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Abstract

Off-chain payment channels provide a promising solution to solve the blockchain
scalability problem. But, the concept suffers from the inherent weakness of
capital-inefficiency and user unfriendliness since capital is temporally locked. As
a solution a Payment Service Provider (PSP) has been proposed, which takes
over the capital deposits. In addition, the PSP defines the network structure
and pays the costs of opening and closing channels. Whereas a fee is paid by
the users in return. A PSP has a strong incentive to create the optimal network
structure such that its profit is maximized, which is a NP-hard problem as shown
by Avarikioti et al. [1]. This work focus on designing an approximation scheme to
maximize PSP’s profit. As a preliminary step, trees structures is only considered
and an approximation algorithm to minimize the required capital is presented.
We show in an analysis that this algorithm provides a tree structure which re-
quires in average 12 % less capital than a star structure. In a further step, the
problem is extended to connected graphs by allowing cycles and by introducing a
cost function. We show an algorithm to minimize the costs. Finally, the problem
of profit maximization is discussed. We show approaches of profit maximization
algorithms for the offline and online case.
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Chapter 1

Introduction

The high potential of distributed ledger technologies (DLT’s), like blockchain,
could not yet be fully exploited. Existing throughput problem remains as a funda-
mental impediment [2]. For instance, the two popular permission-less blockchains
Bitcoin [3] and Ethereum [4] are able to process only 3-7 and 7-15 transactions per
second, respectively. Whereas, the networks of credit card companies (e.g. Visa,
MasterCard, etc.) are able to process some thousands of transactions per second.
Two approaches to overcome the issues have been presented. In Sharding [5] [6],
the blockchain is split up in multiple chains, which run in parallel in order to
increase the throughput. In a Payment Network [7], transactions are processed
through off-chain channels (without adding the transaction to the blockchain).
An underlying blockchain is used to open and to close channels and as security
guarantee. Payment Networks seem to be the more promising solution, since
data volume can be taken away completely from the blockchain.
Lightning [8] and Raiden [9] are implementations of a payment network on top
of the Bitcoin network and Ethereum network, respectively. Such networks al-
low the users to create peer-to-peer payment channels between each other, which
enables to transfer money without any fees. Costs only occurs when opening
and closing a channel, since in each case, a single transaction to the underly-
ing blockchain (e.g. Bitcoin, Ethereum, etc.) is required, which comes with a
transaction fee. By creating a channel the user needs to assign capital on the
channel, which is not available for him during channel’s existence. The locked
capital is used as a security deposit. In case multiple users connect to each other,
a network is created which enables to route payments from user to user through
the network instead of creating new costly channels.
An user created payment network is capital inefficient, since not the optimal
network structure is created such that minimal capital is required to process all
payments in the network. In addition, the number of open payment channels
of an user is limited to its total capital, since capital has to be assigned on its
channels. These issues are addressed by introducing a Payment Service Provider
(PSP) [7], which defines the network structure while taking over the capital de-
posit. Instead of creating a channel between two users, a three-party channel
between the two users and the PSP is created, whereby the channel is funded
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1. Introduction 2

only by the PSP. The PSP deposits capital to open channels and pays the fees on
the blockchain. In return, it gets a tiny monetary compensation for its service.
The PSP has strong incentive to minimize the required capital (capital to cre-
ate the channels) and to maximize the profit. Avarikioti el al. [1] discussed the
problems a PSP is faced from an algorithmic perspective. It could be shown
that maximizing the profit is NP-hard given the capital assignments. Further,
it has been proven that a star network structure yields a 2-approximate of the
optimal capital for minimizing the capital. Moreover, it has been proven that
not even for a single channel, a deterministic competitive algorithm for adaptive
adversaries exists in the online case such that the profit is maximized given a
capital constraint.
The contribution of these works is strongly related to the findings in [Avarikioti
el al.] [1]. The focus of this project lies on designing an approximation algorithm
to maximize the profit. Firstly, considering trees structures only, algorithmic
solutions to minimize the required capital are discussed and a probabilistic al-
gorithm, which provides a closer average approximation than a star structure,
is presented. Further, the problem is extended to connected graphs by allowing
cycles. A cost function is introduced to model the number of channels together
with the required capital. It is focused on minimizing the costs. Finally, approx-
imation schemes to maximize the profit are discussed for the offline and online
case.

Model - Payment Network: It is modelled as a graph G(V,E,CL, CR), where
vertex v can be a sender or a receiver of a transaction, where edge e is a channel
between two vertices, and where ceL and ceR are the capital assignment of edge e
(vi − vj with 1 < i < j < n, for n vertices) on the left side and on the right side,
respectively.
A transaction ti = (si, ri, ai) with 0 < i < k consist of a sender si, a receiver
ri and a payment amount ai, can be routed arbitrary through the network. A
strategy Se = {−1, 0, 1}n defines if a transaction is routed on edge e from left to
right (1), right to left (−1) or not routed through e (0).
The model contains the characteristic that capital cei is temporally locked on the
edge ei as long as ei exists. Moreover, the capital cei can only be moved along
ei from left to right, or right to left, since the model does not allow capital to
be moved from ei to any other edge ej through a vertex. The only way to move
capital from ei to ej is to unlock cei by removing edge ei (closing the channel) and
assign capital on ej (opening an additional channel), but to close as well as to
open a channel cause a fee ϕ. The fee ϕ represents the variable fee for executing
a transaction on the Bitcoin network.

Definition 1.1 (Cost). Interest are obtained for capital in the economy. Since,
the capital C is locked in the network, the interest on the locked capital are a
part of the costs besides the number of edges m:

Co = ϕm+ αC = m+ αC
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, with a interest rate α ∈ [0, 1] and with ϕ assumed equal to 1.

Definition 1.2 (Profit). the profit P obtained by processing k transactions is
defined as:

P = εk − Co = k − (m+ αC)

, with a constant earning per transaction ε = 1

Problem 1.3 (Tree Design for All Transactions). Given, a set of transactions
Tx, determine a tree T which requires the minimum required capital (optimal
capital) to process all transactions.

