
Institut für
Technische Informatik und
Kommunikationsnetze

Prediction Models for Indoor
Solar Energy Harvesting

Semester Thesis

Colin Berner

bernerc@ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Dr. Rehan Ahmed
Stefan Drašković

Lukas Sigrist

Prof. Dr. Lothar Thiele

January 31, 2019

mailto:Colin Berner<bernerc@ethz.ch>

Acknowledgements

I would like to thank my supervisors Rehan Ahmed, Stefan Drašković and Lukas
Sigrist for their support throughout this thesis. In our weekly meetings they
gave me valuable advice and guided me in the right directions.

I also thank Professor Lothar Thiele and the Computer Engineering and
Networks Laboratory for giving me the opportunity to work on this semester
thesis.

i

Abstract

Energy harvesting systems have gained in popularity over the recent years. For
these systems, in order to efficiently schedule tasks for an application, it is impor-
tant that we can predict the harvested energy in the near future. While this is a
well-studied topic for outdoor solar power forecasting, the situation is different
indoors, where the light consists of a mixture of artificial light and sunlight.

In this thesis, we develop and evaluate models to predict the power of an
indoor solar energy harvesting system. In particular, we look at linear regression
models, multivariate adaptive regression splines, decision trees and random forest
models.

As an evaluation, we analyze model performances when changing various
model parameters. This includes limiting the number of input variables or vary-
ing the prediction interval. We also estimate the runtime complexity and memory
footprint of the different models.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Preliminaries 3

2.1 Stations . 3

2.2 Available Measurements . 3

2.3 Variable Selection . 5

2.4 Models . 6

2.4.1 Linear Regression . 6

2.4.2 Multivariate Adaptive Regression Splines 6

2.4.3 Decision Tree . 7

2.4.4 Random Forest . 8

3 Prediction 9

3.1 Accuracy . 10

3.1.1 Performance Metrics . 10

3.1.2 Model Configuration . 12

3.2 Input Variables . 12

3.2.1 Recursive Feature Elimination 12

3.2.2 Importance of Variables 13

3.2.3 Variable Classes . 13

3.3 Prediction Interval . 14

3.4 Global Model . 14

3.5 Model complexity . 15

3.6 Memory Footprint of Runtime Variables 16

iii

Contents iv

4 Evaluation 17

4.1 Accuracy . 17

4.1.1 Performance Metrics . 17

4.1.2 Errors over the day . 18

4.2 Input Variables . 18

4.2.1 Results of the Recursive Feature Elimination 18

4.2.2 Importance of Variables 21

4.2.3 Variable Classes . 24

4.3 Prediction Interval . 25

4.4 Global Model . 26

4.4.1 Effects of Sunlight . 27

4.5 Model Complexity . 27

4.6 Memory Footprint of Runtime Variables 29

5 Conclusion 31

5.1 Future Work . 31

Bibliography 32

A Additional Plots 1

Chapter 1

Introduction

Energy harvesting systems have become increasingly more popular over the re-
cent years. These devices harvest energy from the environment to prolong the
lifetime of a battery or in the case of batteryless systems to directly power an
application. An example could be a wireless sensor node powered by a small
solar panel.

For these systems, in order to schedule tasks for an application, it is desir-
able that we can predict the harvested energy in the near future. This allows
implementing more efficient schedules and ultimately smaller batteries. This
prediction can be a difficult task, since the availability of environmental energy
is highly variable. If we have a schedule very dependent on the predictions and
predict too little energy, the schedule will be inefficient, but if the estimate is
too high, the device could run out of power entirely.

In this thesis, we develop prediction models for indoor solar energy harvest-
ing. For outdoor solar power forecasting, this is a well-studied topic, also with
power grid balance in mind [2, 10]. However, indoors, the situation is an entirely
different one. Here, the light consists of a mixture of artificial light, indirect
sunlight and sometimes direct sunlight. The artificial light is mostly dependent
on human presence, as lights are turned on depending whether a person is in the
room.

Problem Description

As a basis for the energy prediction, multiple solar harvesting devices have been
deployed in different rooms of the ETZ building at ETH Zurich. In particular, we
look at four stations with different light environments. For each station, a solar
power trace over a year was recorded. Based on this historical data, prediction
models can be built and evaluated.

The power received by the stations is sampled around once per second. Since
we do not focus on predictions over such a short time, the measurements are first
aggregated with different aggregation intervals between 10 minutes and 1 day.

1

1. Introduction 2

The goal is then to predict the energy received within the next time interval.
For a scale independent of the length of the interval, we instead consider the
average power over the interval.

Contribution

The main contribution of this thesis is the development and evaluation of differ-
ent models to predict the power of an indoor solar energy harvesting system. In
particular, we look at linear regression models, multivariate adaptive regression
splines, decision trees and random forest models.

As an evaluation, we perform different experiments to analyze the properties
of the models. These include:

1. Overall accuracy of the different models by multiple performance metrics.

2. Performance trade-offs when limiting the number of input variables.

3. Most important variables by different variable importance metrics.

4. Performance when predicting for different prediction intervals.

5. Performance of a global model, that is trained by data from other stations
than the one it predicts for.

6. Runtime complexity and resource requirements for the models.

Thesis Outline

We first give some background information about the stations and the available
measurements in Chapter 2. Furthermore, we introduce the models that were
used for the prediction. Next, we describe the different experiments that were
conducted to assess the characteristics of the models in Chapter 3. In Chapter 4,
we evaluate and discuss the results of these experiments. Finally, Chapter 5 gives
a conclusion and short summary of the gained insights.

Chapter 2

Preliminaries

In this chapter, we first introduce the stations in Section 2.1. We then discuss the
available measurements in Section 2.2 and their derived variables in Section 2.3.
We also give some theoretical background on the models that were used for the
prediction in Section 2.4.

2.1 Stations

For this project, we worked with four stations deployed in different rooms. These
stations have different light environments, which leads to unique characteristics
of the harvested power. To visualize this behavior, we plot the hourly aggregated
power by time of day for each station in Figure 2.1. An overlaid color density
representation helps identifying a general trend among the many data points
from a year of data. The station numbers represent host names that are not
relevant to this project.

