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Abstract

In this thesis we look at different heuristics for the Arvy-class of algorithms for
solving the distributed mutual exclusion problem, focusing on sequential requests.
This includes the previously known algorithms Arrow and Ivy but many new ones
as well. We will see that Arrow with a star tree is one of the best solutions in many
cases. However we also show that a new heuristic specialized on nested clique-like
graphs can still have better performance. In addition another new heuristic based
on measuring request probabilities allows for better performance with adversarial
requests. To evaluate the running time of Arvy heuristics, a flexible Haskell
library was developed whose types guarantee correctness at compile time.

Keywords: Arrow, Ivy, distributed directory protocol, distributed mutual ex-
clusion

CR Categories: Network algorithms
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Chapter 1

Introduction

In many areas of computing there are cases where a single resource has to be
shared between multiple components, with only one of them allowed to access it
at a time. Components can request the resource at any time, after which they
should receive it eventually. In a distributed setting an algorithm to solve this is
called a distributed mutual exclusion algorithm or distributed directory protocol.
An easy solution is a home-base algorithm, where a single node is dedicated to
handling all requests sequentially, with the disadvantage of a lot of traffic and
contention for many concurrent requests. Better solutions to this problem include
the spanning-tree-based Arrow (also known as Raymond’s algorithm) and Ivy
protocols. Both of these algorithms can be generalized to the Arvy [1] algorithm,
which allows for a wide range of different heuristics to be used for determining
its behavior, while still guaranteeing correctness. There also exist other kinds of
algorithms to solve this problem based on message broadcasting or quorums.

In this thesis we come up with new Arvy heuristics and measure their empir-
ical performance in a simulation of sequential requests.

1.1 Related Work

Raymond [2] originally introduced an Arrow algorithm where a radiating star tree
was found to be the best topology. Simulations showed that randomly constructed
trees have an average diameter of about log n which was also found to be a good
approximation for the number of messages necessary for a request. Under heavy
load however it was shown to only require about 4 messages. Also for random
trees, Rényi and Szekeres [3] showed the expected tree height from an arbitrary
root node to be about

√
2nπ. Later Demmer and Herlihy [4] independently de-

veloped the same Arrow algorithm. They analyzed its complexity for a minimum
spanning tree and found it to be optimal within a factor of 1

2(1+MST-stretch(G)).
Kuhn and Wattenhofer [5] proved that Arrow is O(logD)-competitive, where D
is the diameter of the spanning tree it operates on. Herlihy and Warres [6] com-
pared Arrow to a home-base algorithm and found Arrow to perform much better
under load. Ghodselahi and Kuhn [7] showed that the competitive ratio of the

1



1. Introduction 2

Arrow protocol is constant on certain tree topologies. Peleg and Reshef [8] showed
that Arrow on the best shortest-path tree has at most 2 times longer paths than
in the graph.

Ivy was introduced before Arrow by Li and Hudak [9]. An amortized bound
of O(log n) for path reversal was shown by Ginat et al. [10] which is equivalently
Ivy’s number of messages per request. In [11] this bound was shown to be tight
with a tree that requires log n many messages for every request in a specific
request sequence.

Arvy was newly introduced by Khanchandani and Wattenhofer [1] where it
was shown to be correct in asynchronous networks with concurrent requests in
arbitrary topologies. Since Arvy generalizes both Arrow and Ivy, this proves
their correctness as well. In addition they show an Arvy heuristic with constant
competitive ratio on ring graphs.

1.2 Model

We consider a complete graph G = (V,E) with n vertices and
(
n
2

)
edges.

Metric Costs Each edge has a cost/distance c : E → R+ associated with
it, representing the amount of time it takes for a message to traverse it. This
function forms a metric space:

• The cost from a node to itself is zero: ∀v : c(v, v) = 0

• Costs between different nodes are positive: ∀u, v : u 6= v ⇒ c(u, v) > 0

• Costs are the same in both directions: ∀u, v : c(u, v) = c(v, u)

• The triangle inequality holds: ∀u, v, w : c(u,w) ≤ c(u, v) + c(v, w)

As a reasonable constraint, a node can only query costs for edges to its neigh-
bors. In a realistic scenario it’s these costs that can be obtained and updated by
doing regular pings to other nodes. While we don’t consider changing costs in
our model, there is no inherent reason the heuristics we describe can’t work in
such cases.

Instantaneous Computations In addition, every node is modeled as a ma-
chine with the ability to execute arbitrary effectful code such as reading/writing
state or generating randomness. We model execution to be instantaneous such
that no time passes during computations. Therefore traversing graph edges are
the only place to spend time on.



1. Introduction 3

Sequential Requests A major simplification we make is that nodes can only
request the token sequentially. So only after the token has reached the request-
ing node, another node can issue another request. Therefore requests can be
represented as a series R = {r1, r2, . . . }, ri ∈ V where ri encodes the i-th request
originating from node ri. While this series could be infinite, we let it be finite
such that we can reason about its total running time.

Request Paths In the type of algorithms we will look at, when the i-th request
is made by node ri, the request travels along some path A(i) = {a(i)0 , a

(i)
1 , . . . , a

(i)
li
}

with li = |A(i)| − 1 being the index of the last node and also the number of
messages that are being sent. The first node in this path a

(i)
0 = ri is the node

issuing the request, while the last one is currently holding the token. After the
request was sent along this path, the token is then sent directly from a

(i)
li

to a(i)0

to fulfill the request. If the requesting node has the token already, then |A(i)| = 1.
It holds that a(i)0 = a

(i+1)
li+1

for all i ∈ N, meaning the node making a request in
one request will be the last node in the request path of the following request.

