
Institut für
Technische Informatik und
Kommunikationsnetze

Noah Studach

Automatization of Internet Path Trans-
parency Measurements

Semester Thesis SA-2018-28
June 2018 to October 2018

Tutor: Prof. Laurent Vanbever
Supervisor: Dr. Mirja Kühlewind
Supervisor: Brian Trammell
Supervisor: Tobias Bühler

Abstract

The growth of the Internet is reliant on faster and more scalable Internet transport protocols. De-
ploying new transport protocols is highly dependent on a transparent end-to-end path between
any two servers on the Internet. This transparency can be challenged by outdated or misconfig-
ured middleboxes. Misconfigured middleboxes may modify or drop packets they are designed
to receive. Since middleboxes provide crucial network functionality, they are utilized very often.
Path transparency can only be determined with active path measurements. PATHspider is a tool
for such measurements but only provides one vantage point. Using multiple vantage points gives
a better view of the situation and repeating the measurements periodically allows to monitor the
progression over time. This calls for automation and we present you Sugar, a tool that lets you
take active path transparency measurements with PATHspider from multiple vantage points with
the help of a cloud infrastructure provider. Additionally, the results are directly uploaded to the
Path Transparency Observatory from the MAMI project.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goal . 5
1.3 Overview . 6

2 Software Components 7
2.1 PATHspider . 7

2.1.1 Data Format . 7
2.1.2 Usage . 7

2.2 Hellfire and CANID . 8
2.3 Path Transparency Observatory . 8

2.3.1 API . 8
2.4 DigitalOcean . 9
2.5 SaltStack . 9
2.6 Spiderweb . 9
2.7 Salt and Sugar . 9

3 Software Design 11
3.1 Key Challenges . 11
3.2 Software Parts . 11
3.3 PATHspider Extension . 12
3.4 Flowcharts . 12
3.5 Sugar . 12

3.5.1 Remote Execution . 13
3.5.2 Droplet Management . 13
3.5.3 Environment Setup . 14
3.5.4 Preparing Input . 15
3.5.5 Management System . 15

4 Discussion 17
4.1 Design . 17

4.1.1 Drawbacks . 17
4.1.2 Different Cloud Service Providers . 17

4.2 Performance . 17
4.2.1 Setup . 17
4.2.2 Results . 18
4.2.3 Duration . 18
4.2.4 Reliability . 18
4.2.5 Known Bugs . 18

5 Summary and Future Work 21
5.1 Summary . 21
5.2 Future Work . 21

3

4 CONTENTS

A Sugar 23
A.1 Installation . 23
A.2 Configuration . 23
A.3 Usage . 24
A.4 Configuration File . 25

Chapter 1

Introduction

1.1 Motivation

Since its creation, the Internet has grown massively. Not only in size, but also in complexity. To-
day the Internet has over one billion hosts [6] and consists of multiple interconnected networks
also known as AS’s, that in turn can contain other networks within. Each AS manages its own
infrastructure. Most of the time with the help of so-called middleboxes since they provide cru-
cial in-network functionality. They not only keep large networks manageable and economically
viable but are also essential in providing network security. Any device that transforms, inspects,
filters or manipulates parts of the Internet Protocol for other reasons than packet forwarding
can be called a middlebox. Firewalls and network address translators, NAT, are examples of
middleboxes [18, 19]. However, the use of middleboxes can create problems if they are miscon-
figured or outdated. Because every network owner configures their middleboxes themselves,
certain protocols or protocol features might be blocked by such a network. These middleboxes
challenge the transparency of any path they are part of. An internet path is transparent if the
protocol header arrives at its destination without any changes not part of packet forwarding.
When rolling out new protocol features or even completely new protocols, path transparency is
often a requirement for them to function properly [22].
Path transparency can only be determined with an active measurement, since the placement
and functionality of middleboxes are unknown. To measure the transparency for a new proto-
col, packets with two different protocols, one new and one proven to work, have to be sent.
Comparing their replies results in the path transparency. For this reason the Measurement and
Architecture for a middleboxed Internet, MAMI [13], project created PATHspider a tool for active
path transparency measurements [15]. The path a packet takes is dependent on time and the
location on the sender and receiver. The representation of the measured transparency across
the Internet should be as accurate as possible and therefore multiple measurements from vari-
ous vantage points are needed. Infrastructure changes over time can be monitored by repeating
those measurements in a periodic fashion. Automating this task will not only make it faster for
all people currently taking measurements but also makes it more accessible to others. It is nec-
essary to process the raw measurement data to draw meaningful conclusions. Therefore, the
data should be provided to the MAMI Path Transparency Observatory, where it is added to a
larger data set [14].

1.2 Goal

In this thesis the goal is to have a system in place that automatically takes internet path trans-
parency measurements. Previous work has already created such a system called Spiderweb,
but due to recent changes, it is now out of date. Yet, the system properties set in Spiderweb still
apply for this work [28]:

• Multiple available measurement points

• Cost effective

5

6 CHAPTER 1. INTRODUCTION

• Compatible with PATHspider

• Automation: No human intervention required after the initial configuration

• Flexible regarding future extensions

• Automatically analyze measurements

We create Sugar, the system to replace Spiderweb. Like in Spiderweb, PATHspider performs
the measurements while the MAMI PTO [14] serves as a file server to store and analyze the
results. Therefore the goal is to automate taking PATHspider measurements. This includes but
is not limited to:

1. Provide an up-to-date list of jobs for PATHspider

2. Execute PATHspider from multiple vantage points

3. Provide the results to the MAMI PTO

4. Keep the cost minimal

1.3 Overview

Chapter 2 presents different software and architectures, that are incorporated into the design
of Sugar. For each piece, the purpose in Sugar and the way of interaction is explained. Next,
Chapter 3 maps out the key challenges for the software design. Then the individual software
components are presented and explained in more detail. Chapter 4 compares the implemented
approach with the previously set desired system properties and presents a short benchmark of
the final solution regarding time, resources and output. Chapter 5 concludes the thesis by giving
a short summary of the outcome and an outlook to future extensions.

