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Abstract

In order to help get a better understanding of the geophysical data collected
through hundreds of sensors deployed in Swiss Alps, a multi-scale, multi-faceted
visualization tool is created for PermaSense. In this work, long-term geophysical
data is able to be plotted with the help of suitable downsample methods. Besides,
tools to visualize Fast Fourier Transform and Spectrogram are added in this
interface to help analyze the seismic stream.
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Chapter 1

Introduction

It is known that rock falls is one of destructive natural hazards [1] and it would be
helpful if the potential for rock falls can be assessed. It turns out that most rock
falls are associated with some triggering events, such as earthquakes, rainstorms,
or periods of warming producing a rapid melting of snow [2, 3]. Human beings
will be in a position of advantage if the probability of these triggering events can
be assessed from different types of geophysical data.

Wireless sensor networks (WSN) with a range of different sensors can be
used to analyze geophysical processes. Currently, a system called PermaSense
[4] is deployed in the Swiss Alps, which has several field sites with multi-year
time series. Besides the long time frame of data, there are many different sensors
collecting different types of data. In order to help understand geophysical dataset
more efficiently, a multi-scale and multi-faceted visualization tool is required to
show these data dynamically and help observe its intricate property.

The current interface of PermaSense is based on V izzly [7], it can show a
plot for some user-selected data, but there is no interaction between different data
types, little flexibility to show time-lapse images, and no analysis method can be
used to help understand the dataset. Another problem of the current interface
is that when long-term data plot is requested, the peaks will be smoothed since
the data is aggregated before plotting. This causes the loss of data features, and
the shape of the plot is distorted.

With the consideration of research requirements, an upgraded visualization
tool is needed. That tool is supposed to have these following functions:

• Plotting different datasets dynamically and interactively in a relatively
short time regardless of required time frames.

• Analyzing the seismic stream with several common methods.

• Showing the time-lapse images more flexible.

Most data visualization tools in the market, like sisense [8], just plot and
analyze the input data from statistic or business field. There is no customized
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1. Introduction 2

tool for geophysical data which is able to show the datasets dynamically and do
some analysis. In that case, such a visualization tool needs to be self-designed
and constructed.

PermaSense offers different kinds of geophysical data [5], such as weather
information, rock temperature, seismic stream, radiometer, GPS, images and so
on. From this large variety of sensors, four typical measurements are considered
in this project, i.e., weather information, rock temperature, seismic stream, and
image. A Python tool [6] can be used to access these four datasets.

The plotting time scales with the amount of data, so it is impossible to
get a long-term graph quickly with the use of original data, and sometimes it
may cause the browser crashing. In that case, suitable downsample methods
are necessary to plot these datasets without distorted visual effects. Chapter 2
introduces two different downsample methods used in this visualization tool, and
how to compare the difference between images to measure the visual effects. As
stated before, analysis of seismic stream should be included in the interface, so
two simple methods are briefly explained in Chapter 2 as well.

Following the requirements for the visualization tool, five parts are designed
to construct this interface with the use of Dash [9], which is a Python framework
for building analytical web applications. More details regarding overview design,
data preparation, choice of parameters, interaction between different data types
and functions for different Dash components will be discussed in Chapter 3.

Chapter 4 shows speed performance and visual effects of weather information
plot, seismic stream plot, and spectrogram plot respectively.

Chapter 5 discusses this visualization tool’s achievements and weaknesses.
Following this discussion, a conclusion and some potential improvements are put
forward in Chapter 6.



Chapter 2

Methods

2.1 Downsample Methods

Due to the large capacity of datasets, it takes a long time to plot a series of
long-term data, and sometimes it will cause the browser crashing. In order
to speed up the plotting process, and avoid the situation which may crash the
browser, suitable downsampling methods are used to reduce the number of points
shown in one plot while guaranteeing a good visual effect. In this section, two
downsampling methods are introduced, both of them separate the datasets into
several buckets and try to find good representations for these buckets.

2.1.1 LTTB Downsample Method

Largest-Triangle-Three-Buckets algorithm [10] is used to downsample time series
data. The principle behind this algorithm is first splitting the data into several
buckets, the first bucket b1 only contains the first data point p1, the last bucket
b2 contains the last data point p2 and the rest buckets contain an equal number
of data points, the number of points is known as DownsampleRate. For each
bucket except b1 and b2, one data point is selected to represent all points within
this bucket. In order to select it, for each point p, the area of a triangle formed
by p, the average point in the next bucket and p2 is calculated, then the point
corresponding to the largest area is chosen. The downsampled dataset consists
of all selected data points, p1, and p2.