For stations 6 and 13, we can make out a clear distinction between two power
levels. These are the times when the light in the room is switched on or off. For
stations 14 and 17, we see an additional effect taking place. In the morning and
the evening respectively, these stations can experience direct sunlight, which
results in much higher amounts of energy than the artificial light. This effect is
also dependent on the time of the year.

2.2 Available Measurements

Over the course of a year, the following features were measured in parallel,
which are then used to predict the harvested power. We group them into indoor
and outdoor measurements. The indoor measurements are measured directly at
the deployed device. The outdoor measurements are obtained from the Zurich
Fluntern weather station, which is around a kilometer from the ETZ building.
Additionally, a timestamp of the measurements is recorded.

3

2. Preliminaries 4

Figure 2.1: Power by time of day for each station.

Indoor measurements

Power (P in) The harvested power in watts.

Illuminance (Ev) The illuminance at the station in lux. Two sensors are used
for this, of which we use the average.

Temperature (T amb) The temperature at the station in degrees Celsius.

Atmospheric pressure (P amb) The atmospheric pressure at the station in
pascal.

Relative humidity (RH amb) The relative humidity at the station.

Outdoor measurements

Temperature (meteo T) The outdoor temperature in degrees Celsius.

2. Preliminaries 5

Atmospheric pressure (meteo P) The atmospheric pressure in hectopascal.

Irradiance (meteo Irr) The solar irradiance in W/m2.

Sunshine duration (meteo Sunshine) The sunshine duration in minutes of
sunshine per interval [11].

Dew point (meteo Dew) The dew point in degrees Celsius.

2.3 Variable Selection

For the models we use, we have to extract predictor variables from the time
series data to be able to apply the models. For each time interval, we can
use the information of all features from the past intervals. As an example, an
intuitive variable is the power harvested in the last interval. We name this
variable P in.lag1, as it is lagged by one interval compared to the power to be
predicted.

In the following, we describe all variables that are used in the models. This is
for a prediction interval of 1 hour. Similar variables are used for other intervals.

Power variables

As power is the target variable, we put emphasis on past values of it. These
are the power harvested in the past one, two, three and four hours respectively
(P in.lag1, P in.lag2, P in.lag3, P in.lag4), but also the power in the same interval
on the past day or week (P in.lag24h, P in.lag1w).

Sensor and meteo variables

For all other features listed in Section 2.2, we use a subset of the time lags de-
scribed above. For example, for the indoor temperature this includes T amb.lag1,
T amb.lag2 and T amb.lag24h.

Time variables

A last group of variables is derived from the timestamp. These include simple
variables such as the time of day (par.time, values: 0-23), the day of the week
(par.weekday, values: 1-7) or the day of the year (par.yearday, values: 1-366).
Additionally, we also extract some information about the working hours. Firstly,
a binary variable par.workday that is 1 for Monday through Friday and 0 on
weekends. We do not consider special holidays here. Secondly, a binary variable
par.workhour that is 1 if it is a work day and the time of day is between 09:00
and 18:00.

2. Preliminaries 6

2.4 Models

2.4.1 Linear Regression

The first model we consider is a multiple linear regression. The target variable is
modeled as a linear combination of all predictors with an added intercept. This
can be described as

Ŷ = β0 + βX,

where Ŷ is the predicted value, X the vector of predictors, β the vector of
coefficients and β0 the intercept.

With a given training sample, we use the least squares method to fit the
model.

One of the assumptions of a linear regression model is that the relationship
between dependent and independent variables is linear. This assumption is not
necessarily justified in our case, which can make the linear model inaccurate.

In this project, we used the R packages caret and stats to fit linear models.

2.4.2 Multivariate Adaptive Regression Splines

As an extension to linear regression, multivariate adaptive regression splines
(MARS) [7] can capture nonlinear relations and interactions between predictors.
Where a linear model is limited to fitting a single line through all observations,
a MARS model can include kinks in the predicted function.

We can describe a MARS model as follows:

Ŷ =

k∑
i=1

βiBi(xi)

Each term in the sum includes a constant coefficient βi and a basis function
Bi(xi), where xi is one of the predictor variables. The basis functions can take
the following forms:

1. Constant 1, as the intercept.

2. A hinge (or hockey stick) function of the form max(0, xi−ci) or max(0, ci−
xi).

3. A product of multiple hinge functions for different variables, modeling in-
teractions between variables. The interaction degree is the number of hinge
functions.

2. Preliminaries 7

A MARS model can include an arbitrary number of terms and does not have to
include a term for each variable.

Training a MARS model consists of a forward pass and a pruning pass.
During the forward pass, the model repeatedly adds basis functions that give
the maximum reduction in residual sum of squares (RSS). This is done until a
specified number of terms is reached or the decrease in RSS is below a defined
threshold.

Since this forward pass tends to overfit, the model is then pruned in a back-
ward pass. This pruning pass iteratively removes terms to select the subset of
terms that minimizes the generalized cross-validation statistic (GCV) [6].

In this project, we used the R package earth to fit MARS models. The
bounds of the forward pass were defined by a maximum number of terms of 120
and an RSS threshold of 10−6. We also specify a maximum interaction degree
of 2 to avoid overfitting.

2.4.3 Decision Tree

A different type of prediction models are tree-based models. These are funda-
mentally different from linear regression or MARS models in that they do not
calculate continuous values. Instead, they predict by selecting one of many pre-
determined values, similar to a classification. The simplest form of this is a
decision tree, specifically a regression tree in our case [5]. It can be described as
a sequence of decisions. Traversing the tree from the root, each node represents
a decision based on the predictors. Each leaf then contains a predicted value for
the target variable.

Each node Ni is a binary decision rule of the form (xi
?
> ci), where xi is one

of the predictor variables and ci is a threshold.

The process of training a decision tree consists of recursively partitioning
the entire training sample into smaller subsets. At each node, all possible splits
across all predictors and thresholds are tested. The best split is chosen, measured
by the Gini impurity [8]. With more splits, the tree grows continually until the
process is terminated by a specified condition. This can be a maximum depth,
a maximum number of nodes or a minimum number of samples in a leaf. The
value of a leaf is then chosen to minimize the squared error.

In our case, after tuning the maximum number of leaf nodes, we set the limit
for the number of leaves at 64.

Decision trees are not very robust. A small change in the training sample
can lead to completely different trees. Additionally, they tend to overfit if the
tree size is not sufficiently limited.

