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ETH Zürich

Supervisors:

Matthias Meyer
Dr. Jan Beutel

Prof. Dr. Lothar Thiele

04.03.2019

mailto:Francesco Spadafora<fspadafo@student.ethz.ch>


Abstract

We present an implementation of a Convolutional Neural Network (CNN) for
pipelined acoustic event classification. This system is cross-platform compatible,
whereas the goal of this project is a future usage on the Geophone Dual Processor
Platform (GDPP). On the GDPP it is necessary to make continuous predictions
for longer seismic events. The benefits of a continuous classification on the
edge node rather than the cloud are e.g. diminished data transmission costs,
lower latency and reduced network congestion. For a longer event, it is crucial
to classify it in real-time in order to trigger respective actions. We based our
findings on the previous Work ”Quantized Convolutional Neural Network for
Embedded Platforms” [4], whose implementation was ported to a Free Real-
Time Operating System (FreeRTOS) [6], modified for continuous classification
and tested on a test environment. The test results confirm the functionality of
continuous classification.
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Chapter 1

Introduction

1.1 Context

In August 2017 multiple avalanches hit the small village of Bondo (GR) [17].
It was a tragedy with eight fatalities, all of them mountaineers. Even with a
detection system that triggered an alarm,this tragedy was not avoided. This case
example shows that further improvement is needed in order to protect humans
from natural disasters.

The approach followed by the Networked Embedded Systems Group at ETH
Zürich is to make detection systems smarter. The technology goes towards edge
computing, with challenges in reliability and scalability. In order to physically de-
tect acoustic events, Akos Pasztor in his Master Thesis proposed an event-based
microseismic sensing platform with co-detection [10]. In the PermaSense Project
[18], those platforms were used on the Matterhorn-Hörnligrat and Dirruhorn
Rock Glacier and form a Wireless Sensor Network (WSN). In order to use the
WSN for avoidance of natural disasters, Timo Farei-Campagna proposed in his
Master Thesis ”Quantized Convolutional Neural Networks For Embedded Sys-
tems” [4] a Convolutional Neural Network (CNN) able to classify acoustic events
with a Time-Distributed Processing (tdp). Nevertheless, the proposal comes with
different drawbacks. It does not allow continuous classification in real-time and
the implementation is hardcoded to one specific Microcontroller Unit (MCU). In
its actual form, it would not be suitable to run on a warning system in real-time.

1.2 Contribution and Organization

In this project, we push forward on the idea of a real-time alarm system. Our
contribution is the proposal of a system able to continuously detect mountaineers,
not hardcoded to a specific platform. A continuous classification requires the
pipelining of the classification over the CNN. To reach the pipelining, the core
challenge is the removal of the zero-padding between the classification of acoustic
events. By removing the zero-padding, the influence of the intermediate buffers
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1. Introduction 2

inside the tdp must be reevaluated. As a consequence, weights and bias of the
kernel for the CNN must be retrained. This represents a new challenge on how
to train the weights, such that the new receptive field is considered. In a final
step, the accuracy of the implementation on a MCU must be verified. Ideally, the
testing platform uses the same MCU as the one of the WSN on the Matterhorn-
Hörnligrat and Dirruhorn Rock Glacier.

This documentation is going to explain how the introduced challenges were
approached and verified. Chapter 2 will give an overview on the used theoretical
concepts, such as tdp, CNN, pipelining and receptive field. Chapter 3.3 explains
how the original implementation becomes cross-platform compatible. Chapter
4.3 will explain the influence of zero-padding on the receptive field, whereas
chapter 4.4 explains the removal of it. In chapter 4.5, the methods used to
pipeline the classification are explained, which then are verified in chapter 6.1.
The accuracy testing and verification can be found in chapter 4.1 and 6.2. A
final conclusion is given in chapter 7.



Chapter 2

Theory

This chapter will introduce the most important technologies, concepts and re-
lated work on which the project is based.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a class of deep neural networks. They
mainly consist of convolution layers, but can include connected layers or other
variations. Each layer consists of neurons, whereas a neuron consists of inputs
weights and an activation function. The neuron translates these inputs into a
single output, which can then be picked up as input for another layer of neurons
later on. Compared to a fully connected layer, where each neuron is connected
to all preceding neurons, neurons in convolution layers are only connected to
subsets. A kernel (contains all weights and bias of the neurons) is convoluted over
this subset. The result is passed as input into an activation function, which adds
non-linearity to the system, such as e.g. Rectifying Linear Unit (ReLU). The set
of neurons affecting a neuron in the subsequent layer is called the receptive field
. From [9], we know that CNN’s gained a lot of interest due to their advanced
feature extraction and iterative optimization procedure. [9] described the kernel,
weights, as well as the bias for each layer as trainable parameters, evaluated by
a loss-function (e.g. cross-entropy for multiple output).

In [4], acoustic event are analyzed by first using aFast Fourier Transformation
(FFT) and creating dependencies in time and frequency, also called a spectro-
gram. With CNN resulted advantageous in analyzing those time- and frequency
dependencies. This is due to the fact that kernels are only connected to a subset
of the neurons inside the previous layer, making them attractive for the analysis
of spacial dependencies.

3



2. Theory 4

Figure 2.1: Two-dimensional example of a 3x3 convolution with a stride of 1.The
output layer decreases to 5x5.

Figure 2.2: Two-dimensional example of a 3x3 convolution with a stride of 2.
The output layer decreases to 3x3.

2.1.1 Zero-Padding

The kernels are convoluted over all input layer, resulting in a feature map. In a
first case, one input layer with a 7x7 input size, convoluted with a 3x3 kernel,
should be considered. 2.1 shows the process graphically. The kernel is convoluted
over the whole input layer, resulting in an output layer of 5x5. In this case the
stride is one. A stride is the amount by which the kernel is shifted. The output
layer gets even smaller with a stride greater than one. Figure 2.2 shows how the
original input layer of size 7x7 is reduced to a output layer of 3x3 because of the
stride of two.

During a feedforward process, the output layer is reduced in size at every
step. It is assumed that with the reduction in size also information gets lost.
Especially the early layers of the network should preserve as much information
as possible. To avoid those reductions, zero-padding is used. Figure 2.3 shows
the idea behind zero-padding. The input layer is padded on the borders with
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Figure 2.3: Two-dimensional example of a 3x3 convolution with zero-padding
and a stride of 2. The output layer does not change in size.

Figure 2.4: Example of an average pooling with stride of 2 and a kernel of 2x2.
The size of the output layer decreases and the content is the average value.

zeros. However, it can be chosen to just pad zeros on one axis as well, depending
what dimension should remain constant in size.

2.1.2 Average Pooling

In contrast to the zero-padding, the purpose of pooling layers is to reduce the
layer sizes. In figure 2.4 an example of an average pooling layer with an input
layer of size 4x4 and a stride of 2 is shown. As for convolutions, a kernel is slided
over the input layer. But instead of computing convolutions, the average of all
values inside of it is computed. In that way, information can be compressed and
the computation complexity can be reduced. Another advantage of those layers
are the control of overfitting, s.t. a good generalization of the problem can be
achieved. Nevertheless, with reduction in size information is lost.
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2.2 Edge Computing

In the actual implementation of the WSN on the Matterhorn-Hörnligrat and
Dirruhorn Rock Galcier, the acquired data is collected from different actors. [4]
made a first approach to shift the classification onto the nodes of the WSN.
This project aims to further increase those detection capabilities. The term of
pushing intelligence to the node is called Edge Computing. [11] defines Edge
Computing as the deployment of data-handling activities or other network op-
erations away from centralized and always-connected network segments, toward
individual sources of data capture. Pushing signal and data processing towards
the edge of a network can bring different advantages [14].

