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Abstract

Drone delivery is currently a hot topic in the industry, however existing ap-
proaches do not provide the ability to make deliveries to individual customers in
an urban environment. This thesis shows a proof of concept of a drone capable
of delivering payloads to mobile clients in an urban environment. We build a
prototype using an o�-the-shelf drone to which we add an additional camera.
The drone starts close to the approximate drop-o� location and detects and ap-
proaches the client using computer vision. The target is indicated by a visual
marker which is displayed on a smartphone. We test the system in a simulated
environment and in a real-world scenario.
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Chapter 1

Introduction

Altough drone delivery is a hot topic, companies like Amazon, Google, UPS
mostly focus on rural areas with almost no buildings in sight. But according to
this statistic [1] 55% of the world population live in an urban environment with
a growing tendency. Therefore, it seems important to tackle the last mile drone
delivery problem in an urban environment.
There are two reasons why a di�erent approach than simple GPS navigation is
needed:

• The GPS signal re�ects o� of buildings and therefore the received GPS
position can include up to approximately 10 meters of inaccuracy. This is
unacceptably big if the goal is to deliver payloads to individual clients,e.g.,to
their balcony.

• To avoid collisions with obstacles while approaching the client sensors for
mapping the environment of the drone are needed

Brunner, Szebedy, Tanner and Wattenhofer [2] developed a prototype drone ca-
pable of accurately �nding and approaching a visual marker attached to a wall
in an urban environment using visual navigation and collision avoidance.
Our contribution is a new target tracker. It uses a smartphone as target marker
instead of a printed symbol attached to a wall. According to this statistic [3] 90%
of the swiss population own a smartphone. Therefore, the developed approach is
very mobile as potential clients do not need any special equipment except their
smartphone.
Our approach is based on the work of Nakazawa et al. [4] who use LEDs with two
di�erent brightness levels and a PPM modulation to track and identify individual
LEDs for indoor positioning of a ground robot.
There are some other approaches for tracking LEDs, e.g., Nagura et al. [5] who
develop a visual light communication mechanism which relies on an LED array
to detect the correct signal. But they are not applicable to our scenario because
they either rely on:

• LED arrays, which we cannot use because the target location tracker is
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1. Introduction 2

supposed to work with a single smartphone and dividing the already small
smartphone screen into an array of markers would signi�cantly reduce the
detection range.

• Special unique color of the LED which is used in a prede�ned environment
where it is known that no other object has this particular color. We cannot
use this approach because the detection has to work outdoors in a generic
environment where we do not know which colors are present.

Other research papers in the area of autonomous drone delivery include the
work of Krakowczyk et al. [6] who focus on the distributed aspect of an au-
tonomous drone delivery �eet and Mardiansyah et al. [7] who focus on an emer-
gency payload delivery system including a mechanism to release the payload.
They also use visual navigation and target detection. Unfortunately they do not
share the implementation details but it seems that they use a very big marker
with a color unique in the environment. Further, Amazon [8], Google [9] and
UPS [10] all have current research projects on autonomous drone delivery in
rural areas.



Chapter 2

Background

This thesis is based on and extends the work of Brunner, Szebedy, Tanner and
Wattenhofer [2] who show a proof of concept for the urban last mile delivery
using the Intel Aero RTF drone [11].
Their work provides the following software components which are used in this
thesis:

• Visual Odometry: vision based localization using Semi-Direct Visual
Odometry (SVO) [12] and calibrated for the Intel Aero RTF drone

• Trajectory Planner: calculates a collision free trajectory depending on
the current position of the drone, the desired trajectory endpoint and the
image stream of the depth cameras. It uses a three-dimensional circular
bu�er based on the proposition of Usenko et al. [13] to create an occupancy
grid of the drone environment.

• Control Logic: interface between the system components and responsible
for autonomous mission execution. It uses ROS topics to communicate
with the other nodes and the MAVROS package to communicate with the
autopilot.