Problem 1.4 (Graph Design for All Transactions). Given, a set of transactions
Tx, determine a graph G which minimize the costs to process all transactions.

Problem 1.5 (Transaction Selection to Maximize Profit). Given, a set of trans-
actions Tx and a capital limit Climit, determine a tree T , a set of chosen trans-
actions T chosen and a capital assignment C, such that the profit is maximized.



Chapter 2

Optimal Tree Approximation

In this chapter, Problem 1.3 - Tree Design for All Transactions is studied. The
problem constrains the network topology to a tree structure, thus, the profit
becomes a function of the number of nodes n and the required capital C, since
the number of edges becomes well-defined with m = n − 1 and all transactions
are processed. The profit P is equal to:

P = k − (m+ αC) = k − (n− 1 + C)

, without loss of generality α is assumed to be equal to 1, since it has no effect
on the optimization problem. For a network of n nodes and a transaction set of
length k, the profit becomes maximal by minimizing the required capital C, i.e
by having the optimal tree as network structure. Throughout this chapter, the
problem of calculating the optimal tree is discussed.

An algorithm is required to calculate the capital demand of a given network
structure. At first such an algorithm is briefly introduced. Subsequently, chal-
lenges of designing an algorithmic solution of the problem are discussed in the
first Section. Further in Section 2.2 an algorithm based on the largest payment
amounts is presented and analyzed on its performance. And finally, in Section 2.3
a probabilistic algorithm, which provides a closer average approximation than a
star structure is presented.

Calculate required capital for a given graph (Alg. 1): It is calculated
by forwarding the transaction from the sender to the receiver through the net-
work. While forwarding a transaction from one node to the other, the capital
on the edge between them is updated according to the payment amount. In the
worst case, when all nodes lie on one line, it is going to take (n− 1) times until
a single transaction is forwarded through the graph. It follows that to calculate
the required capital for a graph, it takes

Ocap = k(n− 1) (2.1)

Ωcap = k

iterations, with k the number of transactions and n the number of nodes.
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2. Optimal Tree Approximation 5

Algorithm 1: Calculate required capital for a given graph
input : Graph G = (V,E)
input : A set of transactions ti = (si, ri, ai)
output: required capital C to process all transactions on G

1 C = 0

2 for each edge e in G do
3 for direction d in {left (l), right (r)} do
4 On edge e in direction d, capital c = 0
5 On edge e in direction d, maximum capital cmax = 0

6 end
7 end
8 for each transaction ti do
9 /* sender, receiver, payment amount */

10 si, ri, ai = ti
11 ci = si
12 while ci != ri do
13 hi = next hop on the shortest path ci to ri
14 capital on directional edge eci-to-hi+ = ai
15 capital on directional edge ehi-to-ci− = ai
16 if capital on eci-to-hi > cmax on eci-to-hi then
17 cmax on eci-to-hi = capital on eci-to-hi

18 end
19 end
20 end
21 for each edge e in G do
22 for direction d in {left (l), right (r)} do
23 C+ = cmax on edge e in direction d
24 end
25 end
26 return C
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BA

(1) 10 

(2) 20 

(1)
A -> B 10 
B -> A 10
A -> B 10 

(2)
A -> B 10 
A -> B 10
B -> A 10 

Figure 2.1: Order matters. Transactions on a single edge between node A and B

2.1 Algorithmic Tree Design

The aim is to design an algorithm, which takes a set of transactions as input and
returns the optimal tree as output. Unfortunately, solutions of well-known graph
problems cannot be applied, since a few characteristics of the payment network
lead to significant differences, and thus, to a new problem. In a first step, these
characteristics are discussed. And, it is pointed out why well-known optimization
schemes can not be applied. In a second step, parameters, which can be used to
design an algorithm, are briefly analyzed.

Characteristics - Moving Capacity: The capacity of one side of an edge
is moving with the transaction to the other side. Assuming, node A and B have
allocated an edge between each other with a value of 10 on both sides. When A
sends 5 units to B, A’s capacity of 10 will be reduced to 5 and B’s capacity of
10 will be increased to 15. The amount of money a node is able to send along
its edges (capacities) is variable and depends on the previous transactions routed
through the edges.

Characteristics - Order Matters: The order of the transactions in the
transaction set matters. The required capital (the optimal tree) becomes different
by changing the order of the transactions. A brief example is given for two nodes,
see Figure 2.1. There are 2 transactions from A to B, and 1 transactions from
B to A. In the first set (1), A and B alternate with sending a value of 10. It
yields to a required capital of 10. In the second set (2), the last two transactions
are switched. It yields to a capital demand of 20. The dependence on the order
seems not to be significant for a single edge, but it becomes challenging when it
comes to multi-hops.
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Parameters: Only a few parameters can be used to design an approximation
algorithm based on transactions.

• using the payment amounts, e.g. creating an edge for transactions with the
highest amounts.

• using the number of transactions between two nodes as a parameter, e.g.
connecting the nodes with many transactions between each other.

• using the capital assignments on the edges, e.g. on a random topology,
reducing the assignments one edge by changing the topology. But, it is more
complex, since changing the topology might force an increase of capital on
other edges.

Optimization Scheme - Dynamic Programming: It can be applied when
the problem has an optimal substructure and overlapping sub-problems [10]. Un-
fortunately, it is not the case for Problem 1.3. Optimal substructure means, that
the problem can be divided into sub-problems and the solution can be obtained
by the combination of the optimal solution to its sub-problems. Going back to
the problem of creating the optimal tree out of a set of transactions, there are
two ways of dividing. One can split the transactions into several sets (e.g. of
size 1) and calculate the optimal sub-tree for each set. But, no solution could be
found to combine the sub-trees to one tree because of the moving capacity. Or,
one can split the transactions along the nodes by creating node sub-sets S. All
transactions between the nodes in Si form a transaction set. But, the remaining
transactions which take place between nodes of different node sub-sets (between
nodes of Si and Sj) do not enable optimal substructure. The remaining trans-
actions have an impact on the solution of Si and they can not been modelled as
transactions from outside because of the moving capacity.