Unlike uniform downsample method, the LTTB downsample method can
retain the fluctuations of time series data, so the local peaks will not disappear
because of downsampling. This feature of the LTTB downsample method helps
to preserve the local peaks of the observed time series data, so the user is able
to know its minimum or maximum value even from a downsampled data frame.

A Python package [11] based on Numpy can be used to implement the LTTB
algorithm.

3



2. Methods 4

2.1.2 Maximum Minimum Downsample Method

If a signal vibrates greatly within a short period, in each bucket, both the lowest
and highest values are requested to avoid distorting the plot’s shape. In that
case, the LTTB algorithm is not suitable anymore, and Maximum Minimum
Downsample Method is implemented.

The principle behind this algorithm is similar to a waveform plotting function
[12]. First splitting the data points uniformly into several buckets, the number of
data points in each bucket is known as DownsampleRate. Then for each bucket,
the data points with the highest and lowest values are selected to represent all
data points in this bucket. After processing all buckets, the downsampled dataset
consists of all selected highest and lowest values.

The Maximum Minimum Downsample Method can preserve the vibration
features of time series data, so it is quite suitable for downsampling time series
data which may have significant change suddenly like the seismic stream.

2.2 Seismic Stream Analysis Methods

2.2.1 Fast Fourier Transform

As indicated in [13], Fourier analysis is quite useful to analyze periodic phenom-
ena like vibrations and wave motion. Fourier analysis converts a signal from its
time domain to a representation in the frequency domain. The Discrete Fourier
Transform(DFT) is obtained by decomposing a discrete sequence of values into
components of different frequencies. Fast Fourier Transform (FFT) algorithm is
used to help calculate DFT efficiently. In this visualization tool, a function [14]
from Numpy package is used to compute FFT for seismic stream online.

2.2.2 Spectrogram

With the use of Fourier transform, the seismic spectrum can be decomposed
into constituent frequency components as discussed in Chapter 2.2.1. However,
their temporal locations cannot be identified. Under that circumstance, time-
frequency distributions (TFDs) can be used to map a one-dimensional signal into
a two-dimensional function of time and frequency, and describe how the spectral
content of the signal changes with time [15]. One of TFDs is spectrogram (SP),
which is well suited to identify the dominant frequencies contained in the seismic
signals [15]. It is used to analyze the seismic stream in this project.

As shown in Figure 2.1, a spectrogram has 3 dimensions, one of the two ge-
ometric dimensions represents time, the other geometric axis is frequency, and
the third dimension indicates the intensity of a particular frequency at a specific
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time which is represented by the color of each point in the graph. In this visual-
ization tool, a function [16] from Scipy package is used to compute spectrogram
for the seismic stream.

Figure 2.1: An example of spectrogram

2.3 Difference Between Images

The quality of downsample result can be quantified by the difference between the
original plot and the downsampled ones. In this section, two common metrics
are introduced, which can help analyze the difference between two images from
the numeric side.

2.3.1 Mean Square Error

Mean Square Error (MSE) is a traditional and simple method for measuring
the energy of difference between original and test images. In order to calculate
MSE, two grey scale images are compared pixel by pixel to calculate the square
of difference between error of original and test images [17], as shown in Equation
2.1. The square of difference can be replaced by the number of different pixels
or the absolute value of difference, i.e, Zero norm and Manhattan norm for the
subtraction of two images.
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MSE =
1

MN

N∑
i=1

M∑
j=1

(xi,j − yi,j)
2 (2.1)

Before calculating the MSE, the original and test images need to be converted
into grey-scale and normalized.

2.3.2 Structural Similarity Index

The Structural SIMilarity (SSIM) index is one of the methods to measure the
similarity between two images, it can be viewed as a quality measurement pro-
vided one of the images being compared, while the other image is regarded as
of perfect quality, more mathematics details can be found in [18]. Unlike MSE,
SSIM index is independent of visibility conditions, and it extracts structural
information from images [17].