• Sensor fusion: Different off the shelf sensors can be combined to one syn-
thetic sensor. Such systems could detect more complex events.

• Bandwidth: Neural Nets could be partitioned such that some layers are
evaluated on the device and the rest in the cloud. With this approach,
workload and latency could be balanced. To additionally reduce the pay-
load size, additional feature selection could be applied in order to only
transmit the necessary information.

• Transfer learning: The practice of modifying different parts of the network
to perform different tasks is called transfer learning. If the neural network
is splitted between the edge end the cloud, the MCU could be in charge
of the main feature extraction. By changing the layers on the cloud, the
same preprocessing could be used for different tasks. This approach would
increase scalability and maintainability.

The biggest challenge of of shifting complexity to the edge, is how to fit those
complexity on a MCU with different restrictions. In [4], the question was how to
fit large neural networks on a MCU. The biggest restrictions are given by the size
of the weights and network footprint, the energy consumption and the operating
frequency. The solution approached of [4] are given in the next section.

2.3 CNN Architecture for classification

Given acoustic events, the application should be able to classify if a mountaineer
passed by or not. The CNN for this application is taken from ”Event-triggered
Natural Hazard Monitoring with Convolutional Neural Networks on the Edge”
[7] and shown in table 2.1. Before executing the CNN, the input data is prepro-
cessed with a FFT. This creates a two-dimensional data with a time-axis and
a frequency-axis. The two-dimensional data is then used as input of the CNN
described in table 2.1. To reduce the footprint of the CNN, it is proposed to
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Name Type Kernel Stride Input size

C0 Conv2D + ReLU 3x3 1 24x61x1
C1 Conv2D + ReLU 3x3 2 24x64x32
D0 Dropout - - 12x32x32
C2 Conv2D + ReLU 3x3 1 12x32x32
C3 Conv2D + ReLU 3x3 2 12x32x32
D1 Dropout - - 6x16x32
C4 Conv2D + ReLU 3x3 1 6x16x32
C5 Conv2D + ReLU 1x1 1 6x16x32
D2 Dropout - - 6x16x32
C6 Conv2D + ReLU 1x1 1 6x16x32
Af Average (Frequency) 1x16 1 6x16x1
At Average (Time) 6x1 1 6x1x1
C7 Conv2D + Sigmoid 1x1 1 1x1x1
O Output - - 1

Table 2.1: Original architecture of CNN for classification of a mountaineer from
the geodata. This table illustrates the original architecture with zero-padding
on the time- and frequency-axis. With permission from [7].

implement it as buffered systems [7]. The concepts underneath the tdp were
investigated by [4] and are explained in the next section.

2.4 Buffered implementation of the CNN architec-
ture

The main challenge in [4] was to reduce the overall memory footprint. One
method used was the Incremental Network Quantization (INQ). It allowed to
reduce the weights of the CNN from the original 32-bit values to 4-bit values
without accuracy loss [19]. Because the memory reduction of the INQ was not
enough for his target platform, in addition the time-distributed buffering (tdp)
was introduced and successfully implemented.

2.4.1 Concepts behind time-distributed processing (tdp)

One advantage of the tdp is the reduction of the utilized memory for calculation.
The disadvantage is the increased latency. To explain the tdp strategy, we use
examples taken from [4]. First consider the CNN example shown in figure 2.5.
On the left side of the figure, a visualization of of the fully inference in case of a
CNN with a 3x1 kernel. An alternative approach is shown on the right side of
the image. It assumes that the input data is provided over a period of time. It
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Figure 2.5: On the left, the classical convolution, computed in one step with
matrix multiplication. On the right, the buffered system.

would be optimal to start the process already when only a fraction of the data is
stored in the memory, instead of waiting for the complete input data to arrive. In
the example of figure 2.5, the neuron has a size of three. At least three elements
are needed for one step of the forward inference. Starting at the top right of the
image, the input buffe, initialized with zeros, waits until the first elements of the
input arrives. Then step by step the inference is computed. Those results are
stored into the next buffer, in figure 2.5 called Buffer 0 and initialized with zeros
as well. The input vector is provided over a certain time, so we can imagine the
shifting into the input buffer as a certain update rate. In our case, the input is
shifted elementwise through the input buffer. Note that figure 2.5 has a stride
of one. The same principle applies for a stride of two of more. Depending on the
stride sizes, the inference delay and steps must be adapted.

The number of sifted data inside a buffer depends on the previous layer. The
subsequent buffer is shifted by the number of new generated values. This is
emphasized 2.6. On the right side, the input buffer is convoluted with a 3x1
kernel, the subsequent Buffer 0 shifted by one and updated accordingly. The
new introduced values are called processing window, whereas the shifted values
are called buffer.
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Figure 2.6: An example of a tdp implementation with two layers. The convolu-
tion is computed, the subsequent buffer is shifted and updated accordingly.
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Figure 2.7: Time-distributed version of the CNN in table 2.1. For simplicity, the
channels are omitted. Each box represents a time point with the associated 64
frequency points.

2.4.2 Time-distributed implementation of CNN for mountaineer
detection

The tdp-implementation of the CNN in table 2.1 consists of eleven intermediate
buffers. One for the input buffer (ib), eight for the convolution layers (b0 - b7)
and two for the average pooling layers (t avg and f avg). Figure 2.7 shows the
time-distributed version of the CNN in 2.1. For simplicity, this consideration
omits the third dimension, which represents the number of channels. Each box
represents a time point with the associated 64 frequency points.

When a new frame is forwarded to the pipeline or input buffer, the input
buffer ib is shifted by the size of the processing windows. Then four time points
(size 64x4) are forwarded into the processing window. The kernel is convoluted
with the buffer content and the whole process repeats for every layer. It should
be noted that between buffer b6 and f avg, as well as between f avg and t avg,
there is an average pooling and not a convolution.
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Figure 2.8: Example for the buffer b0. All values are stored inside a one-
dimensional array. To access a value, the number of channel, as well as the
position on the frequency-axis (max. 64 values) and time-axis (max. 6 values)
must be considered.

2.4.3 Storage order in intermediate buffers

In the implementation, all buffers are one-dimensional arrays. Figure 2.8 shows
how exactly the data inside the buffer b0 is stored. To represent the time-axis, the
last six values are stored. To each point in time, 64 data points on the frequency-
axis are assigned. In the one-dimensional array, the frequency information is
stored successively. In fact the packets of size six in figure 2.8 represent the time
information at a certain frequency. In addition, the number of channels must be
considered. In order to read and write from those data, a read- and write-pointer
is used. Figure 2.9 shows the case for one block with fixed frequency and channel
number. The read-pointer points to the beginning of a time-axis, the following
six values are the time information at a given frequency and channel. In contrast,
the writing pointer is used to write the new value inside the buffer. This allows
to distinguish between the buffer and the processing window. When new data
has to be stored, first the last two values at position four and five are shifted
into the buffer (orange in figure 2.9). Then starting from the write-pointer, the
four new values are saved into the processing window. This is repeated for all
frequencies and channels.