2.2 Deterministic Algorithm

In this chapter only deterministic approaches are considered. At first, an al-
gorithm which returns the best star structure (star structure requiring minimal
capital) and its capital demand for a transaction set is presented. Secondly, an
algorithm which creates a tree structure based on the payment amount of the
transaction is shown. Finally, the two algorithms are analyzed on their capital
demand by testing them on various transaction sets.

Best star (Alg. 2): It calculates the star (or also called hub) with the
minimum capital demand to process all transactions (best star). It takes a
set of transactions TXs as input and simply brute-force every star of n nodes
on TXs. Routing a transaction through the graph requires only two hops at
maximum. Thus, calculating the capital demand of a star takes only 2k iterations
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Algorithm 2: Best star

input : A set Txs of transactions ti = (si, ri, ai)
output: A star S = (V,E)

1 C = max interger
2 V = get all nodes in S

3 for each v in V do
4 center = v
5 V,E = get star(center, V )
6 c = required capital of star (V,E) and transaction set Txs
7 if c < C then
8 C = c
9 S = (V,E)

10 end
11 end

12 return S,C

at maximum and k iterations at minimum for k transactions. It results in a time
complexity of:

Θstar = Θ(kn) (2.2)

Create a tree based on largest payments (Alg. 3): It creates a tree
according to the value of the payment amount of the transactions. A tree T is
created by selecting the transactions in decreasing order of the payment amount
and making sure that a path between sender and receiver exists. In case no path
does exit between sender and receiver, an edged is added between them.

The algorithm has a run-time, independent on the number of nodes n. It
yields a time complexity of

Θlpa = Θ(k) (2.3)

for k transactions.

Required capital analysis (Fig. 2.2) The approximation factors of the
two algorithms are analyzed experimentally. 100 transaction sets are created
uniformly at random for 3 to 8 nodes (for each number of nodes 100 sets). The
number of transaction (nTx) in each set is chosen to be dependant on the number
of nodes n, with nTx = 10 ∗ n. Finally, the algorithms are executed for each
transactions set and they are compared to each other by creating a ratio of their
required capital. In addition a random tree is picked and its capital deman is
calculated as a further reference. The outcome of this analysis is presented in
Figure 2.2. It shows the average approximation of optimal capital for random
tree and largest payment algorithm related to the best star. It can be seen,
that largest payment alg. provides a better approximation than just picking
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Algorithm 3: Create a tree based on largest payments

input : A set Txs of transactions ti = (si, ri, ai)
output: A tree T = (V,E)

1 E ← {empty}
2 V ← {empty}

3 while Txs is not {empty} do
4 tmax = get ti with the highest payment amount in Txs
5 remove tmax from Txs
6 si, ri, ai = tmax /* sender, receiver, payment amount */
7 if si or/and ri does not exist in V then
8 add si or/and ri to V
9 end

10 if path si to ri does not exist in E then
11 add edge si − to− ri to E
12 end
13 end

14 return V,E

a tree at random. But, it can also be seen, that best star provides a better
approximation of optimal capital.

2.3 Probabilistic Algorithm

The purpose of this chapter is to present a probabilistic algorithm, which cal-
culates the optimal tree with probability p for a transaction set. Further, the
algorithm is experimentally analyzed regarding its termination behavior, time
complexity and probability of finding the optimal tree. The analysis is based on
60 transaction sets containing 200 transactions each. The transactions are gen-
erated uniformly at random for a different number of nodes. There are always
10 sets for 3, 6, 9, 12, 15 and 18 nodes. For each set 1000 iterations of the algo-
rithm are done. These 60 transaction sets are referred as data set and the 1000
iterations of the algorithm on each set are referred as experiment for the rest of
this chapter. At the end, ideas for improvements of the algorithm are discussed
and analyzed.

Random Edge Optimization (REO) (Alg. 4): It takes a random tree
and a set of transactions as an input. The algorithm generates the optimal tree
with probability p as output. The tree which requires the minimum required
capital to handle all transactions is referred to as the optimal tree. The idea is
to optimize locally each single edge of the random tree T . At first, an edge of T ′
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Figure 2.2: Average approximation of optimal capital for random tree (rtree) and
largest payment algorithm (largest payment) related to the best star (star)

is randomly selected and temporarily removed. What remains are two sub-trees
T 1 and T 2 of T ′. In a next step, the best edge (the edge which results in the
least required capital) is selected out of all possible edges, which connects the
two sub-trees T 1 and T 2. That means the required capital for all trees results
by connecting T 1 and T 2 with one single edge is calculated and the one with the
least demand on required capital is selected. In case the best edge ebest is the
original edge er this edge is marked. Otherwise if a new edge is selected all marks
of T ′ are removed. The marking of the edges is introduced because when an edge
of the tree T ′ is changed, all previous calculated best edges might not be optimal
anymore. Finally, the process is repeated until all edges of T ′ are marked.

Termination Two questions arise:

1. Does the algorithm always terminate?

2. When does it terminate?

(1) The algorithm terminates in the worst case after all possible trees nn−2

have been processed, which is achieved by having a list of already processed trees
(PT ).

