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Abstract

With the rapid expansion of the Internet of Things, an increasing number of
applications relies on reliable, energy-efficient, and low-latency communication
between small networked wireless devices. A large number of wireless commu-
nication protocols dealing with these challenges have been proposed in recent
years. Their performance typically varies greatly with the application and en-
vironment they are used in. The EWSN Dependability Competition aims to
achieve some comparability between solutions by evaluating a protocols under
the same conditions. To encourage protocols that are as generally applicable as
possible, the 2019 edition introduces some controlled variation to the evaluation
conditions. Traditionally, designing and implementing a communication proto-
col that provides good performance in such a complex scenario required a deep
understanding of the entire communication stack used by the nodes as well as a
large amount of development time.
Our goal in this project is to show that this is no longer the case thanks to Baloo,
a novel design framework for communication protocols based on Synchronous
Transmissions. We demonstrate this by participating in the 2019 EWSN De-
pendability Competition with our own protocol based on Baloo, which was de-
veloped and implemented within just a few weeks by students with little prior
experience in the field of wireless networks. Early testing during the preparation
phase of the competition has indicated that our protocol should be able to de-
liver comparable performance to other competing solutions in terms of reliability,
latency and energy consumption across some input conditions.
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Chapter 1

Introduction

This chapter introduces the main motivations and goals behind the semester
project. For the project, we competed in the 2019 EWSN Dependability Com-
petition, on which we provide some background in Section 1.1. We competed in
the data collection category, which is explained briefly in Section 1.2. Our basic
approach to designing our competition protocol is explained in Section 1.3.

1.1 EWSN Dependability Competition

Low-power wireless sensor networks (WSNs) have been an active area of research
over the past two decades. With the increasing penetration of the Internet of
Things (IoT), interest in dependable wireless communication protocols has grown
even further. A large number of protocols have been been proposed in recent
years. However comparing their performance is difficult. For a fair comparison,
one would need to test them using the same

• network,

• environmental conditions,

• application and

• performance metrics.

The International Conference on Embedded Wireless Systems and Networks
(EWSN) Dependability Competition [1], which has taken place annually since
2016, attempts to establish such comparability by benchmarking protocols under
the same settings and comparable environmental conditions. Competing teams
implement their protocols based on a description of the evaluation scenario. The
performance of the implementation is measured in terms of reliability, latency
and energy consumption.
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1. Introduction 2

relaysink source

Figure 1.1: Illustration of the data collection scenario.

However, testing protocols under such specific known conditions has the draw-
back that the results are typically poor indicators for performance in real-life
situations, as it encourages to overfitting to the evaluation scenario. To mitigate
this, the 2019 edition of the Dependability Competition [2] will test competing
solutions on a wide range of input parameters, whose exact values are unknown
to the competitors prior to the evaluation.

1.2 The Data Collection Scenario

The 2019 EWSN Dependability Competition [2] considers two competition sce-
narios. The first is data collection, which is the scenario this project is focused
on. The second is data dissemination.

In the data collection scenario, a fixed number of source nodes needs to transmit
data to a single sink node, as illustrated by Figure 1.1. Further nodes in the
network may act as relay nodes. More details on the exact conditions are given
in Section 3.1. A real-world application of this scenario would be a network
where a central controller node needs to monitor the conditions at a number of
sensor nodes spread across a wireless network.
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1.3 Our Approach

Our primary goal in this project was to design a protocol for the data collection
scenario of the 2019 EWSN Dependability Competition [2] that performs as well
as possible under a number of input parameters in terms of reliability, end-to-end
latency and energy consumption.

The project’s second objective was to test the usability of Baloo [3], a novel
design framework for wireless communication protocols based on Synchronous
Transmissions. Specifically, we wanted to find out whether Baloo would enable
relative WSN-novices to design a low-power, wireless, multi-hop communication
protocol with acceptable performance under a given set of conditions in a rela-
tively short time frame of approximately 10 weeks.

The first step towards these goals was to familiarize ourselves with the Baloo,
the concept of Synchronous Transmissions and the basic building blocks typi-
cally used in the design of collection protocols. An introduction to this technical
background is presented in Chapter 2. We then proceeded to analyze the com-
petition scenario in more detail and design a protocol tailored to it, as described
in Chapter 3. Finally, we ran some initial tests using our protocol to get an idea
of how it would perform in the final competition (see Chapter 4). While our fi-
nal evaluation of our performance will depend on the results of the competition,
which are not yet known to us, we draw some initial conclusions and give an
outlook on potential improvements in Chapter 5.



Chapter 2

Background

This chapter provides some background information on the technologies we are
using in our protocol. Section 2.1 gives a short introduction to Synchronous
Transmissions (ST) primitives with a focus on Glossy in particular. The Baloo
design framework, briefly introduced in Section 2.2, is based on ST. In Section 2.3
we show a structure of some further techniques that are sometimes used in data
collection scenarios.

2.1 Synchronous Transmissions

The term Synchronous Transmissions (ST) describes a collection of flooding-
based communication techniques used in wireless networks. Flooding is a strat-
egy commonly used in wired networks, where each node forwards every message
it receives to all of its neighbors, with the exception of the neighbor it received
the message from. In wireless networks, reliable flooding is more difficult to
implement due to the hidden node problem, as illustrated by Figure 2.1. ST
techniques avoid this problem by using tightly synchronized concurrent trans-
missions. Constructive interference and the capture effect enable the reception
of such transmissions. The use of concurrent transmissions also reduces the time
required to flood a network. Compared to solutions based on static routing, the
use of flooding makes ST more flexible and robust against topology changes. The
winning implementations of the previous editions of the EWSN Dependability
Competition [1] were all based on ST [4][5][6], which demonstrates the high po-
tential of ST techniques in reliable low-power wireless multi-hop communication.

Glossy [7] is a widely used ST primitive. It is also the primitive we are using
in our protocol to profit from its great flexibility and out-of-the-box reliability
(in the absence of jamming). The basic structure of a Glossy flood is shown
in Figure 2.2 for a network of radius 3. Nodes which are 1 hop away from the
initiator receive the message directly from the source. They then proceed to re-

4
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Figure 2.1: Illustration of the hidden node problem in wireless flooding. Node S
initializes the flood by sending a packet to A and B. A and B then retransmit
the packet. However, because they are positioned out of each other’s ranges,
they will not realize if their messages collide at C, which is in range of both A
and B. Thus, C may never receive the packet. ST avoids this by ensuring A
and B transmit the message synchronously, which allows C to receive the packet
through constructive interference.

transmit the message, which reaches both the source and the nodes which are 2
hops away from it. Now, the nodes 2 hops away from the source can retransmit
the message. This retransmission can be received by the nodes 1 and 3 hops
away from the initiator. Under ideal conditions, all nodes in the network should
now have received the message. However, to improve the reliability, each node
retransmits the packet a set number of times, 3 times in this example. Thus,
while the nodes 2 hops away from the initiator perform their first retransmission,
the source also retransmits the message. The process continues this way until
a maximum number of transmissions is reached at each node. The maximum
number of transmissions introduces a tradeoff between energy and reliability.

2.2 Baloo

Baloo [3] is a novel design framework for ST-based communication protocols in
wireless multi-hop networks. It provides a middleware which separates the design
of network layer protocols from lower-level communication primitives. Baloo’s
goal is to reduce the complexity of designing ST-based wireless communication
protocols while retaining enough flexibility to design well-performing solutions
for a wide range of applications.