2.5 Classification sequence

This section gives an overview on how we get from an acoustic event to a classi-
fication. Figure 2.10 shows the whole process graphically. At the beginning, the
geophone measures activity. Once a threshold is reached, the acoustic event is
transformed with an FFT. The result is a spectrogram with time- and frequency-
dependencies. For the following chapters, a spectrogram of size 64x24 will be
called a frame. A frame is composed of six subframes of size 64x4. When for-
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Figure 2.9: One timing block of size six with fixed frequency and channel num-
ber. The read- and writing-pointer are used to distinguish between buffer and
processing window.

Figure 2.10: Sequence from an acoustic event to a classification. The waveform
is transformed with an FFT, forwarded for prediction and classified.
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warding a frame to the CNN, they are forwarded subframe by subframe. This
will be used for the pipelining in chapter 2.6 and 4.5. After the complete frame
was forwarded, the prediction is available. A prediction is between zero and
one. Because a clear classification is needed if a mountaineer was detected or
not, the next step is a hard classification. A hard classifier takes a threshold and
classifies it to either “Mountaineer Detected”or “No Mountaineer Detected”, not
considering any uncertainty or edge case.

2.6 Pipelining

To increase the prediction throughput, the concept of pipelining is used for this
project. Pipelining is a technique where processing elements can be executed
overlapping [16]. The pipeline is divided in stages, and each stage completes
a part in parallel. The slowest stage determines the speed. This can be used
for instructions, as well as for computing elements. Common characteristics to
describe a pipelining are the following [5]:

• Latency: Time it takes until a PE us processed.

• Throughput: Number of predictions in a span of time.

• Speed-up: Determines how much faster it becomes with pipelining.

Speed-up =
Processing Time Without Pipelining

Processing Time With Pipelining

Figure 2.11 shows an example with three frames. Without pipelining, the
frames must be executed serially. With a pipelining of three stages, a new frame
is loaded every 0.5ms. The whole pipeline can be executed with a speed-up
of 3ms/2ms = 1.5. The latency remains equal with 1ms. The throughput is
increased to one prediction every 0.5ms, once all three stages are filled.

2.6.1 Receptive field of pipelined tdp-systems

The receptive field of the tdp allows to analyze how values between layers affect
each other. In [4], between classification of an acoustic event, zeros were padded.
This leads to a receptive field of figure 2.12 on the left. Data fields between
the classification were programmatically set to zero. As a result, values of pre-
ceding and successive frames do not influence the values inside the intermediate
buffers.Pipelining the classification leads to the elimination of the zero-padding
between frames, which changes the receptive field of the intermediate buffers.
Figure 2.12 shows an example on the right side. Now the preceding data point
are still inside the buffered systems, which influences all following convolutions.
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Figure 2.11: The concept of pipeliningof three frames. Above the pipelined
version, below the non-pipelined version.

Figure 2.12: Example for receptive field between layer L1 and L2. The difference
lies in the influence of preceding data points for the calculation of the next layer.
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As conclusion, pipelining a tdp-system can increase the throughput of clas-
sification while causing dependencies between the events to classify inside the
pipeline. This represent an additional challenge, especially regarding the train-
ing of the weights.



Chapter 3

System overview

The main goal of this semester project is to implement CNN with tdp on a MCU,
able to classify continuously. This system may then be adapted on the WSN on
the Matterhorn-Hörnligrat or Dirruhorn Rock Glacier. This chapter describes
the platforms used for deployment and testing, such as the sensor network and
the used embedded MCU platform Nucleo L496ZG.

3.1 Wireless Sensor Network (WSN)

The PermaSense Consortium unites different research projects from Swiss uni-
versities and companies. The focus lies on environmental research of climate, ge-
omorphdynamics, cryptosphere and the connection between those research areas
[18]. In order to investigate those areas, multiple WSN with different hardware
haven been deployed in different locations. All those WSN are optimized for
low-latency, data management, low-power and often need customized sensors.
The WSN we are interested in for this project is theGDPP. It was adapted in
the Master Thesis ”Event-based Geophone Platform with Co-detection” [10].
The (GDPP) with the STM32L49 is installed currently on two location, the
Matterhorn-Hörnligrat and the Dirruhorn Rock Glacier [18]. Figure 3.1 shows
the conceptual system design.

3.2 Microcontroller Unit (MCU)

For our investigation we use the same chipset used for the nodes of the WSN with
the GDPP: STM32L49. The implementation changes were not directly tested
on the GDPP, but on the NUCLEO-L496ZG. This is a development board of
ST Microelectronics [12] with the STM32L49 on it. The family of the STM32L4
family is optimized for low-power embedded system applications with ultra-low
power features. The used STM32L49 MCU features a 32-bit Cortex-M4 Reduced
Instruction Set Computer (RISC) Central Processing Unit (CPU) and a Floating
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Big Event
Co-detection

Small Event Rockfall Detection

Footstep Detection

Post Analysis

Figure 3.1: Conceptual overview of a WSN for natural hazard monitoring. Taken
from [7].

Point Unit (FPU) with single precision. It also includes instructions for Digi-
tal Signal Processor(DSP). Furthermore, the MCU features up to 1MB Flash
Memory and 320KB SRAM.The CPU clock ranges up to 80 MHz and an operat-
ing voltage between 1.71V and 3.6V. The general operating conditions report a
power dissipation between 156 mW (TA = 125◦C) and 625 mmW (TA = 85◦C).
All data taken from the official datasheet [13].

From the given specification, the question arises whether the CNN from table
2.1 can be implemented in buffered form with the given restrictions in memory
footprint and CPU speed. The results can be found in chapter 6.

3.3 Real-Time Operating System

In order to create a cross-platform compatible implementation, it was ported to
FreeRTOS. FreeRTOS is an online available and open-source Real Time Oper-
ating System [6]. In general, it can run applications with hardware and software
requirements. Its scheduling algorithm can be interpreted as a fixed-position
preemptive scheduling with time slicing [15]:

• Fixed priority: Assigned priority can not be changed during execution.

• Preemptive: Running task can be stopped if higher priority task arrives.

• Time slicing: If more than one task with same priority arrives, then each
will run for the same amount of time.

The porting of the implementation to FreeRTOS was done by Reto Da Forno.
In general, the operating system is available free of charge and can be downloaded
from the homepage [6]. In order to make the FreeRTOS operating on a MCU,
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additional configuration files specific to the used chip must be added. Different
reference manuals [1] explain how to merge the generated MCU code with the
FreeRTOS.



Chapter 4

Methods

Chapter 2.5 introduced the overall classification sequence and notations. In [4],
an acoustic event was classified frame by frame, as shown in figure 4.1. In order
to reach the goal of continuous classification further algorithmic changes, added
components and changed procedures are needed. This chapter explains the whole
development process needed to reach continuous classification.