(2) For answering this question only the outer loop has to be considered. Since
an analytic solution could not be found, this question is answered by counting
the number of rounds of the outer while-loop in the experiment. In Figure 2.3
the outcome of the measurements is presented. It shows the rounds normalized
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Algorithm 4: Random Edge Optimization (REO)
input : T = (V,E) ← a random tree
input : Txs ← a set of transactions
output: T ′ = (V,E′) ← optimal tree with probability p
output: C ← required capital to process all transactions

1 T ′ = T
2 PT = {empty} /* processed trees */
3 ebest = {empty}

4 add T ′ to PT
5 C = required capital of the tree T ′ and transaction set Txs

6 while an unmarked edge exists in E’ do
7 er = randomly select an edge from E′\{ebest}
8 T 1, T 2 = subtrees of T ′\{er}
9 ebest = er

10 for each edge e connecting T1 and T2 not equal er do
11 T ′′ = (V,E′\{er} + e)
12 if T” not in PT then
13 add T ′′ to PT
14 capital = required capital of the tree T ′′ and transaction set

Txs
15 if capital < C then
16 C = capital
17 ebest = e

18 end
19 end
20 end
21 if ebest == er then
22 set a mark at edge ebest
23 end
24 else
25 E′ = E′\{er} + ebest
26 remove the mark for all edges of E′

27 end
28 end
29 return T ′, C
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Figure 2.3: Number of rounds of the outer while-loop normalized on the number
of edges m

on the number of edges over the number of nodes in the transaction set. It can
be observed that the boxes are very dense, or in other words the deviation is
low besides a few outliers. Further, a slight logarithmic increase of the number of
rounds strike out. Nevertheless, it is close to linear, therefore, a linear complexity
is assumed:

Owhile-loop = O(nm) = O(n2) (2.4)

Ωwhile-loop = m = n− 1

for m = n− 1.

Time complexity At first, the inner for-loop is considered. Two subtrees T 1
and T 2 remain after removing one edge from T ′. The number of edges connecting
the two subtrees is at least n− 1 and at most (n2 )2, and thus

OT1-T2 = (
n

2
)
2

=
n2

4
(2.5)

ΩT1-T2 = n− 1

Secondly, the outer while-loop, or in other words how many iterations it takes
until all edges are marked, is analyzed. An edge of T ′ is marked when all other
possible edges which connecting the subgraphs T 1 and T 2 requires more capital.
It follows that it takes at least m = n − 1 iterations until all edges of T ′ are
marked.
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Figure 2.4: Best, average and worst measured run-time normalized on k

Finally, combining all together and also taking into account the complexity
of calculating the required capital of a tree Ocap of Equation 2.1, we derive the
following time complexity

OREO = Owhile-loop ∗ OT1-T2 ∗ Ocap = O(kn5) (2.6)

ΩREO = Ωwhile-loop ∗ ΩT1-T2 ∗ Ωcap = Ω(kn2)

for k transactions and n nodes.

In Figure 2.4 the outcome of the run-time analysis is presented. It shows the
best, worst and average measured run-time over n nodes. It can be observed,
that the worst scales slightly below n4 and the best slightly above n3. The
measured run-time is within the expected bounds of [n2, n5]. Nevertheless, a
brief explanation of the average complexity should be given by taking a deeper
look at Ocap. In the worst case, each transaction require n − 1 hops to reach
its destination, though only occurring when all nodes form a chain and each
transaction is from head to tail, or vice versa, which is rarely the case. Shen
et al. [11] has shown that the average diameter of a general tree structure is
Θ(logn). Thus, the average complexity of calculating the required capital for
general trees becomes Oavgcap = O(logn). This yields an average complexity of
the algorithm of O(n4logn).

Probability: The algorithm does not always return the optimal tree, since
it might find a local minimum instead of the global minimum. Therefore, in the
experiment the probability of finding the optimal tree is analyzed. In a first step,
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Figure 2.5: Average probability to find the optimal tree

the optimal tree was found by a brute-force algorithm. The required capital,
which is required to handle all transactions, is evaluated for each possible tree
with n nodes. Unfortunately, the brute-force scales with n(n−2), and therefore,
the time frame was only acceptable for brute-forcing up to 9 nodes. For 12,
15 and 18 nodes, the minimum out of 1000 iterations was assumed to be the
optimum. In Figure 2.5 the average probability is illustrated. It points out that
the probability is decreasing rapidly by increasing the number of nodes. For only
3 nodes, the output is at 100 %. But, already for 9 nodes, the optimal is found
with only 16 % and below 1 % for only 15 nodes. Unfortunately, the result is far
from desired outcome of having a high probability for a large n.

Deviation: The deviation from the optimal tree, or in other words the ap-
proximation to the optimum, is analyzed. In Figure 2.6 the outcome of the
experiment is illustrated. It shows the distribution of the deviation from the
optimal tree. It can be observed, that the average deviation is monotonically
increasing and that distribution gets more spread with an increasing number of
nodes.

2.3.1 Ideas of Improvement

In this Section, we discuss some ideas for improving the algorithm both in terms
of run-time and probability of optimality p. It was shown above that the average
run-time scales polynomial with O(n4) which is not efficient for a large number
of nodes. Moreover, the probability p becomes very low for a large n, and thus,
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Figure 2.6: Deviation from the optimal tree

it is unlikely to find the optimum.

Tracking processed trees: This idea is already included in the presented
algorithm 4. Each tree, for which the required capital was calculated, is stored by
adding it to a list of processed trees. This avoids that a certain tree is processed
more than once, which might be possible otherwise. This improvement has been
added and implemented from the beginning, and therefore, the gain out of it was
not further analyzed.

Star input: The algorithm starts with a random tree, which might be far
from an optimum starting point. Thus, we consider alternative starting points.
In [1] it was shown that any star yields a 2-approximate solution, which seems
to be a better starting point than a random tree. Nevertheless, the experiments
showed that the algorithm with a random star as input does not perform better
than the original one that starts with a random tree. Figure 2.7 depicts the
average probability p for a random star and a random tree as starting point. It
can easily be seen that there is no improvement on p.