In this project, we used the R packages rpart and randomForest to fit
decision trees.

2. Preliminaries 8

2.4.4 Random Forest

A much more robust tree-based model is the random forest [4]. The idea is
to build many uncorrelated decision trees and output the mean of all predicted
values. This makes random forest very resistant to overfitting and allows building
much deeper trees.

Each tree is trained on a subset of the entire training set, obtained by sam-
pling the training set n times with replacement, where n is the size of the training
set. This results in each tree covering approximately 63% of the training set.

Building the trees is then similar to the single decision tree described above,
with one difference: At each split, only a fraction of all variables is considered.
This is to further force trees to be unique. We found that setting this to a third
of all variables leads to good results for different numbers of variables.

In random forest, we do not need to tune the depth of the trees, as overfitting
is prevented by the many trees. We therefore only set the minimum number of
samples per leaf to 5. More trees are always better, but we settle for 500, as
improvements in accuracy are minimal beyond that.

In this project, we used the R package randomForest to fit random forest
models.

Chapter 3

Prediction

In this chapter, we look at ways of assessing different properties of the prediction
models. We start by outlining the relevant characteristics that were evaluated
for the models:

Accuracy The most important quality of a model is the prediction accuracy.
In Section 3.1, we describe different performance metrics that were used to
measure the accuracy of the models.

Input variables Naturally, some features are more important than others, and
some might even be redundant. By using fewer variables, we end up with
a less complex model, need fewer sensors to measure the features and use
less memory to store the variables.On the flipside, we expect a decrease in
performance, as less information is available for prediction. In Section 3.2,
we describe a process to evaluate the performance when iteratively remov-
ing variables. We also determine the most important variables for the
prediction.

Prediction interval In all other experiments, we always work with an aggrega-
tion and prediction interval of 1 hour. This might however vary depending
on the application. In Section 3.3, we describe how we evaluate the per-
formance when predicting for different intervals, from 10 minutes to a day.

Global model So far, models are trained for each station on its own data. As
a consequence, we need historical data for each station before prediction
models can be built. We therefore have the problem that a newly deployed
station cannot immediately start predicting its power, but instead has to
first gather training data. It would be desirable to instead have a global
model that can be deployed right away for a new station. A solution would
be a model that is trained by data from other, already existing stations.
In Section 3.4, we describe such a global model and how its performance
was evaluated.

9

3. Prediction 10

Model complexity If a model is to be deployed in practice, the complexity of
it will be constrained. That is the computational complexity at runtime
when predicting new values and also the space a model takes up in memory.
While a linear model is very efficient in both of these aspects, this is not the
case for all models. In Section 3.5, we describe the evaluation of how the
different model types compare regarding complexity and how performance
is affected by reducing model complexity for each type.

Memory footprint of runtime variables In addition to the memory used by
the model itself, past values used for prediction also have to be stored. The
more different variables are used and the longer the values are stored, the
more memory is consumed. In Section 3.6, we describe the evaluation of
how the size of this variable memory influences the performance of the
models.

3.1 Accuracy

3.1.1 Performance Metrics

To evaluate the accuracy of the models, we can calculate different performance
metrics. We selected the following metrics, as these are commonly used in the
state of the art. In the definitions, Ŷ is a vector of n predicted values and Y is
the vector of the true observed values.

Mean absolute error

MAE =
1

n

n∑
i=1

|Ŷi − Yi|

Median absolute error

MedianAE = median
(
|Ŷ − Y |

)
Mean squared error

MSE =
1

n

n∑
i=1

(
Ŷi − Yi

)2

Root-mean-square error

RMSE =

√√√√ 1

n

n∑
i=1

(
Ŷi − Yi

)2

3. Prediction 11

For all evaluation experiments following in this chapter, we use the root-
mean-square error to measure the accuracy of the models.

Mean absolute percentage error

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣ Ŷi − YiYi

∣∣∣∣∣
It should be noted that the mean absolute percentage error is a poor perfor-
mance metric for multiple reasons [16]. The most important problem in our case
is that the observed values in the denominator can be close to zero. To avoid
that the MAPE is dominated by these resulting extreme values, we only consider
predictions where the observed value is greater than 10% of the maximum ob-
served value. This still gives lower absolute values significantly more weight and
we only include MAPE and the median absolute percentage error to give some
sense of the dimensions of the errors.

Median absolute percentage error

MedianAPE = median
(

100% ·
∣∣∣(Ŷ − Y)� Y

∣∣∣)
Similar to the mean absolute percentage error, observations smaller than 10%
of the maximum observed value are not taken into account for calculating the
error.

Residual sum of squares

RSS =
n∑

i=1

(
Ŷi − Yi

)2

R2

The coefficient of determination, R2, measures the percentage of the variability
of the target variable that is explained by the model. This ranges from 0 to 1
with 1 being the optimum.

R2 = 1− RSS∑n
i=1

(
Yi − Ȳ

)2
where Ȳ is the mean of the observed data: Ȳ = 1

n

∑n
i=1 Yi

3. Prediction 12

3.1.2 Model Configuration

To evaluate these metrics, we use 5-fold cross-validation to train models of each
type on each station. The model parameters were set as follows:

Linear Model All variables and an intercept are included.

MARS Maximum interaction degree: 2.

Decision Tree Number of leaf nodes: 64.

Random Forest Minimum number of samples per leaf node: 5. Number of
trees: 500.

The results of this evaluation are presented and discussed in Section 4.1.

3.2 Input Variables

3.2.1 Recursive Feature Elimination

To determine how the number of variables affects the performance of the models,
we train models of all sizes for each model type. Since it is computationally
infeasible to exhaustively search for the optimal combination of variables for each
model size, we have to use a faster variable selection strategy. We therefore use
recursive feature elimination (RFE) [12]. The idea of RFE is to rank features
based on some importance criteria, remove the least important one and start
over. This process is described in Algorithm 1.

Algorithm 1 Recursive Feature Elimination (RFE)

Input: n variables, model fitting algorithm, variable importance metric
start with the full set of n variables
for all subset sizes i = n . . . 1 do

train the model using the remaining i predictors
evaluate model performance using cross validation
calculate variable importance and rank the variables
eliminate the least important variable

end for

With RFE, we calculate a model of each model type for each subset size
and evaluate them by RMSE. The configurations for the models are the same as
described in Section 3.1.2. The variable importance ranking is calculated based
on the following metrics:

Linear Model The absolute value of the t-statistic for each variable.