4.1 Testing model

The original implementation in [4] comes with a training code with Keras [3] and
and an MCU implementation in C. A clear disadvantage of this implementation
is the debugging of the tdp-processing on the target device. E.g. saving inter-
mediate results in a file for postanalysis is impossible because of the restricted
memory size and functionality of the target device. For scalability reasons, we
decided to introduce an additional debugging step, called ”Python-tdp”. The
original C-functions from [4] (e.g. 2D-convolution, ReLU, input shift and input
update) are implemented in python, following the same flow and structure. By
using python on a commodity laptop, the tdp-processing can be simulated and

Figure 4.1: Example of a data input stream after FFT. The frames are classified
frame by frame.
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Figure 4.2: Order of the testing models. With Keras, the TF model was trained.
For debugging the implementation of time distributed processing was realized in
python, which was then used for the MCU implementation.

improved. The final step is to implement the changes on the MCU in C. Figure
4.2 shows all the testing frameworks and their dependencies. For the code, see
Appendix A.

4.1.1 Stage 1: Python-TF

The first stage is called Python-TF. This model uses the python library Keras
[3], a high-level Application Programming Interface (API) for Tensorflow (TF).
The CNN is trained and tested. The desired model with its structure and weights
is exported as Keras model file. The model is reused one one hand as reference
for the prediction and classification, on the other hand for debugging. Especially
for debugging, it is useful to compare the stored values inside the intermediate
buffers. The Keras model allows to analyze those values for any layer.

4.1.2 Stage 2: Python-tdp

Stage 2 contains the functions of the original MCU implementation, but in
python 3.6. The functions (e.g. 2D-convolution, ReLU, input shift and input
update) are implemented following the same programming flow. In that way, the
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functions are close to the final target functions, allowing meaningful debugging
results. In this stage, the prediction errors between the Python-TF and Python-
tdp must be minimized. Ideally the buffer contents and prediction value must
be equal.

4.1.3 Stage 3: MCU implementation

The final step is to implement the tdp CNN on the target device. The same
programming flow from the Python-tdp should be implemented in C on the
target device. For this project we used the ”Atollic TrueSTUDIO for ST32”.
This is the official toolchain supported by STMicroelectronics [2]. As reference
values while debugging, the buffer contents and prediction values should be used.
As explained in Python-TF, they can be generated from the Keras model file.

4.2 Optimization parameters

To evaluate and optimize the implementation or reduce the mismatch between
the testing models, different parameters can be considered. A list of those is
shown below:

• Accuracy: After a feedforward, the value inside buffer b7 represents the
actual prediction, which thresholded gives the classification. In the end, all
three models must predict the same value. During this project, we focused
on the difference between those predictions and tried to minimize them as
much as possible.

• Program flow: All models should follow the same program flow. To re-
duce mismatches between the models, the implementation should be as
similar as possible. For python-tdp we introduced variables with the func-
tion of a pointer, in order to be as close as possible to the later MCU
implementation.

• Intermediate buffered values: The results of a convolution are stored
in the intermediate buffers. The size of them varies from buffer b7 (size of
1) to buffer b0 (6 columns with 64 row and 32 channel gives a buffer size
of 12288). Especially buffer b0 to b5 are hard to debug because of their
size. In the Python-tdp, we included subfunctions that stores the buffers
to a file, aligns and separates them by channel. This allows to inspect the
content of the intermediate buffers.
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Figure 4.3: Classification with zero-padding. In [4], after the last subframe is
forwarded to the input buffer, the processing window of the input buffer is set
three times to zero.

4.3 Influence on receptive field

In [4], between frame predictions an equivalent of three subframes full with zeros
are padded in between. Figure 4.3 shows the concept. As explained in chapter
2.6, in this case the frames to classify do not influence each other. By pipelining
the predictions, the receptive field is extended and the frames influence each
other. To approach this challenge, the extended receptive field was analyzed and
the training model adapted accordingly.

4.3.1 Considerations of receptive field on training

The usage of zero-padding between frames allows a simpler training in TF, know-
ing exactly the intermediate values inside the buffers when the first and last
subframe is forwarded. This leads to the case in figure 2.12 on the left. Between
frames to classify, zeros are added or set to zero by the program.

By eliminating the zero-padding between frames, the values in the intermedi-
ate buffer depend of the convolution results of the preceding frame. The example
on the right in figure 2.12 shows the extended receptive field between two layers.
The calculation of the preceding frame affect the frame actually pushed into the
prediction pipeline. Actually, the considered CNN in 2.1 has a total of eleven
intermediate buffer of different sizes, as shown in figure 2.7. As a direct conse-
quence of this sizes and convolution orders, the 20 data points of the preceding
frame influence the prediction of the actual frame which is being classified. 20
data points are an equivalent of five subframes.

4.3.2 Consequence of receptive field consideration

The increased receptive field was considered by increasing the input size of the
python-TF model. It was retrained with increased input size. Instead of using a
size of 64x24 (regular frame size), it was increased to 64x44.

Figure 4.4 shows how the frame is selected. The first five subframes are
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Figure 4.4: To consider the increased receptive field while training the TF
model, the time-axis is increased of 20 data points (subframes). As conclusion,
the additional 5 subframes to overlap with the preceding frame. The input size
for the python-TF is 64x44.

only for the simulation of the already filled buffer. The next six subframes
are the actual frame to be predicted. When considered all together, a clear
overlapping with the previous frame can be noticed. This overlapping represents
the previous processed values, which in the tdp-implementation are stored inside
the buffers. This change in input size was implemented and the weights were
retrained accordingly.

4.4 Eliminating zero-padding on time-axis

The model considers the preceding frame influence with the adapted weights.
The next step is to change the implementation.

4.4.1 Changes in functions

To avoid zero-padding on the time-axis, the final adaption of the working MCU
code needed a few changes in functions like input shift, buffer update, convolution
and average pooling. Especially in the CNN init() and the conv2D 3. All
changes in the C-code are shown in Appendix B. The most important changes
are listed below:

• The size of the columns of buffer b0 was increased form 5 to 6. This allows
data alignment.

• Because of the increased column size in buffer b0, the writing pointer
”b0.w ptr” starts at index 2 and not 1. In that way, the buffer was set
to a size of two, the processing window to a size of four. As reference, see
chapter 2.4.3.
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Figure 4.5: General idea of a pipelined classification system. A classification
should be possible for every position of the classification window.

• In the convolution function with the 3x3 kernels conv2D 3(), values were
hardcoded to zero inside buffers. Those changes were eliminated. Those
changes are referenced in appendix B.

4.5 Pipelining the predictions

Once the influence of the extended receptive field is considered and the zero-
padding on the time-axis eliminated, the next step was to implement the pipelin-
ing. This step enables continuous prediction like in figure 4.5.

4.5.1 Code flow

In order to pipeline the prediction, the program flow of the do inference() func-
tion was redesigned. The overall architecture remains as stated in table 2.1.
The zero-padding between frames of size 64x24 was eliminated, such that frames
are forwarded to the input buffer one after another. The overall program flow
is shown in figure 4.6. After the acquired data was preprocessed with an FFT
and a subframe of size 64x4 is available, the do inference() function is called
and the data is forwarded to the input buffer. Between calls the values inside
the intermediate buffers and the counter is stored. The first call is handled dif-
ferently, because only the buffers affected of new values should be convoluted.
Otherwise the bias weights introduce wrong values inside deeper layers, propa-
gates through the buffer system and falsifies future values as well. The number
of those different calls depend on the propagation delay of the tdp. In our case,
the propagation delay is three. Once the first values have regularly reached the
last layers, a complete feedforward over all buffers is computed for each of them.