Threshold: Is there any threshold of how often an edge must be marked
until it is guaranteed that the edge is a part of the output tree T’? If this is the
case, unnecessary computation could be avoided, and thus, the run-time could
be improved. Figure 2.8 shows how often edges were marked. At first, the left
figure, resulting from the measurements with 15 nodes, shall be discussed. It
can be seen, that some edges have been marked up to 12 times, whereas the
most edges have been marked only once. Further, it sticks out that there is a
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Figure 2.7: Average probability to find the optimal tree. Comparison between
random tree and star as input

threshold, since the edges which are not going to be in the resulting tree T are
marked only 9 times at maximum. Therefore, after an edge has been marked 10
times, it is going to be in T. Unfortunately, the gain is negligible small, since the
threshold would be reached only 12 times out of 1.5 * 105. It is not really an
option to set the threshold below 10 and to accept an false positive error, since
the approximation factor would become worse. The same holds for a tree with
18 nodes, see figure on the right side.

Parallelization: REO comes with a polynomial complexity of O(kn5), and an
average complexity of O(kn4logn). Although, it scales polynomial an immense
calculation effort is required to apply it on a network of 1000 nodes, since, the
constant hidden in the O-notation is rather high. The average run-time has been
around 8.4 s for 18 nodes and 200 transactions on the testing machine (Intel(R)
Core(TM) i5-5200U CPU @ 2.20GHz) in the analysis. If these numbers are
extrapolated to 100 nodes and 200 transactions (with n4, worst measurement)
it results an execution time of 2.5 hours, which might be acceptable. But, with
1000 nodes and 200 transactions it will take already 2.5 years. Nevertheless, there
is a potential for further improvements through parallelization, since, the inner
For-loop can be parallelized to a certain degree. The required capital for each
tree, which emerges by connecting the two subtrees T 1 and T 2 with a single edge,
is calculated at this state of the algorithm. Since, the calculations are completely
independent from each other, they can be parallelized. By using a GPU the run-
time can be reduce to a fraction of n2

4 (OT1-T2). For instance for a network of
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Figure 2.8: How often a certain number of marking occurred over 1000 iterations
on all sets. The blue bars stand for markings of the edges of the resulting tree
T , and the red bars represent the marking of the edges are not part of T

100 nodes 2500 cores could be used (e.g 3 * GeForce GTX 960 containing 1024
cores [12]). This would reduced the run-time of OT1-T2 from O(n2) to O(1),
and therefore, the total complexity of the algorithm would reduce from O(n5) to
O(n3). Furthermore, having 1000 nodes, using 250’000 cores might rather not be
an option. Nevertheless, the run-time can still be reduced linearly by applying
ΩT1-T2 = Ω(n) cores. It yields a run-time of O(n4). Going back to the previous
hypothetical calculations with the result of 2.5 years. Parallelization might allow
to reduce the run-time by a factor of 1000 by using 1000 cores. Instead of 2.5
years, it would take 22.2 hours.

2.4 Final Evaluation

In this chapter, two algorithms have been discussed. Alg. 3 creates a tree in
dependence of the largest payment amount and Alg. 4 optimizes the tree edge
for edge. In this section, the performance of the algorithms is briefly discussed
and compared to the optimal tree.

For the analysis, again 100 transaction sets are created uniformly at random
for 3 to 8 nodes (for each number of nodes 100 sets), and with number of trans-
actions (nTx) = 10 ∗ n. Because of the high computational cost of brute-forcing
each tree (O(nn−2) the evaluation is only done for up to 8 nodes. On each set
the following algorithms are executed:

• random tree: select a tree uniformly at random

• largest payment: Alg. 3
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• best star: find the best star by brute-forcing

• REO: Alg. 4 (1 round)

• optimal tree: brute-forcing all trees to find the tree with the least capital
demand

• optimal graph: brute-forcing all connected graphs to find the graph with
the least capital demand

Each of them outputs a graph and its corresponding demand on capital to ex-
ecuted all transactions. The approximation of the optimal capital of trees is
calculated by relating the resulting capital demand to the optimal capital. Fi-
nally, the average approximation is presented in Figure 2.9. Selecting a tree at
random provides the worst approximation (blue cure). Further, it can be seen
that using the largest payment algorithm (purple curve) results in a slightly
better approximation, but it requires still 40 % more capital than in the optimal
case at the worst point. The best star (red curve) gives an average approxima-
tion of up to 1.15. Further, The REO alg. (green curve) provides a near optimal
approximation with an average factor of 1.04 at 8 nodes. Finally, the optimal
connected graph (including trees) is calculated (orange curve) for up to 6 nodes
and linearly extrapolated until 8 nodes (dashed line). The optimal connected
graph comes with a slightly lower demand on capital as the optimal tree. But,
on the other hand, it requires more edges, and thus, the costs (m + αC) might
be higher.

In a second analysis the REO alg. is compared to the best star for a higher
number of nodes. 10 data sets are created uniform at random with 500, 550 and
600 transactions for a network size of 50, 55 and 60 nodes, respectively. REO is
executed on each data sets once and its resulting demand on required capital
CREO is compared to the required capital Cbest star of the best star structure
by dividing CREO through Cbest star. The average of this ratio is presented in
Table 2.1. All 3 network sizes result in roughly the same ratio of about 0.88, which
means REO provides a tree structure with in average a 12 % smaller demand on
capital than the best star.

nodes CREO/Cbest star
50 0.885
55 0.887
60 0.878

Table 2.1: Avg. required capital of RE0 related to best star

In conclusion, the REO alg. provides a near optimal solution of Problem 1.3
and it offers in average a 12 % better approximation than the best star. But
unfortunately, REO comes with a polynomial worst-case complexity ofO(kn5), and
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Figure 2.9: Average approximation of optimal capital for random tree (rtree),
largest payment amount algorithm (largest payment), best star (star), REO
algorithms and optimal graph (graph-bf) related to the optimal tree (tree-bf)

an average-case complexity of O((logn)kn4). Although, there is the potential to
further reduce the run-time by using parallelization as discussed in Section 2.3.1,
the complexity is not fully satisfying, since, it does not allow to calculate the
required capital of a network of thousands of nodes and thousands of transactions,
that would represent a real payment network.