The framework organizes communication in rounds, which are further divided
into communication slots, as illustrated by Figure 2.3. A dedicated host node
dictates the scheduling and structure of these rounds by transmitting a control
packet at the beginning of each round. The control packet is used by the lower
layers of Baloo to provide the tight time synchronization required for the under-
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Figure 2.2: Simplified example of a Glossy flood in a network where the source
node, i.e. the initiator of the flood, has radius 3. The number of transmissions
is set to 3.
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Figure 2.3: Overview of the basic structure of Baloo. Communication is orga-
nized in rounds. A round is divided into communication slots. Nodes can stay
turned on for some additional processing around these slots, but go to sleep be-
tween rounds. The first slot in each round is reserved for a control packet sent
by a dedicated host node.
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lying ST primitive. The contents of the control packet may vary between rounds.
The control packet may be used to distribute the following information:

• The round period, i.e. the period of time between the start of the current
round and the start of the next round.

• The schedule for the round, i.e. how many slots it consists of and which
nodes have permission to transmit in which slot. Each slot is either assigned
to one specific node or left open for contention.

• The ST primitive used in the communication slots.

• Parameters required for the correct operation of the underlying ST primi-
tive, namely

– the maximum payload size to be transmitted per slot and

– the number of retransmissions within the ST flood.

• The slot length, which needs to be sufficient to provide enough time for
the underlying ST primitive to transmit the payload under the provided
parameters.

• The gap time, i.e. the time between slots. This needs to provide enough
time for a node to complete any processing it might need to perform be-
tween slots, such as preparing the payload.

• Any other user-defined information, contained in a fixed number of user
bytes.

The host does not need to transmit all these parameters with each control packet.
If the application and protocol design allows it, nodes can set and update them
independently. In this case, it is the responsibility of the protocol designer to
ensure the schedule and round configuration are consistent across the nodes.
Reducing the size of the control packet and having the nodes operate as inde-
pendently as possible can result in large energy savings. However, the control
packet cannot be completely skipped as it is required to uphold time synchro-
nization.

Nodes can use preconfigured time periods before and after rounds as well as
between slots for processing data, preparing it for transmission performing any
other computations that might be necessary for the application.

2.3 Approaches to Data Collection

Before starting to implement our own protocol, we investigated commonly used
building blocks of existing collection protocols. We attempted to structure these
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building blocks based on the communication layer they can be associated with.
However, in WSNs communication protocols often cross layers. Thus, the result
is only a rough structure, which is shown in Figure 2.4 for the network layer and
Figure 2.5 for the link layer.
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Figure 2.4: Overview of network layer techniques useful in wireless collection
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Chapter 3

Protocol

This chapter describes the data collection protocol we developed and the con-
siderations that went into it. The first step in our design process was analyzing
the scenario and breaking it down into smaller problems. We then proceeded to
identify potential solutions to these problems and implement them on top of the
Baloo middleware.

3.1 Scenario Breakdown

The EWSN 2019 Dependability Competition [16] measures protocol performance
in terms of three metrics: reliability, latency and energy. The weights of the
individual metrics are not known to the competing teams. However, in previous
editions of the competition, the reliability metric carried most weight in the
overall performance metric.

Reliability: The reliability metric is computed as

R =
C

ES
·
(

1− KS · S
ES

)
·
(

1− KC ·O
ES

)
(3.1)

where:

R = reliability
C = number of correctly-received messages
ES = number of messages detected at the source node
S = number of superfluous messages
O = number of messages with causality errors
KS = 2 (constant)
KC = 2 (constant)

Superfluous messages are messages detected at the sink node which were not
generated at the source. These also include duplicates of previously delivered

11
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messages. Causality errors occur when a message is delivered at the sink before
it was generated at the source.

Latency: The latency metric is a combines the mean and median end-to-end
latency:

L =
Lmean + Lmedian

2
(3.2)

where:

L = combined latency
Lmean = mean latency
Lmedian = median latency

Energy: The energy metric is simply the total energy consumption of an eval-
uation run, excluding the energy consumed during the setup time (explained
below):

E = Etotal − Esetup (3.3)

where:

E = energy metric
Etotal = total energy consumed [J]
Esetup = energy consumed during the setup time [J]

The data collection scenario defines specific conditions under which our protocol
should perform well in those three metrics. We began our scenario analysis by
identifying these conditions.

Node types and network topology: The competition testbed consists of 51
TelosB replica nodes. They are spread across multiple floors of an office building
with varying density. In the data collection scenario, there are up to eight source
nodes and one destination node. The remaining nodes may act as forwarders.
Communication between the destination and sources may require multiple hops.

Data structure: The data to be delivered consists of messages of length 2 B
to 64 B. The message content is generated randomly and is unique to each mes-
sage, meaning duplicate messages can be identified by comparing the message
contents.

Data generation and delivery: Source nodes generate messages and provide
them in Electrically Erasable Programmable Read-Only Memory (EEPROM).
A general-purpose input/output (GPIO) pin signals the availability of new data.
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To deliver the data, it needs to be written to EEPROM at the destination node.
The EEPROM read and write times increase with the message length. We deter-
mined experimentally that the maximum times for 64 B messages are below 7 ms
for reading and 8 ms for writing. Messages are generated either periodically or
aperiodically. In the periodic case, the period is provided as an input parameter.
This period can take values between 5 s and 30 min. The actual period between
message generations may be longer than the period provided as an input param-
eter by a few tens of milliseconds. A source nodes does not necessarily generate
its messages at the same time as the other source nodes. In the aperiodic case,
data can be generated at any time within the constraints of a minimum and
maximum inter-arrival time which are provided as input parameters. There is a
lower bound of 5 s on the minimum inter-arrival time.

Permissible frequency range: Only frequencies between 2400 MHz and
2483.5 MHz may be used for communication.

RF interference: Radio frequency (RF) interference may be present in the
2.4 GHz industrial, scientific and medical (ISM) band. Different probabilistic
jamming patterns may be applied.

Setup time: At the beginning of an evaluation run, there is a 60 s period dur-
ing which no data is generated. It is not considered in the calculation of the
performance metrics. RF interference may be present during the setup time.

Besides developing a protocol that performs well under these conditions in terms
of reliability, latency and energy, our goal in this project was to test the usability
of Baloo [3] in the development of such a protocol. Thus, we need to base our
protocol on the round-based structure imposed by the Baloo framework. To save
energy in Baloo, it is desirable to have nodes determine the round schedule and
configuration as independently from each other as possible. This means each
node needs to know the values of the scenario parameters that are relevant to
the protocol. This knowledge needs to be consistent across all nodes.

The scenario parameters can roughly be divided into three categories:

1. Parameters whose values remain fixed across all evaluation runs, such as
the general traffic pattern of data collection, the sensor node model, the
setup time or permissible frequency range. The protocol should first and
foremost be tailored to these parameters, since the success of this will
contribute to the success of every single evaluation run.

2. Parameters whose values vary between evaluation runs. There are multi-
ple options for catering to the variation in these parameters. The more
desirable option in terms of the achievable performance metrics is to opti-
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Table 3.1: Overview of the input parameter bounds

value
unit

min max

periodic & aperiodic case

sources 1 8
payload size 2 64 B

periodic case

period 5 1800 s

aperiodic case

minimum inter-arrival time 5 ∞ s
maximum inter-arrival time 5 ∞ s

mize the protocol for every value the parameter takes. However, doing this
for each of these parameters would lead to an extremely large complexity,
which in turn would make the implementation error-prone and infeasible
within the limited amount of space available for the code on the sensor
nodes. An alternative option is to accommodate the worst case value of
the parameter at each point in the protocol.