• Simulation Environment: Gazebo simulation environment with a pre-
con�gured scenario including a model of the Intel Aero RTF drone and
simulated camera streams.

Figure 2.1 shows an overview of the hardware components of the unmodi�ed
Intel Aero RF drone and the following list includes the most important speci�-
cations of the used Intel Aero RTF drone:

• Intel Aero Flight Controller

� PX4 Autopilot

� STM32 Microcontroller

� IMU, magnetometer, altitude sensors

3



2. Background 4

Figure 2.1: Intel Aero RTF drone [11]

• Intel Aero Compute Board

� Ubuntu 16.04

� Intel Atom x7-Z8750 Processor

• Realsense R200 camera, front facing

• GPS



Chapter 3

Approach

Our scenario is the following: A client uses a smartphone app to start the de-
livery. The smartphone transmits its approximate GPS location and displays a
marker. The delivery drone then autonomously navigates to the received GPS
coordinates �ying above the rooftops, because the GPS signal is accurate in this
height since it is not disrupted by buildings. Then it switches to vision based
navigation and descends to an altitude above ground from which it can reliably
detect the target. If the target cannot be directly localized the drone starts to
scan the area until the target is found. The drone approaches the target, drops
the payload next to it and then leaves. The target marker needs to face the sky
and no obstacles should be located directly above the target, otherwise the drone
is not able to see the target.
The target marker displayed on the smartphone are plain red and blue screens
which toggle with a certain frequency. Therefore the target cannot be detected
from a single frame and the color of objects needs to be tracked over time. All
potential targets, meaning they have either the color blue or red, are tracked
using optical �ow to determine if one of them changes to the other color and is
therefore the target marker.
However, this work does not treat the transmission of the GPS coordinates from
the client, the payload release, and the return back to the launch location. These
topics need to be approached in future work.
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Chapter 4

System Architecture

An overview of the system architecture of the autonomous drone can be seen in
Figure 4.1. The application is executed on two di�erent processors on the drone:
the autopilot runs on an embedded microcontroller with real-time guarantees and
all other software components, including the visual marker tracker, are executed
on a quad-core processor located on the compute board. All these software tasks
except the autopilot use the Robot Operating System (ROS) [14] as a middle-
ware. ROS processes are called nodes and they can communicate through message
queues called topics.
The following list brie�y explains the task of each software component:

• Autopilot: Take position setpoint as input and based on the estimate of
the current position calculate the required motor power as output. PX4 is
used like in [2] without changes.

• Visual Odometry: Take visual data from a down-facing monochrome
camera as input. The output is the estimate of the local position. This
block is especially important in urban environments where the accuracy of
GPS localization is limited. The component of [2] is used without changes.

• Trajectory Planner: Take depth images from front- and bottom-facing
RealSense camera and compute an occupancy grid. Based on desired end-
point coordinates, the trajectory planner computes the setpoints for the
drone which result in a collision free trajectory to the endpoint and pub-
lishes them on the appropriate ROS topic. Our implementation is based
on the corresponding software component of [2] and extended with depth
information from the additional depth camera that we attach to the drone.

• Visual Marker Tracker: Take RGB and depth frames as input and pub-
lish the position of the target, if detected, in camera coordinates. If the
distance is unknown, a normalized vector pointing in the direction of the
target is published. We develop this component from scratch with a new
approach.

6



4. System Architecture 7

Figure 4.1: System architecture of the drone. The rounded green rectangles
represent hardware components, software components are represented by the blue
rectangles.

• Control Logic: Is responsible for the autonomous execution of the mis-
sion. It manages the current system state and is the interface between the
two processors. Based on the current system state it calculates the next
endpoint position and sends setpoint positions to the autopilot based on
the generated trajectory for the given endpoint. The implementation we
use is based on the previous work of [2] and adapted to the new target
marker scenario.