Performance In order to be able to talk about performance of such algorithms,
we first define c(A(i)) to be the cost of traversing request path A(i), which will
be the sum of the costs of the edges it includes:

c(A(i)) :=

li∑
k=1

c(a
(i)
k−1, a

(i)
k ) (1.1)

For graph cost normalization we also define cavg to be the average cost of an
edge in the graph:

cavg =
1

|E|
∑

(u,v)∈E

c(u, v) (1.2)

With this in place we define performance as follows

• Arguably the most important performance measure for comparing different
algorithms is the time it takes to satisfy the requests. For a single request
this includes the cost to traverse the request path as well as the cost to
send the token back to the requesting node. However since the cost to send
the token back does not change between different algorithms, we ignore it
to get a simpler measure for comparison. To normalize the costs, we divide
by cavg, and to get a result over all requests R we take the average over all
individual requests. With this we get the definition for the average request
time Ctime:

Ctime(R) =
1

|R|

|R|∑
i=1

c(A(i))

cavg
(1.3)
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• Another interesting measure is the number of messages being sent per re-
quest, also known as the hop count. While this isn’t very useful with the
restrictions of instantaneous execution and sequential requests in our model,
it can give us a sense of how well algorithms would do without them. We
use the following definition for the average request hops Chops:

Chops(R) =
1

|R|

|R|∑
i=1

li (1.4)

1.3 How Arvy Works

In this section we describe the Arrow and Ivy algorithms in detail, followed by
the generalization to the Arvy-class of algorithms.

All of these are based on the idea of maintaining a rooted spanning tree over
time: Every node stores a pointer parent : V → V pointing to its parent in the
tree, while the root node points to itself. When a (non-root) node a0 needs the
token, it sends a request message towards its parent a1 = parent(a0). When node
ai receives such a request, it forwards it to its own parent ai+1 = parent(ai) and
so on until the root al containing the token is reached. This forms a request path
A = {a0, a1, . . . , al}. The final node then finishes its own work with the token
after which it gets sent directly to a0 such that the request is fulfilled. Now to
make this a functioning algorithm, the parent pointers along this request path
need to be inverted in some way to restore the rooted tree. Such a heuristic for
inverting the pointers is what differentiates Arvy algorithms from each other. We
will now look at what heuristics Arrow, Ivy and Arvy in general use.

1.3.1 Arrow

The Arrow algorithm is the simplest way to maintain a rooted spanning tree,
in that it just inverts the pointers along the request path: When ai+1 receives
a request from ai, it sets parent(ai+1) = ai. See Figure 1.1 for a walk-through
of a request with Arrow. Notable with Arrow is that it doesn’t ever change the
structure of the spanning tree, meaning that the initial tree is crucial for its
performance.
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1 2
needs token

3

4has token

5

(a) Node 2 needs the token which is cur-
rently at node 4, which is the root of the
spanning tree

1 2
3

4
5

request from 2

(b) Node 2 sends a request towards its par-
ent node 3 after which it sets its parent to
itself. Temporarily there are multiple root
nodes

1 2
3

4
5

(c) Node 3 receives the request and forwards
it to its parent node 4 after which it sets its
parent to node 2 from which it received the
request

1 2
3

4
5

(d) Node 4 receives the request, resulting in
it sending the token back to the requesting
node 2. Meanwhile it updates its parent to
node 3 from which it received the request
from. The rooted spanning tree is now re-
stored

Figure 1.1: Arrow example

1.3.2 Ivy

Ivy uses a different strategy for inverting the arrows, namely that every node
ai+1 receiving the request sets its new parent to the node that made the request:
parent(ai+1) = a0. Therefore a0 ends up being the center of a star consisting of
all nodes along the request path. Intuitively this should give good performance
since shortcuts to the new root node get created, which should allow future
requests to find the token faster. Figure 1.2 shows an example of Ivy.
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1 2
needs token

3

4
5has token

request from 2

(a) Node 2 needs the token which node 5
currently has. It sends a request message
towards its parent node 3 after which it sets
its parent to itself

1 2
3

4
5

(b) Node 3 forwards the request to node 4,
then it sets its parent to node 2 since that’s
the node that sent the original request

1 2
3

4
5

(c) Node 4 receives the request and forwards
it further, then it sets its parent to node 2
as well since it’s is the requesting node

1 2
3

4
5

(d) The request arrives at node 5 which is
holding the token. It sends the token to the
requesting node 2, then it sets the parent to
node 2 as well. A star including all nodes in
the request path is formed, centered around
the requesting node

Figure 1.2: Ivy example

1.3.3 General Arvy

Arvy is a class of algorithms generalizing Arrow and Ivy by allowing nodes ai+1

that received a request to set their parent to any node the request already traveled
through, so parent(ai+1) ∈ {a0, . . . , ai}. In the case that the requesting node a0
is selected, this is equivalent to Ivy. If the node from which the request was
received from ai is chosen, this is equivalent to Arrow. Arvy therefore generalizes
both Arrow and Ivy. See Figure 1.3 for an example where each node chooses a
random new parent out of the available ones.
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1 2
needs token

3

4
5has token

request from 2

(a) Node 2 needs the token so it sends a
request for it towards its parent node 3

1 2
3

4
5

(b) Node 3 receives the request, forwards it
and chooses the only possible new parent
node 2

1 2
3

4
5

(c) Node 4 receives the request and forwards
it. It can now choose to connect back to ei-
ther node 2 or 3, since the request has trav-
eled through both of them. It chooses 2

1 2
3

4
5

(d) Node 5 receives the request for the to-
ken, making it send it to the requesting
node 2. For selecting its new parent, it can
choose between 2, 3 and 4, since all of those
nodes have been traveled through already, it
chooses node 3

Figure 1.3: Arvy example



Chapter 2

Algorithms

This chapter describes all the Arvy heuristics to be tested. A simplified version of
a general algorithm can be written as follows. Here we use Ak = {a0, a1, . . . , ak}
to denote the nodes on the request path already traveled through, while ak+1 is
the node that needs to select a new parent out of Ak.