Within this group of parameters, a further significant distinction can be
made:

(a) Parameters whose values are provided by binary patching, i.e. whose
values are injected into the protocol firmware by the testbed. This
group consists of the periodicity of the data generation and the pa-
rameters listed in Table 3.1. Bounds for these parameters are known
at compile time and even their values are known before the execution
of the firmware. Early knowledge of these parameters still makes it
comparatively easy to optimize the protocol for the values they might
take.

(b) Parameters whose values need to be learnt at runtime, such as the time
offset between the data generation schedules of the different nodes in
the periodic case. Learning these parameters may carry an overhead,
particularly in terms of the energy metric. This overhead needs to be
weighed against the benefit of knowing the parameter value.

3. Parameters whose values vary during an evaluation run, such as the inter-
ference pattern or timing inconsistencies between the nodes. These param-
eters are the most difficult to cater for as this not only requires learning
the parameter once, but also updating as it changes. Updates that are
performed inconsistently across nodes or too infrequently can destabilize
the protocol if the protocol relies on the knowledge of an up-to-date value
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of the parameter. Ideally, the protocol should be able to recover from such
inconsistencies. Robustness may also be improved by sending redundant
update messages. In some cases another option may be to simply consider
the worst case value of the parameter at each point during the evaluation
run.

Using this classification, we can proceed to identify some parameters that inform
the fundamental structure of our protocol.

First, we take a closer look at the Category 1 parameters. Clearly, we need to
design a collection protocol, i.e. one where the source nodes can send data to
the destination node. An important part of this is to determine how to ensure
the destination actually receives the data. To find a good solution that not only
takes into account the reliability, but also the energy and latency metrics, we
rely on the knowledge of some other parameters. One such parameter is the
setup time. We know that it does not count towards any of the metrics. Thus,
we can save energy by beginning the protocol with a setup phase and using it to
perform any initializations that do not rely on the generation of messages.

One parameter that sticks out from Category 2a is the periodicity of data gen-
eration. Good potential approaches to minimize the latency metric differ signifi-
cantly between the periodic and aperiodic case. In the periodic case, we can find
out at the beginning of the evaluation run exactly when each source generates
new messages and schedule a data transmission directly after the data becomes
available. In the aperiodic case, there is no such information we can rely on.
Thus, we decided to split our protocol into two fundamental versions: one for
the periodic case and one for the aperiodic case. Which version is executed is
determined from the binary patching.

For good performance in the periodic case, we rely heavily on the knowledge of
the exact data generation times for each source. The data generation period is a
Category 2a parameter and can easily be incorporated into the protocol. How-
ever, to determine the exact times, we additionally need to rely on two Category
2b parameters: the time offsets between the nodes and the deviation of the actual
data generation period from the corresponding input parameter provided during
binary patching. Thus, we decided to further split the periodic protocol into
a schedule initialization phase and a normal operation phase: In the schedule
initialization phase, we learn the Category 2b parameter values and tailor the
protocol in the subsequent normal operation phase to them. We decided not to
rely on Category 2b parameter values in the aperiodic case. This allowed us to
keep our protocol simple and general.

In conclusion, the initial analysis of the competition scenario lead us to structure
the protocol design as shown in Figure 3.1. Section 3.3 goes into more detail on
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Figure 3.1: Breakdown of the protocol resulting from analysis of the competition
scenario

the periodic protocol, Section 3.4 does the same for the aperiodic one. The setup
phase is the same in both cases, it is described in Section 3.2.

3.2 Setup Phase

The first 60 s of each evaluation run, called the setup time, does not count towards
any of the three performance metrics. Thus, we should ideally use this time to
perform any protocol initializations which would otherwise carry an overhead in
terms of energy, latency or reliability. However, we are limited by the fact that
no new messages are generated during the setup time which means we cannot
use it to learn anything new about the generation off messages. This leaves us
with the following central goals for the first phase of our protocol, which we call
the setup phase:

1. to achieve time synchronization between all nodes,

2. to establish a common state between the nodes and

3. to transition to a protocol phase which deals with the transmission of
messages before the first message is generated.

Time synchronization in Baloo is achieved by means of the control packet. The
host node, which transmits the control packet, is used as the base all other nodes
synchronize to. Thus, it is important that the host node is chosen carefully and
can be communicated with reliably. In our protocol, we use the sink node for
the data collection as the host. This has several advantages over the use of other
nodes. Primarily, the sink node is already involved in all data transmissions as a
receiver anyway. Should we for instance decide to selectively turn off some nodes
for transmissions by a given source to save energy, the host node would need to
stay on anyway to receive the packet. Also, many design choices we make to
improve the reliability of the data transmissions, such as the maximum number
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of Glossy retransmissions, will also apply to the control packet. Furthermore,
by selecting the sink to be the host, we can use the control packet to piggyback
information that the sink needs to transmit to the sources, such as feedback on
packet reception (ACKs and NACKs). Due to this choice, we will be using the
terms host, destination and sink interchangeably for the remainder of this report.

To bootstrap, i.e. to synchronize with the host for the first time, nodes repeatedly
turn on their radio in an attempt to receive a first control packet. Since RF
interference may be present during the setup time, we cannot be sure this default
bootstrap process will be successful: if the frequency channel the host sends the
control packet on and the other nodes listen on is blocked by interference during
the entire evaluation run, the nodes will never bootstrap. Thus, we decided to
introduce a frequency hopping scheme, where the nodes periodically change the
channel they attempt to communicate on. Since the nodes are not synchronized
yet, care needs to be taken that each node eventually listens on the same channel
the host transmits on. In a näıve approach, where all nodes hop to a different
channel at the same period, nodes that turn on at a different time from the
host may never bootstrap.We solved this issue by carefully choosing the period
between channel hops at the host and at the other nodes.

For bootstrapping, the host needs to periodically transmit control packets. Since
energy is of now concern during the setup time, we chose the period RSetup to be
as small as possible without having overlapping rounds, i.e. to be the same as
the round duration plus some guard time. The host hops to a different channel
in every round. This frequency is chosen from a static list known to all nodes
based on the number of the round. The host keeps track of the round number
by using a round counter r, which it initializes when it starts up. There is a
defined number of channels the host can choose from. Thus, after # channels
rounds, the host will return to the initial frequency and start cycling through
the channels again. In terms of actual time, the host sends a control packet on
all used channels within a period of

# channels ·RSetup (3.4)

Thus, we can guarantee that the host and any other node will operate on the
same channel for at least one round during this period if the other node changes
its frequency based on the same static list of frequencies at a period greater or
equal

# channels ·RSetup +RSetup (3.5)

This is illustrated by Figure 3.2. If the hopping period for the regular nodes
is chosen to be exactly # channels · RSetup + RSetup, they will share a channel
with the host periodically with this period, and the channel they share will differ
with each period. We can make similar statements for larger periods. Since this
period is quite small compared to the setup time, we can be sure that the nodes
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f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 . . .

t

host:

f0 f1 f2 f3 f0 f1 f2 f3 . . .

t
bootstrap completed

source 1:

f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 . . .

t
bootstrap completed

source 2:

f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 . . .

t
bootstrap completed

source 3:

Figure 3.2: Example of the bootstrapping process under frequency hopping. The
host changes frequency every round. Before receiving their first control packet,
sources switch frequency with period # channels · RSetup + RSetup. Afterwards,
they follow the frequency hopping scheme of the host. Source 2 and 3 receive
their first control packet once they first operate on the same channel as the host.
Due to interference, source 1 misses the first control packet it could potentially
have received, but then receives the packet once the host sends it on the next
channel in the hopping sequence.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 bits

state round number r transition cnt. cto SI unused 2 B

Figure 3.3: Structure of the control packets transmitted by the host/destination
node during the setup phase. Contains the current state, the value of the round
counter and a transition counter which is used to increase the likelihood of a
successful synchronous transition to the next phase.

will share each channel with the host a number of times. Thus, it is highly likely
that all nodes will receive the control packet at least once, which means they will
likely be able to bootstrap well in advance of the end of the schedule init phase.

