.

received marker:
Section 3.4

reconstructed marker:
Section 3.4

remaining retransmissions:
The remaining retransmissions is a counter to check if the node should re-
transmit the message again or not.

rssi:
This parameter contains the RSSI value of the first received message (ack or
data).

rx timeout:
Section 3.3.3
The rx timeout needs to be specified in timer ticks (see Section 5.2.2).

snr:
This parameter contains the SNR value of the first received message (ack or
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data) for LoRa modulations. I is not provided for the FSK modulation by the
radio.

sync timer:
Section 3.3.3
For more details on the possibilities to set the timer offset and drift see Sec-
tion 5.2.2

5.3.2 Gloria Time

The files gloria time.c/h contain all the functions related to time calculations
for Gloria. Most of them are used during the flood and not relevant for using
Gloria. But gloria calculate slot time and gloria calculate flood time

can be quite useful as they allow to calculate the duration of a slot or the whole
flood.

5.3.3 Gloria Constants

Sync Flood Overhead

For sync floods the flood start timestamp is appended to the message. It is 64bit
wide and therefore a big overhead for smaller messages. If this overhead should
be reduced the GLORIA SCHEDULE GRANULARITY constant in gloria constants.h
can be increased. This results in the timestamp being divided by this constant
before it is appended to the message. If the division is high enough the num-
ber of bytes that need to be transmitted for the timestamp can be reduced.
On the receiver side the received timestamp is reconstructed by multiplying it
with GLORIA SCHEDULE GRANULARITY. The drawback is that all floods need to
be scheduled as multiples of GLORIA SCHEDULE GRANULARITY. Else the rounding
errors by dividing and multiplying the timestamp would result in an imprecise
synchronization.

If for example GLORIA SCHEDULE GRANULARITY is set to 216, the floods need to
be scheduled as multiples of 216*125ns = 8.192ms. But the timestamp appended
to sync floods can be reduced by 2 bytes.

Gloria does not check if the flood start marker is set to a multiple of
GLORIA SCHEDULE GRANULARITY. This has to be considered before setting the
marker on higher levels!

Timing Constants

In the file gloria constants.c some timing constants are defined, which are differ-
ent for each modulation setting. The file was originally generated by the python
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script gloria.py located in the flora tools git [16] under /flora tools/. The dif-
ferent constants get calculated according to measurements done in a previous
thesis [2]. Some of them were adapted during this thesis and are marked with
“(adapted by kelmicha)”. A brief overview of the different constants is given
below.

floodInitOverhead:
The initial overhead is based on the wakeup time for the radio and the time
needed for the rx or tx setup. It makes sure that a node has enough time to
initialize and start the flood.

rxOffset:
The rx offset is the time a node starts receiving before the message is actually
sent. This is only relevant for low-power listening or if a node has received the
data message and listens for acks. It was set to a few symbols time based on
experience in the previous thesis [2].

slotOverhead / slotAckOverhead:
The slot overheads are used for processing of received messages and the configu-
ration of the radio. They were calculated based on the transition times between
the radio modes. For the FSK modulation settings they were increased during
this thesis as they were too tight. The increase is based on rough estimates and
observations of timing issues.

txSync:
This constant is the delay between the start of the transmission and the header
/ Sync Word interrupt. It is used to calculate the flood start as shown in Sec-
tion 3.5.1. It has been adapted based on Flocklab measurements during this
thesis.
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5.4 LWB

5.4.1 Linked List

To store for example the streams or the data messages a linked list was imple-
mented. It can be used for any data type. The data is stored in a uint8 t array
and can be cast to the desired data type or copied to another variable. For more
details on the different operations on the list see the linked list.c/h files.

5.4.2 Linear Regression

The linear regression for LWB is done in the slwb timer sync.c/h files. The
number of markers to use can be set with the constant NUMBER SAVED MARKERS.
The constant SLWB MIN MARKERS FOR DRIFT COMP specifies how many markers
are minimally needed for drift compensation. A regression on for example only
two points can be very inaccurate. Especially if one of the points itself is in-
accurate. Because of this, only the offset is corrected until enough markers are
available. It is calculated based on only the latest marker. Both constants are
defined in slwb constants.h. The actual computation of drift and offset is shown
below.