Technically, each iteration can produce a valid prediction. In chapter 6.2,
we want to associate the prediction of python-TF to the MCU prediction for
accuracy measurement. In order to know which prediction should be compared
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with each other, figure 4.6 only updates every sixth prediction. In a final imple-
mentation, the return value can be set TRUE after every feedforward. In that
case, the output would be updated after every new input of values, leading to a
continuous prediction as figure 4.5 suggest.
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Figure 4.6: Flow diagram of the pipelined do inference() function. The counter
goes to 5, then restarts at 0. At a counter value of 2, the classification is returned.
Between calls, the buffer values remain stored in the buffer. With a system reset,
the counter is initialized to -3. The very first iteration with zeros in all buffers
is handled differently.



Chapter 5

Experiments

We want to verify that the system is pipelined and the classified values are coher-
ent with the classification from the Python-TF. In order to run such experiments,
the test framework explained in chapter 4.1 was used. In this chapter, the ex-
periments regarding the pipelining and the accuracy measurement are explained.
Note that the interpretation of the predictions is not part of this project, since
this proof was part of the previous work from [4].

5.1 Verification of pipelining

As input values, acoustic waveforms were taken from [8]. A whole waveform
has a duration of two minutes. In a first try, those waveforms were cut with
different lengths and then flashed on the internal memory of the MCU. In that
way, instead of simulating the acquisition of the acoustic data, the data was
streamed directly form the internal FLASH memory. This allowed to exclude
external errors on the acquisition. Forwarding one subframe is triggered by a
push button. Each feedforward increments the counter, whereas only every sixth
prediction should be displayed and later compared for accuracy. As a drawback,
only the classification of a few waveforms could be tested in that way.

The implementation in FreeRTOS comes with the possibility to stream wave-
forms to the UART input of the NUCLEO-L496ZG. This option can be activated
by setting the constant USE PUSHBUTTON TRIGGER for the MCU imple-
mentation in ”config.h” to 1. See appendix A. The classification result is the
same, independent if streamed from the internal FLASH memory or externally
over the UART input. To debug we used the option to read from the FLASH
memory. In order to test more than a few predictions, streaming over UART
must be used. We used a test set from [8] that allowed to compare 194 predic-
tions. The results are interpreted in chapter 6.
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5.2 Accuracy measurement

As shown in figure 4.2, in a first step the difference between the python-TF
and python-tdp is minimized. Then the difference between the MCU implemen-
tation and the python-tdp is minimized, ideally being equal to the python-TF
prediction. To determine the accuracy of the implementation from the MCU, the
accuracy is measured. When determining the accuracy, we measure the differ-
ence from tdp prediction on the MCU to the python-TF prediction. The smaller,
the better. The error is expected to be close to zero, the results are interpreted
in chapter 6.

The pipelined prediction can give a prediction in every time step. In order
to align and compare the predictions to the python-TF predictions, only every
sixth prediction leads to a comparable value. This is also shown in the flow
diagram 4.6. Because we compare the classification after one whole fragment,
the classification in between do not update the output. In a final implementation,
the return value can be set TRUE after every feedforward, given a prediction in
every update step.



Chapter 6

Results

In chapter 5, the experiments for verification were introduced. This section will
discuss the results of the experiments regarding pipelining and accuracy.

6.1 Verification of pipelining

We were able to implement a time-distributed processing on the MCU. Figure
4.6 shows the program flow. As the original implementation in[4], the subframe
is completely forwarded to the input buffer for classification. Compared to the
implementation in [4], every time the input buffer is updated, a new prediction
is is generated from the feedforward. To determine the functionality of this
pipelining, 194 predictions were generated and tested. Following can be stated:

• Latency: Compared to the original implementation in [4], the latency re-
mains equal. From the moment the first subframe of a frame enters the
input buffer until the classification is available, six subframes must be for-
warded to the input buffer.

• Speed-up: Over all generated prediction, the time for a valid prediction was
measured and averaged. The speed-up of the pipelined version compared
to the non-pipelined in [4] is 6.62 in average. It is more than six because
of two reasons. One is that the non-pipelined version calls the feedforward
six times, whereas the sixth call has more operations (estimated 1.5 times
more) than the others, because of the zero-padding. The second reason is
the function call. Each time the feedforward function returns a value, the
FreeRTOS computes own system functions and prepossessing of subframes
before calling the feedforward again. Both lead to a speedup higher than
the throughput.

• Throughput: With pipelining, in each feedforward a classification is avail-
able. In the time the original implementation in [4] generated one predic-
tion, the pipelined classification generates six predictions. The pipelined
throughput is six times higher.

29
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Figure 6.1: Mean and standard deviation of the measured prediction differ-
ence. In total 194 classification points are considered. 62 predictions are above
the threshold of 0.6 and detected a mountaineer, 132 predictions detected no
mountaineer.

From those results, we deduce that the system is pipelined regarding classification
of mountaineers based on acoustic events.

6.2 Verification of accuracy

With the experiments from chapter 5.2, 194 predictions were generated and com-
pared to the prediction from the python-TF model. The average error over all
points is 2.427 ·10−8, with a standard deviation of 5.242 ·10−8. This is also plot-
ted in figure 6.1 on the left. The standard deviation is bigger than the average
error. This can be deduced from the measurement method and distribution of
waveforms. On one hand, only the absolute error is considered. On the other
hand, the test data contains more examples of no mountaineer than such with
a mountaineer. From the 194 classifications, 62 contain a mountaineer and 132
do not contain a mountaineer. The distribution of the test waveforms is consid-
ered in figure 6.2. Each measured absolute error is associated to its prediction
ground truth. The threshold of the pipelined classification is at 0.6. All predic-
tions above are classified as “Mountaineer Detected”, whereas all below classify
“No Mountaineer Detected”. It can be noticed that the absolute error of no the
category “Mountaineer Detected” spreads less than the one of the category “No
Mountaineer Detected”, even if there are more waveforms containing no moun-
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Figure 6.2: Overview of all 194 test predictions. The measured absolute error
is associated to the prediction ground truth. Most absolute errors are zero.
Threshold is at 0.6.
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taineer. In fact, when considering only examples with a mountaineer detected,
we get 62 examples with a mean error of 5.576 · 10−8 and standard deviation of
6.927 · 10−8. In contrast, the 132 examples with no mountaineer have a mean
error of 0.948 ·10−8 and standard deviation of 3.246 ·10−8. We noticed that most
predictions only forward a zero to the last layer, which ends up being added to
the bias weights of the output layer (0.377 with the used Keras model). The
weights are for both models the same, so the bias is the exactly same as well and
ends up with an error of perfect zero. This reduces the mean error, as well as
the standard deviation.