Chapter 3

Results

The current visualization tool consists of 5 parts, including plotting weather
information or rock temperature, plotting seismic stream, calculating FFT of
seismic stream, showing spectrogram of seismic stream, and showing time-lapse
images. Figure 3.1 shows how this visualization tool looks like, details about
each part will be discussed in this chapter.

3.1 Structure

Figure 3.1 shows the internal structure of this visualization tool. After the
datasets are collected, some preprocessed files are generated, then according to
the time frame selected by the user, this visualization tool dynamically chooses
different files. The change of the set time frame in one graph may cause the
time frame updating for some other graphs. In this flowchart, blue lines indicate
the source of datasets and no extra analysis is used, the green lines mean the
analysis methods for the seismic stream, the purple lines represent the dynamic
interaction among different data files which belong to the same data type, and
the red lines show how the time frames update once the time frame changes in
one of these graphs.

3.2 Weather Information

The weather information got by PermaSense contains 10 different types of data,
including minimum wind direction, average wind direction, maximum wind di-
rection, minimum wind speed, average wind speed, maximum wind speed, air
temperature, internal temperature, relative humidity, and air pressure. Because
of redundant items, average wind direction is used to present wind direction in-
formation, and average wind speed is used to present wind speed information.
So there are 6 different types of weather information shown in the visualization
interface.
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Figure 3.1: The visualisation tool
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Figure 3.2: The visualisation tool’s flowchart



3. Results 10

Before processing the weather information, it can be noticed that the weather
information dataset contains some unrealistic data possibly caused by occasional
sensor issues, for example, the recorded temperature may be below −30◦C. In
order to eliminate these data points, thresholds are set to delete data points
where air temperature is below −50◦C, internal temperature is below −30◦C or
air pressure is less than 500 Pa. Besides, sometimes the dataset may have some
missing data points, and it will cause the graph to plot discrete points instead
of continued lines. So, the NaN values are dropped from the data stream.

Because of weather information’s characteristics, it can be known that this
type of data doesn’t fluctuate rapidly within a short time frame. Then consider-
ing the advantages of LTTB algorithm illustrated in Chapter 2.1.1, it is a good
option to downsample weather information. After that, the plotting process can
be speeded up since the number of plotted points decreases. If the downsampling
process is completed online, extra time is needed to load the original data and do
the calculation. In that case, the downsampling process is completed offline and
downsampled datasets corresponding to different DownsampleRate are stored
in the local disk.

In order to achieve similar speed performance for different time frames, dif-
ferent DownsampleRates are needed to be chosen. In order to get a balance
between fast plotting speed and good visual representation, after several ex-
periments with original data, the expected maximum plotting time θ is set to
be 1 second. The time frames plan to be separated into several ranges, in each
range, the visual effect is measured at the minimum time frame while the average
plotting time is tested at the maximum time frame.

To measure the visual effects of the downsampled data, 12 different times
frames whose time frames length is 20 days are selected, then plots are got
with the use of original or downsampled data with different DownsampleRate.
Metrics introduced in Chapter 2.3 are used to see if there exists one metric
can reflect the downsampled effect accurately and stable. Figure 3.3 shows the
average Manhattan norm between the original plot and the downsampled one, it
can be seen that in general smaller DownsampleRate causes smaller error, but
it is not always true with the consideration of standard deviation.

MSE, SSIM index, and average zero norm are tested following the same proce-
dure, it turns out that all of them cannot guarantee a smaller DownsampleRate
will generate a smaller error. Under that circumstance, all of these metrics are
not good enough to quantify the downsampled error. However, since the visual
effect is about the human perception of the visual system, the easiest solution is
to let the user subjectively determine whether a good visual effect is achieved or
not.

As a smaller DownsampleRate can achieve better visual effects, it is expected
that a smaller one can be used for a longer time frame. In other words, for each
DownsampleRate, the maximum time frame whose average plotting time is less
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Figure 3.3: The Manhattan norm between plots using original data and down-
sampled data

than the fixed threshold θ needs to be found. The average plotting time for a
certain time frame is calculated by 10 repeated experiments.