X is the array of the local timestamps and Y the array of the corresponding
timestamps at the initiator. The drift and offset can then be calculated as
follows.

drift =
X̄ ∗ Ȳ−X ∗Y

X̄ ∗ X̄−X2
(5.4)

offset = Ȳ− drift ∗ X̄ (5.5)

X̄ and Ȳ stand for the average of all the values in X respectively Y. X ∗ Y for
the element wise multiplication of the two.

To avoid overflows for the calculations, all markers are reduced by the value of
the smallest one. At the end the variable transformation is reverted to get the
correct offset value.

5.4.3 LWB Constants

All the constants for the LWB protocol are defined in slwb constants.h.

The slot overhead is set to 50ms. The actual time needed for the processing in
the different slots was not measured. The current value makes sure that it is
more than enough and there is also time for more processing if the protocol is
extended. For a final version of the protocol the overhead could be measured
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and reduced to save some time. Also an overhead per slot type would reduce the
total time needed for each round.

5.4.4 LWB Slot Times

The slot times for the different slots are predefined in the slwb constants.c file
for each modulation. They are composed of the flood duration for the respective
floods and the SLWB SLOT OVERHEAD constant defined in slwb constants.h. The
number of slots for the floods is also defined in slwb constants.c. The slot over-
head is used for processing of the last flood and preparing the next flood. It is
the same for all slots.

slot time = flood duration + SLWB SLOT OVERHEAD (5.6)

The file flora tools/codegen/gen slwb slot times.py in the flora tools development
fork for this thesis [17] contains the code used to generate the slot times. The
paths probably need to be adapted.

5.4.5 LWB Network

The partitioning of the network for Flocklab is defined in slwb network.c. The
current partitioning defines two clusters. The two node lists cl 0 and cl 1 define
the bridge nodes for them. The remote nodes get added from the host node as
soon as a stream request from them is received.

5.4.6 LWB Helpers

In the files helpers.c/h multiple smaller functions are define. On one hand these
are the functions for getting and setting the node configurations as for example
the node ID.

On the other hand there are multiple functions used to print information about
the protocol evolution over the serial interface. For those information printed a
priority may be defined in the header file. It is called PRINT PRIO and can be used
to configure how much information should be printed for a certain measurement.
The data messages that are sent, received at the host or generated are printed
with priority 10. Also the information about the data queue size and the stream
requests are printed with this priority. Other things like the schedule of the
current round are printed with lower priorities.
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Conclusion
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Figure 6.1: Software stack.

Fig. 6.1 shows the resulting software stack of this thesis. Apart from a large
contribution to Gloria and the implementation of LWB also the radio drivers
were enhanced.

Gloria is a network flooding protocol which offers time synchronization in the
order of a few microseconds. It is highly configurable and for example offers the
possibility to chose between the two modulations FSK and LoRa. This makes
it useful for a wide range of scenarios which may also need communication over
long distances. It has been extensively tested and enhanced to work with high
reliability.

On the other hand the implementation of LWB is very simple. It was also tested,
but not as thoroughly as Gloria. It was used as basis for the long range extension.
The long range extension is the implementation of one possibility to include nodes
that are further away into an LWB network, without introducing more state at
the normal nodes. Tests on Flocklab showed that it works without discriminating
the remote nodes. The main goals of a first and imple implemantation were
met. But as the testing of Gloria took more time than expected, the LWB
implementation is not yet in a state to perform extensive performance tests.
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Chapter 7

Future Work

Although the radio interrupt routine has been updated, the rest of the radio
drivers are not well commented and sometimes confusing. For example, there
are multiple functions for sending and receiving, which can be used to do the
same thing. It would make them a lot easier to use if they were cleaned up and
simplified.