Chapter 2

Software Components

2.1 PATHspider

PATHspider is a tool that measures internet path transparency and will be used by Sugar to
do the actual measurements. It performs an A/B comparison between two different transport
protocols or different protocol extensions on the path to a given host. From this controlled ex-
periment one can observe protocol-dependent connectivity problems or a differential treatment.
The transparency is always measured for one specific protocol or protocol extension. The A/B
testing is done using as baseline connection, usually TCP with no extensions and an experimen-
tal connection with a different protocol or additional extensions. PATHspider supports a number
of plugins, such as Explicit Congestion Notification ECN, TCP Maximum Segment Size MSS or
TCP Fast Open TFO but is also extendable with 3rd party plugins.

2.1.1 Data Format

Both input and output of PATHspider uses the newline delimited JSON, also called ndjson,
format to encode the host information and observed path behavior. An input file may contain
many hosts, where each host information is encoded in ndjson format on a separate line. Each
line can, therefore, be referred to as a job.

• Each job needs at least an IP address in a dip field, but more information might be required
depending on the plugin in use.

• The output of each job contains the original job, a computed path and a set of conditions
observed for the path. An output is also called an observation.

The ECN plugin for example has a connectivity, a negotiation and ipmark condition. Each con-
dition has a state for example connectivity has the following states:

• works: Both connections succeeded

• broken: Baseline connection succeeded where experimental connection failed

• offline: Both connections failed

• transient: Baseline connection failed where experimental connection succeeded

Each state of a condition of a plugin is notated as follows plugin.condition.state. This allows
to quickly analyze the output regarding connectivity to get a feedback on the success of the
measurements. If many connectivity states are offline there might be a problem with the server
performing those measurements. All the conditions of the integrated plugins can be viewed in
the PATHspider documentation [15].

2.1.2 Usage

PATHspider can be run via the command line by using pspdr followed by a command. At the
time of writing the supported commands are analyze, filter, measure, metadata, observe, and
test.

7

8 CHAPTER 2. SOFTWARE COMPONENTS

Figure 2.1: The PTO Architecture [26]

2.2 Hellfire and CANID

Meaningful measurements require on an up-to-date list of PATHspider jobs. Sugar uses Hellfire
with a canid server to resolve the Amazone Alexa top 1 million hosts list [1] to provide a list
of jobs. According to Section 2.1, PATHspider jobs must be formatted as JSON and contain at
least a IP address. To convert one of the lists of topmost contacted host such as the Alexa top
1 million list to fit PATHspider we use Hellfire [12]. Hellfire is a tool to resolve such a list and
get most recent IP addresses, domain and ranking. Hellfire can catch additional information
by adding a daemon process such as the Caching Additional Network Information Daemon or
CANID [27]. Both Hellfire and CANID are written in the programming language go [16].

2.3 Path Transparency Observatory

The path transparency observatory or PTO, in short, is a database from the MAMI project with
the purpose of storing and analyzing PATHspider observations. The PTO consist of two data
stores, the raw data storage, and the observation database. Any data that is uploaded is stored
on the raw data storage, processed by the normalizer and analyzer, and ends up in the obser-
vation database where the more meaningful interconnected information is extracted. The PTO
architecture is shown in Figure 2.1. While the observations and queries of the observation data
are usually publicly available, the raw data is generally only accessible by the owner of the data.
A raw data file is always associated with a file containing its metadata.

2.3.1 API

Access to the PTO is established over a RESTful API, which is a web-based and receives com-
mands over an HTTP message. The RESTful API supports five methods: POST, GET, PUT,
PATCH and DELETE. The POST method is used to create a new resource and upon a suc-
cessful creation, it returns a link to the resource. A resource is read via the GET method, which
returns the resource. PUT and PATCH are used to modify a resource where PUT replaces and

2.4 DigitalOcean 9

PATCH only modifies it. There is also the option to delete a resource using the DELETE method.
Additional options can be added to each method such as extra header information containing
authentication data or the content type of the related resource [5].

2.4 DigitalOcean

DigitalOcean, Inc. is a cloud infrastructure provider with data centers worldwide [17] and pro-
vides the remote servers to run PATHspider. DigitalOcean is used in Sugar to create many
vantage points by creating multiple virtual machines in different locations. With DigitalOcean
you can create virtual machines or droplets, that is how DigitalOcean calls them, on any of their
servers distributed all around the globe. Each droplet is configurable regarding the operating
system, hardware requirements, ssh access keys and so forth. The cost scales the more hard-
ware is allocated. DigitalOcean uses a RESTful API similar to the PTO discussed in Section
2.3.1 [11].