This selection process starts with the original data, and before using a new
DownsampleRate, the visual effect is checked at the last maximum time frame,
if the visual effect isn’t ideal, smaller DownsampleRate will be attempted. For
example, when 50 is used as the DownsampleRate, first the visual effect is
checked with 90-day weather data as shown in Figure 3.4, 90-day is the maximum
time frame to use DownsampleRate 20. Since it is difficult to observe 6 types of
weather information, only air temperature and air pressure are plotted there, and
other types of weather information are observed as well. Then, the plotting time
for several time frames is tested as shown in Figure 3.5 to get the upper bound.
It can be known that if the maximum time frame whose DownsampleRate is 50
is 210 days or more, the average plotting time exceeds θ. In that case, only time
frames less than or equal to 209 days use 50 as its DownsampleRate. Following
this procedure, Table 3.1 is got to reflect the corresponding relationship between
DownsampleRate and time frames.

The weather information part in the current interface is like shown in Figure
3.6, it corresponds to the graph1 in Figure 3.1. The user can select to show
weather information or rock temperature in that graph, they can also choose
to show data got by different sensors installed at different locations if there are
multiple ones can be used like shown in Figure 3.7. There are 6 different types
of weather information can be shown, the user can also choose to plot only some
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Figure 3.4: 90-day partial weather information with DownsampleRate 50

Figure 3.5: Average plotting time for DownsampleRate 50
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Time Frame /days DownsampleRate

<4 1
4-18 5
18-42 10
42-90 20
90-209 50
209-400 100
≥ 400 200

Table 3.1: The DownsampleRate for weather information

of them. Sometimes it is more convenient to observe data information under
the logarithm axis, the user is free to use logarithm for Y-axis or not. If the
logarithm axis is used, a warning message will be shown in this interface if there
is any negative value, since in that case, the plot may look weird. Besides, in
order to help the user have an idea if the graph plots the original data or the
downsampled one, an explanation is included.

3.3 Rock Temperature

The rock temperature got by PermaSense contains 6 different types of data,
which are got 5 cm, 10 cm, 20 cm, 30 cm, 50 cm, and 100 cm underground
respectively. Unlike the weather information, rock temperature isn’t found con-
taining any unrealistic data, so thresholds which are used to eliminate them
aren’t necessary anymore. However, there are still some missing data points
in the dataset, like the treatment for weather information, the NaN values are
dropped from the data stream.

Similar to weather information, rock temperature can be downsampled by the
LTTB algorithm as well. Because rock temperature data has the same frequency
as weather information data, DownsampleRate in Table 3.1 is directly used
for preprocessing procedures. This visualization tool shifts between different
downsampled rock temperature depending on the selected time frame.

The rock temperature part of the current visualization tool is like shown in
Figure 3.7, it shares the same graph with weather information, and the selected
time works on both of them. The arrangements are quite similar to weather
information component in Chapter 3.2, except there are two sensors collecting
rock temperature from different positions, and users can indicate which one to
be used.
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Figure 3.6: The weather information part of the visualization tool

Figure 3.7: The rock temperature part of the visualization tool



3. Results 15

3.4 Seismic Stream

3.4.1 Plotting Seismic Stream

PermaSense collects seismic stream 1000 times per second, it indicates that a
large amount of data points needs to be plotted in one long-term graph and the
user has to wait a long time. For example, it takes approximately 50 seconds
to plot 1-hour seismic stream with the use of original data points. Besides, it
will also cause the browser crashing if the user wants to plot seismic stream for
more than 2 hours. Under that circumstance, suitable downsample method is
needed to enable plotting seismic stream within a long time frame, Maximum
Minimum downsample method can be used as discussed in Chapter 2.1.2.

Like what we do to weather information, in order to achieve similar speed
performance for different time frames, different DownsampleRates are needed.
In order to get a balance between potential fastest plotting speed and good visual
representation, the expected maximum plotting time θ is set to be 5 seconds.

For the seismic stream, the quality of downsampled data cannot be quantified
not only because metrics listed in Chapter 2.3 don’t achieve stable performance
as illustrated in Chapter 3.2, but also because it is impossible to get a long-term
seismic stream plot with the use of original data, which will cause the browser
crashing. In that case, the visual effect is measured by the subjective feeling as
well.

The time frames are separated into several ranges with a similar method
introduced in Chapter 3.2. Through 10 repeated experiments with different
time frames, the corresponding relation between DownsampleRates and range
of time frames is like shown in Table 3.2. For seismic stream whose time frame
is less than 4 hours the downsample processing is done online, otherwise, the
downsample processing is completed offline. During the preprocessing stage,
two downsampled seismic stream files are stored with DownsampleRate 5000
and 36000 respectively.