3. Prediction 13

MARS For each variable, calculate the total decrease in GCV [6] caused by
adding a term, summed over all terms that include the variable. Unused
variables are assigned the value zero. Variables with larger decrease in
GCV are considered more important.

Decision Tree For each variable, calculate the decrease in prediction accuracy
(measured by the increase in MSE) caused by randomly permuting that
variable in the testing sample. This permutation essentially nullifies the
predictive power of a variable. Then, variables with larger decrease in
accuracy are considered more important [4].

Random Forest Similar to the decision tree, but the decrease in accuracy is
measured for each tree and its out-of-bag sample. This is then averaged
over all trees.

Results and discussion of this experiment are in Section 4.2.1.

3.2.2 Importance of Variables

We can then also look at which are the most important variables. For this,
we take the variable importance measures calculated in the first iteration of
Algorithm 1 for each model. We cannot compare the metrics directly, as the
scales are different. For this reason, we assign each variable a score so that
the highest scoring variable is the most important. For variables with the same
importance value, the scores are averaged. This happens for the decision tree
and MARS model, where multiple excluded variables are given the value zero.
As an example, with 5 excluded variables, they are all assigned the average score
of 3. Results and discussion of this experiment are in Section 4.2.2.

3.2.3 Variable Classes

To get a more complete view of how the models perform when including certain
features, we group the variables in classes. This allows us to exhaustively evaluate
all combinations of variable classes and analyze the impact of each class on the
prediction accuracy. We define the following classes:

Power Variables of past power values. (P in.lag1, P in.lag2, P in.lag3, P in.lag4,
P in.lag24h, P in.lag1w)

Time Variables derived from the current timestamp. (par.time, par.weekday,
par.yearday, par.workhour, par.workday)

3. Prediction 14

Sensors Variables extracted from the ambient sensor at the station. (Ev -
amb.lag1, Ev amb.lag2, Ev amb.lag24h, T amb.lag1, T amb.lag2, T -
amb.lag24h, P amb.lag1, P amb.lag2, P amb.lag24h, RH amb.lag1, RH -
amb.lag2, RH amb.lag24h)

Meteo Variables extracted from the measurements at Zurich Fluntern weather
station. (meteo Irr.lag1, meteo Irr.lag2, meteo Irr.lag24h, meteo T.lag1,
meteo T.lag2, meteo T.lag24h, meteo P.lag1, meteo P.lag2, meteo P.lag24h,
meteo Sunshine.lag1, meteo Sunshine.lag2, meteo Sunshine.lag24h, meteo -
Dew.lag1, meteo Dew.lag2, meteo Dew.lag24h)

We then train and cross-validate models for all combinations of these classes.
The model configurations are as described in Section 3.1.2. Results and discus-
sion of this experiment are in Section 4.2.3.

3.3 Prediction Interval

To analyze the relation between performance and prediction interval, we evaluate
models for intervals of 10 minutes, 30 minutes, 1 hour, 4 hours and 1 day. For
simplicity, we only look at the linear and random forest models. To optimize
model training time of random forest, we limit the tree depth for the shorter
prediction intervals. This has no negative impact on prediction accuracy. We
set the minimum leaf size to 50 for 10 minute intervals, to 10 for 30 minutes, to
5 for 1 and 4 hours and to 3 for 1 day. The number of trees in a forest is 500 and
the accuracy is evaluated by the cross-validated RMSE. Results and discussion
of this experiment are in Section 4.3.

3.4 Global Model

We define a global model as a model that is not trained by any data of the
station it is used to predict the power for. Therefore, for each station we trained
models on data from all other stations. These models are then used to predict the
power received by the remaining station. We can compare the resulting errors
to the cross-validation errors from training and testing on the same station. For
this evaluation, we use the model configurations as described in Section 3.1.2.
Here, we again use prediction intervals of 1 hour. Results and discussion of this
experiment are in Section 4.4.

3. Prediction 15

3.5 Model complexity

To measure the complexity of the prediction models, we are interested in two
metrics:

Runtime complexity The number of operations that have to be performed
at runtime to predict a new power value for the next interval. An issue
is that we cannot directly compare the different operations used in the
models. These are addition, multiplication and comparison. Therefore we
have to make some simplifying assumptions. Assuming an ARM Cortex-
M4 processor architecture [1], a typical embedded processor, add (ADD),
multiply (MUL) and compare (CMP) operations all take up one cycle.
However, the architecture also supports a single-cycle multiply-accumulate
(MLA) operation, that can be used for the linear and MARS models. We
measure the runtime complexity as the number of operations of these four
types.

Model size The size in bytes a model takes up in memory. We assume that
values are stored in single-precision floating-point format and use 32 bits.
For this analysis, the memory required to store the structure of the model
and trees is omitted, as it is negligible compared to the memory of the
values.

In the following, we describe how the complexity of each model is adjusted
and how the two described metrics are calculated in each case:

Linear Model Here, we simply define the number of predictor variables. This
is the same process as described in Section 3.2.1.

The number of operations equals the number of variables, since we require
one MLA operation for each variable.

The number of stored values equals the number of variables plus one, since
we need one value for each variable and the intercept.

MARS For MARS, we adjust the number of terms in the model after pruning
from 0 to 40. Here, we do not allow any interactions between variables to
keep the complexity constant for each number of terms.

The number of operations needed to evaluate a MARS model is two times
the number of terms. For each term we require one comparison and one
multiply-accumulate.

The number of stored values is two times the number of terms plus the
intercept.

3. Prediction 16

Decision Tree For a single tree we adjust the depth of the tree. Instead of
limiting the maximum depth directly, we set the minimum size of the leaves
in the tree. Subsequently, the average depth of all leaves can be calculated.

The number of operations is then the depth of the tree, as traversing each
level costs one comparison.

The number of stored values is the total number of nodes in the tree.

Random Forest Here, we adjust the number of trees in the forest from 1 to
1000, but keep the depth of the trees constant by limiting the number of
leaves to 400. It is important to note though that this does not optimize
the performance by complexity and does not create a perfect pareto front.
For this, a two-dimensional search in number of trees and tree depth would
have to be performed.