2.5 SaltStack

SaltStack is an open source infrastructure management system. With SaltCloud, a part of Salt-
Stack, virtual machines can be created and destroyed on a previously configured cloud provider.
SaltCloud can also execute commands upon creation such as installing and executing pro-
grams. In Salt, such a set of instruction is called a State. A State can also run Python code.
Their Reactor module gives the ability to execute any State when triggered from starting or
finishing another State or an explicit call.

2.6 Spiderweb

Spiderweb is a first attempt to automate internet path transparency measurements. Spiderweb
uses the Salt management system, see Section 2.5, to set up and command multiple servers.
The servers perform the measurements and upload the data according to a predefined config-
uration. Spiderweb does most of the things requested in Section 1.2 but is not working due to
recent changes on Digital Ocean, PATHspider, the PTO and SaltStack. To get Spiderweb work-
ing again, first, the interaction of Spiderweb and SaltStack must be adapted to a newer version
of SaltStack. Next, the Digital Ocean configuration within SaltStack needs to be updated. Fur-
thermore, the commands starting PATHspider need to change such that the newest PATHspider
version can be used. The PTO RESTful API also needs changes to work properly or can be
directly integrated into PATHspider itself.

2.7 Salt and Sugar

Since basically, every interface Spiderweb interacts with changed, updating Spiderweb needs
nearly as much effort as starting from the scratch. Additionally, Spiderweb depends on SaltStack
to function, which is not reliable enough. In theory, SaltStack is a sufficient standalone solution
and handles the creation and destruction of servers, the execution of PATHspider and by adding
some Python code, also the upload to the PTO. Creating this Salt-Solution failed, due to issues
with the reactor. The problem is not solved yet, even with the help of the Salt Slack Workspace
[10] and the Salt GitHub [2]. Due to the fact that on their GitHub repository new bug reports
are opened nearly every day, SaltStack currently seems unreliable for long-term use. Therefore,
we create a new management system only using Python. Chapter 3 shows the design of this
system, Sugar, in detail.

10

Chapter 3

Software Design

3.1 Key Challenges

Before ever writing a single line of code it is always a good idea to evaluate the requirements
and key challenges of the problem. Such an evaluation helps in designing a work plan and also
marks the milestones of the project.
The quality of an internet path transparency measurements is equal to its representation of the
current state of the Internet. The more vantage points are incorporated in the experiment and
the more different addresses are probed the better is the measured state represented in the
observed data. This leads to the first key challenge of using more than one machine to run the
measurements on and the second that a measurement will take a long time to complete, about
one to two days. In any case, the original desire of an automated measurement process is still
the core of this project. It involves installing PATHspider, all its requirements and initiating the
actual measurement but also uploading the results to the MAMI PTO. Any failures occurring
during the runtime should be reported automatically for convenience. Obviously, all those chal-
lenges should be solved with minimal cost in mind. This leads to the following key challenges
observed:

1. Multiple vantage points

2. Long run time

3. Automated setup, measurement, and upload

4. Report failures

5. Minimize cost

3.2 Software Parts

To fulfill the key challenges the high-level software design consist of five main parts:

1. Prepare PATHspider jobs

2. Create and destroy virtual machines

3. Set up measurement environment

4. Measure

5. Upload data

The first part is to prepare a list of up-to-date jobs, which are fed into PATHspider. The second
part is the creation of virtual machines in different vantage points on the Internet. The third
part sets up the measurement environment, such that PATHspider is ready to be executed. This
includes installing PATHspider and all its dependencies but also fetching the input files. Then
the measurement is taken on each machine. As a next part, the results from the measurements
are uploaded to a file server, in this case, it is the PTO from Section 2.3. When all the previous
parts are completed the virtual machines are destroyed.

11

12 CHAPTER 3. SOFTWARE DESIGN

3.3 PATHspider Extension

PATHspider is extended by an upload command, uploading a specified output to the PTO.
Adding an upload command is desirable as it allows easier upload even for manual use. Ac-
cording to Section 2.3 the PTO requires that the metadata and the measurement results are
sent to the server via an HTTP POST request. Such a POST request is easily sent with the
python module pycurl [23]. Using similar modules such as requests [24] is also an option, but
since pycurl is already part of PATHspider it does not add to its list of dependencies. Fist, Sugar
extracts the metadata from the raw observation data. The metadata extraction is already part of
PATHspider and accessible by the metadata command. We added the feature to enter custom
metadata tags to this command and use it to enter the droplets location into the metadata. Next,
Sugar sends the metadata to the PTO. The PTO specifies the location for the data by replying
with an URL. This link is then used to upload the compressed measurement data.
All the tasks the PATHspider upload command needs to fulfill are listed below:

1. Create metadata with metadata command

2. Compress measurement data

3. Prevent overwriting existing files

4. Upload metadata

5. Receive URL and upload data file

3.4 Flowcharts

Section 3.5 contains flowcharts to better illustrate the inner working of the program code. Figure
3.1 helps reading them, by showing each flowcharts building block and its function. A double-
sided arrow indicates, that the process calls another process and blocks until it responds.

Figure 3.1: The building blocks and their function as used in the flowcharts.

3.5 Sugar

Sugar is the connection between all the software and architectures presented in Chapter 2. It
creates droplets, sets up the necessary environment and executes tasks on each droplet. The
basic concept is displayed in Figure 3.2.