Time Frame DownsampleRate Online/Offline

<5 minutes 1 Online
5-10 minutes 4 Online
10-30 minutes 12 Online
30 minutes-4 hours 450 Online
4 hours-10 days 5000 Offline
10-83 days 36000 Offline
≥ 83 days 360000 Offline

Table 3.2: The DownsampleRate for seismic stream

When seismic stream needs to be plotted, the visualization tool decides
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whether the downsampled data points can be loaded directly from preprocessed
files or the downsampled procedure needs to be completed online.

The seismic stream part of the current visualization tool is like shown in
Figure 3.8. The time frame for the seismic stream plot is the one indicated by
the user in weather information or rock temperature plot, the mutual influence
can be either unilateral or bilateral like shown by the red solid line and dashed
line between graph1 and graph2 in Figure 3.1. If the user chooses the ”Do not
show seismic stream simultaneously” radio item, the time frame in the weather
information or rock temperature plot is used as an initial time frame for the seis-
mic stream plot, but the change of time frame in the seismic stream plot cannot
be sent back to the weather information or rock temperature plot. However,
if the ”Show seismic stream simultaneously” item is chosen, the change of the
selected time frame in the weather information or rock temperature plot causes
one update for both plots and vice versa.

The seismic stream has three different data components which correspond
to seismic signals at three orthogonal directions, like weather information and
rock temperature, users can choose to show only some of them. There are two
prompt messages in this part, one indicates that the loading process may take
several seconds, another shows the plot uses original data or downsampled data.
Besides, in order to avoid the user sending repeated requests when they don’t
know if the visualization tool is working, the whole interface becomes grey when
there is any running task.

3.4.2 Analysis Of Seismic Stream – FFT

As discussed in Chapter 2.2, Fast Fourier Transform(FFT) and spectrogram can
be used to analyze seismic stream from the frequency domain.

Since we care more about the frequency features caused by instant changes
of the seismic stream, there is no need to do FFT for a long time frame. The
maximum time frame is set to be 2 hours.

The FFT part of the current visualization tool is like shown in Figure 3.10.
One information button is added to explain the aim of computing FFT and
show relative parameters. Similar to weather information, users can choose to
use logarithm for X-axis and Y-axis in order to get a better understanding of
the seismic stream in frequency domain like shown in Figure 3.11. The Seismic
stream contains 3 components as explained in Chapter 3.4.1, users are free to
analyze only some of them in the frequency domain, for example, Figure 3.11
plots the FFT result of the seismic stream in 2 orthogonal directions.
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Figure 3.8: The seismic stream part of the visualization tool

Figure 3.9: The visualization tool when there is any running task
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Figure 3.10: The FFT part of the visualization tool

Figure 3.11: An example of FFT with two components using logarithm Y-axis
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3.4.3 Analysis Of Seismic Stream – Spectrogram

In order to analyze the seismic stream from power spectrum aspect, the spectro-
gram is used as discussed in Chapter 2.2.2. Considering the sensitivity of relative
sensors, only frequencies which are less than 100 Hz can be measured accurately,
so only this part is taken into consideration when plotting the spectrogram.

Because of the high sampling frequency, it takes a long time to get a spectro-
gram, for example, it will need 10 seconds to calculate and plot a spectrogram
for a 3-hour seismic stream. It is also impossible to show a spectrogram for a
month’s seismic stream since it will cause the browser crashing. In that case, a
suitable downsample method is required.

From Chapter 2.2.2, it can be known that the spectrogram’s color bar indi-
cates the intensity of power spectrum at a particular frequency and a specific
time. When downsampling the spectrum, it needs to be done from the time axis,
i.e, the X-axis of the spectrogram. The time axis can be uniformly separated into
several buckets, for each bucket, a new column is needed to represent all data
points in this bucket. In order to get this column, the easiest method is to select
one column from each bucket, or a new column can be generated by combining
the maximum value at each frequency. With the use of the first method, the
selection of each column is a bit random, and intensity features will be lost dur-
ing this process. In contrast, if a new column is generated as discussed before,
the information about power spectrum density can be kept and the user is able
to get such knowledge even through a downsampled spectrogram. In that case,
the second downsample method is preferred, its procedure is explained in Figure
3.12.