Chapter 5

Implementation

The quad-core processor of the Intel Aero RTF drone allows us to run Ubuntu
16.04 and the Robot Operating System(ROS), as well as computer vision algo-
rithms, on-board. Compared to [2] an additional bottom camera is mounted to
the drone and a new method for the visual target tracker is implemented. The
depth information of the added camera is added to the occupancy grid and en-
hances collision avoidance. The control logic is only slightly adapted to work
with our visual target tracker.

5.1 Robot Operating System (ROS)

The Robot Operating System is a middle-ware or framework for building robot
applications. The processes of such an application are called nodes and they
communicate through message queues which are called topics. ROS is compatible
with various data types as topics and it is also possible to de�ne new data types.
Only the visual target tracker node is written from scratch. To publish the images
from the camera added at the bottom of the drone in ROS topics an open source
node from the community is used. All other nodes are based on the previous
work of [2] with some small adaptions.

5.2 Bottom Camera

To detect the target marker and improve collision avoidance with additional depth
information, a RealSense D435 [15] camera is attached to the bottom of the drone
as seen in Figure 5.1. It is a wide-angle camera with global shutter and high
resolution. The camera can measure distances from 0.2 meters to approximately
10 meters.
The camera is screwed onto a 3D printed holder based on this model [16] which
is attached to the drone.
To publish the RGB and depth image as ROS topics, the realsense2_camera [17]
ROS wrapper is used.
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5. Implementation 9

Figure 5.1: Bottom view of the Intel Aero RTF drone with the Intel RealSense
D435 camera attached attached to the 3D printable mounting part in white.

(a) Red screen of the target marker (b) Blue screen of the target marker

Figure 5.2: Red and blue screen of the target marker.

5.3 Visual Marker

We develop a simple Android application capable of switching the display between
red and blue color indicating the target location. Figure 5.2 shows the two
di�erent screens. For testing a frequency of 1 Hz is used. A possible adaption in
the future could be to use an appropriate modulation scheme, e.g. PPM as used
by Nakazawa et al. [4] for identi�cation of the delivery recipient.

5.4 Visual Marker Tracker

The visual marker tracker is implemented as a ROS node. It receives depth and
color images from the bottom camera and publishes the target position in camera
coordinates if the target is found. Additionally it also needs to publish the trans-
formation from camera to drone frame coordinates using the tf2 ROS transform
package.
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Computer vision algorithms from the OpenCV [18] library are used to process
the color frames. In each cycle, the following steps are executed:
Receive a new frame from the appropriate ROS topic published by the bottom
camera. This frame is processed by applying an averaging �lter and a series of
erosions and dilations and then converted to the HSV color model. Thresholding
operations on the HSV image are executed to detect the pixels in the desired red
or blue color. The resulting contours are �ltered according to their size: only con-
tours with at least 4 pixels are accepted. The contours are also �ltered on their
shape, accepting only contours which can be approximated by 4 points meaning
it has rectangular shape.
The tracking over time uses optical �ow. A grayscale frame from the current and
last iteration is used together with the pixel coordinates of the centers of all the
contours found in the previous iteration. Optical �ow calculates the pixel coor-
dinates of these old centers in the current frame. If the calculated new position
of an old center falls within one of the current contours, the respective contours
can be associated to be the same object. If no old center falls within a current
contour, a new object is created for that contour. If an old center can not be as-
sociated with a new contour for a few iterations, the respective object is deleted.
If an object is seen in multiple frames and it can be associated with contours
of both red and blue color it is the target marker. The pixel coordinates of the
center of the target is used to calculate the direction of the target and read the
distance information from the depth frame. If there is a valid distance value
for the target, the target marker coordinates are published on the appropriate
ROS topic in camera coordinates. Otherwise, if there is no valid distance value
a normalized vector pointing towards the target is published on the appropriate
ROS topic in camera coordinates.