1. Sugar contacts DigitalOcean which creates the droplets

2. Sugar copies the required files to each droplet and starts PATHspider

3. The droplets send their observations to the PTO

Figure 3.3 shows a graphical representation of the high-level program structure. The process
Create Droplet is found in Figure 3.5a in more detail. The block Initiate Installation is displayed
in Figure 3.6a. The remote processes Installation and Tasks are presented in Figure 3.5b and
3.6b respectively. Hellfire, Fetch and Split are responsible for preparing the jobs, Create and
Destroy Droplets interacts with DigitalOcean to allocate and release cloud resources, while the
rest handles PATHspider measurement and data upload to the PTO.
We first explain both core parts of Sugar. The remote disconnected execution of any script in
Section 3.5.1 and the interaction with DigitalOcean in Section 3.5.2. Next, in Section 3.5.3, we
show the environment set up process to run Sugar and PATHspider. Section 3.5.4 explains how
Sugar creates the job lists in a similar fashion as it handles PATHspider but using Hellfire instead.

3.5 Sugar 13

Figure 3.2: The basic concept of Sugar

Finally, Sugar has to manage all those tasks accordingly and Section 3.5.5 presents how this
is achieved. Detailed explanations on installing, configuring and using Sugar are located in
Appendix A. The source code is available on GitHub [4].

3.5.1 Remote Execution

For Sugar, the main challenge is the long time a path transparency measurement of reasonable
size takes to execute. Under this circumstances, connections between servers are not reliable
and a solution that is reasonably robust against disconnects is needed. Sugar is built such that
after the environment is set up, the remote servers execute the tasks of measuring, uploading
data, and destroying themselves without a connection to the local machine. This approach does
not block the local machine during measurements and leaves it free for other use. Figure 3.4
shows how Sugar resolves this challenge. The remotely located script is started via an SSH
connection using setsid. This stops the process from being terminating after SSH disconnects
[20]. Sugar connects to each remote host in parallel using the Python module ParallelSSH [21].
Before we run the script Sugar reads the task information and IP address of each droplet,
which is stored in the local configuration file. Then Sugar updates the tasks in each remote
configuration file, so the remote instance knows what tasks to execute.

3.5.2 Droplet Management

Sugar uses remote virtual machines from DigitalOcean, a cloud service provider, to execute
PATHspider from different locations throughout the Internet. Sugar creates and destroys these
so-called droplets via DigitalOcean’s RESTful web API. Figure 3.5a shows the program flow of
creating a set of droplets. All droplet have the same specification, which is stored in the local
configuration file in JSON format. Sugar serially creates one droplet in each region specified in
the configuration. Sugar first reads the configuration and for each region, it generates a name
and sends the specification with the name and the region to DigitalOcean via a POST request.
DigitalOcean allocates the requested resource and answers with the droplets specification that
also contains an ID. Sugar waits for the droplet to boot up, before refreshing the droplet spec-
ifications via the API. From this specification, Sugar extracts the IP address and saves Name,
IP and ID in the configuration file for future use. If the Droplet is not ready after three attempts,
Sugar deletes that droplet.
When a droplet is no longer in use it is destroyed. This keeps the cost low since DigitalOcean
only bills you for the time the droplet exists. Sugar sends DELETE request to the API with the
droplets ID contained within the URL. This process runs remotely if destroy is a selected task
or locally when the IP address extraction fails multiple times.

14 CHAPTER 3. SOFTWARE DESIGN

Figure 3.3: An abstract view of Sugars programming logic.

Figure 3.4: Sugar is run on all droplets in parallel. The command setsid stops terminating the
process on disconnect.

3.5.3 Environment Setup

Not only PATHspider requires other programs to run but also Sugar relies on certain Python
modules to execute its function. PATHspider and Sugar are both written in Python, which usually
comes preinstalled on most UNIX systems. Sugar uses Debian 9 as the Operating System of its
droplet. Debian 9 is chosen because it uses little amount of memory [9] and contains Python 3.5.
Since Debian 9 comes with Python 3.5 we use the subprocess module to run Bash commands
and install UNIX packets with apt-get. With the UNIX packets installed we have access to pip
and therefore to all Python modules not in Python’s standard library [8]. Some packets are not
available to apt-get, such as PATHspider and python-libtrace [7]. Those are downloaded with
git and installed via the command line. Additionally, PATHspider requires jobs to probe. The
management system of Sugar presented in Section 3.5.5 compresses and copies the jobs to
the remote hosts. Sugar also supports downloadable URL as input filenames. Therefore in a
next step Sugar downloads any filenames that are URLs and decompresses all compressed
files. Sugar retries any failed step up to two times before it stops and posts the progress on
slack.

3.5 Sugar 15

(a) The program flow of creating droplets with Sugar. This
process runs in series for each droplet created.

(b) The process flow of setting up the remote
servers to run PATHspider and Sugar. This
process runs on all remote servers simulta-
neously.

Figure 3.5: The flowcharts of the Create Droplets and Install process.