Chapter 3

Optimal Graph Approximation

In this chapter, Problem 1.4 - Graph Design for All Transactions is studied. It
is the more general case of Problem 1.3. Since, the topology is not restricted
to trees anymore, cycles are also considered. But still, all transactions shall be
processed by the network, and thus, the graph has to be connected. It is focused
on minimizing the costs

Co = (m+ αC)

, with m edges, total required capital C and interest rate α.

Extend tree to a connected graph (Alg. 5): Allowing cycles increases
the complexity of the problem drastically. Hence, the optimal tree is extended
with cycles such that the cost is minimized. The following algorithm is presented,
Alg. 5. It takes a transactions set and its corresponding optimal tree as input
as well as the current interest rate α. The return values are the best graph G
(graph with minimal costs) and the corresponding cost Co. For each transaction
which does not take place between direct neighbors the cost of the graph, which
contains the edge between the two nodes is calculated. In case the cost can be
lowered by adding an additional edge, the edge is added to the graph G. But
since, the previous calculations have been based on the Graph without the new
edge, the process is repeated for the previous transactions with the new G.

The algorithm (5) takes at least k iterations, in case each transaction take place
between two neighboring nodes and no required capital calculation is executed.
Thus, the optimal tree is also the best found graph. The worst-case complexity
of k!kn is far from optimal. k! is caused by the fact that the calculation process
is repeated in case an edge is added. Theoretically, it is possible that the last
transaction in the set forces to add an edge to G, and thus, the calculations
for the previous transactions is repeated. In this second round, the second last
transaction is adding an edge to G. And so on until to the first transaction. It
ends up in k! iterations. It could be avoided by limiting the number of iterations,
e.g. to 2k, with the drawback of not finding the best solution.

Ocycle_extend = Ocap ∗ k! = O(k!kn) (3.1)

Ωcycle_extend = Ω(k)

20



3. Optimal Graph Approximation 21

Algorithm 5: Extend tree to connected graph (allowing cycles)
input : T = (V,E) ← an optimal tree
input : Txs ← the transactions of the optimal tree
input : α ← interest rate on capital
output: G = (V,E′) ← the optimal graph
output: Co ← The cost to handle all Txs in G

1 graph G = T
2 capital C = required capital of G for all transactions Txs
3 number of edges m = number of edges of G
4 cost Co0 = m+ α ∗ C
5 transactions tx = Txs

6 while tx is not {empty} do
7 /* sender, receiver, payment amount */
8 si, ri, ai = ti = next transaction in tx
9 remove ti from tx

10 if si and ri neighbors in G then
11 continue the loop
12 end
13 C = required capital of G+ esi to ri for all transactions Txs
14 cost Co1 = m+ 1 + α ∗ C
15 if Co1 < Co0 then
16 Co0 = Co1
17 m+ = 1
18 G+ = esi to ri
19 tx = Txs

20 end
21 end
22 return G,Co0
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Figure 3.1: Average cost ratio
Cocycle_extend

Cooptimal
where Cocycle_extend is the cost of

the graph resulting by applying cycle extend algorithm (Alg. 5) and Cooptimal
is the cost of the optimal graph.

Optimal costs analysis (Fig. 3.1): The costs Cocycle_extend of the graph
returned by the algorithm is evaluated. The algorithm is applied on 20 trans-
action sets of 200 transactions and Cocycle_extend is compared to the cost of the
optimal solution Cooptimal by creating a cost ratio (Cocycle_extend/Cooptimal). It
was done for 3,4,5,6 and 7 nodes, since the optimal solution could only be found
by brute-forcing. In Figure 3.1 the average of the cost ratio is presented. It can
be seen, that Cocycle_extend is only slightly higher than the cost of the optimal
graph. The algorithm provides the optimal solution (ratio = 1) for 3 and 4 nodes
whereas its outcome deviates with about 1 per mile for 5 and 6 nodes and with
about 2 per mile for a network size of 7 nodes.



Chapter 4

Maximize Profit

In this chapter, Problem 1.5 - Transaction Selection to Maximize Profit is stud-
ied. A payment provider will directly face this problem. Since a provider might
not have enough capital available to handle all transactions, he is interested in
processing only the most profitable transactions (maximizing profit). By restrict-
ing the problem to tree structures and with a capital limitation Climit the profit
is equal to:

P = k − (n− 1 + αClimit)

, with k chosen transactions, n nodes and an interest rate α. For a given trans-
actions set, the number of nodes n is well-known. Additionally, the interest rate
α is constant. Therefore, the only variable in the equation is the number of
chosen transactions k. Throughout this chapter, approximation algorithms for
maximizing k, and thus, maximizing the profit P , are presented and discussed.

The challenge for maximizing k is given by the fact, that it depends on the
tree structure combined with the optimal strategy of selecting transactions. In
the first Section, the offline case is discussed. On the contrary, in the second
Section, we focus on the online case, where the transactions are not known in
advance.

4.1 Max Profit - Offline

The term offline is used, when all transactions are known in advance.

Greedy selecting (Alg. 6): The algorithm takes the capital limit C limit
and the transactions set Tx as input, and it returns the tree structure T as well
as the list of the chosen transactions Txchosen. The algorithm greedily selects the
transactions with the lowest payment amounts as long as C limit is fulfilled. In
the first while-loop, the smallest payment amounts are chosen, such that, their
sum does not exceed C limit. The second while-loop is used to calculated the
effective required capital C of the Txchosen base on the REO algorithm presented
in Section 2.3. In addition, further transactions are added as long as the required
capital does not exceed the limit.