Overall, all differences are ∝ 10−8. From this analysis, we deduce that the
error between the python-TF and the tdp on MCU can be neglected. As con-
clusion, the python-TF and tdp on MCU generate the same prediction.
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Conclusion

The small village of Bondo (GR) was hit by multiple avalanches in August 2017
[17], cause the fatality of eight mountaineers. Motivated to contribute to a real-
time alarm system, we proposed a system able to continuously detect moun-
taineers on embedded platforms. Using [4] as reference, the main challenge was
to extend it to continuous classification. To continuously classify, the prediction
generation was pipelined. In order to reach pipelining, the zero-padding was re-
moved by determining the influence of buffers on the receptive field. The weights
and bias were retrained accordingly and the prediction accuracy on the target
MCU was verified.

In chapter 4.3, we analyzed the influence of intermediate buffers on the repeti-
tive field when eliminating the zero-padding between acoustic events. After FFT,
the values of the preceding fragment are inside the intermediate buffers when a
new frame is forwarded. We found that exactly 20 data points (five subframes)
of the preceding frame influence a prediction. As a consequence, the input of
the python-TF model was increased from 64x24 to 64x44. This in order to re-
spect the extended receptive field. All weights, bias and the hard classification
threshold were updated accordingly.

After the influence on the receptive field was analyzed, the next step was to
eliminate the zero-padding on the time-axis. Chapter 4.4 explains all adaptions
on the implementation needed. Those changes affected the size of the interme-
diate buffer b0, the processing window, as well as implicit zero-padding in the
convolution function. The code changes are referenced in appendix B.

Once eliminated the zero-padding on the time-axis, the next challenge was to
pipeline the predictions. In chapter 4.5 can be found the adapted code flow with
respective diagram in figure 4.6. Chapter 6.1 formally verified the pipelining
results. By pipelining we increased the throughput, resulting in a speed-up of
6.62 compared to the implementation in [4]. The affected code changes are
referenced in appendix C.

The last step is the accuracy verification of all those steps. In order for being
able to debug and test the waveforms, the testing model introduced in chapter
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4.1 was created and used. It includes the training on Tensorflow, the testing on
the python-tdp and the final implementation verification of the tdp on the MCU.
In chapter 6.2 we explain the results of the accuracy verification. Over all test
point a mean error of 2.427 · 10−8 with a standard deviation of 5.212 · 10−8 was
measured. Both are ∝ 10−8, which can be neglected as error. We conclude that
the final implementation of the tdp on MCU gives the correct predictions and
the respective classification.

The reference implementation in [4] was hardcoded to one specific MCU.
Chapter 3.3 gives an overview about FreeRTOS and how to port it to a target
MCU. For the testing, the NUCLEO-L496ZG with the STM32L49 MCU was
used. This because it is the same MCU used on the GDPP, makes a future
testing on the GDPP simpler.

Overall, this project contributes successfully to the improvement of pipelined
classification and event detection on embedded platforms. We have shown that
the implementation can be adapted to a pipelined system. Our testing has shown
that the final prediction with tdp on a MCU can reach the desired accuracy
in classification. In summary, this system wold be feasible for the continuous
prediction of mountaineers on the GDPP.



Chapter 8

Outlook

In this Semester Project we implemented a pipelined acoustic CNN and tested
it on the STM32L49 MCU. This chapter presents further improvement ideas for
future work.

During this project, we eliminated the missmatch between the prediction
of the python-TF model and the tdp implementation on a MCU. We ignored
the fact that removing zero-padding and pipelining the prediction might lead to
a worse python-TF model. The scientific interpretation of the relative output
values was not part of this project and may be analyzed in a future work.

In order to reach pipelining, the priority was to eliminate the zero-padding in
the time-axis. Nevertheless, the final implementation still uses zero-padding on
the frequency-axis. This zero-padding happens during the convolution functions
with the 3x3 kernel. With the elimination of the zero-padding on the frequency-
axis, the dimensions shrink from layer to layer. As result, the number of rows
must be adapted as well. In addition the weights and threshold must be retrained
as well.

The long-run goal is to create a system that protects humans from natural
disasters. The implementation could be extended to classify more than one class,
e.g. rockfalls. In addition to the used test waveforms from [8], an additional
one for rockfalls could be used for train the CNN implementation on rockfall
detection. The more classes an environment detection system can detect, the
better the context understanding. In that way, more precise alarms could be
triggered.

In his Master Thesis, Akos Pasztor [10] launched and supervised the mass-
production of 50 event-based microseismic sensing platform [10], which were
used as nodes of the WSN on the Matterhorn-Hörnligrat and Dirruhorn Rock
Glacier. In our project, the STM32L49 was chosen as testing platform because
it is the same MCU as its target platform (GDPP). In a next step, the tdp
implementation of the CNN can be merged into the system of the WSN nodes.
In that way, more knowledge from the operation under real conditions could be
gained.
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Appendix A

Code reference

All referenced code and framework is available under www.gitlab.ethz.ch as ”SA
- Spadafora - ClassificationGPP”. The clone link over HTTPS is:

https : //gitlab.ethz.ch/tec/students/projects/2018/sa fspadafo.git

Under this link can be found:

• python code for the tdp-classification

• MCU implementations in C

• Documentation

• Implementation with FreeRTOS and possibility to stream acoustic wave-
form over UART
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Appendix B

Changes on core function in
MCU implementation

The C code listing below shows the relevant changes inside the file ”cnn.h”. For
the fully pipelined classification, the constants PROPAGATION DELAY , DE-
LAY, and NUMBER FRAMES were added. In addition, the global constant
B0 NUM COLUMNS was increased to 6 for the non-zero-padding case.

1 . . .
2

3 #de f i n e TEMP INPUT NUMCHANNELS 1
4 #de f i n e TEMP INPUTNUMROWS 4
5 #de f i n e TEMP INPUTNUMCOLUMNS 64
6 #de f i n e TEMP IMG SIZE TEMP INPUT NUMCHANNELS∗TEMP INPUTNUMROWS∗

TEMP INPUTNUMCOLUMNS
7

8 #de f i n e COMPLETET 24
9

10 //−−−−−−− add i t i o na l parameters −−−−
11

12 #de f i n e PROPAGATIONDELAY 3
13 #de f i n e DELAY 3
14 #de f i n e GLOBAL ZEROPADDING 0
15 #de f i n e NUMBERFRAMES 6
16

17 // s i z e o f the bu f f e r s nece s sa ry f o r each l ay e r and the input
18 #de f i n e B INPUT NUM CHANNELS 1
19 #de f i n e B INPUT NUM ROWS 64
20 #de f i n e B INPUT NUM COLUMNS 6
21 #de f i n e B INPUT SIZE B INPUT NUM CHANNELS∗B INPUT NUM ROWS∗

B INPUT NUM COLUMNS
22 #de f i n e B INPUT SHIFT 4
23

24 #de f i n e B0 NUM CHANNELS 32
25 #de f i n e B0 NUMROWS 64
26 #de f i n e B0 NUMCOLUMNS 6 // Inc r ea s e s i z e f o r non−zero padding
27 #de f i n e B0 SIZE B0 NUM CHANNELS∗B0 NUMROWS∗B0 NUMCOLUMNS
28 #de f i n e B0 SHIFT 4

40
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29

30 . . .