Unlike what is done to the seismic stream in Chapter 3.4.1, it is better to
let each column in the downsampled spectrogram have some actual meaning, in
order to help the user understand how much data is represented by one column.
To achieve that, the original spectrogram is downsampled by letting one column
represents the dataset within 1 minute, 10 minutes, 1 hour, or 1 day. The
correspondence between different time frames and the meaning of one column in
the downsampled spectrogram is listed in Table 3.3.

Time Frame One Column Is Data Within

<3 hours Original
3 hours - 3days 1 minute
3 - 30 days 10 minutes
30 - 300 days 1 hour
≥ 300 days 1 day

Table 3.3: The correspondence between time frames and how much data is rep-
resented by one column in the downsampled spectrogram
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Figure 3.12: A sketch map for spectrogram downsampling process

The spectrogram part of the visualization tool is like shown in Figure 3.13.
Like shown in Figure 3.1, the spectrogram’s initial time frame is the last modified
one in graph1 and graph2. There is an information button to indicate the aim
of spectrogram and relative parameters, and a hint to let the user have an idea
about the meaning of one column in the downsampled spectrogram. Besides,
the user can show the frequency with logarithm Y-axis.

3.5 Time-lapse Image

PermaSense includes some sensors which take pictures for the Swiss Alps at
the specific locations. These time-lapse images can give users an intuition about
how the mountain looks like at a particular time. The time-lapse image part of
the current visualization tool is like shown in Figure 3.14.

The left picture shows how the mountain looks like at the beginning moment
of the selected time frame while the right one is a picture taken at the end
moment. The moment corresponding to the middle photo can be shifted by
users through a range slider, which contains 40 discrete time moments uniformly
distributed between the start point and end point of the time frame.
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Figure 3.13: The spectrogram part of the visualization tool

Figure 3.14: The time-lapse image part of the visualization tool



Chapter 4

Evaluation

4.1 Weather Information

Like discussed in Chapter 3.2, the maximum plotting time θ for weather infor-
mation is expected to be less than 1 second. In order to evaluate that, several
tests are performed for different ranges of time frames, the result is shown in
Figure 4.1. From that, it can be observed that the expectation of plotting time
can be met with the use of different DownsampleRate for different time frames.

Figure 4.1: The plotting time for weather information

Besides the plotting time, we also care about the visual effect, since the large
DownsampleRate may cause a distorted signal. However, it is hard to quantify
the visual effect as discussed in Chapter 3.2, so the visual effect is tested by the
developer at the minimum time frame of each time frame range.

22
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Figure 4.2 shows a plot of two types of weather information with time frame
18 days which is the minimum time frame for range 18-42 days, as shown in
Table 3.1, the DownsampleRate is 10. Figure 4.3 shows a plot of two types of
weather information with time frame 209 days which is the minimum time frame
for range 209-400 days, as shown in Table 3.1, the DownsampleRate is 100. In
order to make it convenient to observe, only air temperature and air pressure
are plotted, but the downsampled effect is checked with the use of other types
of weather information as well. From these, it can be verified that a balance
between a short plotting time and good visual representation has been achieved.

Figure 4.2: The air temperature and air pressure within 18 days

4.2 Seismic Stream

Following the discussion in Chapter 3.4, the maximum plotting time θ for the
seismic stream is expected to be at most 5 seconds. In order to check that,
several tests are completed for each range of time frames, the result is shown
in Figure 4.4. From that, it can be seen that in most cases the plotting time
doesn’t exceed 5 seconds, but there are some exceptions. However, in general, it
can be said that the plotting time of the seismic stream is less than 5.5 seconds
regardless of time frames.

Similar to weather information, we also care about the visual effect, which
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Figure 4.3: The air temperature and air pressure within 209 days

Figure 4.4: The plotting time for seismic stream



4. Evaluation 25

is hard to be quantified so measured by subjective feelings as well. The visual
effect of the downsampled seismic stream is tested at the minimum time frame
for each range similar to the evaluation for weather information.

Figure 4.5 shows a plot of the seismic stream with time frame 30 minutes
which is the minimum time frame for range 30 minutes-4 hours, as shown in
Table 3.2, the DownsampleRate is 450. Figure 4.6 shows a plot of the 10-day
seismic stream, the time length is the minimum time frame for range 10-83 days,
as shown in Table 3.2, the DownsampleRate is 36000. From these, it can be
verified that a tradeoff between relatively short plotting time and good visual
representation can be achieved.