Once a source has bootstrapped, it follows the same frequency hopping scheme
as the host. We have the host transmit its round counter r with the control, as
shown in Figure 3.3. Because the limited space available in the control packet,
the round counter will roll over fairly often. r is used to have some common
state information between the nodes. If a node misses a control packet, it can
update its counter independently and thus still operate on the correct frequency.
In the implementation we have described so far, the host has no knowledge on
how many sources have bootstrapped. To mitigate this slightly, we add one data
slot for each of the up to eight source nodes to each round. Once a source has
bootstrapped, it will send a “1” in its assigned data slot in each round until
the end of the setup phase. Now, if the host receives a “1” in the data slot
corresponding to a source, it knows this source has bootstrapped. This still
gives the host only a very limited knowledge of the bootstrapping progress of the
entire network, since there are many nodes beyond the source nodes. However,
this is less problematic than it may seem. In the end, it only matters that
the source nodes can successfully communicate with the sink. If the source
nodes are able to bootstrap and let the host know they have done so, this likely
means the communication between them will also work in the future. Other
nodes which have not bootstrapped at this point are likely not essential parts
these communication paths. Thus, it does not matter much whether or not they
successfully bootstrap.

Once the host knows all sources have successfully bootstrapped, it can initialize
the transition process to the next phase. It is crucial that all nodes know exactly
when to switch to the next phase, since the round period and structure will
change at this point. If a node changes these parameters too early or too late,
it will no longer be synchronized with the other nodes and thus, it will not be
able to communicate. Therefore, simply sending an instructing the nodes to
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transition in the control packet of the round before the scheduled switch to the
next phase is very risky. Instead, we use a transition counter cto SI which the
host initializes to a given value as soon as it determines that all sources have
bootstrapped. From this point on, it transmits its current counter value with
the control packet, decreasing it by one in each round. Once the counter reaches
zero, all nodes transition to the next phase. The advantage is that the nodes only
need to receive a single counter value out of a number of transitions. Once they
have received this value, they can proceed with the countdown independently.

3.3 Periodic Case

As alluded to in the initial analysis of the scenario, in the periodic case, we
can reduce latency to a minimum by scheduling data transmissions as soon as
possible after new data becomes available. Thus, after initialization, our protocol
should result in a structure similar to the one shown in Figure 3.4. In order to
be able to use this structure during normal operation of our protocol, we first
need to find out when to schedule the data transmissions, i.e. when the sources
generate new data. This is done during the schedule initialization phase.

3.3.1 Schedule Initialization Phase

The goal of the schedule initialization phase is to determine the exact times
at which the nodes generate new data and use this information to develop a
schedule where each source node can transmit its data as soon as possible after
it becomes available. As described in Section 3.1, this requires knowledge of the
following parameters for each source i:

• The actual period Ti which may be slightly larger than the period value T
provided by binary patching. Even small differences between T and Ti can
have a significant impact as they accumulate over time; the nth message
will be delayed by

δti(n) = (n− 1) · (Ti − T ) (3.6)

• The data generation time offset ∆ti which expresses that source nodes do
not necessarily generate their first message immediately after the end of
the setup time, at t0, but at a later time ti(1) = t0 + ∆ti. Since data
generation is periodic, subsequent data will also be delayed by ∆ti; the
nth message at source i will be generated at

ti(n) = t0 + (n− 1) · Ti + ∆ti (3.7)

In practice, calculating the data generation time offset relative to the end of
the setup time actually does not turn out to be a good idea. While we know
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the exact value of the setup time, we do not know at what point in time the
nodes are in relation to the end of the setup time. We cannot assume that all
nodes will start executing their firmware exactly at the beginning of the setup
time. Thus, we only have a rough estimate of the end of the setup time in the
timeframe of the nodes. If this estimate is too late, we might miss the first
messages generated by the sources. Being too early, on the other hand, does not
matter much. The offset value will be larger, but what ultimately counts is the
absolute data generation time, which will remain the same since the reference
time also changes. In our implementation, we choose the end of the protocol’s
setup phase as a reference time t0. By the measures described in Section 3.2 we
ensure that the setup phase always ends before the end of the setup time. Thus,
in the context of our protocol, we define the offset of a source i as

∆ti = ti(1)− t0 (3.8)

where:

ti(n) = time the nth message becomes available at the source i, n ∈ N
t0 = time of the end of the setup phase

Similarly, we define the data period of a source i as

Ti = ti(n)− ti(n− 1) (3.9)

Note that we assume here that the data period is constant. In Section 3.3.2 we
address the case where this assumption does not hold.

We have now determined which parameters we need to find. The next open
questions are when and how to measure and communicate this information. Since
we know nothing about the data generation timing of the sources at this point, it
makes sense to periodically schedule communication rounds where sources which
do have data available get a chance to send it to the destination node. To avoid
collisions, we assign each node a time slot within the round during which it has
the exclusive right to transmit one message. Figure 3.5 illustrates this setup and
introduces some parameters we will use for learning the offsets and data periods.

We continue to use the global round counter r initialized in the setup phase (see
Section 3.2). As in the setup phase, we use this round counter to set the frequency
all nodes communicate on during the round. The host transmits the current value
of the round counter with every control packet. The structure of the control
packet for the schedule initialization phase is shown in Figure 3.6. Because of
the limited number of bits available in the control packet, the round counter
rolls over fairly often. This is does not matter for the choice of communication
channel, but is undesirable when using the counter as a measure of the time
passed since the end of the setup phase, which we need for the offset calculation.
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Figure 3.5: Overview of the basic structure of the schedule initialization phase.
Baloo rounds are scheduled periodically with period RSI and consist of a control
slot followed by s data slots, where s is the number of source nodes. Each
data slot is assigned to one source node. Each round is assigned a schedule
initialization round number rSI . An arrow labeled with a source index and a
sequence number n indicates that new data with sequence number n becomes
available at this source. ∆tr(i, n) represents the period between the time ti(n)
the nth packet becomes available at source i and the start of the subsequent
round, which has the schedule initialization round number rSI(i, n). ∆ti shows
the offset of source i relative to the end of the setup phase t0. Ti is the data
period of source i.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 bits

state round number r transition cnt. cto NO unused 2 B

Figure 3.6: Structure of the control packets transmitted by the host/destination
node during the schedule initialization phase. Contains the current state, the
value of the round counter and a transition counter which is used to increase the
likelihood of a successful synchronous transition to the normal operation phase.

For this purpose, we introduce a dedicated schedule initialization round counter
rSI which is updated independently by each node. It starts at 1 in the first
round of the schedule initialization and is wide enough to not roll over during
the entire duration of the schedule initialization phase.