3.5.4 Preparing Input

With the help of Hellfire and CANID, Sugar delivers an up-to-date job list as input for PATHspider.
Before running Hellfire, Sugar first creates a droplet and then sets up the environment for Hellfire
by installing go and all other required packages. When Hellfire finishes, it informs the user via
Slack that the jobs are ready. Via the - -fetch option Sugar downloads the jobs from the remote
host, splits them into smaller chunks and adds their names to the configuration file. The splitting
is required due to a bug occurring when using large input files with PATHspider [25]. By splitting
them into multiple parts job file size is reduced to a point where even more workers can be used.
This results in an overall shorter runtime but the output is fragmented into several parts. This
makes reporting via slack and file handling less clean. Since the whole process of uploading
and processing in the PTO is automated, this drawback is justified. The program flow of setting
up the environment and running Hellfire is very close to the flows presented in Section 3.5.1
and 3.5.3 and therefore not explicitly illustrated. The one distinct difference between Hellfire
and PATHspider is that Hellfire is written in Go, PATHspider in Python 3. Go has trouble finding
its PATH when it is run over a remote connection. Luckily the subprocess module from Python
allows specifying the environmental variables for each call.

3.5.5 Management System

The management system combines the previously presented parts of Sugar into one working
system. It is composed of two part, one running locally and one remotely. The locale instance
is responsible for creating the droplets as seen in Section 3.5.2, copying all required files to
each droplet and initiating the remote execution of Sugar. Whenever droplets are created Sugar
copies part of its code to the droplets. It updates each remote configuration file with the droplets
name, ID and region identifier before it initiates the setup of the remote environment. This pro-
cess is displayed in Figure 3.6a. The remote part of Sugar is illustrated in Figure 3.6b and

16 CHAPTER 3. SOFTWARE DESIGN

manages the execution of the tasks on each droplet. The process is only displayed for PATH-
spider tasks. When running Hellfire, Sugar starts CANID and Hellfire, then waits for Hellfire to
finish before informing the user over slack about the completion of the task.

(a) Local Sugar Instance prepares each droplet.
(b) Remote Sugar Instance managing
PATHspider tasks.

Figure 3.6: This flowchart illustrates the local and remote parts of the Sugar management sys-
tem.

Chapter 4

Discussion

4.1 Design

4.1.1 Drawbacks

During the short time of updating the configuration file and the still relatively short time of setting
up the environment, the connection is kept alive. But for tasks that require more time such as
executing PATHspider or Hellfire the connection is closed and the local instance of Sugar cannot
determine when or if the remote execution stops. To solve this drawback, the remote script runs
PATHspider and all its associated tasks independently and reports back to the user over slack.
Only when preparing the PATHspider jobs the drawback becomes noticeable, since Sugar does
not know if or when Hellfire finishes and can therefore not get the jobs list automatically. By
adding the - -fetch option we minimize the effect but do not achieve complete automation. We
accept this knowing that for each wave of measurements the jobs are only fetched once.

4.1.2 Different Cloud Service Providers

Currently, Sugar is only compliant with the cloud service provider DigitalOcean presented in
Section 2.4. In Figure 3.3 presenting Sugar, all the interactions with DigitalOcean are marked.
The switch to another cloud service provider with a similar RESTful API design is achievable
with little change to the code of the program. On the contrary, if a cloud service provider with a
completely different architecture and interface is chosen, adapting Sugar is not really applicable.
Sugar uploads files on startup to the remote servers and also downloads and uploads files
during the remote execution. Adapting Sugar to an infrastructure it is not designed for, such
as the mobile testbed Monroe for example, where the node running the measurement is not
accessible during runtime and the traffic of each node is limited, is probably more effort than to
start from the beginning again.

4.2 Performance

4.2.1 Setup

We created nine droplets with two virtual cores and two gigabytes of memory. We deployed one
on each server in the region Amsterdam, Frankfurt, London, Toronto, Singapore, Bangalore,
and San Francisco and two on different servers in the region New York. We ran the PATHspider
plugins ECN, MSS, and DSCP and used 60 workers. For convenience, the droplets were de-
stroyed after each plugin finished uploading and rebuilt for the next set of measurements. One
of the used configuration files is in Appendix A.4. The joblist was created on September 27th
and the measurements ran between September 27th and October 5th.

17

18 CHAPTER 4. DISCUSSION

4.2.2 Results

The missing column is roughly equivalent to the pathspider.not_observed condition. The con-
dition pathspider.not_observed appears if the PATHspider observer does not observe any flow.
Using too many workers overloads the observer and it cannot observe all the traffic. There were
no observations missed with the MSS plugin instead the amount of observed offline connec-
tions is exceptionally high. Analyzing the data within the PTO gives a better understanding of
the captured data. In this analysis, we focus on the percentage of missed observations since
this is the only changeable variable. From the number of missing observations it is clear that
fewer workers are to be used for future measurements. Any other observed condition is the
measurement. But a high percentage of offline conditions observed can be an indication that
the droplet does not work properly. This is however not under our control.

4.2.3 Duration

The duration of the measurements for each plugin and droplet is listed in Tables 4.1. The data
making up the Tables 4.1 was extracted from Slack using a script [3] parsing the channel history.
Therefore the order in which the droplets appear in the Table represents the order of appearance
in the chat. This loosely correlates with the speed they processed the first input file. We observe
that the duration does not seem to correlate with the initial speed. Further the speed does not
depend on the amount of offline or pathspider.not_observed conditions. We conclude that the
duration is highly dependent on the plugin used and the number of jobs but not on the droplet
region.

4.2.4 Reliability

Sugar is reliable. The only failed large measurement since the fixing the problem of PATHspider
allocating non-existent memory was with the DSCP plugin. Its analysis is shown in Table 4.1c.
The failed droplets are identifiable on their number of total observations and are sgp1, fra1,
and nyc1. The failure occurred in PATHspider during the measurements. Only future use gives
enough context to determine the long-term reliability of Sugar.