Algorithm 1 Arvy algorithm
function RequestToken(a0) . Node a0 wants the token

if parent(a0) 6= a0 then
send request for token to parent(a0)
parent(a0)← a0

end if
end function
function ReceiveRequest(ak+1) . Node ak+1 receives a request

if parent(ak+1) = ak+1 then
send token to a0

else
forward request to parent(ak+1)

end if
parent(ak+1)← SelectNewParent(Ak)

end function

All Arvy heuristics will have to define an implementation of SelectNew-
Parent.

2.1 Arrow

As already explained in Subsection 1.3.1, Arrow maintains the structure of the
spanning tree by always selecting the most recent node as the new parent, there-
fore inverting the arrows.

8



2. Algorithms 9

function SelectNewParent(Ak)
return ak

end function

2.2 Ivy

Also explained already in Subsection 1.3.2, Ivy always connects every node along
a request path to the node that made the original request

function SelectNewParent(Ak)
return a0

end function

2.3 Uniformly Random

Not particularly interesting, but good as a reference point is a completely random
heuristic, selecting a new parent uniformly random from all available choices.

function SelectNewParent(Ak)
a←u.a.r. Ak

return a
end function

2.4 Edge Cost Minimizer

Since algorithms have access to the edge costs, we should make use of them. A
simple heuristic using them is one that always chooses the node with minimum
edge cost as the new parent, see Figure 2.1 for an example. Intuitively, this
heuristic should perform well since short paths make for short request paths.

function SelectNewParent(Ak)
return ai such that c(ak+1, ai), i ∈ {0, . . . , k} is minimal,
use highest i for tie-breaking

end function

Notable properties of this algorithm include

• The total edge cost in the tree can never get bigger, since a previous edge
between ak and ak+1 is also a candidate in the parent selection.

• This in turn means that with a good enough distribution of nodes initiating
requests, the tree will eventually converge to a minimum spanning tree with
which total edge cost is lowest
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a0

a1

a2

a3

a4

request path

3

5
1

4

(a) The request arrives at a4 which now
needs to decide which one of a0, . . . , a3 to
choose as a new parent. For this it can ac-
cess the edge costs to all of them.

a0

a1

a2

a3

a4

1

(b) a2 gets chosen as the new parent since
the edge towards it has the smallest cost.

Figure 2.1: Edge Cost Minimizer example with four node in the request path.

• Consequently, once the tree has converged, this algorithm behaves exactly
the same as Arrow, which never changes the tree by design. Therefore to
get the asymptotic behavior of this heuristic, one can simply start with a
minimum spanning tree directly and run Arrow on it. This seems to imply
that in general this heuristic isn’t any more powerful than Arrow.

2.5 Local Pair Distance Minimizer

An even better measure to minimize is the total distance between all pairs of
nodes in the spanning tree T , defined as

Cpairs(T ) =
∑

u,v∈V,u<v

dT (u, v) (2.1)

where dT (u, v) is the cost of the shortest path between nodes u and v in
the tree. This directly corresponds to the performance of Arrow with uniformly
random requests, since all pairs of nodes have the same probability of being used,
meaning their distance in the tree contributes the same amount to the cost of an
average request. In Section 3.2 we discuss such minimal trees further. However
to calculate this value, a global view of the graph costs in needed, which nodes
do not have at runtime.

We can however devise a heuristic that minimizes pair distance as good as
possible in a local subgraph consisting of only the nodes in the request path.
Specifically when node ak+1 needs to select a new parent node out of the can-
didates Ak = {a0, . . . , ak}, it looks at the tree graph T = (Ak, E

′) of nodes in
the request path that was constructed from the parent selections of all previous
nodes in the path. It then selects the node ai such that total pair distance is
minimized, meaning Cpairs(Ti) is minimal with Ti = (Ak ∪ ak+1, E

′ ∪ (ai, ak+1))
being the new spanning tree if node i were to be selected. See Figure 2.2 for an
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example. This minimum can indeed be calculated efficiently. The main ideas of
this calculation are described later in Section 3.2, which discusses an iterative
tree initialization algorithm.

function SelectNewParent(Ak)
return ai such that Cpairs(Ti) is minimal, use highest i for tie-breaking

end function

a0

a1

a2

4
6

5

(a) a2 chooses a1 as its new parent, since the
total pair distance for that tree Cpairs(T1) =
cT1(a0, a1) + cT1(a0, a2) + cT1(a1, a2) = 4 +
9 + 5 = 18 is smaller than the one for a0
which would be 4 + 10 + 6 = 20

a0

a1

a2

a34
6

5

2

3
2

(b) Even though edge (a3, a1) has the high-
est cost, a3 chooses a1 as its new parent,
since it minimizes the total pair distance.
Here Cpairs(T0) = 37, Cpairs(T1) = 36,
Cpairs(T2) = 38

Figure 2.2: Local Pair Distance Minimizer example

2.6 Fixed Ratio

Hop-based Another simple heuristic is one which chooses the node at a fixed
ratio t ∈ [0, 1] between the first and the last one. As an example, with a request
path a0, a1, a2, a3, a4 and a ratio of t = 1

2 , node a5 would choose a2 as its new
parent, since it’s half-way between a0 and a4. We use the earlier node in case of
a ratio being in-between two nodes. See Figure 2.3 for an example.

function SelectNewParent(Ak)
return abt·kc

end function
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a0a1

a2

a3

a4

a5

a6

request path

Figure 2.3: Hop-based Fixed Ratio heuristic with a ratio of 1
2 and a request path

of 7 nodes. Node a6 chooses ab 1
2
·5c = a2 as its new parent. A binary tree is

created as a result.

Cost-based A possible variation of this heuristic doesn’t use the ratio on the
node counts, but on the edge costs instead. A request pathAk = {a0, a1, a2, . . . , ak}
gets mapped to costs ci representing how far the request had to travel to get to
node ai. These costs are defined as

ci =
i∑

j=1

c(aj−1, aj) (2.2)

The last node whose ci is lower than or equal to t · ck is then selected.
function SelectNewParent(Ak)

return ai with the maximum i given the constraint ci ≤ t · ck
end function

These heuristics have the following interesting properties:

• For t = 0 they are equivalent to Ivy. Similarly with t = 1 they are equivalent
to Arrow.