Gloria is tested and working as it is. Nevertheless there are some improvements
which could be made. For example, the slot times for FSK could be reduced,
by measuring the timing more accurate and trying to set / read the radio buffer
while sending / receiving. This would reduce the total time needed for a flood
to propagate through the network. For LoRa the reduction would be less signif-
icant, as the time on air is much larger.
The worse behavior in terms of reliability compared to the Glossy FSK imple-
mentation needs to be examined. If it is due to the protocol implementation the
reliability can hopefully be increased. It could also be because of different test
setups or hardware used.

For LWB the future work can go in many directions. One very important part
that is missing now is the bootstrapping and the adaption to network changes.
Furthermore the scheduler serves the stream requests in FIFO order and thus
is not fair. Also the support of data periods below the round period and the
adaption of the round period to the traffic demand are not yet implemented.
The extension for the remote nodes could be extended to not only make use of
node to node communication between the remote nodes and the bridge nodes,
but also include communication over multiple hops, with remote nodes as relays.
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Miscellaneous

A.1 Flocklab Synchronization Issues

During the Gloria measurements synchronization problems were observed. At
first it was not clear if they are due to problems in the implementation or on
Flocklab. However, often the errors were arranged in a certain pattern. Fig. A.1
shows the synchronization error relative to the initiator over multiple floods. Per
flood and node one point marks the error. As can be seen multiple nodes drift
away and come back to the normal synchronization in a similar pattern. Around
flood 1800 all the nodes have an error which is negative. This is most probably
due to synchronization problems on the initiator node.

Due to this observations the error was expected to be on Flocklab side and not in
the implementation. To confirm this thesis another measurement was performed.
In this measurement half of the nodes set a pin every 500ms and do nothing else.
The others sleep for the first half of the measurement and then begin to flood
the network with Gloria floods. The modulation was set to LoRa SF5 and the
power to 22dBm.

The drift of the nodes that only set the pins is shown in Fig. A.2. In the first
600s the drift is more or less linear without massive variations. But after the
flooding starts at second 600, there are major spikes in the drift.

It is suspected that the extensive flooding generates enough interference to dis-
turb the Flocklab synchronization performed with Glossy. This also means that
the synchronization measurements for LoRa modulations can be inaccurate be-
cause of imprecise synchronization on Flocklab. For FSK the problem is less
significant as the time on air and thus the probability to interfere with the
Glossy synchronization is much lower.

More measurements are needed to be able to precisely determine the impact of
interference on the Flocklab synchronization.

1
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Figure A.1: Synchronization relative to the initiator.

Figure A.2: Clock drift on the different nodes.
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A.2 RxDone Interrupt

During this thesis it was observed that sometimes the rx done interrupt of the
radio seems to occur too late. This led to timing problems for the Gloria floods,
as it could happened that a node did not have enough time to prepare for the
next slot if the interrupt was delayed. A too late interrupt always meant that
the CRC failed. Mostly it was observed for FSK modulations. It is not clear
what causes the problem as it is also very rare.

Fig. A.3 shows an example of an interrupt arriving too late. The blue bars
indicate that a node is listening, the red ones that a node is transmitting and
the green ones stand for radio interrupts. For the transmissions there is only
the tx done interrupt at the end. For the receptions there is a Sync Word valid
interrupt earlier and an rx done interrupt at the end. Node 10 listens three times
in the example. The first time a message was received but with wrong CRC. This
is why it listens again. The rx done interrupt occurs almost at the same time as
the rx done interrupt of the sending nodes. For the second reception the rx done
interrupt arrives 1.68ms after the tx done interrupt. For the third reception the
interrupts are again simultaneous.

Figure A.3: Example of the RxDone interrupt arriving too late.



Appendix B

Flocklab Measurements

This chapter explains how the measurements on Flocklab where done and gives
an overview of the python scripts used for their analysis.