The number of operations needed for this type of model is the number of
trees multiplied by the depth of each tree plus one addition for each tree
to combine the results.

The number of stored values equals the number of trees multiplied by the
number of nodes in a tree.

All the obtained models are then evaluated for their cross-validated accu-
racy measured by the RMSE. Results and discussion of this experiment are in
Section 4.5.

3.6 Memory Footprint of Runtime Variables

In all the models, for each variable used, a sliding window of its measurements
is kept, that has the length of the maximum time looked back. As an example,
working with 1 hour aggregation intervals, assume the power at the same time
on the past day is used for prediction. This requires that 24 values are stored,
one for each hour. From these values, the power of the past one or two hours
can also be extracted without needing extra memory.

To analyze this behavior, we extend the evaluation described in Section 3.2.
For each model generated, the amount of memory required to store the variables
is computed. We can then see how much memory is needed for a model of a
desired accuracy. This is under the caveat that the variable selection does not
optimize for memory. During the recursive feature elimination (Algorithm 1),
variables are not weighted in any way, meaning the algorithm could select one
“expensive” variable over two “cheap” variables that might have more combined
predictive power with less memory used. Results and discussion of this experi-
ment are in Section 4.6.

Chapter 4

Evaluation

In this chapter, we present and discuss the results of the experiments that were
described in Chapter 3. We mostly focus on one station (Station 6) for the
presentation of the results and expand more where stations show unique behavior.

4.1 Accuracy

4.1.1 Performance Metrics

We first present the evaluation of the performance metrics as described in Sec-
tion 3.1.1. Table 4.1 shows the metrics for the different models as they predict
the received power of station 6 with a prediction interval of 1 hour. Additional
tables for the other stations can be found in Appendix A.1 - A.3.

Table 4.1: Performance metrics for the different models predicting for station 6.
The best result for each metric is highlighted.

Linear Model MARS Decision Tree Random Forest

MAE 9.06e-06 7.84e-06 7.93e-06 7.46e-06
MedianAE 2.94e-06 2.10e-06 1.86e-06 1.68e-06

MSE 2.47e-10 2.17e-10 2.48e-10 2.08e-10
RMSE 1.57e-05 1.47e-05 1.57e-05 1.44e-05
MAPE 34.3% 33.4% 35.2% 32.5%

MedianAPE 20.3% 17.4% 17.2% 16.3%
RSS 4.56e-07 4.00e-07 4.58e-07 3.83e-07

R2 0.802 0.827 0.802 0.834

We can observe a general trend that the random forest model produces the
most accurate results, followed by the MARS model. There are no large dis-
crepancies between the metrics. The random forest is the best in every metric.
The greatest differences between the models can be seen in the median absolute

17

4. Evaluation 18

error, where the linear model produces 75% higher errors than the random forest
model.

4.1.2 Errors over the day

To better understand where the errors are originating, we now analyze the dis-
tribution of the errors over a day. The configuration is the same as above, but
we are only looking at the errors of a random forest fit, as this is the most robust
model. Figure 4.1 shows the distribution of the errors over a day. The first sub-
plot shows the average power received per time of day to give some perspective
about the magnitude of the errors. In the second subplot, the absolute error
by the time of day is visualized by a box plot. This is a traditional Tukey box
plot, with the box representing the first, second and third quartile. The whiskers
represent the maximum and minimum datum still within 1.5 interquartile range
of the third and first quartile. The interquartile range is the difference between
the third and the first quartile. The third subplot shows a box plot of the mean
absolute percentage error (MAPE) by the time of day.

The MAPE is filtered as described in Section 3.1.1, which is why there are
no values for some hours. Because the MAPE tends to be higher with lower true
values, it produces the lowest errors when the average power is high. This is in
contrast to the absolute error. During the night, absolute errors are very low,
as the power received is consistently near zero. We can make out 3 peaks of the
absolute errors over the day: in the morning at 10, at noon at around 13 to 14
and in the evening at 19. At these times it is harder to predict whether someone
is in the office, as people do not always come in and leave at the same time.

4.2 Input Variables

4.2.1 Results of the Recursive Feature Elimination

From the RFE described in Section 3.2.1 we obtain models for each model type
and number of variables. We now evaluate their performance by the RMSE.
Figure 4.2 shows the accuracy of each model when reducing the number of pre-
dictor variables with RFE. Additional plots for the other stations can be found
in Appendix A.1. The decision tree model clearly stands out as its error in-
creases rapidly when removing variables. This has to be attributed to the fact
that the calculation of variable importance is suboptimal for decision trees. This
leads to important variables being removed before some of the weaker predictors.
With optimal subset selection, for example an exhaustive search, we expect the
behavior of the decision tree to be similar to the other models.

A second observation we can make is that for the other models, the error only
starts to increase significantly when removing the last few remaining variables.

4. Evaluation 19

0e+00

2e−05

4e−05

6e−05

A
ve

ra
ge

 p
ow

er

0e+00

2e−05

4e−05

6e−05

A
bs

ol
ut

e
er

ro
rs

0

100

200

M
A

P
E

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●

●

●
●
●
●

●●●●●
●
●●
●
●●●●

●

●●
●

●

●●●●

●

●●●●●

●

●●

●

●
● ●●●●●●●●●●●

●
●●●●●●●●● ●●

●●●●●●●●●●●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of day

Figure 4.1: Errors by time of day with random forest on station 6.

4. Evaluation 20

●

●
●

● ●

●

●

●
● ●

●

●

●

●

● ●
●

● ● ●

●
●

●

●

●
●

● ● ●

●
●

●
●

● ● ● ● ● ● ●
● ●

●
● ●

● ● ●

●

●

●

● ●

● ●
● ●

1.5e−05

1.8e−05

2.1e−05

2.4e−05

2.7e−05

0 10 20 30

Variables

R
M

S
E

●●●●

●●●●

●●●●

●●●●

Linear Model

MARS

Decision Tree

Random Forest

Figure 4.2: Model performance by number of variables for station 6. The mini-
mum errors are highlighted for each model.