The round period RSI is a tuneable parameter. It must be longer than the time
it takes to complete the communication and data processing associated with the
round. On the other hand, it must be shorter than the data period. Otherwise,
messages would be lost, since sources only have time to transmit one message
per round. Between this lower and upper bound, there is a tradeoff between
reliability and latency on the one hand and energy on the other. A shorter round
period means each source can transmit the same data more often, improving
reliability. It also reduces the expected time the source must wait to transmit
new data. On the other hand, the larger number of retransmissions and the
overhead associated with each additional round increase the energy consumption.

In our setup, for each message generated at source i with sequence number n,
there will be a schedule initialization round rSI(i, n) (with an associated global
round number r(i, n)) during which i transmits the packet for the first time. If
we measure the time ∆tr(i, n) that source i needs to wait from when message
n becomes available until the beginning of round rSI(i, n), we can calculate the
offset of source i as

∆ti = rSI(i, n) ·RSI −∆tr(i, n) (3.10)

We call ∆tr(i, n) the within-round offset. We can easily measure this by taking a
timestamp in the interrupt service routine (ISR) triggered by the data becoming
available and another in the pre-process of round rSI(i, n) and calculating the
difference. If we know the within-round offsets and round numbers of the first
transmission for two messages with sequence numbers n and m, m > n, we can
also calculate the data period as

Ti =
1

m− n
· ((rSI(i,m)− rSI(i, n)) ·RSI + ∆tr(i, n)−∆tr(i,m)) (3.11)

Each node needs to know the data period and offset of all the source nodes.
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0 1 2 3 4 5 6 7

8 bits

payload

1 B
...

payload size

within-round offset
∆tr(i, n)

payload size + 1 B

payload size + 2 B

sequence number n payload size + 3 B

round number r(i, n) payload size + 4 B

Figure 3.7: Structure of the data packets transmitted by source nodes in their
assigned slots during the schedule initialization phase. Metadata which allows
all other nodes to learn the data generation schedule of the transmitting node
is piggybacked to the payload, which contains the message generated by the
transmitting node.

To achieve this, each time a source i sends the message with sequence number
n, we attach n, the within-round offset ∆tr(i, n) and the global round counter
value r(i, n) of the first round of transmission of the message to the packet. The
resulting packet structure is shown in Figure 3.7. A node can find rSI(i, n) by
relating r(i, n) to the values of the current global counter value and schedule
initialization round counter it has stored. Once a node has received one such
packets from a source i, it can independently calculate the offset of i. As soon
as it receives another packet with a different sequence number, it can calculate
the data period. We decided on this approach, since it allows us to reliably
find the data period and offset as soon as possible while keeping the round
structure constant across the entire phase. The timing information for each
message generation is retransmitted as often as the message itself. If we tune
the round period such that we have a high reliability for the messages, we will
also have a high reliability on the timing information. Furthermore, we can
calculate the parameter values from the timing information of any two messages.
Thus, the protocol can remain stable even when all transmissions of a message
are missed.

Once the exact data generation times of each source parameterized by the offset
and data period are known at each node, these need to be translated into a
Baloo-compatible schedule. As explained in more detail in Section 3.3.2, we
will be using rounds which are dedicated to a specific source node to transmit
the data to the destination during the normal operation phase. In each normal
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operation round, the nodes need to know the following information:

• the round assignee of the current round

• the period until the next round

In our implementation, we provide Algorithm 1 to the normal operation phase
as an interface to retrieve these parameters and update the underlying schedule.
The algorithm uses the following parameters and data structures:

• The maximum period Rmax between two rounds we can have without get-
ting synchronization issues or running into overflows. If the period between
two subsequent rounds in the schedule is larger than this value, we need
to schedule one or more empty rounds rounds with just a control packet in
between them to ensure we do not exceed the maximum period. A good
value for the maximum period needs can be determined experimentally. It
should not be much shorter than it needs to be to avoid wasting energy.
We chose a value of 60 s.

• The maximum duration of a normal operation round. We need to ensure
that the period between rounds is always larger than this round duration.

• The next round assignee.

• The schedule, an array containing the time period until each node should be
scheduled next, relative to the time of the round of the next assignee. The
period until the next round can be determined by finding the minimum
value in the schedule. The node associated with that entry will be the
assignee of the next round. After scheduling the next round, the value for
each source in the schedule needs to be updated to reflect that we move
forward in time by the extracted period.

• An array containing the data period for each source. When a node is sched-
uled in the next round, we increase the time until it should be scheduled
again by its data period.

We can directly initialize the data period array with the values for the data
periods we have found for all sources with the methods described above. Initial-
izing the schedule and next assignee parameter is slightly more tricky and closely
linked to the way in which we transition to the normal operation phase.

As with the transition from the setup to the schedule initialization phase de-
scribed in Section 3.2, we need to ensure that all nodes change to normal oper-
ation in the same round. To this end, we introduce a transition counter cto NO,
which we attach to the control packet as shown in Figure 3.6. Once the host
has obtained all data period and offset values, it initializes this counter to a
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Algorithm 1 Pop schedule information

1. round assignee ← next assignee
2. period ← min(max period, max(max round duration, min(schedule)))

3. if period is max period then . save assignee for next round
4. next assignee ← empty
5. else
6. next assignee ← argmin(schedule)
7. end if

8. for all sources in schedule do . update schedule times
9. schedule[source] ← schedule[source] - period

10. end for
11. schedule[next assignee] ← schedule[next assignee] + data period[next assignee]

12. return round assignee, period

given value, which is a parameter of the protocol. All other nodes initialize their
transition counter based on the counter value they receive in the control packet.
Once initialized, the transition counter is decreased by one in each subsequent
round. When the transition counter at a node reaches zero, the node transitions
to the normal operation phase.

After a node has found all data period and offset values, it will continue to fol-
low the normal operation round structure until the transition counter reaches
zero. When using this round structure, we improve reliability by having a much
shorter round period than data period and thus retransmitting each message
across multiple rounds. There are no within-round retransmissions. This has
the effect that we might run into reliability issues towards the end of the sched-
ule initialization phase. If a new message is first transmitted in one of the last few
rounds of the phase, its retransmissions will be limited by the rounds remaining
in the phase. To mitigate this, we choose a threshold value cthr for the transition
counter; messages first transmitted in a round with a transition counter value
below the threshold are retransmitted during the normal operation phase.

Thus, the first message scheduled in the normal operation phase for each source
will be the first message generated after the round with transition counter cthr.
To initialize the schedule, we need to find the time at which each of these mes-
sages is generated, relative to the time of the last round of the schedule initial-
ization round. Before including this value to the schedule, we add a small guard
time tg to ensure rounds are only started after the data becomes available. A
good value for the guard time needs to be determined experimentally. In our
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implementation, we use 20 ms. For source i, the schedule is thus initialized to

∆ti +

⌈
rSI,thr ·RSI −∆ti

Ti

⌉
·RSI − rSI,final ·RSI (3.12)

where:

∆ti = offset of source i
Ti = data period of source i
RSI = schedule initialization round period
rSI,thr = schedule initialization round number of the round where cto NO = cthr
rSI,final = schedule initialization round number of the round where cto NO = 0

To initialize the next assignee (i.e., to find the assignee of the first normal opera-
tion round) and to determine the period between the last schedule initialization
round and the first normal operation round, we run Algorithm 1 once, starting
from Line 2. After running the algorithm, all schedule parameters are initialized
and ready for use in the normal operation phase.

3.3.2 Normal Operation Phase

Typically, the normal operation phase is the phase the nodes operate in for most
of the duration of the evaluation. Its performance relies on the setup performed
in the setup phase and the schedule initialization phase.