4
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B.1 File Overview

Below is an overview of the files used for the measurements on Flocklab and the
analysis of the data.

flora tools/

analysis/

analysis helpers.py

analyze gloria kelmicha.ipynb

analyze gloria kelmicha.py

analyze links kelmicha.ipynb

analyze links kelmicha.py

analyze slwb.ipynb

analyze slwb.py

analyze sync kelmicha.ipynb

analyze sync kelmicha.py

gloria ack analysis calc.ipynb

gloria ack analysis calc.py

gloria ack analysis gpio.ipynb

gloria ack analysis gpio.py

radio const.py

test.ipynb

time calc.ipynb

time calc.py

time const.py

codegen.py

gen slwb slot times.py

flocklab/

flocklab.py

measure gloria kelmicha.py

measure links kelmicha.py

measure slwb.py

run nodes.py

main .py

node.py

B.2 Flora CLI

Flora offers a command line interface to start and control measurements. The
commands that can be used are defined in the command files for the respective
protocol. These are gloria commands.c/h for Gloria and slwb commands.c/h for
LWB. On overview of the commands and the corresponding parameters is given
in Tables B.1 and B.2. These are also the commands that were used for the
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measurements described in Appendices B.3 and B.4.

Command Parameter Flag

gloria rx ack mode a
rx timeout c
guard time g
flood index i
maximum number of acks k
slot limit l
modulation m
power o
retransmissions r
sync the timer s
delta marker t
continuous measurement u
tx period for continuous measurements x

gloria tx ack mode a
destination d
flood index i
maximum number of acks k
slot limit l
modulation m
number of floods for continuous measurements n
power o
payload p
retransmissions r
sync flood s
delta marker t
continuous measurement u
tx period for continuous measurements x

Table B.1: CLI commands for Gloria with the according parameters.

Command Parameter Flag

slwb start long range modulation l
modulation m
long range power o
power p
round period r

Table B.2: CLI commands for LWB with the according parameters.



B. Flocklab Measurements 7

B.3 Gloria

B.3.1 Measurement Script

flora tools/flocklab/measure gloria kelmicha.py

B.3.2 Parameters

The following parameters can be set in the measure gloria kelmicha.py script.

ITERATIONS:

The number of iterations for this measurement. For each iteration all initiators
send with all specified modulations.

SLEEP TIME:

The sleep time defines the time the script waits before starting the next flood.
It is defined as an array to be able to set it independently for each modulation.

TX DELAY:

After the commands for the receiving nodes are sent, the script waits TX DELAY
seconds before issuing the command to the initiator of the flood. This is done
because the server relaying the commands to the Flocklab nodes sometimes has
a delay. With the timeout the commands for the receiving nodes should have
arrived at the nodes before the flood is started.

RX TIMEOUT:

The time the nodes should listen before going back to sleep.

RADIO MODULATIONS:

One of the radio modulation settings defined in flora/lib/radio/radio constants.c.
For each iteration a flood with each modulation is started.

POWERS:

The transmit power in dBm.
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SLOTS:

The slot limit for the floods. Can be specified for each modulation independently.

RETRANSMISSIONS:

The number of retransmissions.

SYNCFLOODS:

Specifies if the floods should be sync floods.

SYNC TIMER:

Specifies if Gloria should adapt the timers offset according to the received times-
tamp in sync floods.

ACK MODE:

The ack mode for the floods.

MAX ACKS:

The maximum number of acks.

MESSAGE:

The message defines the payload that should be sent with the flood.

CONTINUE:

This parameter allows to do continuous measurements. This means that the
initiator starts the next flood without any new cli command. The other nodes
also continue listening for further floods if CONTINUE is set. This only works if
ITERATIONS is set to 1 and only one initiator and one modulation is specified.
Also the other parameters stay the same during all the floods.

TX PERIOD:

The period between flood starts for continuous measurements.
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GUARD TIME:

The time the receiving nodes start to listen before the initiator starts the next
flood for continuous measurements. Should be set to zero for other measure-
ments.

NODES:

The node IDs of the nodes that should participate in the measurement. These
also have to be specified in the Flocklab xml configuration file.

TX NODES:

The node IDs of the nodes that should initiate a flood. For each iteration all tx
nodes send a flood after each other.