• For t = 1
m ,m ∈ N, the hop-based version builds an m-ary tree on the

request path. See Figure 2.3 for an example of it building a binary tree
with m = 2.

• If the costs are the same for all graph edges, the cost-based version is
equivalent to the hop-based one.
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2.7 Dynamic Star

To understand the Dynamic Star heuristic, we first look at the results from Pe-
leg [8], which for one is about finding a good tree to use for Arrow. A probability
distribution pi, i ∈ V for each node making a request is given. Then the chance
that a request travels from node i to node j is simply pipj . Now let dT (i, j) be
the cost to go from node i to j in some spanning tree T , similarly let dG(i, j) be
the cost for the way from i to j by taking the shortest path in graph G. Then
the expected cost of a single request in a tree and the graph respectively is

cR(T ) :=
∑
i,j

pipjdT (i, j)

cR(G) :=
∑
i,j

pipjdG(i, j)
(2.3)

Now let Tc denote a shortest-path tree from center node c, meaning a tree for
which every node v has a shortest path to c, i.e. dTc(c, v) = dG(c, v). The paper
then shows that the Tc with lowest cR(Tc) is a 2-approximation of the costs in
the graph:

cR(Tc) ≤ 2 · cR(G) (2.4)

This means such a Tc is a relatively good tree to use for Arrow, since the cost
of the requests isn’t much greater than the best possible path they could take.
And since in our case we have a complete graph and metric costs, a shortest-path
tree from node c can simply be a star, connecting every other node to c directly.
With our graph weights c : E → N+ this then reduces the calculation of cR(Tc)
to

cR(Tc) =
∑
i,j

pipj(c(i, c) + c(c, j)) (2.5)

Now this Dynamic Star heuristic measures the distribution pi at runtime and
dynamically adjusts the tree according to it, striving for a star. The fact that
Arvy is a distributed algorithm however poses a problem, since nodes can’t obtain
a global view of the system to get accurate values for pi, so we will have to make
do with every node v having a local approximation pvi of pi.

To implement this, the idea is that each node v maintains counts nvi ∈ N0

of how many times each node i made a request, initialized with all 0. Because
v always knows how many requests it made itself, the value for nvv is always
accurate, while all others might be outdated values. To update nvi , the following
rules are used:
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1. When node v makes a request, set nvv ← nvv + 1

2. Any message sent from v includes a subset of known counts {nvi , i ∈ S ⊂ V },
which when arriving at u will update all received values if they are bigger
than the values already known: nui ← max(nui , n

v
i ), i ∈ S.

Depending on the choice of the subset S of value updates to send, the infor-
mation propagation of the true values in the network might be slower or faster.
Generally the bigger |S|, the faster information propagates. Here are some inter-
esting choices for S:

• When node v makes a request for the token, it only sends along its own
request count with S = {v}, while all nodes along the request path use
this same S. Since the only way for the rest of the network to know the
accurate request count of the requesting node is for it to send the updated
value, this is one of the most reasonable single-element choices for S and is
the choice that will be used for our simulations.

• With every node forwarding all its values, we get S = V . Propagation of
values is as quick as possible, but we also have O(n) complexity for the size
of messages.

Once such nvi are known, the approximated request probabilities pvi are then
simply

pvi =
nvi∑
j n

v
j

(2.6)

With this we have everything in place for the heuristic to select a new parent
out of the available options Ak = {a0, a1, . . . , ak}. We do so by selecting the ai
with the lowest cost as the center of the star.

function SelectNewParent(Ak)
return Choose ai with lowest cR(Tai),
use highest i for tie-breaking

end function

Justification is needed for the fact that node ak+1 selecting a new parent
seems to access costs not imminent to it with the calculation of values cR(Tai),
which was given as a restriction in the model. This can be circumvented by each
node ai calculating cR(Tai) locally when the request travels through it, which
is allowed since in Equation 2.5 uses only costs next to the center node ai (this
only works for star-shaped shortest path trees). Then that value can get sent in
the message to all subsequent nodes in the request path, which can then use this
result for the selection of the minimum. Note however that this is not exactly
the same as calculating all cR(Tai) values in the final node in the request path,
since values for nvi will be different, but it’s the best we can do.
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Unfortunately this heuristic needs O(n2) time for the calculation of cR(Tai)
in each node along the request path, making it very slow to run in comparison to
others. Messages only need to send S and the ai with lowest cR(Tai), resulting
in O(|S|) message size. Note that this heuristic converges to a static tree over
time, which can be a problem with non-uniform request patterns. While this
isn’t focus of this thesis, we have included some remedies for this in Appendix B.

2.8 Graph-specific: Recursive Clique

While all previous heuristics work on arbitrary graph costs, in this section we
describe a specialized one to work well on specific graphs only. As we will see
in Subsection 4.3.1, Ivy has good performance on cliques of less than 5 nodes.
Taking advantage of this fact, we design a graph resembling a clique, but where
each node can contain another clique within, and so on. See Figure 2.4 for an
example with 2 levels of cliques and each level having 3 nodes. This resulting
recursive clique graph allows running Ivy on each level individually, enabling us
to scale the beneficial performance from less than 5 nodes to many more.

A recursive clique graph has a level count parameter l representing the number
of clique levels and a base parameter b for the number of nodes in a clique on a
single level. We use the nodes in the lowest level cliques as our graph nodes and
call nodes in higher levels group nodes since they group together graph nodes in
lower levels. This gives us a total graph node count of bl. To indicate that graph
nodes in the same lower level are closer to each other, we define the costs in the
layer above to be η > 1 times higher. Edges in the lowest level are defined to
have cost 1, edges in the second-lowest layer then have cost η, for the next level
η2, and so on, up to edges in the top-most layer having cost ηl−1.