4. Evaluation 21

We conclude that the five to ten most important variables already contain almost
all of the predictive power. Beyond a certain point, including more variables
makes the model even slightly worse. These variables therefore only contain
irrelevant or redundant information on which the model overfits.

4.2.2 Importance of Variables

We now evaluate the variable importance as described in Section 3.2.2. The
resulting scoring for the different models on station 6 is shown in Figure 4.3.
Additional plots for the other stations can be found in Appendix A.2. The
bars are sorted by the average score within a variable. Section 2.3 gives an
introduction to all the variables.

This plot must be interpreted with care, as the rankings are not very robust
and the differences between models come mostly from the different metrics. Still,
an observation that is also consistent across the different stations is that the time
of day (par.time) is less important for the linear model than for the other models.
This can be explained by the fact that the linear model is the only model that
cannot incorporate nonlinear effects. The relation between time of day and
received power is nonlinear as can be seen in Figure 4.1.

Another notable effect comes from the strongly correlated predictor variables.
As an example, the information between the illuminance of the last hour (Ev.lag1)
and the power of the last hour (P in.lag1) is mostly redundant. A model selecting
either of the two features first will then value the other less, as it has already
included the information. This effect can be seen with the linear model and the
decision tree. In random forest, it is counteracted by only sampling a fraction of
the variables at each split, as well as averaging over many trees.

To see how the variables rank across the different stations, we now only look
at the random forest variable importance, since it is the most robust. We then
again take the variable importances calculated in the first iteration of RFE. The
resulting scoring is shown in Figure 4.4.

The most important variables are consistent across the stations and unsur-
prisingly these are power and illuminance of the last hour. It seems that most
of the meteorological and ambient sensor information is not as important as
historical power data and time, which is again not surprising. Here, we also
see the effects of sunlight at the stations. Variables that are related to working
days (par.workday, par.weekday, par.workhour) are significantly more important
for stations 6 and 13 than they are for stations 14 and 17. The latter stations
are more influenced by sunlight and are thus less reliant on a person being in
the room.

4. Evaluation 22

meteo_Sunshine.lag24h

meteo_Sunshine.lag2

meteo_T.lag1

meteo_Dew.lag2

meteo_Dew.lag24h

meteo_T.lag2

meteo_P.lag2

meteo_Dew.lag1

RH_amb.lag24h

meteo_Sunshine.lag1

meteo_P.lag1

RH_amb.lag1

P_amb.lag1

meteo_P.lag24h

meteo_Irr.lag2

P_amb.lag2

P_amb.lag24h

par.workday

T_amb.lag1

meteo_T.lag24h

T_amb.lag24h

RH_amb.lag2

meteo_Irr.lag1

meteo_Irr.lag24h

P_in.lag4

Ev.lag24h

Ev.lag2

par.yearday

P_in.lag1

P_in.lag3

P_in.lag1w

P_in.lag2

par.time

T_amb.lag2

Ev.lag1

par.weekday

P_in.lag24h

par.workhour

0 10 20 30

Variable importance score

Linear Model

MARS

Decision Tree

Random Forest

Figure 4.3: Variable importance calculated using the different models on sta-
tion 6. Larger values mean higher importance.

4. Evaluation 23

meteo_P.lag24h

P_amb.lag24h

par.workday

P_amb.lag2

meteo_P.lag2

P_amb.lag1

par.weekday

meteo_P.lag1

meteo_Dew.lag1

T_amb.lag24h

RH_amb.lag24h

meteo_Sunshine.lag2

meteo_Dew.lag2

meteo_T.lag24h

meteo_Dew.lag24h

RH_amb.lag2

meteo_T.lag2

meteo_T.lag1

RH_amb.lag1

meteo_Sunshine.lag24h

par.workhour

T_amb.lag2

T_amb.lag1

par.yearday

meteo_Sunshine.lag1

P_in.lag4

P_in.lag1w

P_in.lag3

par.time

meteo_Irr.lag2

P_in.lag24h

Ev.lag24h

P_in.lag2

Ev.lag2

meteo_Irr.lag24h

meteo_Irr.lag1

Ev.lag1

P_in.lag1

0 10 20 30

Variable importance score

Station 6

Station 13

Station 17

Station 14

Figure 4.4: Variable importance calculated using random forest on the different
stations. Larger values mean higher importance.

4. Evaluation 24

 Time Power

 Time Power Sensors Meteo

 Time Power Meteo

 Time Sensors Meteo

 Time Power Sensors

 Time Sensors

 Power Sensors Meteo

 Power Meteo

 Power Sensors

 Power

 Sensors Meteo

 Sensors

 Time Meteo

 Time

 Meteo

1.5e−05 2.0e−05 2.5e−05

RMSE

Linear Model

MARS

Decision Tree

Random Forest

Figure 4.5: Model performance by variable classes for station 6.

4.2.3 Variable Classes

As described in Section 3.2.3, we now train and cross-validate models for all
combinations of variable classes. Figure 4.5 shows the resulting RMSE values
for station 6. Additional plots for the other stations can be found in Appendix
A.3.

The relative performance of the models is very consistent across different
combinations of classes. We can make out three groups of combinations. The
best models contain at least the time class and either power or sensor class.
Slightly worse are the models containing power or sensors but no time informa-
tion. Much worse are models that do not contain either power or sensors. In
this analysis, power and sensors are largely interchangeable. This is because the

4. Evaluation 25

0.0e+00

5.0e−06

1.0e−05

1.5e−05

10 Minutes 30 Minutes 1 Hour 4 Hours 1 Day

Prediction interval

R
M

S
E

Linear Model

Random Forest

Figure 4.6: Model performance by prediction interval for station 6.

sensors class includes illuminance, which is very strongly correlated to received
power. We verified this by excluding illuminance from the sensors, in which case
the class expectedly became irrelevant.

We conclude that beyond the time class and either power or illuminance class,
adding more variables does not improve the model significantly, if at all.

4.3 Prediction Interval

We now evaluate the performance for different prediction intervals, as described
in Section 3.3. Since the predicted average power received in an interval does
not have a time component, we can directly compare the error values. Figure 4.6
shows the model performance, measured by the RMSE, for different prediction
intervals on station 6. Plots for the other stations can be found in Appendix
A.4.