Additional changes in the functions for the neural network were also made inside
”cnn.c”. The most noticeable changes were made in the function for the convo-
lution with a 3x3-kernel where the opcode is 1 (case for complete convolution).
Here the branches for the different strides were eliminated. The different cases
are handled by accordingly updating the pointers at the end.

1 void CNN Init ( )
2 {
3 . . .
4

5 // i n i t i a l i z e the b0 bu f f e r
6 b0 . r p t r = &b0 data [ 0 ] ;
7 i f (GLOBAL ZEROPADDING) {
8 b0 . w ptr = &b0 data [ 1 ] ;
9 } e l s e {

10 b0 . w ptr = &b0 data [ 2 ] ;
11 }
12 b0 . i n p t r = ib . r p t r ;
13 b0 . num channels = B0 NUM CHANNELS;
14 b0 . num rows = B0 NUMROWS;
15 b0 . num columns = B0 NUMCOLUMNS;
16

17 . . .
18

19

20 void conv2D 3 ( u i n t 8 t opcode , da t a bu f f e r ∗ inbuf , d a t a bu f f e r ∗
outbuf ) {

21

22 . . .
23

24 e l s e i f ( opcode == 1) { // compute a l l bu f f e r columns
25 // compute convo lut ion
26 do { // loop over output channe l s
27 out pt r = ou t ch ann e l s t a r t p t r ; // s e t the out pt r to

the c o r r e c t p lace f o r the cur rent output channel
28

29 do { // loop over rows o f the cur rent output channel
30 u in t 32 t c o l = 0 ;
31 do {
32 out pt r [ c o l ] = LuT bias [∗ b i a s p t r ] ;
33 c o l++;
34 } whi le ( c o l < outbuf−>num non buffer columns ) ;
35

36 out pt r += outbuf−>num columns ;
37 } whi le ( out pt r != ou t c h ann e l l im i t p t r ) ;
38

39 b i a s p t r++; // increment the b i a s po in t e r to the next
f i l t e r channel

40 ou t c h ann e l l im i t p t r += inva r i an t0 ; // increment the
b i a s po in t e r ’ s l im i t e r to the end o f the next output channel
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41

42 out pt r = ou t ch ann e l s t a r t p t r ; // r e s e t output po in t e r
f o r MAC operat i on

43

44 do { // loop over input channe l s
45 i n r ow l im i t = &in p t r [ i nva r i an t1 ] ; // determine the row

l im i t f o r the cur rent input channel
46

47 // s t o r e the cur rent f i l t e r channel ( in CPU r e g i s t e r s )
48 f i l t e r 0 = LuT kernel [ k e r n e l p t r [ 0 ] ] ;
49 f i l t e r 1 = LuT kernel [ k e r n e l p t r [ 1 ] ] ;
50 f i l t e r 2 = LuT kernel [ k e r n e l p t r [ 2 ] ] ;
51 f i l t e r 3 = LuT kernel [ k e r n e l p t r [ 3 ] ] ;
52 f i l t e r 4 = LuT kernel [ k e r n e l p t r [ 4 ] ] ;
53 f i l t e r 5 = LuT kernel [ k e r n e l p t r [ 5 ] ] ;
54 f i l t e r 6 = LuT kernel [ k e r n e l p t r [ 6 ] ] ;
55 f i l t e r 7 = LuT kernel [ k e r n e l p t r [ 7 ] ] ;
56 f i l t e r 8 = LuT kernel [ k e r n e l p t r [ 8 ] ] ;
57

58 i f ( fd−>s t r i d e == 1) {
59

60 // s imulate zero−padding on f−ax i s
61 i n c o l l i m i t = &in p t r [ outbuf−>num non buffer columns ∗

fd−>s t r i d e ] ;
62 do { // loop over input columns o f the f i r s t input row

in the cur rent input channel
63 input0 = i n p t r [ 0 ] ;
64

65 input1 = i n p t r [ 1 ] ;
66 input2 = i n p t r [ 2 ] ;
67 input3 = i n p t r [ inbuf−>num columns ] ;
68 input4 = i n p t r [ inbuf−>num columns + 1 ] ;
69 input5 = i n p t r [ inbuf−>num columns + 2 ] ;
70

71 ∗ out pt r += input0 ∗ f i l t e r 3 ;
72 ∗ out pt r += input1 ∗ f i l t e r 4 ;
73 ∗ out pt r += input2 ∗ f i l t e r 5 ;
74 ∗ out pt r += input3 ∗ f i l t e r 6 ;
75 ∗ out pt r += input4 ∗ f i l t e r 7 ;
76 ∗ out pt r += input5 ∗ f i l t e r 8 ;
77

78 i n p t r = i n p t r + fd−>s t r i d e ;
79 out pt r++;
80

81 } whi le ( i n p t r != i n c o l l i m i t ) ;
82

83 out pt r += ( outbuf−>num columns − outbuf−>
num non buffer columns ) ; // to hop over the f i r s t a c tua l bu f f e r
column !

84

85 i n p t r −= outbuf−>num non buffer columns ∗ fd−>s t r i d e ;
// r e s e t input po in t e r

86 }
87
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88 do { // loop over input rows in the cur rent input
channel

89 i n c o l l i m i t = &in p t r [ i nva r i an t2 ] ; // determine the
column l im i t f o r the cur rent input row

90

91 f l o a t ∗ i n p t r 1 = &in p t r [ inbuf−>num columns ] ;
92 f l o a t ∗ i n p t r 2 = &in p t r 1 [ inbuf−>num columns ] ;
93

94 do { // loop over input columns in the cur rent
input column

95 // compute MAC operat i on
96 input0 = i n p t r [ 0 ] ;
97 input1 = i n p t r [ 1 ] ;
98 input2 = i n p t r [ 2 ] ;
99 input3 = in p t r 1 [ 0 ] ;

100 input4 = in p t r 1 [ 1 ] ;
101 input5 = in p t r 1 [ 2 ] ;
102 input6 = in p t r 2 [ 0 ] ;
103 input7 = in p t r 2 [ 1 ] ;
104 input8 = in p t r 2 [ 2 ] ;
105

106 ∗ out pt r += input0 ∗ f i l t e r 0 ;
107 ∗ out pt r += input1 ∗ f i l t e r 1 ;
108 ∗ out pt r += input2 ∗ f i l t e r 2 ;
109 ∗ out pt r += input3 ∗ f i l t e r 3 ;
110 ∗ out pt r += input4 ∗ f i l t e r 4 ;
111 ∗ out pt r += input5 ∗ f i l t e r 5 ;
112 ∗ out pt r += input6 ∗ f i l t e r 6 ;
113 ∗ out pt r += input7 ∗ f i l t e r 7 ;
114 ∗ out pt r += input8 ∗ f i l t e r 8 ;
115

116 // update input /output po i n t e r s
117 out pt r++;
118 i n p t r += fd−>s t r i d e ;
119 i n p t r 1 += fd−>s t r i d e ;
120 i n p t r 2 += fd−>s t r i d e ;
121 } whi le ( i n p t r != i n c o l l i m i t ) ;
122

123 out pt r += inva r i an t3 ; // to hop over the ac tua l
bu f f e r columns !