η

η

η

1
1

1

1
1

1

1
1

1

Group
nodes

Graph
nodes

Figure 2.4: Recursive Clique graph with l = 2 levels and b = 3 nodes in each
level. Graph nodes in the same group node have distance 1 between them, while
graph nodes in different group nodes have distance η between them
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When running a recursive Ivy algorithm on such a graph, the guiding rules
for selecting new parents are as follows:

1. The spanning tree needs to maintain the invariant that only at most one
edge can exist between two group nodes in a single clique. This ensures
that if both the requesting graph node and the one holding the token are
in the same group node, the request path does not exit that group node.
In addition this means that a request path can include at most b− 1 edges
of length ηl−1 from the most upper level (and similarly for lower levels),
therefore limiting the number of long edges.

2. If multiple graph nodes on the request path satisfy the first rule, choose
the earliest possible one of them as the new parent. This ensures that the
inverted arrows on the request path lead future requests to the root on the
fastest way possible, giving Ivy-like shortcut behavior on each clique and
across levels.

See Figure 2.5 for an example of how this heuristic behaves with these rules.

While we only limit ourselves to three parameters for simplicity, this idea
can be extended much further: Each level can contain arbitrary graphs. As an
example, with three group nodes at the top-most level, the first group node could
contain a star graph, the second one a ring graph and the third one yet another
nested graph. This then also calls for running different Arvy heuristics on each
graph, using whichever works best for the respective costs, making this a very
flexible approach.
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a0

a1

a2

(a) The tree we start with satisfies the tree
invariant, since between all pairs of three
group nodes there is only at most one con-
nection. The first graph node a0 on the re-
quest path makes a request for the token
which lies at root node a2. a2 will invert
its arrow to point to a0 with a long edge,
which the invariant allows because the pre-
vious long edge (a1, a2) is discarded when
the request traverses it

a0

a1

a2

(b) In the new tree, a0 makes a request for
the token at a2 in the same group node.
As with normal Ivy, all request path nodes
will connect back to a0 who made the orig-
inal request. Notice that since the request
was made from the same group node where
the token currently resides, the group node
wasn’t exited and no long edge was traversed

a0

a1

a2

a3

a4

(c) With a new request, the request path
has two long edges, invoking the Ivy be-
havior on the upper level: a3 will create a
shortcut connection back to a0. Then when
a4 receives the request, the rules disallow
it from connecting back to a0 as well, since
this would lead to multiple edges between
the same two group nodes. Therefore a4 has
to connect back to a3

(d) The resulting tree still only has 2 long
edges due to how the rules were enforced

Figure 2.5: Example of the Recursive Clique heuristic on a recursive clique graph
with parameters l = 2 and b = 3



Chapter 3

Graph Costs, Initial Trees and
Request Sequences

The performance of an Arvy algorithm depends not only on the algorithm itself,
but also on the costs of the edges, the initial tree and the request sequence. In
this section we describe all variations of these to be used in the simulations.

3.1 Graph Costs

Uniformly Random d-dimensional Hypercube These costs model uni-
formly random points pi : [0, 1]d in a d-dimensional hypercube, using the eu-
clidean distance between them as the cost. We will be using d = 2 in our
evaluations.

c(u, v) =‖pu − pv‖2 (3.1)

Clique This is a cost function based on an underlying graph where all nodes
are connected to each other with a unit cost.

c(u, v) =

{
0 if u = v

1 otherwise
(3.2)

Recursive Clique These costs are given by the specialized graph of the Re-
cursive Clique heuristic, see Section 2.8.

3.2 Initial Trees

Minimum Spanning Tree The minimum spanning tree is a tree with lowest
total edge cost. See Figure 3.1 for an example of such a tree.

18
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Uniformly Random Tree A uniformly random tree out of all possible trees.

Best Star Tree As we learned in Section 2.7, the shortest-path tree with
minimum cR(Tc) for some center node c has at most two times longer paths than
in the graph itself. By assuming uniformly random requests with pi = 1

n for all
nodes i, we can use this to generate an initial tree and use it for unknown request
distributions. This also simplifies the calculation of cR(Tc) to

cR(Tc) =
∑
i,j

1

n

1

n
(c(i, c) + c(c, j)) =

1

n2

∑
i,j

c(i, c) +
1

n2

∑
i,j

c(c, j)

=
n

n2

∑
i

c(i, c) +
n

n2

∑
j

c(c, j) =
2

n

∑
i

c(i, c)

(3.3)

This means finding cR(Tc) for a single c can be done in time O(n), and for
finding the best c with smallest cR(Tc) only O(n2) time is needed. See Figure 3.1
for an example of such a tree.

Minimum Pair Distance Tree This initial tree minimizes the arguably most
important measure for the Arrow algorithm: The average distance between all
pairs of nodes. This is important because with uniformly random requests, ev-
ery pair of nodes has the same chance of occurring subsequently in the request
sequence. Consequently the average time to satisfy a request is the average dis-
tance between all pairs of nodes. See Figure 3.1 for an example of a tree that
minimizes this. Noticeable is that central nodes are forming and not all short
edges are used.

A way to calculate this minimum is by brute force search through all possible
trees, which can be done with the Prüfer [12] sequences. Finding the total pair
distance for a single tree can then be done with an algorithm similar to the one
described in the next paragraph. However because there are as much as nn−2

possible trees [13] and finding the total pair distance takes O(n2) time, this gives
a total running time of O(nn), which is not practical for more than a few nodes.
It is very much possible for there to exist a faster algorithm for finding such a
tree.

Approximated Minimum Pair Distance Tree Alternatively, we describe
an algorithm that constructs a tree in O(n3) time that tries to minimize total
pair distance as well as possible. First let dT (u, v) denote the distance of the
shortest path from u to v in a tree graph T = (V ′, E′) of nodes V ′ ⊂ V and edges
E′ ⊂ E. Then let Cpairs(T ) denote the total distance between all pairs of nodes
in T .