We can observe that both 10 minute intervals as well as 1 day can be more
accurately predicted than the intermediate intervals. The effect is the same for

4. Evaluation 26

0e+00

1e−05

2e−05

3e−05

Decision Tree Linear Model MARS Random Forest

R
M

S
E

Global

Local

Figure 4.7: Performance of the global and local models compared for station 6.

both model types. For the daily interval, this can be explained by the lower
variance of the aggregated power. There is much less variance of the average
power over an entire day when compared to the other intervals, which makes it
easier to predict. For 10 minutes, the power is more strongly correlated to past
values, as it is likely to stay the same for a period of time. This strong temporal
correlation also makes for a more accurate prediction.

4.4 Global Model

In Section 3.4, we describe a global model that does not use a station’s own data
for training. We now compare global models of each type to the locally trained
models. Figure 4.7 shows the prediction accuracy of the global and local models
for station 6. Plots for the other stations can be found in Appendix A.5.

We observe that the global models are significantly worse for all model types,
especially the MARS and linear model. A global model cannot capture the effects
specific to this station and could also overfit on the individual situations of the
other stations. The MARS and linear model are more prone to these overfitting
effects as they will also extrapolate beyond the range of the training data.

4. Evaluation 27

0e+00

3e−04

6e−04

9e−04

Decision Tree Linear Model MARS Random Forest

R
M

S
E

Global

Local

Figure 4.8: Performance of the global and local models compared for station 14.

4.4.1 Effects of Sunlight

We see this even more pronounced for station 14, which receives much more
power due to it being more exposed to sunlight. Figure 4.8 shows the same
comparison as described above for station 14. MARS immediately stands out
with a terrible performance of the global model. In this case, the MARS model
frequently overestimates the received power by a large amount, as the behavior
of the splines is uncontrolled outside the range of the training set. This makes
MARS worse than a linear model, as it is not limited to a linear fit across the
entire training set, but instead can model nonlinear kinks and interactions. The
tree-based models are also restricted in that they cannot predict power values
outside of the range contained in the training set. As a result, they under– or
overestimate here if the true value is larger/smaller than the maximum/minimum
of the training set.

4.5 Model Complexity

As described in Section 3.5, we now analyze how the different model types com-
pare regarding complexity and how performance is affected by reducing model
complexity for each type. The results for station 6 with a prediction interval of

4. Evaluation 28

1

10

100

1000

10000

O
pe

ra
tio

ns

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

B
yt

es

●

●

●

●
●●●●

●●●●

●●●●

●●●●

Linear Model

MARS

Decision Tree

Random Forest

●

●

●

●
●●●●

●●●●

●●●●

●●●●

Linear Model

MARS

Decision Tree

Random Forest

1.5e−05 2.0e−05 2.5e−05 3.0e−05 3.5e−05

RMSE

Figure 4.9: Memory and runtime complexity for each model compared to their
performance on station 6.

4. Evaluation 29

1 hour are shown in Figure 4.9. Additional plots for the other stations can be
found in Appendix A.6. In the first subplot, each curve represents the possible
combinations of prediction accuracy and runtime complexity. A diamond marks
the model with the lowest complexity and a dot marks the most accurate model.
The second subplot is the same but for the resource requirements of the models.
For each RMSE value, we can find the two complexity metrics required by the
different model types to reach that accuracy.

As expected, for models of very low memory and runtime complexity, a linear
model will be the best. Already beyond around 10 operations and 100 bytes,
a MARS model performs better. An interesting trend can be observed for the
decision tree, where the model performs worse with high complexity. This is
because a tree of too high depth will overfit, while a too shallow tree underfits. In
this case, the optimal tree depth is around 8. For a tree, the number of operation
scales linearly with depth, while the model size grows exponentially. We see that
the decision tree can compete with the MARS model in runtime complexity,
but a tree for the same accuracy always needs more memory than MARS. The
random forest reaches the lowest RMSE but with considerably higher complexity
than the other model types. A random forest of 1000 trees consumes more than
a megabyte in memory.

4.6 Memory Footprint of Runtime Variables

As our last experiment described in Section 3.6, we evaluate the memory needed
to store the variables for prediction. Figure 4.10 shows the memory used to store
the variables for each model generated by the RFE for station 6. Additional plots
for the other stations can be found in Appendix A.7.

We observe that beyond a few hundred bytes, a lot of memory is used for small
improvements to accuracy. The special behavior of the decision tree has been
explained in Section 4.2.1. For MARS and the linear model, the space used to
store the variable makes up most of the total memory footprint. For the decision
tree, variable memory and model size are roughly similar and for the random
forest, the model consumes significantly more memory than the variables.

4. Evaluation 30

●●

●●●●

●

●

●

●

●

●

●

●●

●●

●●●
●
●●
●
●
●
●
●●
●

●

●●
●

●

●

●
●

●●●
●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●
●

●
●
●
●

●
●
●

●
●
●

●
●

●
●●

●
●●

●
●

●
●

●

●
●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●●
●

●
●

●●●

●

●
●

●

●●

●
●
●●
●●

●

●
●●●

●●
●
●
●
●
●

●

●

●
●
●
●

0

500

1000

1500

1.5e−05 1.8e−05 2.1e−05 2.4e−05 2.7e−05

RMSE

B
yt

es

●●●●

●●●●

●●●●

●●●●

Linear Model

MARS

Decision Tree

Random Forest

Figure 4.10: Variable memory and performance of each model generated by
recursive feature elimination on station 6.

Chapter 5

Conclusion

In this thesis, we developed and evaluated models to predict the power of an
indoor solar energy harvesting system. We considered linear regression models,
multivariate adaptive regression splines, decision trees and random forest models.

The evaluation has shown that the random forest model is overall the most
accurate and robust. Compared to a linear regression model, we observe around
10% reduction in RMSE consistently across the experiments.

A second conclusion is that only few of the variables contain almost all the
predictive power. These are the variables derived from the time and past power
values.

When analyzing different prediction intervals, we discovered that intervals of
1 to 4 hours are the most difficult to predict. These are short enough to have
high variance, but not short enough for a high temporal correlation.

The unique environments of each location proved to be significant, making
it difficult to implement a single model for all stations.

The random forest model is significantly more complex than the others, re-
quiring more than 1000 operations at runtime and a megabyte of memory to
store the model for the best accuracy.