Figure 4.5: The seismic stream within 30 minutes

4.3 Spectrogram

As discussed in Chapter 3.4.3, downsampling method is used to speed up the
plotting process of spectrogram and make it possible to show spectrogram for
long-term data. In order to test the speed, experiments are completed for dif-
ferent time frames, the result is shown in Figure 4.7. From this graph, it can be
known that a spectrogram can be plotted with at most 10 seconds regardless of
its time frame as expected.
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Figure 4.6: The seismic stream within 10 days

Figure 4.7: The plotting time for spectrogram
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There are two figures showing the visual effect of the downsampled spec-
trogram. Figure 4.8 shows a spectrogram with time frame 3 days which is the
minimum time frame for range 3-30 days, from Table 3.3, it can be known that
each column represents 10-minute original spectrogram. Figure 4.9 is a 300-day
spectrogram, its time length is the minimum time frame for range more than 300
days, from Table 3.3, it can be known that each column represents 1-day original
spectrogram. From these, it can be known that the downsampling process is able
to achieve an acceptable visual effect as requested.

Figure 4.8: The spectrogram within 3 days
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Figure 4.9: The spectrogram within 300 days



Chapter 5

Discussion

Following the requirements listed in Chapter 1, a dynamic visualization tool is
created. The main difficulty through the project is caused by the large capacity of
datasets and their intricate relationships. In order to overcome these challenges,
suitable downsample and analysis methods are selected, and interaction between
different graphs are implemented.

With the use of downsampling methods online or offline, the plotting pro-
cesses can be speeded up regardless of data types and time frames. It is also
verified that the user only needs to wait at most several seconds to get a requested
plot. By analyzing the seismic stream, its features in the frequency domain can
be understood better, while the user is able to get an intuition about its property
in the time-frequency domain. Through the interaction among different graphs,
the user can easily observe the different datasets’ features for the selected time
frame instead of adjusting plots repeatedly.

As discussed in Chapter 3, the operation of this visualization tool relies on
some preprocessed files, for example, downsampled spectrogram files to speed up
the plotting process. These files can be generated by some Python scripts, which
need to be executed regularly by the admin in order to add the newest datasets.

Currently, the visual effects of plots with the use of the downsampled dataset
can only be determined by subjective feelings. It is hard to quantify the down-
sample quality because of two main reasons. Firstly, it is difficult or impossible
to get a plot with long-term data considering its capacity. If that plot cannot
be accessed, the difference between plots with the use of original data and plots
using downsampled data cannot be computed. Secondly, no common metrics
can make sure smaller error is expected for smaller DownsampleRate, which
contracts the aim of downsampling.

PermaSense contains hundreds of sensors, which can be simply classified
into several data types. As illustrated in Chapter 1, this visualization tool is
created with the use of four data types. This tool can be extended as long as
using the similar processing method as used in this type of data. However, it
means that modifications are needed to both arrangement of the interface and

29
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the internal programs.

For now, two analysis methods are used to analyze seismic stream from fre-
quency domain and time-frequency domain respectively. However, the user may
want to analyze the dataset from other fields. But, the current interface doesn’t
offer a port for the use of self-designed or self-chosen analysis methods.



Chapter 6

Conclusion and Future Work

In this project, a dynamic visualization tool is created for PermaSense. In or-
der to satisfy the requirements listed in Chapter 1, some problems were handled
during the developing processes. In order to make up the disadvantages of the
current interface, more suitable downsample methods are used to avoid smooth-
ing the peaks of datasets caused by data aggregation. The problem of slow
plotting speed was solved by dynamically selected downsample rate. Besides,
now timeline interaction makes it possible for different data types interacting
with each other. The other expectation is to analyze the seismic stream, this
goal was achieved by including the tools to visualize FFT and spectrogram in our
interface. And with the use of a range slider, the user can shift among different
time-lapse images flexibly.

This visualization tool can satisfy all requirements, and it will help the re-
searchers get a better understanding of geographical phenomena from geophysical
data.

But, there is still something can be completed to further improve this visu-
alization tool:

• Implementing a mechanism to keep the preprocessed files up to date.

• Finding a suitable metric which can measure the downsampled quality from
more objective aspects.

• Adopting an easier method to add the datasets from other sensors.

• Allowing the use of self-defined analysis methods.
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