Cpairs(T ) =
∑

u,v∈V ′

dT (u, v) (3.4)



3. Graph Costs, Initial Trees and Request Sequences 20

The algorithm is based on the idea of connecting nodes one-by-one to the
tree, in every step choosing the node and a connecting edge that minimizes the
total pair distance. We do this efficiently by maintaining a data structure that
allows querying the increase of total pair distance for a node and edge in constant
time.

Let V ′ be the set of nodes currently included in the tree. Our data structure
then encompasses an array s : V ′ → R, where s(v) stores the total distance from
node v to all other nodes in the current tree. In addition, we store dT : (V ′, V ′)→
R in a two-dimensional array.

s(v) =
∑
i∈V ′

dT (i, v) (3.5)

Now if node v ∈ V \ V ′ and edge (u, v) with u ∈ V ′ were to get added to the
tree to get T ′ = T ∪ ({v}, {(u, v)}), the total pair distance increases only by the
new pairs from v to all nodes in V ′. With our data structure we can calculate
this increase in constant time:

Cpairs(T ′)− Cpairs(T ) = 2
∑
i∈V ′

dT ′(i, v)

= 2
∑
i∈V ′

(
dT (i, u) + c(u, v)

)
= 2

∑
i∈V ′

dT (i, u) + |V ′| · c(u, v)


= 2

(
s(u) + |V ′| · c(u, v)

)
(3.6)

Our algorithm then looks as follows:

1. Set V ′ = {r} for an arbitrary node r ∈ V and initialize the data structure
with s(r) = 0 and dT (r, r) = 0

2. Among all nodes v ∈ V \ V ′ not yet in the tree and nodes u ∈ V ′ already
in the tree, select the pair (u, v) that increase total pair distance minimally
when this edge is added, by calculating 2

(
s(u) + |V ′| · c(u, v)

)
for all of

them.

3. Update s and dT as follows:

(a) The total distance from the new node v to all other nodes is just the
total distance to all other nodes from the node u it was connected to,
plus the new edge once for every node: s(v)← s(u) + |V ′| · c(u, v)

(b) For all other nodes, s needs to be increased by the shortest path to v,
which is just the shortest path to u plus the cost of the edge (u, v):
s(i)← s(i) + dT (i, u) + c(u, v) for all i ∈ V ′
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(c) The shortest path from all nodes to v gets initialized to the shortest
path to u plus the cost of the edge (u, v): dT (i, v)← dT (i, u)+ c(u, v)
for all i ∈ V ′. The same for the the shortest path from v to all nodes.

4. Unless V ′ = V , go to step 2

Because the tree gets one more node in every iteration, the sequence for the
number of edges between tree and non-tree nodes is 1 · n, 2 · (n − 1), 3 · (n −
2), . . . , (n− 1) · 2, n · 1. Every iteration therefore needs O(n2) time to find the
edge minimizing additional pair distance and another O(n) to update the data
structure. The total complexity of this algorithm is therefore O(n · (n2 + n)) =
O(n3). See Figure 3.1 for an example of a tree constructed with this algorithm.

3.3 Request Sequences

Uniformly Random Requests This request sequence distributes requests
uniformly at random across all nodes. The request probability for each node v is
therefore pv = 1

n , independent of previous requests.

Adversarial Requests This request sequence represents an adversary that can
control which nodes issue requests, while being able to inspect the current tree.
For selecting a node to request from next, it chooses the one furthest away by
cost from the token in the current spanning tree.
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Figure 3.1: Different trees on a 10-node graph of uniformly random points in the
unit square. Notable is that the Approximated Minimum Pair Distance tree is
very similar to the Minimum Pair Distance tree



Chapter 4

Results

In this chapter we simulate Arvy algorithms on different scenarios to see how well
they perform. A scenario consists of the number of nodes in the graph, what edge
costs to use (see Section 3.1) and the sequence of requests (see Section 3.3). We
will focus on uniformly random 2-dimensional hypercube costs since it provides
interesting and realistic values, even for a low number of nodes. Similarly we will
mostly use uniformly random request sequences.

We then run different Arvy algorithms from Chapter 2 with different initial
trees on such scenarios and compare them against each other. Initial trees are
described in Section 3.2. Since all heuristics except Arrow change the tree struc-
ture, we run them with a uniformly random initial tree as a neutral choice. Only
for Arrow itself we vary the initial tree to find the best one to use.

For evaluating how well heuristics perform we look at the measures defined
in Section 1.2. This includes the average request time Ctime and the average
request hops Chops. In addition, to get a general idea of the properties of the
tree, we sometimes look at the average tree edge distance in the spanning tree
T = (V ′, E′) over time, defined as

Cedges(T ) =
1

|E′|
∑

(u,v)∈E′

c(u, v) (4.1)

4.1 Preliminary Results

The goal of this section is to reduce the number of possible combinations of
heuristics, initial trees and other parameters. In particular we want to see which
tree works best for Arrow, confirm whether certain algorithms converge to a static
tree and find a good value for t in the Fixed Ratio heuristics.

23



4. Results 24

4.1.1 Best Initial Trees for Arrow

For this evaluation we run Arrow on different initial trees to see how well they
perform. We use only 10 nodes such that we can compute the Minimum Pair
Distance tree in reasonable time. For graph costs we use uniformly random points
from a 2-dimensional hypercube and we will use uniformly random requests. First
we look at how the average time to satisfy requests changes over time:
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Random tree Minimum spanning tree Approx. min. pair dist. tree
Best star tree Min. pair dist. tree

Not surprisingly, the tree minimizing pair distance outperforms every other
tree. Unfortunately our algorithm for constructing this tree needs impractical
O(nn) time. Interestingly, the next best one is the best star tree with only a
running time of O(n2), followed closely by the Approximated Minimum Pair
Distance tree with running time of O(n3). From the plot we can also see that a
completely random tree is understandably not a good tree to use for low average
request time. Conclusively we will use the best star tree for future performance
evaluations of Arrow for random requests. Now let’s also look at the number of
hops for each of them.
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As one would expect from stars trees, they have a very low hop count. This
value is lower than 2 because nodes can make requests when they have the token
already, giving a hop count of 0, and the center node always has a hop count ≤ 1.
Interestingly, the random tree has a decently low hop count, which is related to
the results in [2, 3].