5.1 Future Work

The models we developed struggled to predict when direct sunlight will hit the
device. Only occurring at specific days of the year and times of the day depending
on the location, our generally trained models are not a good fit for such an effect.
However, the course of the sun relative to a specific location can be modeled
very accurately. Together with established meteorological forecasting models,
this could be used to more accurately predict solar influence at the stations.

Different models could be considered and evaluated, that might offer more
accurate predictions. Some examples would be single– or multivariate ARMA or
ARIMA [3], Markov models, or even long short-term memory approaches [9].

31

Bibliography

[1] ARM Cortex-M4 Technical Reference Manual, 2010. ARM
100166 0001 00 en.

[2] Bacher, P., Madsen, H., and Nielsen, H. A. Online short-term solar
power forecasting. Solar Energy 83, 10 (2009), 1772–1783.

[3] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[4] Breiman, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[5] Breiman, L. Classification and regression trees. Routledge, 2017.

[6] Craven, P., and Wahba, G. Smoothing noisy data with spline functions.
Numerische mathematik 31, 4 (1978), 377–403.

[7] Friedman, J. H. Multivariate adaptive regression splines. The annals of
statistics (1991), 1–67.

[8] Gini, C. Variabilità e mutabilità. Reprinted in Memorie di metodolog-
ica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio
Veschi (1912).

[9] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Inman, R. H., Pedro, H. T., and Coimbra, C. F. Solar forecasting
methods for renewable energy integration. Progress in energy and combus-
tion science 39, 6 (2013), 535–576.

[11] Jarraud, M. Guide to Meteorological Instruments and Methods of Obser-
vation (WMO-No. 8). 2008.

[12] Kohavi, R., and John, G. H. Wrappers for feature subset selection.
Artificial intelligence 97, 1-2 (1997), 273–324.

[13] Kullback, S., and Leibler, R. A. On information and sufficiency. The
annals of mathematical statistics 22, 1 (1951), 79–86.

[14] Quinlan, J. R. Induction of decision trees. Machine learning 1, 1 (1986),
81–106.

32

Bibliography 33

[15] Sturges, H. A. The choice of a class interval. Journal of the american
statistical association 21, 153 (1926), 65–66.

[16] Tofallis, C. A better measure of relative prediction accuracy for model
selection and model estimation. Journal of the Operational Research Society
66, 8 (2015), 1352–1362.

Appendix A

Additional Plots

Table A.1: Performance metrics for station 13

Linear Model MARS Decision Tree Random Forest

MAE 6.04e-06 5.32e-06 5.44e-06 4.88e-06
MedianAE 2.48e-06 2.03e-06 1.48e-06 1.54e-06

MSE 1.03e-10 9.12e-11 1.09e-10 8.40e-11
RMSE 1.01e-05 9.54e-06 1.04e-05 9.16e-06
MAPE 29.7% 28.0% 30.2% 25.9%

MedianAPE 17.5% 15.4% 15.3% 13.3%
RSS 1.79e-07 1.60e-07 1.90e-07 1.47e-07

R2 0.841 0.859 0.833 0.870

Table A.2: Performance metrics for station 14

Linear Model MARS Decision Tree Random Forest

MAE 8.38e-05 7.44e-05 7.06e-05 5.55e-05
MedianAE 3.65e-05 2.03e-05 8.68e-06 6.58e-06

MSE 4.84e-08 2.66e-07 6.12e-08 3.76e-08
RMSE 2.17e-04 2.94e-04 2.42e-04 1.89e-04
MAPE 22.3% 20.9% 22.6% 17.3%

MedianAPE 15.4% 14.7% 14.4% 10.7%
RSS 8.74e-05 4.80e-04 1.11e-04 6.78e-05

R2 0.664 0.705 0.610 0.747

Table A.3: Performance metrics for station 17

Linear Model MARS Decision Tree Random Forest

MAE 1.83e-05 1.56e-05 1.55e-05 1.33e-05
MedianAE 5.60e-06 1.85e-06 9.51e-07 7.46e-07

MSE 2.13e-09 2.36e-09 2.61e-09 1.73e-09
RMSE 4.60e-05 4.84e-05 5.09e-05 4.15e-05
MAPE 33.4% 35.3% 38.7% 31.1%

MedianAPE 26.5% 26.4% 30.3% 22.3%
RSS 3.91e-06 4.34e-06 4.81e-06 3.18e-06

R2 0.738 0.721 0.693 0.783

1

A. Additional Plots 2

Figure A.1: Model performance by number of variables for all stations.

A. Additional Plots 3

Figure A.2: Variable importance calculated using the different models on all
stations.

A. Additional Plots 4

Figure A.3: Model performance by variable classes for all stations.

A. Additional Plots 5

Figure A.4: Model performance by prediction interval for all stations.

A. Additional Plots 6

Figure A.5: Performance of the global and local models compared for all stations.

A. Additional Plots 7

Figure A.6: Memory and runtime complexity for each model compared to their
performance for all stations.

A. Additional Plots 8

Figure A.7: Variable memory and performance of each model generated by re-
cursive feature elimination on all stations.

	Acknowledgements
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Stations
	2.2 Available Measurements
	2.3 Variable Selection
	2.4 Models
	2.4.1 Linear Regression
	2.4.2 Multivariate Adaptive Regression Splines
	2.4.3 Decision Tree
	2.4.4 Random Forest

	3 Prediction
	3.1 Accuracy
	3.1.1 Performance Metrics
	3.1.2 Model Configuration

	3.2 Input Variables
	3.2.1 Recursive Feature Elimination
	3.2.2 Importance of Variables
	3.2.3 Variable Classes

	3.3 Prediction Interval
	3.4 Global Model
	3.5 Model complexity
	3.6 Memory Footprint of Runtime Variables

	4 Evaluation
	4.1 Accuracy
	4.1.1 Performance Metrics
	4.1.2 Errors over the day

	4.2 Input Variables
	4.2.1 Results of the Recursive Feature Elimination
	4.2.2 Importance of Variables
	4.2.3 Variable Classes

	4.3 Prediction Interval
	4.4 Global Model
	4.4.1 Effects of Sunlight

	4.5 Model Complexity
	4.6 Memory Footprint of Runtime Variables

	5 Conclusion
	5.1 Future Work

	Bibliography
	A Additional Plots