During normal operation, as illustrated in Figure 3.8, a Baloo round is scheduled
shortly after new data becomes available at a source. Each round has an assignee
a, which corresponds to the source the data was generated at. The round is then
reserved solely for the transmission of data from this source a to the destination.
The data is transmitted in a designated data slot, which is scheduled after the
control slot. In the subsequent slot, the destination sends a short packet, shown
in Figure 3.9 which acknowledges the data if the destination received it (ACK),
or does not acknowledge it (NACK) otherwise. At each node, this data and
ACK/NACK slot pair is repeated until either of the following events terminates
the round:

• The node has received (or, in the case of the destination, sent) an ACK.

• A maximum number or transmissions (i.e. data slots) tx#max is reached.

The maximum on the number of transmissions is introduced for several reasons:

• It allows us to find an upper bound on the round duration, which we use
to ensure subsequent rounds do not overlap.
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0 1 2 3 4 5 6 7

8 bits

ACK/NACK 1 B

Figure 3.9: Structure of the packet used by the destination to inform nodes about
whether or not it has successfully received a data packet. The destination sends
the index of the round assignee if it has received the data (ACK) and a special
NACK value otherwise.

• It limits the energy we waste in the case of heavy interference. If the data
has not arrived after tx#max data slots, it will likely not get through at all
any time soon. In this case, we give up on the packet instead of wasting
energy on any more futile transmission attempts. One could consider trying
to retransmit the packet in a later round. In our implementation, we have
decided against this to avoid both making our protocol more complex and
the impact on latency associated with the strategy.

• It limits the energy we waste in case an ACK gets lost. This can happen
quite often, since the destination only transmits the ACK exactly once.
Without a maximum number of retransmissions, any node which misses
this one transmission of the ACK would stay in the round and continue to
repeat the slot pairs for ever.

We chose tx#max = 4, which gave a reasonable tradeoff between reliability on
the one hand and energy and latency on the other.

To improve reliability under interference, we employ a frequency hopping strat-
egy. For the control packet, we use the same approach based on the global round
counter r as in the previous phases (see Section 3.2). In addition, we change
the frequency channel after each slot pair. Remaining on the same channel for
the ACK/NACK slot as the data slot has the advantage that, if the data was
received, the ACK will likely be received as well. As mentioned before, receiving
the ACK is important. Missing it means a node will remain awake for all tx#max

slot pairs. For the first pair, we stay on the same channel as the control packet
was transmitted on. This has the advantage that this channel is changing every
round with a schedule already known to all nodes. The alternative would be
to use the same frequency for the first slot pair in every round. This frequency
could potentially be jammed for the entire duration of the evaluation. In this
case, we would always waste the first slot pair and incur a large cost in terms of
energy and latency. For the subsequent slot pairs, we choose a frequency out of
a static list known to all nodes. The choice is based on the channel of the first
slot pair and the number of the slot pair under consideration.
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In each round, each node uses Algorithm 1, explained in Section 3.3.1, to schedule
the next round as soon as possible after the next time data becomes available at
a source. The initialization performed in the schedule initialization phase takes
into account measurements of the offset ∆ti and the actual data period Ti of
each source i. It also accounts for slight variations in the generation times of
the data by introducing a guard time tg. However, this guard time may not be
enough to cover inaccuracies in the measurement of the actual data period or
the case where this period changes slightly over time. This is because variations
in the period lead to a change in offset that accumulates over time.

For instance, take the case where the actual data period is longer than the mea-
sured data period Ti by ∆Ti,error. An example of this case is shown on the top of
Figure 3.10. If the offset between the generation of message n at source i and the
start of the subsequent round assigned to i is ∆tr(i, n), then the corresponding
offset for the generation of the next message n+ 1 becomes

∆tr(i, n+ 1) = ∆tr(i, n)−∆Ti,error (3.13)

The offset between the generation of some later message n + m and its corre-
sponding round decreases even further, it amounts to only

∆tr(i, n+m) = ∆tr(i, n)−m ·∆Ti,error (3.14)

At some point, this offset will become negative, which means the data will only
become available after the round it is supposed to be sent in has started. Thus,
the data needs to be sent one round later. The consequence is a latency that is
almost as big as the data period. This is clearly undesirable.

One could attempt to mitigate this by purposely overestimating the data period.
However, this has the disadvantage that the offset ∆tr(i, n) will increase over
time by the same principle, which will lead to unacceptable latencies in the long
run. Instead, we use a more dynamic method, where the data period before the
next round (and the next round only) is increased by a certain time ∆tupdate to
Ti + ∆tupdate, if the offset ∆tr(i, n) for a source falls below a certain threshold
∆tthr. This results of this drift compensation process are demonstrated in the
lower part of Figure 3.10.

To achieve this, we need to know whether or not node i has undercut the thresh-
old in its previous round, and this information needs to be consistent across
all nodes by the time the next round for i is scheduled (i.e., in the round pre-
ceding the next round, assigned to some other source j). This is crucial to
ensuring that the schedules kept at the nodes remain synchronized. As a first
step, source i needs to measure whether it itself has undercut the threshold. To
this end, we continue to have the source nodes keep track of their within-round
offsets ∆tr(i, n) in the normal operation phase. If ∆tr(i, n) is below ∆tthr in
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0 1 2 3 4 5 6 7

8 bits

payload

1 B
...

payload size

offset modification info payload size + 1 B

Figure 3.11: Structure of the data packet transmitted by source nodes in their
assigned rounds during the normal operation phase. The payload contains the
message generated by the transmitting node. If the message only became avail-
able closer to the start of the round than a certain threshold time ∆tthr by a
certain offset, the source attaches this piggybacks this offset to the payload to
notify the host that its schedule needs to be updated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 bits

state round number r offset modification flags 2 B

Figure 3.12: Structure of the control packets transmits by the host/destination
during the normal operation phase. Contains the current state, the value of
the round counter used for frequency hopping and a bit array with space for
the maximum number of sources which contains flags that inform nodes if the
schedule for the sources corresponding to the bits should be updated by a given
value ∆tupdate known to all sources.



3. Protocol 34

the round where i sends message n, i attaches the time difference between ∆tthr

and ∆tr(i, n) to the data packet it sends in the round, as shown in Figure 3.11.
Because this packet can be retransmitted multiple times on different frequencies,
we can be fairly certain that the host will receive this information. We even
receive feedback in the form of an ACK.

Nevertheless, to ensure all nodes receive the update, we introduce an additional
measure. With each control packet, the control packet sends a 1 B bit-array
of offset modification flags. When the host receives the information that the
threshold has been undercut by source i from a data packet transmitted by i,
it sets the ith flag bit. By setting this bit, it informs all other nodes that the
scheduled start time for the next round assigned to source i should be increased
by ∆tupdate. ∆tupdate is a constant parameter known to all nodes. A good value
for this needs to be found experimentally and is closely related to the size of the
threshold time. We have chosen ∆tthr = 35 ms and ∆tupdate = 4 ms. These val-
ues could likely be set more tightly. However, we chose to rather incur a slightly
higher latency in each round, than to run the risk of scheduling a round too early.
Since there are typically multiple sources, the control packet will be transmitted
multiple times on different frequencies, making it likely that it will be received by
all nodes before the next round assigned to i needs to be scheduled. One could
consider adding additional transmissions of the control packet to increase the re-
liability at the cost of energy. We decided against this, since we did not observe
significant issues with the drift compensation mechanism and wanted to keep our
protocol as simple as possible. In the round preceding the next round assigned
to i, all nodes then increase the scheduled time of i by ∆tupdate. Also, the host
resets the flag corresponding to i in the control packet of the round assigned to
i. If i still undercuts the threshold in this round, i.e., if ∆tr(i, n + 1) < ∆tthr,
the process is repeated. Otherwise, the round for message n+ 2 of source i will
be scheduled normally, i.e. one data period Ti after the round for message n+ 1.