Note that while this is only the result for a single random seed with only 10
nodes, the results are similar for other configurations. Also, since in this case the
tree never changes, it would be possible to calculate accurate expectations for
these measures without having to rely on a simulation.

4.1.2 Tree Convergence

In this section we look at the behavior of heuristics in regards to the tree they
end up with after many uniformly random requests. To get a feeling for how the
tree changes over time, we look at its average edge cost. We use only 100 nodes,
since the Dynamic Star heuristic is quite slow to run. For edge costs we use
uniformly random points in a 2-dimensional hypercube. In addition to looking
at the average tree edge cost, we also plot some fixed baselines for known trees.
This includes one for the minimum spanning tree, one for the best star tree, and
one for a uniformly random tree. All algorithms initially start with a completely
random tree.
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What we can see from this plot:

• The Dynamic Star heuristic converges to the best star tree, indicated by
their lines merging into one. This makes sense, since they both optimize
for a minimal cR(Tc) with a uniform request distribution.

• As already predicted in Section 2.4, the Edge Cost Minimizer heuristic
converges to the minimum spanning tree. Here we can directly see how
this algorithm only ever decreases tree edge costs, indicated by its line
monotonically decreasing until it reaches the lowest possible state of the
minimum spanning tree.

• The Ivy algorithm seems to continuously have a tree with high edge costs,
in the same range as a completely random tree. This makes more or less
sense since Ivy does not look at edge costs at all when selecting new parent
nodes. The same happens for the random heuristic.

• Interestingly, the Local Pair Distance Minimizer heuristic seems to go to-
wards a rather low average edge cost with no known baseline tree in that
region.

From this we conclude that for random requests, the eventual behavior of the
Dynamic Star and Edge Cost Minimizer heuristics can be achieved by simply
using Arrow on the best star tree and the minimum spanning tree respectively.
Therefore we don’t further look at these heuristics in such a scenario.



4. Results 27

4.1.3 Fixed Ratio Heuristics

Here we look at the Fixed Ratio class of heuristics, both hop-based and weight-
based ones, with different values for the ratio t, including t = 0 for Ivy and
t = 1 for Arrow, with steps of 1

8 between them. We will be using 1000 nodes
with uniformly random 2-dimensional hypercube costs and uniformly random
requests. We will be using Arrow with the best star tree as a baseline. All Fixed
Ratio algorithms will start with a completely random tree.
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From this we can see that this heuristic is weaker than both Ivy and Arrow
with the best star for all values of t. Noticeable is that generally the higher
the ratio, the worse is the performance. One exception from this is Arrow with
t = 1, which doesn’t change its initial random tree. The fact that the lines for
ratios 5

8 ,
6
8 and 7

8 are above the Arrow line indicates to us that such high ratios
produce a tree even worse for performance than a completely random tree. We
conclude that the hop-based Fixed Ratio algorithm is not worth looking into
further. Instead we will try the weight-based version:
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We are seeing very much a comparable pattern. We conclude that such Fixed
Ratio heuristics are not fit for this task. This is perhaps surprising, since com-
bining Arrow and Ivy in this way is very natural.

4.2 Best Heuristics

In this section we evaluate heuristics to find the best ones for different request
sequences.

4.2.1 Random Requests

In this section we compare performances of different heuristics on uniformly ran-
dom requests, ignoring the ones whose eventual behavior can be achieved with
Arrow on a specific tree as discovered in Subsection 4.1.2 (this includes the Dy-
namic Star and Edge Cost Minimizer heuristics). We will again be using uni-
formly random points in a 2-dimensional hypercube. We use 1000 nodes.
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In the main plot for the average request time, we can see that Arrow clearly
performs better than the other heuristics, although the Local Pair Distance Min-
imizer gets close to it. Ivy however is far off.

Arrow with a star tree also naturally has a lower hop count than others. Even
though Ivy builds a local star on the request path, it does not come close to a
global star. Noticeable is that the Local Pair Distance Minimizer heuristic has
a higher average hop count than Ivy even though it performs much better time-
wise. This shows that the number of hops can have very little to do with request
time. Curious is the seemingly-monotonous increase in request hops from 104 to
106, associated with a very slight increase in request time, for which we don’t
have an explanation.
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4.2.2 Adversarial Requests

In this section we look at the performance of heuristics for adversarial requests.
Here we include the Dynamic Star heuristic again, since it only converges to the
best star tree if requests are uniformly random and therefore doesn’t show the
same behavior as Arrow with that as a starting tree. Because again the Dynamic
Star heuristic is rather slow to execute we only use 100 nodes. Costs are uniformly
random points in a 2-dimensional hypercube.
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In this adversarial request case, the Dynamic Star heuristic seems to win
out as the only heuristic that adapts its behavior based on request probabilities.
Seemingly it tends towards a star that allows the least possible exploitation by
an adversary. In particular it appears that after about 102.5 requests it had
enough request distribution samples to find a good star center, which got accepted
quickly. Arrow with the best star is decent as well, although the best star is
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apparently not the best one to use in an adversarial case. The Local Pair Distance
Minimizer heuristic is in third place, performing not too bad even with the highest
hop count. Very peculiar is the sudden change of behavior regarding hop count
at around 103.5.

4.3 Special Graphs

In this section we focus on evaluating heuristics that work well on special graphs.