4.2.5 Known Bugs

At the time of writing the automated execution of Hellfire as described in Section 3.5.4 does not
work. After Sugar installs go, hellfire and CANID, it first runs CANID using the Popen function
from the module subprocess in Python [8]. This runs canid as a child process without blocking
the Sugar instance. Next, Hellfire is started using the call function of subprocess. This blocks
Sugar until Hellfire finishes. After Hellfire finishes the user is informed via Slack. The script
behaves as expected if started within an SSH connection. However, if the script is initiated from
the local machine using the Parallel-SSH module [21], the execution of call kills the CANID
process. This instantly terminates Hellfire because it does not find the specified canid process.
Removing the Popen command from the script and starting CANID manually over SSH results
in the script running as expected. When removing the call command from the script and starting
CANID via the local Sugar instance, the script runs as expected, keeping the CANID process
alive. At the moment the Hellfire process is started manually, the CANID process is terminated.
Until the issue is resolved the script must be started via an SSH connection prepending the
setsid flag to stop termination after the disconnect.

4.2 Performance 19

Region nyc1 ams3 tor1 fra1
Duration 3 12 7 13
Online 897436 533896 749908 461100
Offline 639 871 78 1581
Missing 137659 500967 285748 573053

Total 1035734 1035734 1035734 1035734
Region lon1 sgp1 nyc3 blr1

Duration 16 11 6 15
Online 336458 585450 778686 410934
Offline 7619 17 857 21
Missing 691657 450267 256191 624779

Total 1035734 1035734 1035734 1035734

(a) MSS Results. From Sept. 27th to Sept 28th.
Region tor1 nyc3 sgp1 sfo2 blr1 ams3 lon1

Duration 21 21 23 21 23 19 21
Broken 1362 1489 1242 1484 1543 1946 1342
Offline 403457 404953 630600 457917 576354 245471 468366

Transient 1891 2222 2013 2024 2412 3288 2209
works 502980 627068 401879 574308 455425 785026 563816
Total 909690 1035732 1035734 1035733 1035734 1035731 1035733

(b) ECN Results. From Sept. 27th to Sept. 29th.
Region sfo2 nyc3 lon1 nyc1 tor1

Duration 44 47 44 30 46
Broken 3 27 8 0 19
Offline 11 19 12 2 9
Works 777730 412283 780074 145232 668028

Missing 257990 623405 255640 7071 367676
Total 1035734 1035734 1035734 152305 1035732

Region fra1 sgp1 ams3 blr1
Duration 37 31 44 47
Broken 2 2 2 15
Offline 7 7 8 22
Works 176001 32687 874533 457968

Missing 125936 119610 161188 577729
Total 301946 152306 1035731 1035734

(c) DSCP Results. From Oct. 3rd to Oct. 5th.

Table 4.1: Analysis of measurement results provided over Slack.Duration rounded, in hours.

20

Chapter 5

Summary and Future Work

5.1 Summary

With a growing Internet and the desire for new better internet protocols, there is a need to
measure internet path transparency. Current programs only execute one set of measurements.
Multiple periodic measurements increase the quality of path transparency observations. Execut-
ing multiple measurements in parallel from different remote locations calls for automation. We
created Sugar to fill this gap. A Python-based tool that creates and sets up remote servers via
the cloud service provider DigitalOcean. It runs PATHspider simultaneously on all servers and
uploads the output to the MAMI PTO. We satisfy the key challenges of having multiple vantage
points by creating droplets in remote locations. A remote instance of Sugar runs disconnected
from the local machine not caring about long runtimes. We automated the setup, measurement
and upload process for PATHspider measurements with Sugar and a new command, upload,
for PATHspider.Failures are reported over Slack, keeping the user up to date. Sugar destroys
droplet after the upload, minimizing the cost. We have run a few measurements and their anal-
ysis has shown that we probably used too many workers and observed a large number on
pathspider.not_observed observations. With exception of a single known bug Sugar runs and
one known PATHspider failure Sugar runs reliably and we call it a success.

5.2 Future Work

Sugar achieves the task it was created for but like most things, it can be improved. The most
crucial point is fixing the known bug presented in Section 4.2.5. The analyzer which checks
PATHspider’s output for observation defined in the plugin documentation can be improved by
first making it generically usable for all plugins existing and yet to come. Additionally, if it distin-
guishes IPv4 and IPv6 traffic problem with a droplet might be diagnosed better. Another point
for improvement is the reporting system. Slack works great but reading the output of each input
file for each droplet individually is unnecessarily tedious. The script used to analyze the output
presented in Section 4.2.2 helps but the reporting can be made more friendly towards a parser
or sum all the numbers directly during runtime and provide a summary before terminating.

21

22

Appendix A

Sugar

A.1 Installation

Sugar is constructed as a Python module and available through GitHub [4]. To download Sugar
use the git command or manually from GitHub. Sugar is installed by running setup.py with the
argument install. To download and install Sugar run the following commands in the command
window.

$ sudo git clone https://github.com/nstudach/sugar.git
$ cd sugar/
$ sudo python3 setup.py install

A.2 Configuration

Sugar must be configured with the according API authentication tokens for Slack, the PTO,
DigitalOcean. The PTO token is only required to upload data to the PTO. With sugar comes
an example configuration file and it is recommended to use it as a template. The part of the
example_config.json file from Sugar, where the tokens are put is shown below.