The biggest challenge proved to be �nding the right camera settings and
threshold values applied to the HSV image. The color of the smartphone display
as perceived by the camera is very dependent on the environment. In bright
environments the image tends to be over exposed and therefore the color of the
smartphone on the image changes.
To mitigate this e�ect the camera exposure time and gain are manually set to
the minimun possible value. It is still possible to see the screen on the image
even in a completely dark room. Therefore, we can be sure that the image is
never underexposed to detect the screen. We can do this because we only want
to be able to see the screen of the smartphone and do not care about the rest of
the image, since the frames from the bottom camera are only used to detect and
track the visual marker.

The visual target tracker node outputs the current frame with circles drawn
for debugging and visualization purposes. An object which can only be associated
with one of the two colors is surrounded by a purple circle as seen in Figure 5.3.
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Figure 5.3: Object with one of the two target colors detected.

As soon as the second color is detected on the object it is identi�ed as the target
and a yellow circle is drawn around the object as seen in Figure 5.4.

5.5 Trajectory Planner

The trajectory planner node from the work of [2] is used. It is extended to also
read depth images from the bottom camera. The transformation from bottom
camera to drone frame is applied to the data which is then inserted to the occu-
pancy grid.

5.6 Control Logic

The implementation of [2] is used as a base. It is adapted for our new visual
marker tracker. When the location of the target marker is received, it is trans-
formed to the world coordinate frame.

The autonomous drone delivery application is executed in the following steps:
The drone takes o� and �ies to a prede�ned starting point from where to start
scanning for the target. When the drone arrives at this location, it starts scanning
the area on a given height above ground until the target marker is detected. The
scanning scheme is visualized in Figure 5.5. When the marker is detected the
drone centers the marker at the bottom and approaches it from above. When
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Figure 5.4: Second target color detected on the object. The drone now knows
that it is the target marker.

located about 1 meter above the target, the drone signals that it successfully
approached the target marker and lands about 1 meter to the side.

5.7 Simulation

The simulation is executed in the Gazebo environment. Figure 5.6 shows an
overview of the simulation architecture.
A generic quadcopter model is used and cameras with the appropriate position,
orientation and technical speci�cations are attached to the quadcopter. A model
of the drone can be seen in Figure 5.7. The output of these cameras is simulated
by Gazebo. Also a model of a smartphone which toggles its color between red
and blue, the target marker, is inserted to the simulation based on the dimensions
of a Samsung Galaxy S8.
PX4 o�ers software-in-the-loop (SITL) simulation. All the other ROS nodes
are executed as normal and receive their inputs from the simulated components.
Therefore it is possible to conveniently simulate all system components on a single
Ubuntu computer.

5.8 Test Flights

Test �ights in the �eld are done on a big open �eld. The �eld is partially covered
by leaves and on some days with snow. Two di�erent kind of �ight tests are
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Figure 5.5: The trajectory of the autonomous delivery drone in the x-y plane
when scanning the area. The height above ground is kept constant.

Figure 5.6: System architecture of the autonomous delivery drone in the simula-
tion. The green rounded rectangles represent the simulated hardware components
and the blue rectangles represent the ROS software nodes. The components com-
municate with each other through the data structures described by the ellipsoids.
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Figure 5.7: Model of the autonomous delivery drone in the simulation with sim-
ulated cameras attached.

executed:

• Test the maximum detection distance in di�erent conditions (e.g., snow or
no snow, di�erent lighting conditions).

• Demonstrate that the system is working for a given scanning altitude which
is appropriate for the given conditions, as determined by the previous tests.

Figure 5.8 shows a test �ight. The drone detected the target marker and is
currently approaching it.
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Figure 5.8: Autonomous delivery drone approaching the target marker in a �eld
test.



Chapter 6

Evaluation

Since there are no standardized evaluation methods for drone delivery applica-
tions used in the community, empirical results are the best option. A simulation
environment is essential for development and testing of an autonomous delivery
drone since �eld tests are costly in terms of time and also money in case of a
crash. But test �ights are also executed to demonstrate that the system works.