23
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Algorithm 6: Greedy selecting (greedy)
input : Capital limit C limit
input : Tx a set of transactions ti = (si, ri, ai)
output: Tree T = (V,E) and chosen transactions Txchosen complying

C limit

1 Total transaction amount Txamount = 0
2 Txchosen = {empty}

3 while True do
4 /* sender, receiver, payment amount */
5 si, ri, ai = ti = min(Tx)
6 Txamount+ = ai
7 if Txamount < Climit then
8 remove ti from Tx
9 add ti to Txchosen

10 end
11 else
12 break
13 end
14 end

15 while True do
16 ti = min(Tx)
17 T ′, C = Alg. 4 REO(Txchosen + ti)
18 if C < Climit then
19 remove ti from Tx
20 add ti to Txchosen
21 T = T ′

22 end
23 else
24 break
25 end
26 end

27 return T, Txchosen
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Considering the first while-loop isolated, the worst case occurs when all trans-
action are selected. This yields a complexity of O(k). Whereas, the lower limit
is given with Ω(1) when no transaction is chosen. The worst case for the second
while-loop occurs when in the first loop only one transaction is chosen and the
subsequent transactions do not cause a higher capital demand, e.g the amount of
the first transaction is just send back and forth between two participants. In this
case the worst-case complexity is O(k) ∗ OREO = O(k2n5). In the optimal case,
the loop is executed only once, and therefore, ΩREO (2.6) iterations are required.
Concatenating both together, the complexity of the algorithm is given by

Ogreedy = O(k2n5) (4.1)

Ωgreedy = k ∗ ΩREO = Ω(k2n2)

Selecting with probability (Alg. 7): A further approach is to select the
transactions according to a certain probability. Alg. 7 chooses the transactions
with a probability p, which depends on the payment amount ai, such that small
amounts are favoured. A payment with the largest payment amount of the set of
transactions Txs (amax) is selected with probability amin/(amax+amin), a payment
with the smallest payment amount of Txs (amin) is selected with probability
amax/(amax + amin). After a selection round (for-loop) the required capital C is
calculated with the REO algorithm. In case C > C limit the selection is not accepted
and it is repeated with p = p/2. In case C < C limit the selection is accepted and
it is added to Txchosen. The process is repeated until no transactions are selected.

Analysis of number of selected transactions (Fig. 4.1): Since it is not
possible to find the optimal solution (there is no algorithm and brute-forcing all
possibilities of selecting transactions on all trees is not a realistic option), the
two algorithms are only compared. Running them on 20 transaction sets of 200
transactions with C limit = Copt/2 (optimal capital to process all transactions)
yields to the result depicted in Figure 4.1. It can be seen, that both algorithms
have similar performance. In average they selected 115 transactions out of 200.
pselect shows a better result of 135 selected transactions only for 3 nodes.

4.2 Max Profit - Online

In the online case, the transactions are unknown in advance. There is a trans-
actions stream, which shall be processed by the PSP. The questions arise: how
to design the optimal topology without knowledge of the incoming transactions?
How to assign the available capital to the edges? Which transactions shall be
executed through the payment network? Answering the questions is highly chal-
lenging under the condition of profit maximization. Nevertheless, 3 strategies
shall be defined to answer the questions. Strategy Stopology defines the topology,
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Algorithm 7: Selecting with probability (pselect)
input : C limit ← Capital
input : Txs ← a set of transactions
output: Chosen transactions Txchosen complying C limit

1 amax = maximal transaction amount of Txs
2 amin = minimal transaction amount of Txs
3 Txchosen = {empty}
4 x = 0

5 while True do
6 Txselected = {empty}

7 for each ti in Tx do
8 /* sender, receiver, payment amount */
9 si, ri, ai = ti

10 p = (1− ai
amax+amin

)/2x

11 add ti to Txselected with probability p
12 end

13 if Txselected is {empty} then
14 break
15 end

16 Txcurrent = Txselected + Txchosen
17 T,C = Alg. 4 REO(Txcurrent)

18 if C > Climit then
19 x+ = 1
20 end
21 else
22 Txchosen = Txcurrent
23 remove all transactions of Txtmp from Tx

24 end
25 end

26 return Txchosen
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Figure 4.1: Average number of selected transactions of Alg. 6 (greedy) and Alg.
7 (pselect) with C limit = Copt/2 (optimal capital to process all transactions)

strategy Scapital specifies the capital assignment and strategy Stransactions chooses
the transactions.

A PSP is going to face permanently new transactions assuming a network
of some hundreds of nodes. The users are going to have regular payments (e.g.
paying a coffee in its favourite cafe, buying from the supermarket, etc.) to other
users. It is rather unlikely that a user is going to send money to all the other
users. Therefore, the transaction stream will have a certain distribution. There
will might be more transactions between user A and B than between A and C.
A certain patter can also be expected in terms of payment amount (e.g a coffee
cost always about 4 CHF whereas its weekly shopping at the supermarket might
be about 80 CHF). Thus we concluded that following a learning strategy might
be beneficial in this setting. The following strategies are defined:

• Stopology: apply Alg. 4 - REO on a learning set and use the resulting tree
for the future transactions

• Scapital: learn the payment distribution of a learning set and assign capital
on the tree according to the distribution

• Stransactions: accept each transaction which can be routed through the net-
work without creating a new edge or without reassigning capital on an
existing one.
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A payment distribution can be created in various ways as well as assigning
capital according to a distribution. The following method is used:

• Distribution: all payments between two nodes are summed up for both
direction separately and divided by the total payment amount of all trans-
actions.

• Capital assignment: for each edge in the tree T the corresponding distri-
bution is multiplied with the maximum available capital (C limit). Each
distribution value of an edge not in T the number of hops between sender
and receiver is calculated. Further, the distribution value is multiplied with
C limit and divided by the number of hops. The resulting value is assigned
for each edge in the corresponding direction along the path between sender
and receiver.

Maximize profit - online (Alg. 8) Given the 3 strategies the following
algorithm is defined. The input is the capital limitation C limit (available capital
of the PSP), a learning transaction set and a validation transaction set, which is
handled as a transaction stream. The output is the chosen transactions Txchosen
which could be processed. At first, a tree T is created from the learning set with
the REO algorithm. Further, the payment distribution D is calculated and the
capital is assigned on T accordingly as described above. Finally, it is iterated
through the validation transaction set. Each of them is accepted and processed
in case the required capital is at each edge along the path between sender and
receiver.