{
"slack":{

"token": "Slack Chatroom Token",
"channel": "#<<Slack Channel name>>"

},
"upload": {

"campaign": "<<PTO Campaign name>>",
"token": "<<PTO Token>>"

},
"provider":{

"headers":{
"Content-Type": "application/json",
"Authorization": "Bearer <<DO API Token>>"

},
"regions": ["ams3", "blr1", "fra1", "lon1", "nyc1",

"nyc3", "sfo2", "sgp1", "tor1"]
}, ...

The task Sugar executes are also configurable. All tasks are either set true to activate or false
to disable them. The verbosity of the Slack messages posted is increased with debug set. To
generate an up-to-date job list set hellfire. This disables all the other tasks except debug. With
hellfire Sugar only uses the first region specified. The options create triggers Sugar to create
droplets as presented in Section 3.5.2. The install option installs the PATHspider environment
seen in Section 3.5.3 and 3.5.5. With measure a PATHspider measurement is started, upload
uploads the output to the PTO and destroy destroys the droplets. Figure 3.6b from Section

23

24 APPENDIX A. SUGAR

3.5.5 illustrates them in more detail. Listed below is the section of the configuration file where
the tasks are set.

...
"task":{

"debug": false,
"hellfire": false,
"install": true,
"measure": true,
"upload": false,
"destroy": false

}, ...

A.3 Usage

To use Sugar type sugar in the command window. The option -h gives information about avail-
able commands and their arguments:

usage: sugar [-h] [--plugin plugin] [--config file-location]
[--key file-location] [--fetch filename n]
[--split filename n]

Manage automated pathspider measurements

optional arguments:
-h, --help show this help message and exit
--plugin plugin Pathspider plugin to use
--config file-location

Path to config file. Default is
configs/config.json

--key file-location Path to ssh authentication key
--fetch filename n Downloads input, executes --split
--split filename n Splits input into n sized parts, adds

them to config file

Sugar is launched using the command sugar followed by one of the optional arguments. The
argument - -config provides Sugar the path a the configuration file. The arguments - -plugin and
- -key overwrite the corresponding field in the configuration file. The - -split argument is used on
local files. It splits the provided file of PATHspider jobs into n-sized parts and writes them into
the specified configuration file. The - -fetch argument is discussed in Section 3.5.4. It fetches
the job list from a remote droplet and executes - -split.
Whenever Sugar creates new droplets for PATHspider it adds them to the configuration file under
setup as host info. If it creates a droplet for Hellfire it is saved under hellfire as host info. In case
Sugar reads a configuration file with the respective host info set, it asks before overwriting the
information. Choosing not to overwrite aborts the execution in case of create. In the case of
hellfire it copies the scripts and executes the installation again.

A.4 Configuration File 25

A.4 Configuration File

An example of a configuration file used for measurements with the DSCP plugin. Only mea-
surement relevant entries are shown.

{
"droplet":{

"size": "s-2vcpu-2gb",
"image": "debian-9-x64",
"ssh_keys": [<<removed>>],
"backups": false,
"ipv6": true,
"user_data": null,
"private_networking": null,
"volumes": null

},
"provider":{

"headers":{
"Content-Type": "application/json",
"Authorization": "Bearer <<removed>>"

},
"regions": ["ams3", "blr1", "fra1", "lon1", "nyc1",

"nyc3", "sfo2", "sgp1", "tor1"]
},
"measure":{

"plugin": "dscp",
"inputfile": [

"https://www.dropbox.com/s/5oaoztja92uddc6/tpSept_1?dl=1",
"https://www.dropbox.com/s/rcanl8p35cymy5d/tpSept_2?dl=1",
"https://www.dropbox.com/s/1ncij9yzenttwgu/tpSept_3?dl=1",
"https://www.dropbox.com/s/qn5k8tqeldnr38b/tpSept_4?dl=1",
"https://www.dropbox.com/s/8cbta2ylviyqvso/tpSept_5?dl=1",
"https://www.dropbox.com/s/8m7f734qt4ndtjg/tpSept_6?dl=1",
"https://www.dropbox.com/s/x6j416ynuuymlzw/tpSept_7?dl=1",
"https://www.dropbox.com/s/42p7k6ypfa35ecq/tpSept_8?dl=1"
],

"outputfile": [],
"workers": "60"

},
"task":{

"debug": false,
"hellfire": false,
"install": true,
"measure": true,
"upload": true,
"destroy": true}

}

26

Bibliography

[1] Alexa top 1 million global sites.
https://www.alexa.com/topsites.
Accessed: 06.10.2018.

[2] Git repository: Saltstack.
https://github.com/saltstack.
Accessed: 06.10.2018.

[3] Git repository: Slack-extractor.
https://github.com/nstudach/slack-extractor.
Accessed: 09.10.2018.

[4] Git repository: Sugar.
https://github.com/nstudach/sugar.
Accessed: 06.10.2018.

[5] Learn rest: A restful tutorial.
https://www.restapitutorial.com.
Accessed: 06.10.2018.

[6] Number of worldwide internet hosts in the domain name system.
https:/statista.com/statistics/264473/number-of-internet-hosts-
in-the-domain-name-system/.
Accessed: 06.10.2018.

[7] Python module: Python-libtrace.
https://github.com/nevil-brownlee/python-libtrace.
Accessed: 06.10.2018.