6.1 Simulation

We implemented a simulation scenario with a few obstacles placed in the world
and a smartphone displaying the target marker located on the �oor. The au-
tonomous drone is capable of localizing and approaching the marker from a start-
ing position 20 meters above ground.
We can also verify that the trajectory planner includes the distance information
into the occupancy grid by looking at the RVIZ visualization.

6.2 Test Flights

Figure 6.1 shows an overview of the �eld test setup. A laptop is used to start
code execution using an ssh connection. The transmitter is used to control the
drone in manual mode in case something goes wrong.
The maximum detection distance of the target marker depends on the environ-
ment. If the weather is very sunny or the scene is covered in a lot of re�ective
surfaces (e.g.,snow) the target marker usually can not be detected because in this
case the scene is too bright, chaning the perceived color of the target marker. The
problem is that the gain is already at the minimum and the RealSense API does
not allow to choose an even shorter exposure time. However, in the realsense-
viewer, a tool from Intel, it is possible to go below that level. We believe that
the application can also work in sunny conditions if the API is updated and a
shorter exposure time can be set, or alternatively by using a di�erent camera
which allows to set the exposure time adequately short.
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Figure 6.1: The �eld test setup. The transmitter can be used to control the
drone in manual �ight mode or the compute board can control the drone through
the MAVLink protocol in o�board mode. A groundstation can establish an ssh
connection to the compute board to start code execution.

However, without direct sunlight and snow we were able to execute a successful
test �ight. The drone starts scanning the �oor at 10m above ground level and
successfully detects and approaches the target marker as seen in Figure 5.8.

6.3 Image Resolution

We evaluated how the maximum detection range and average processing time per
frame compare using two di�erent image resolutions of the bottom camera.
The values are only meaningful in relation to each other and do not have an
absolute interpretation since they vary depending ond the environment and the
processing power of the laptop that this test was executed on.
From Table 6.1 we can see that for an increased detection range by a factor of
approximately 1.2 the average processing time is increased by a factor of approx-
imately 2.8. Still it is unclear which resolution is the better, they both have
advantages: An increased detection range allows the drone to �y higher and po-
tentially detecting the target marker faster. However, a lower processing time
makes the detection more stable as the performance of optical �ow improves if
the time between two consecutive frames is decreased.
It is not trivial to say what resolution is optimal for the application. Additional
extensive testing is needed.
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Image Resolution
[pixels × pixels]

Maximum Detec-
tion Range [m]

Average Processing
Time [ns]

1920 × 1080 18 ± 1 50 ± 2

1280 × 720 15 ± 1 18 ± 2

Table 6.1: Comparison of two di�erent bottom camera resolutions considering
maximum detection range of the target tracker and average processing time of
the target tracker for analyzing a single frame.



Chapter 7

Conclusion And Future Work

Altough today autonomous drone delivery is not really commercially used, this
may become reality in a couple of years. Our work provides a further step in the
usability of such an autonomous delivery system as it shows a proof of concept
for an autonomous drone capable of detecting and approaching a target marker
displayed on a smartphone screen. The only equipment a potential client needs
is a smartphone which is convenient for the client and very mobile. But before
this approach can be commercially used it needs to be improved to work in every
environment.
Additional technical challenges that need to be solved include: designing a cus-
tom application-speci�c drone that is e�cient and safe, a mechanism to transport
and release the payload once the target is reached, as well as appropriate secu-
rity measurements against,e.g., jamming or malicious clients trying to hijack a
delivery. Also the trajectory planner needs to be improved not only to avoid
obstacles which it recognizes from the available depth data, but also to always
orient the drone in a way that the available depth cameras take measurements
in the direction of movement.
Further challenges for managing a delivery �eet include: distribution of base sta-
tions, optimal assignment of drones to deliveries.
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