124

125 i n p t r += inva r i an t4 ; // increment input po in t e r to
the next row

126 } whi le ( i n p t r != i n r ow l im i t ) ;
127

128 // s imulate zero−padding on f−ax i s
129 i n c o l l i m i t = &in p t r [ outbuf−>num non buffer columns ∗ fd

−>s t r i d e ] ;
130 do { // loop over input columns o f the second l a s t input

row o f the cur rent input channel
131 input0 = i n p t r [ 0 ] ;
132 input1 = i n p t r [ 1 ] ;
133 input2 = i n p t r [ 2 ] ;
134 input3 = i n p t r [ inbuf−>num columns ] ;
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135 input4 = i n p t r [ inbuf−>num columns + 1 ] ;
136 input5 = i n p t r [ inbuf−>num columns + 2 ] ;
137

138 ∗ out pt r += input0 ∗ f i l t e r 0 ;
139 ∗ out pt r += input1 ∗ f i l t e r 1 ;
140 ∗ out pt r += input2 ∗ f i l t e r 2 ;
141 ∗ out pt r += input3 ∗ f i l t e r 3 ;
142 ∗ out pt r += input4 ∗ f i l t e r 4 ;
143 ∗ out pt r += input5 ∗ f i l t e r 5 ;
144

145 i n p t r += fd−>s t r i d e ;
146 out pt r++;
147

148 } whi le ( i n p t r != i n c o l l i m i t ) ;
149

150 out pt r += ( outbuf−>num columns − outbuf−>
num non buffer columns ) ; // to hop over the ac tua l bu f f e r columns
!

151

152 i n p t r += ( inbuf−>num columns − outbuf−>
num non buffer columns ∗ fd−>s t r i d e ) + inbuf−>num columns ; //
increment input po in t e r to the next input channel

153

154 k e r n e l p t r += 9 ; // increment ke rne l po in t e r to the
next f i l t e r channel

155

156 out pt r = ou t ch ann e l s t a r t p t r ; // r e s e t output
po in t e r f o r the next input channel

157 } whi le ( i n p t r != i n l im i t ) ;
158

159 i n p t r = &inbuf−>r p t r [ 0 ] ; // r e s e t input po in t e r f o r the
next f i l t e r channel

160

161 ou t c h ann e l s t a r t p t r += outbuf−>num rows∗outbuf−>
num columns ; // update output channel s t a r t po in t e r

162 } whi le ( o u t c h ann e l s t a r t p t r != ou t l im i t ) ;
163 }
164

165 . . .
166 }



Appendix C

Fully pipelined classification:
do inference()

Compared to the original do inference() function from [4], the whole function
was rewritten and adapted. In general, in every feedforward step new values are
forwarded to the input buffer for classification.

1 . . .
2

3 u i n t 8 t do i n f e r e n c e ( f l o a t ∗ i npu t bu f f e r , CNN Output t ∗ cnn output ,
i n t s t a r t v a l u e )

4 {
5 s t a t i c i n t f i r s t c a l l = 0 ;
6 s t a t i c i n t img f r a c t i on coun t e r = 0 ;
7 s t a t i c u i n t 32 t r e tu rn va lu e = 0 ;
8

9 // s e t r i g h t de lay o f img f r a c t i on coun t e r
10 i f ( f i r s t c a l l == 0) {
11 img f r a c t i on coun t e r = s t a r t v a l u e ;
12 f i r s t c a l l = 1 ;
13 }
14

15 ib . i n p t r = i npu t bu f f e r ;
16

17 i f ( img f r a c t i on coun t e r == −DELAY) {
18 input update (1 ) ;
19

20 conv2D 3 (1 ,& ib ,&b0 ) ;
21 r e l u (&b0 ) ;
22

23 } e l s e i f ( img f r a c t i on coun t e r == −DELAY+1){
24 i n p u t s h i f t ( ) ;
25 input update (1 ) ;
26

27 s h i f t (&b0 ) ;
28 conv2D 3 (1 ,& ib ,&b0 ) ;
29 r e l u (&b0 ) ;
30

45



C. Fully pipelined classification: do inference() 46

31 s h i f t (&b1 ) ;
32 conv2D 3 (1 ,&b0,&b1 ) ;
33 r e l u (&b1 ) ;
34

35 } e l s e i f ( img f r a c t i on coun t e r == −DELAY+2){
36 i n p u t s h i f t ( ) ;
37 input update (1 ) ;
38

39 s h i f t (&b0 ) ;
40 conv2D 3 (1 ,& ib ,&b0 ) ;
41 r e l u (&b0 ) ;
42

43 s h i f t (&b1 ) ;
44 conv2D 3 (1 ,&b0,&b1 ) ;
45 r e l u (&b1 ) ;
46

47 s h i f t (&b2 ) ;
48 conv2D 3 (1 ,&b1,&b2 ) ;
49 r e l u (&b2 ) ;
50

51 } e l s e i f ( img f r a c t i on coun t e r >= 0) {
52 i n p u t s h i f t ( ) ;
53 input update (1 ) ;
54

55 s h i f t (&b0 ) ;
56 conv2D 3 (1 ,& ib ,&b0 ) ;
57 r e l u (&b0 ) ;
58

59 s h i f t (&b1 ) ;{
60 conv2D 3 (1 ,&b0,&b1 ) ;
61 r e l u (&b1 ) ;
62

63 s h i f t (&b2 ) ;
64 conv2D 3 (1 ,&b1,&b2 ) ;
65 r e l u (&b2 ) ;
66

67 s h i f t (&b3 ) ;
68 conv2D 3 (1 ,&b2,&b3 ) ;
69 r e l u (&b3 ) ;
70

71 conv2D 3 (1 ,&b3,&b4 ) ;
72 r e l u (&b4 ) ;
73

74 conv2D 1(&b4,&b5 ) ;
75 r e l u (&b5 ) ;
76

77 conv2D 1(&b5,&b6 ) ;
78 r e l u (&b6 ) ;
79

80 s h i f t (& f avg ) ;
81 f avg update (&b6 , &f avg ) ;
82

83 t avg update (&f avg , &t avg ) ;
84
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85 conv2D 1(&t avg , &b7 ) ;
86

87 a c t i v a t i on s i gmo id (&b7 ) ;
88

89 i f ( !GLOBAL ZEROPADDING && img f r a c t i on coun t e r == 2) {
90 f o r ( u i n t 16 t i i =0; i i<NUM LABELS; i i ++){
91 cnn output−>value [ i i ] = b7 . r p t r [ i i ] ;
92 i f ( b7 . r p t r [ i i ] > NNOUTTHRESHOLD) {
93 cnn output−>de c i s i o n [ i i ] = 1 ;
94 } e l s e {
95 cnn output−>de c i s i o n [ i i ] = 0 ;
96 }
97 }
98 r e tu rn va lu e = 1 ;
99 } e l s e {

100 r e tu rn va lu e = 0 ;
101 }
102 }
103

104 i f ( img f r a c t i on coun t e r == (NUMBERFRAMES −1) ) {
105 img f r a c t i on coun t e r = 0 ;
106 } e l s e {
107 img f r a c t i on coun t e r += 1 ;
108 }
109 re turn r e tu rn va lu e ;
110

111 }
112

113 . . .
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