3.4 Aperiodic Case

The aperiodic case is fundamentally different from the periodic case, since there
no way to determine in advance when new data will be generated. Thus, we
have no real reference point for when to schedule transmissions with minimum
latency and need to use an alternative scheme.

The most intuitive solution is to simply schedule transmissions periodically. This
has the added benefit that the schedule does not need to be updated after the end
of the setup phase, making it less likely for nodes to lose synchronization. The
round period R between subsequent transmissions presents a tradeoff between
latency and energy. A shorter round period means the latency will be lower on
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Figure 3.13: Overview of the round structure used in the aperiodic case. In the
first depicted round, at least one source has unacknowledged data to transmit.
In this case, the node sends a “1” in the flag slot following the control slot. It
then proceeds its data during the subsequent data slot. In the second round of
this example, no node has new data to transmit. Thus no flag packet is sent, and
the nodes can go to sleep immediately after the flag slot. The control packet is
used to acknowledge the last packet that was successfully received by the host.

average, but carries a larger overhead in terms of energy. We decided to choose
the round period to be the maximum of 300 ms and the maximum duration of
a transmission round. This choice had two main consequences for the further
design of the protocol:

1. We decided to limit the number of transmissions per round to exactly
one. Any nodes whose transmission is not received during a given round,
can retransmit in the next round. The latency incurred should still be
manageable due to the relatively short round period.

2. If there is no data to be transmitted during a round, nodes should realize
this as soon as possible and go to sleep. Otherwise, the energy overhead
incurred would be quite large.

From these considerations, we decided on the round structure depicted in Fig-
ure 3.13. The flag slot immediately following the control packet is a contention
slot used to determine whether or not there is any data to be transmitted in the
round. Any node that does have data available it has not yet received an ACK
for, will send a short flag packet, shown in Figure 3.14, to indicate this. If a node
has neither transmitted nor received a packet during the flag slot, skip the rest
of the round and go to sleep until the next round to save energy. Otherwise, it
proceeds to participate in the data slot. This slot is a contention slot as well.
Any source that sent a flag packet in the previous slot may now transmit its
data. To allow the host to determine which packet it has received, the source
piggybacks its ID i as well as a sequence number ni for the message onto the
payload. The resulting packet structure is shown in Figure 3.15.

Since multiple source may transmit at the same time during the data slot, colli-
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0 1 2 3 4 5 6 7

8 bits

1 1 B

Figure 3.14: Structure of the flag packet send by source nodes in the aperiodic
case to indicate that they have data to transmit.

0 1 2 3 4 5 6 7

8 bits

payload

1 B
...

payload size

source i sequence no. ni payload size + 1 B

Figure 3.15: Structure of the data packet transmitted by source nodes in the
aperiodic case. Piggybacked onto the payload is the ID of the transmitting
source i and the sequence number ni of the message in the payload.

sions may occur. However, since the number of sources is limited to eight in a
fairly large network, we assume that the host will most likely still receive one of
the packets due to the capture effect. Furthermore, the smaller the chosen round
period, the less likely it is that all sources will attempt to transmit in the same
round. Our experiments have shown that this reliance on the capture effect is
justified.

The host needs to let sources know through an ACK which packets it has re-
ceived, so the sources can decide whether or not they need to retransmit a given
message. As explained before, we do not allow retransmissions during the same
round, contrary to the periodic case. Therefore, there is no need for the host
to acknowledge the data it has received before the start of the next round. In-
stead of sending a separate ACK packet, the host can thus simply piggyback
the ACK for a given round onto the control packet of the next round, as shown
in Figure 3.16. More specifically, the control packet always contains the source
ID i and sequence number ni of the last message the host has successfully re-
ceived. Based on the information received in the control, sources can then decide
whether or not to send the flag.

Sources store each new message in a buffer until it is acknowledged by the host.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 bits

state round number r ACK src. i ACK seq. no. ni 2 B

Figure 3.16: Structure of the control packets transmitted by the host/destination
node in the aperiodic case. Contains the current state, the value of the round
counter as well as the source ID i and sequence number ni of the last packet the
host has successfully received.

If a source has stored multiple messages, it always transmits the oldest message
first. If the buffer is full and new data is generated, the source overwrites the
oldest message in the buffer with the new data and proceeds to attempt to send
the data that is the next oldest. This approach allows sources to get another at-
tempt at transmit their data in case of heavy interference blocking transmissions
across multiple data generations, while also limiting the latency we are willing to
incur. A larger buffer may increase reliability, but it may also increase latency.

As in the periodic case, we use a frequency hopping scheme to improve reliability
in the presence of interference. We continue using the same scheme based on a
round counter r we introduced during the setup phase (see Section 3.2). Each
round, nodes switch to a new frequency channel based on a static list of channels.

3.5 Optimization Parameters

In the following, we give an overview of a non-exhaustive selection of the parame-
ters of our protocol that are easily tuneable to achieve different tradeoffs between
the three performance metrics. The parameters are explained in more detail in
the previous sections. Where applicable, we list a lower and upper bound on
the parameter and give an indication which effect increasing the parameter may
have on each of the performance metrics. We also provide the value we have
chosen for each parameter based on our experiments.

Both Aperiodic & Periodic Case

Maximum round period: Maximum round period the protocol can deal with
without losing synchronization between the nodes or running into overflows.

• Lower bound: round duration

• Upper bound: 65 535 ms (size of a 16-bit unsigned integer)
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• Reliability: Decreases if nodes lose synchronization.

• Energy: Decreases.

• Chosen value: 60 s

Number of control frequency channels: The number of different frequency
channels the control packet may be transmitted on.

• Lower bound: 1

• Upper bound: 15, i.e. the number of channels within the permissible fre-
quency range

• Reliability: Typically increases. However, the bootstrapping phase may
take longer, which may lead to a failure to bootstrap before the end of the
setup time, resulting in a lower reliability.

• Chosen value: 8

Number of transmission in Glossy flood for control packets:

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: 5

Number of transmission in Glossy flood for data packets:

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: 4

Maximum number of hops in the network: Required to estimate the length
of a Glossy flood.

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.
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• Chosen value: 15 on the competition testbed, 5 on FlockLab

Initial transition countdown value in the setup phase:

• Reliability: Increases up to a point, as a higher value increases the likeli-
hood that all nodes will receive a counter value before it reaches zero and
will thus transition to the next phase in the same round. May decrease
once the value gets too big, as this will extent the setup phase beyond the
end of the setup time.

• Latency: No impact if the value is chosen small enough such that the setup
phase ends before the end of the setup time. Increases otherwise.

• Energy: No impact if the value is chosen small enough such that the setup
phase ends before the end of the setup time. Increases otherwise.

• Chosen value: 4 · number of control frequency channels

Periodic Case

Schedule initialization round period:

• Lower bound: schedule initialization round duration

• Upper bound: min(data period,maximum round period)

• Reliability: Decreases.

• Latency: Increases.

• Energy: Decreases.