BASE:

The destination of the floods. Can be set to 0 for broadcasts.

B.3.3 Measurement Timings

The script flora tools/analysis/time calc.ipynb can be used to calculate the du-
ration of the different floods and also the duration of the whole measurement.

B.3.4 Analysis

Each node prints a json like string over the serial interface after a flood is finished.
The json contains information about the flood. The file analyze gloria kelmicha.py
offers functions to parse those strings convert them to data frames and save the
information as .csv files. The analyze gloria kelmicha.ipynb uses the generated
data frames to generate plots of the data or analyze it in other ways.

Each node toggles the “INT1” Flocklab pin 50ms after the flood is finished. This
pin toggles can be used to examine the synchronization of the nodes. The script
analyze sync kelmicha.ipynb was used to do this.

B.4 LWB

B.4.1 Measurement Script

flora tools/flocklab/measure slwb.py
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B.4.2 Parameters

The following parameters can be set in the measure slwb.py script.

NODES:

The node IDs of the nodes that should participate in the measurement.

HOST:

The node ID of the host node.

LR NODES FL:

The IDs of the remote nodes for measurements on Flocklab.

LR NODES LC:

The IDs of the remote nodes for local measurements.

ITERATIONS:

Should be left at 1 as the protocol runs by itself.

RUNTIME:

After the runtime the nodes are reset and disconnected and thus the protocol is
stopped.

LR MODULATION:

Modulation for the communication between remote and bridge nodes.

LR POWER:

Power for the communication between remote and bridge nodes.

MODULATION:

Modulation for the floods in the basic network.
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POWER:

Power for the floods in the basic network.

ROUND PERIOD:

Round period in seconds for the protocol.

B.4.3 Analysis

The serial outputs from the LWB protocol can be parsed with the analyze slwb.py
script. The analyze slwb.ipynb script uses the parsed information to generate
some performance plots.

B.5 Start the Measurements

To be able to run the measurements with the bash commands, the flora tools
need to be installed as described in the README in the git repository [16].

B.5.1 Flocklab

To start a measurement on Flocklab do the following:

1. Compile the C code.

2. Prepare the Flocklab xml file with the binary version of the code.

3. Save it under ”/flora tools/flocklab/flocklab-dpp2lora-flora cli kelmicha.xml”.

4. Start the measurement script with the bash command: ”flora tools flock-
lab measure gloria -r” or “flora tools flocklab measure slwb -r”

The name for the xml file can also be changed. But the measurement scripts
have to be adapted accordingly.

B.5.2 Local

To do the measurement only on local nodes the following steps are needed:

1. Compile the C code.

2. Flash the code onto the nodes.
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3. Start the measurement script with the bash command: ”flora tools flock-
lab measure gloria -l” or “flora tools flocklab measure slwb -l”

The serial output for the local measurements is currently saved in the folder
/ma kelmich/workspace/flocklab/test results/local/. The path should be adapted.

B.5.3 Aliases

The .bash aliases file in the git repository of this thesis [18] contains some bash
aliases to start the measurements. They are described below.

fl xml $1

Convert the /flora/platform/gloriaLwb flocklab/Debug/gloriaLwb flocklab.elf file
to binary, copy it to the Flocklab xml file and set the test duration to $1.
The paths need to be adapted correctly.

flasha

Flashes the code of the /flora/platform/gloriaLwb comboard/ project onto the
local nodes. It is an alias for the bash command “flora tools program all -v
comboard -d /ma kelmicha/workspace/flora”.

flashaf

Flashes the code of the /flora/platform/gloriaLwb flocklab/ project onto the local
nodes. It is an alias for the bash command “flora tools program all -v flocklab
-d /ma kelmicha/workspace/flora”.

measure gloria r/l

Start the measurement script for Gloria. The “r” is used for measurements on
Flocklab and “l” for local ones.

measure slwb r/l

Start the measurement script for LWB. The “r” is used for measurements on
Flocklab and “l” for local ones.
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