[8] The python standard library.
https://docs.python.org/3.5/library/.
Accessed: 06.10.2018.

[9] Reddit: Linux distros ram consumption comparison.
https://www.reddit.com/r/linux/comments/5l39tz/linux_distros_ram_
consumption_comparison_updated/.
Accessed: 06.10.2018.

[10] Salt slack workspace.
https://saltstackcommunity.herokuapp.com/.
Accessed: 06.10.2018.

[11] Website: Digitalocean.
https://www.digitalocean.com/.
Accessed: 06.10.2018.

[12] Website: Hellfire.
https://pathspider.net/hellfire/.
Accessed: 06.10.2018.

27

https://www.alexa.com/topsites
https://github.com/saltstack
https://github.com/nstudach/slack-extractor
https://github.com/nstudach/sugar
https://www.restapitutorial.com
https:/statista.com/statistics/264473/number-of-internet-hosts-in-the-domain-name-system/
https:/statista.com/statistics/264473/number-of-internet-hosts-in-the-domain-name-system/
https://github.com/nevil-brownlee/python-libtrace
https://docs.python.org/3.5/library/
https://www.reddit.com/r/linux/comments/5l39tz/linux_distros_ram_consumption_comparison_updated/
https://www.reddit.com/r/linux/comments/5l39tz/linux_distros_ram_consumption_comparison_updated/
https://saltstackcommunity.herokuapp.com/
https://www.digitalocean.com/
https://pathspider.net/hellfire/

28 BIBLIOGRAPHY

[13] Website: Mami project.
https://mami-project.eu/.
Accessed: 06.10.2018.

[14] Website: Path transparency observatory.
https://v3.pto.mami-project.eu/.
Accessed: 06.10.2018.

[15] Website: Pathspider.
https://pathspider.net.
Accessed: 06.10.2018.

[16] Website: The go programming language.
https://golang.org/.
Accessed: 06.10.2018.

[17] Wikipedia: Digitalocean.
https://en.wikipedia.org/wiki/DigitalOcean.
Accessed: 06.10.2018.

[18] Wikipedia: Middleboxes.
https://en.wikipedia.org/wiki/Middlebox.
Accessed: 06.10.2018.

[19] S. W. Brim and B. E. Carpenter. Middleboxes: Taxonomy and Issues. RFC 3234, Feb.
2002.

[20] G. Khera. Website: 5 ways to keep remote ssh sessions and processes running after
disconnection.
https://tecmint.com/keep-remote-ssh-sessions-running-after-
disconnection/.
Accessed: 06.10.2018.

[21] P. Kittenis. Python module: Parallel ssh.
https://pypi.org/project/parallel-ssh/.
Accessed: 06.10.2018.

[22] I. R. Learmonth, B. Trammell, M. Kuhlewind, and G. Fairhurst. Pathspider: A tool for ac-
tive measurement of path transparency. In Proceedings of the 2016 Applied Networking
Research Workshop, ANRW ’16, pages 62–64, New York, NY, USA, 2016. ACM.

[23] O. Pudeyev. Python module: Pycurl.
https://pypi.org/project/pycurl/.
Accessed: 06.10.2018.

[24] K. Reitz. Python module: Requests.
http://docs.python-requests.org/en/master/.
Accessed: 06.10.2018.

[25] N. Studach. Git issue: Memory allocation.
https://github.com/mami-project/pathspider/issues/242.
Accessed: 06.10.2018.

[26] B. Trammell. Blog: An observatory for path transparency measurement.
https://blog.apnic.net/2017/10/23/observatory-path-transparency-
measurement/.
Accessed: 06.10.2018.

[27] B. Trammell. Git repository: Canid.
https://github.com/britram/canid.
Accessed: 06.10.2018.

[28] P. D. Vaere. Continuous measurement of internet path transparency, Jan. 2017.

https://mami-project.eu/
https://v3.pto.mami-project.eu/
https://pathspider.net
https://golang.org/
https://en.wikipedia.org/wiki/DigitalOcean
https://en.wikipedia.org/wiki/Middlebox
https://tecmint.com/keep-remote-ssh-sessions-running-after-disconnection/
https://tecmint.com/keep-remote-ssh-sessions-running-after-disconnection/
https://pypi.org/project/parallel-ssh/
https://pypi.org/project/pycurl/
http://docs.python-requests.org/en/master/
https://github.com/mami-project/pathspider/issues/242
https://blog.apnic.net/2017/10/23/observatory-path-transparency-measurement/
https://blog.apnic.net/2017/10/23/observatory-path-transparency-measurement/
https://github.com/britram/canid

	Introduction
	Motivation
	Goal
	Overview

	Software Components
	PATHspider
	Data Format
	Usage

	Hellfire and CANID
	Path Transparency Observatory
	API

	DigitalOcean
	SaltStack
	Spiderweb
	Salt and Sugar

	Software Design
	Key Challenges
	Software Parts
	PATHspider Extension
	Flowcharts
	Sugar
	Remote Execution
	Droplet Management
	Environment Setup
	Preparing Input
	Management System

	Discussion
	Design
	Drawbacks
	Different Cloud Service Providers

	Performance
	Setup
	Results
	Duration
	Reliability
	Known Bugs

	Summary and Future Work
	Summary
	Future Work

	Sugar
	Installation
	Configuration
	Usage
	Configuration File