• Chosen value: max(300 ms,min(max period, data period/10))

Initial transition countdown value in the schedule initialization phase:

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: 2 · number of control frequency channels

Threshold transition countdown value for the last schedule initializa-
tion phase packet: Packets generated after this countdown value is reached
are retransmitted during the normal operation phase.
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• Reliability: Increases until the value reaches a point where the remaining
rounds in the countdown take longer than one data period, then decreases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: number of control frequency channels

Schedule guard time: Added to the schedule during schedule initialization to
ensure rounds are scheduled after the data generation

• Latency: Increases. However, if the value is chosen too small, rounds
might be scheduled too early for the data generation and the latency might
increase to almost a data period.

• Chosen value: 20 ms

Maximum number of transmissions in normal operation: Corresponds
to the maximum number of data and ACK/NACK slot pairs.

• Lower bound: 1

• Upper bound: such that # sources · round duration < data period

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: 4

Within-round offset threshold: Desired minimum period of time between
new data becoming available and the start of the corresponding round during
normal operation.

• Latency: Increases. However, if the value is chosen too small, rounds
might be scheduled too early for the data generation and the latency might
increase to almost one data period.

• Chosen value: 35 ms

Schedule update time: Time by which the next round for a source should be
pushed back if the within-round offset falls below the threshold during normal
operation.

• Latency: Increases. However, if the value is chosen too small, rounds
might be scheduled too early for the data generation and the latency might
increase to almost one data period.

• Chosen value: 4 ms
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Aperiodic Case

Round period:

• Lower bound: round duration

• Upper bound: maximum round period

• Reliability: Decreases.

• Latency: Increases.

• Energy: Decreases.

• Chosen value: max(300 ms, round duration)

Retransmission buffer size:

• Reliability: Increases.

• Latency: Increases.

• Energy: Increases.

• Chosen value: 3 messages
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Evaluation

4.1 Protocol Performance

Unfortunately, the results of the 2019 EWSN Dependability Competition have
not been made public by the time this report was written. Thus, at this point
we can only make some rough estimations of our performance based on what we
have observed during tests accompanying the development of our protocol.

When testing our protocol on the competition testbed [16] without jamming
enabled, we were able to achieve reliability metrics of around 100% and aver-
age latencies of a few hundred ms. Most competing teams achieved reliability
metrics of this magnitude in the case without interference. From observing the
leaderboards during testing we expect our performance in terms of energy and
latency will likely be well-balanced. While there were solutions which performed
better in each of these two categories, no single solution on the leaderboard out-
performed our protocol in both categories.

When adding interference to our tests, our reliability tended to drop quite sig-
nificantly. This seems justified since our protocol does not use a very elaborate
interference avoidance scheme and makes no provisions for retransmissions after
a long time. In the periodic case, if there is heavy interference during just one
round, we will lose a packet. This topic clearly warrants some further consider-
ation, but for this edition of the competition we decided to focus mostly on the
evaluation scenarios without heavy interference.

Due to its high utilization and limited availability, testing time on the competi-
tion testbed was limited. We used the FlockLab [17] testbed for some additional
tests and debugging. As an added benefit, running the protocol on two different
networks allowed us to get an impression of how well our protocol would gen-
eralize. Aside from a few minor changes, such as increasing the maximum hop
count when moving from FlockLab to the competition testbed, we found that
the protocol was able to perform its basic task highly reliably on both testbeds.

42
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payload
size [B]

period [s]
total no. of

packets sent

performance

reliability [%]
avg.

latency [ms]
avg.

current [mA]

periodic case

8 5 414 100 148 1.3
8 30 65 100 584 0.9

64 5 414 100 280 1.9
64 30 65 100 508 1.1

aperiodic case

8 65 100 275 1.7
64 65 100 302 1.7

Table 4.1: Performance achieved running the protocol for different parameters
on the topology shown in Figure 4.1 on FlockLab for 8 min each.

However, with increased fine-tuning to either of the testbeds the performance on
the other would likely suffer.

As an illustration of the protocol’s performance on FlockLab we provide the re-
sults of some tests in Table 4.1. All tests ran on the topology shown in Figure 4.1
for a duration of 8 min. One value that stands out is the high latency in the case
of a 30 s period. We choose the schedule initialization round period in relation
to the data period. In this case, the round period is 3 s long, resulting in a large
latency on the first couple of messages. Because the total duration of the evalu-
ation is quite short and not many packets are generated due to the large round
period, the latency of the schedule initialization rounds has a particularly large
impact on the average latency.

On the other hand, the 30 s periodic case has the lowest current draw. In the
aperiodic case, the energy is much higher, even though the same number of mes-
sages is transmitted in total. This is because we need to schedule many unused
rounds to keep the latency at an acceptable level. This overhead becomes even
clearer when comparing the aperiodic case to the 5 s periodic scenario: even
though more then 6 times as many messages were transmitted during the test,
both the average latency and average current draw are lower in the periodic case.

Interestingly, the aperiodic evaluation run with 64 B payloads had approximately
the same average current draw as the the run with the 8 B payloads. This in-
dicates that our flag slot is functioning as planned; the overhead caused by the
longer payload is only incurred in rounds where nodes actually transmit the mes-
sage, which is a minority of the rounds. Thus, the impact of the larger payload
on the total energy consumption is small.
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Figure 4.1: Evaluation topology on FlockLab.
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4.2 Usability of Baloo

We found Baloo to be a highly valuable tool in designing our protocol. The
framework saved us a large amount of time since we did not need to deal with
the lower level aspects of ST, which would have been particularly time-consuming
for someone with little experience with the underlying platform. Without Baloo,
we would likely not have been able to implement a protocol of this degree of
sophistication within the timeframe of the project.

However, there were some issues as well. Baloo is still fairly sparsely documented
and it would have been difficult to navigate all its different features and use
its full potential had we not been working with members of the group who
developed it. Also, the rigid structure of Baloo can limit flexibility at times.
For instance, Baloo does not provide the option to repeat a part of a round
containing multiple data slots out of the box. It is only possible to repeat all
slots since the beginning of the round, or a single slot. We were able to work
around this issue, and Baloo could likely be easily updated to incorporate such
a feature, but it demonstrates well how the framework needs to make tradeoffs
between flexibility and complexity.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this project we have designed and implemented a wireless multi-hop commu-
nication protocol that is usable across a range of input conditions. We have
demonstrated that Baloo makes it possible to do this in a short period of time
even without much prior experience in the field of WSNs. We have seen some
promising results when measuring the reliability, latency and energy-efficiency
performance metrics of our protocol for a number of different input parameters
during preliminary testing, particularly in the absence of strong RF interfer-
ence. This leaves us optimistic that our protocol will deliver a performance at
least comparable to that of other competing solutions across some evaluation
scenarios.

5.2 Future Work

While our protocol already delivers good performance across a range of different
input parameters, it could be improved further. By doing some more rigorous
testing one could fine tune the optimization parameters a little further and re-
duce guard times where they are redundant.

From the preliminary tests it appears like the protocol performs a lot worse un-
der interference. Thus, introducing in a more elaborate interference avoidance
scheme, potentially based on adaptive frequency hopping, would likely be worth-
while. Along those lines, it might also help to introduce a mechanism whereby
sources can stop transmissions for a while if they are experiencing heavy inter-
ference. The mechanism would need to include a way for nodes to store these
messages and transmit them at a later point in time.

Another feature that did not make it into the final protocol but might lead to
some performance improvements, particularly in terms of energy, is the concept

46
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of forwarder selection. When forwarder selection is applied, nodes which do not
lie on or near the shortest path between the host and a source node are turned
off and do not participate in the communication, reducing the size of the network
that needs to be flooded. We ultimately decided against using this concept due
to the potential reliability cost, which we did not want to risk incurring without
more extensive testing.
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