The time complexity of the REO algorithm is given by Equation 2.6. Further,
getting the distribution out of k1 transactions requires to iterate through all of
them, O(k1). Assigning capital on T takes n−1 iterations for distribution values
with an edge in T . It takes n− 1 hops in the worst case to assign capital from a
distribution value without an edge in T . Thus, the worst case complexity is given
by (n−1)+(n−1)∗k1)→ O(n(k1+1)). Finally, additional k2∗(n−1) iterations
are required to make the decision if the transactions can be processed. At the
end, effectively processing a transaction does not cause significant computation,
since the states of the involved edges (given through the accepting decision)
have simply to be updated by changing their value. It yields a final worst case
complexity of the algorithm of:

Oonline = O(k1) +O(n(k1 + 1)) +O(k2n) = O(k1 + n(k2 + k1 + 1)) (4.2)

Analysis of number of processed transactions (Fig.4.2) The algorithm
is analyzed the following way: 4 random sets with 200 transactions for 12 nodes
are created with a distribution. The sets are split into two subsets according
to a learn-validation ratio β, such that k1 = βk and k2 = (1 − β)k. Further,
the capital limit C limit is set to be equal to the optimal capital of the offline
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Algorithm 8: Maximize profit - online
input : Capital limit C limit
input : Txlearn ← a set of transactions to learn distribution D and tree T
input : Txvalidate ← a set of transactions to apply D and T
output: Tree T and chosen transactions Txchosen complying with C limit

1 T = Alg. 4 REO(Txlearn)
2 D = get distribution of Txlearn
3 assign C limit according D on T
4 for each ti in Txvalidate do
5 /* sender, receiver, payment amount */
6 si, ri, ai = ti
7 accept if ti can be processed without new capital on the edges
8 if accepted then
9 process ti on T

10 add ti to Txchosen
11 end
12 end

13 return Txchosen

case Copt-offline. Finally, the number of transactions that can be processes out of
the validation set (score) and out of all transactions (learning set & validation
set) (k) is measured for different β′s, as illustrated in Figure 4.2. The score is
an indicator of how many transaction of the validation set could be processed,
whereas k represents the profitability curve. With an increasing β the learning
set becomes larger, whereas the validation set shrinks. Starting with a low β, an
increase yields a higher k and a higher score until β = 0.2. At this point, the
critical ratio is reached. A further expanding of the learning set leads still to a
higher score. Nevertheless, it is not beneficial anymore, since k is decreasing. At
the maximum (β = 0.2), 40 % of the transactions haven been processed. Since,
C limit was set equal to Copt-offline, it can be compared with the offline case, where
all transactions can be processed with the given capital. Therefore, the algorithm
is 0.4-competitive in average.
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Figure 4.2: Number of processed transactions for different β′s in average for mul-
tiple sets. The score (dashed line) how many transactions out of the validation
set could be processed. k (solid line) represents the number of chosen transactions
divided by the total number of transactions (learning set + validation set)



Chapter 5

Conclusion

This project has examined various approaches to use PSP optimally. The main
challenge is to resolve the problem of designing the optimal network structure.
The question which needs to be answered is:

• How to design a network structure such that the profit is maximized with
limited capital?

On the way of designing an algorithmic solution, the challenge was reduced to
the problem of finding the optimal tree structure, which minimizes the capital
demand when all transactions are processed. In a first step, the challenges of
designing an approximation were discussed. While as shown common optimiza-
tion schemes can not be applied, a probabilistic algorithm (REO) with an average
complexity of O(n4logn) was presented. In the context of PSP, REO provides a
closer approximation to the optimal capital than the best star structure. Various
approaches of improving the run-time showed that the run-time can be reduced
by one polynomial degree through parallelization. In the next step, the problem
was extended from tree structures to connected graph structures. Since the num-
ber of edges are not fixed anymore, a cost function is introduced, which takes
the number of edges and the capital demand into account. We focused on de-
signing the optimal connected graph structure, which minimizes the cost when
all transactions are processed. An algorithm was presented, which extends the
optimal tree with cycles in case the cost can be reduced. Finally, the initialized
question was discussed for tree structures. In the offline case it was focused on
having a optimal strategy for transaction selection. Two different approaches
were compared with each other, selecting greedily and selecting with probability.
It was shown that they provide similar performance. Last but not least, the on-
line case was considered. A 0.4-competitive algorithm was presented (evaluated
through testing). It uses the idea of learning the tree structure and the payment
distribution from previous transactions.

Significant progress could be made in the problem of minimizing the required
capital for trees. The REO algorithm provides a significant closer approximation
with 12 % less required capital than the star structure in average. Nevertheless,

31
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REO has imperfect scalability properties, with O(n4logn) in the average-case. Al-
though, the algorithm is parallelizable to a certain degree, effort in infrastructure
rises drastically with the number of nodes in the range of some thousands, and
thus, it might become uneconomical. In the problem of maximizing the profit,
using learning was proposed. Since, a certain pattern can be excepted in the
transactions of a payment network (e.g Lightning), learning seems most promis-
ing. It was used in the sense of design the network structure and calculate the
payment distribution out of the past transactions. The average competitive ratio
of 0.4 from the analysis gives a clue of the potential of using a learning approach,
since several parameters have space for optimization. For instance, when to ac-
cept transaction? In the presented algorithm, transactions are always accepted
when they can be routed through the network which might not be optimal. Fur-
ther, how to calculate the payment distribution (e.g. weighting factor, etc.) and
how to assign a payment distribution on the network structure optimally? It
requires further analysis. Another approach worth considering may include pre-
diction of the future transactions and creation of the optimal network structure
offline from the predicted transactions.
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