4.3.1 Ivy in Small Cliques

The fact that Arrow with the best star tree seems to have been the best heuristic
on uniformly random requests so far gives the impression that perhaps Arrow
can’t be beaten at all. In this section we construct a counterexample by looking
at Ivy in a clique with a low number of nodes. We compare Ivy with Arrow
on the Minimum Pair Distance tree, since that is the best possible tree to use
according to Subsection 4.1.1. After simulating 106 requests, the values for Ctime

are

Node count Arrow Ivy
3 1.334 1.250

4 1.499 1.443

5 1.600 1.603

6 1.665 1.739

7 1.713 1.859

8 1.749 1.963

Here we can see that Ivy is in fact better than Arrow in this scenario with 3
or 4 nodes, but not with 5 (very closely) or more. This pattern is expected to
continue into higher node counts. The worse performance for higher node counts
is explainable with what we’ve discovered in Subsection 4.1.2: Ivy maintains a
mostly random tree throughout, which as we’ve seen in Subsection 4.2.1 leads to
rather poor performance in comparison to Arrow. It is perhaps surprising that
this doesn’t hold for node counts of 3 and 4. For 3 nodes this is however easy to
see, since all requests paths with two hops in Ivy mean that the next request is
guaranteed to be fulfilled in one hop due to the shortcut behavior. With Arrow
however this is not the case because all two-hop request paths can be followed
by another two-hop request path in the other direction, since the tree structure
is maintained. This beneficial short-cutting effect of Ivy seems to outweigh the
tree randomization for 4 nodes as well, which makes sense since the number of
trees is so low that they can’t be randomized much.
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4.3.2 Recursive Clique

In this section we will measure the performance of the Recursive Clique heuristic
with the hopes of it being the best heuristic to use for the type of graph it was
made for. We use the parameters l = 6, b = 3 and η = 5, meaning 6 levels of 3-
node cliques for a total of lb = 63 = 729 nodes, with a cost of ηl−1 = 56−1 = 3125
between nodes in the highest level clique. We will use uniformly random requests.

We compare the performance to the usual heuristics of best star Arrow, Local
Pair Distance Minimizer and Ivy. However we will add another contestant: Arrow
starting with a minimum spanning tree. This is because a minimum spanning
tree on such a recursive clique graph directly corresponds to a tree satisfying
the invariant needed for the Recursive Clique heuristic, meaning there can be at
most one edge between group nodes on the same layer, which is also beneficial
to Arrow for the same reason it’s beneficial to the Recursive Clique heuristic.

We look at the average request time:
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Sure enough, the Recursive Clique heuristic wins over all others. The ben-
eficial shortcut behavior of Ivy in 3-cliques is unsurprisingly maintained with
multiple levels of cliques. We can also see that in this case, Arrow with a min-
imum spanning tree does indeed perform better than Arrow on the best star
tree. Ivy is the worst heuristic in this scenario, which makes sense, since a tree
constructed with Ivy can have a lot of long edges. The Local Pair Distance Min-
imizer heuristic seems to converge towards the performance of Arrow on the best
star.



Chapter 5

Summary

In this thesis we devised some new Arvy heuristics and compared their perfor-
mance. We also looked at what trees are best suited for Arrow.

With uniformly random request sequences and 2-dimensional uniformly ran-
dom hypercube costs, the Minimum Pair Distance tree was found to be the best
initial tree to use for Arrow. However the only algorithm we know of to construct
such a tree takes O(nn) time, which is impractical for many nodes. The best star
tree turned out to be the next best tree for Arrow, only needing O(n2) time to
be constructed. The Approximated Minimum Pair Distance tree algorithm we
devised turned out to be a worse tree to use in such scenarios.

Multiple new heuristics were explored:

• The Edge Cost Minimizer heuristic converges to Arrow with a minimum
spanning tree.

• The Local Pair Distance Minimizer heuristic shows great potential with
both uniformly random and adversarial requests.

• The Dynamic Star heuristic is the same as Arrow with a best star tree for
uniformly random requests. However in adversarial requests, this heuristic
turned out to be the best one to use. Unfortunately due to it needing
O(n2) running time in every node along the request path, this is a very
slow heuristic to run in comparison to others.

• We found that Ivy is better than Arrow on very small cliques of 3 and
4 nodes. We exploited this fact for the Recursive Clique heuristic, which
showed great performance on the special graphs it was designed for. The
idea can be extended much further to arbitrary nested graphs as well.

• We tested Fixed Ratio heuristics based on choosing nodes a fixed ratio
along the request path. Running the simulations made it clear that such
an algorithm performs really poorly, with ratios near 1 even worse than
Arrow on a random tree.
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Appendix A

Implementation Notes

As part of this thesis, a Haskell library for writing and testing Arvy heuristics was
created, accessible at https://github.com/infinisil/arvy. In this chapter we
explain some key design decisions that went into it. Most notably, Haskell’s
advanced type system allowed guaranteeing correctness of all Arvy heuristics
defined with this library. We will look at parts of the file lib/Arvy/Algorithm.hs
where the core of this library is defined. Needless to say, this chapter is more
technical than the others and advanced Haskell knowledge is required to fully
understand it.

A.1 Request Path abstraction

An Arvy heuristic is correct if nodes can only set their new parent to nodes that
were previously visited on the request path. With each node being referenced
as an integer, this would be a problem, because a node ak+1 could simply set
parent(ak+1) = 0 even though it might very well be the case that 0 /∈ Ak =
{a0, . . . , ak}, which would be an invalid choice. So instead of representing nodes
as integers, we represent them as some arbitrary type with certain capabilities
that reflect it being part of the request path. In particular such types will not be
constructible on their own.

One such trivial capability we will need is that once we have some node
index, we can forward that value via messages to other nodes. This makes sense
to require, since some node ak+1 can’t know about the possible new parents
{a0, . . . , ak} unless these nodes somehow forwarded their own indices along with
the messages. In Haskell, this forwarding can be represented as a typeclass on
two types ia and ib, where ia represents a node index earlier in the request path
than node index ib. We will state that if you have a value of ia you can get a value
of ib, which can be done with a typeclass parametric on those types, holding a
function for converting from ia to ib. This typeclass is trivially implementable
for all same types i = ia = ib, since forwarding will then simply be the identity
function.

A-1
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-- | A class for node indices that can be forwarded between nodes
class Forwardable ia ib where

forward :: ia -> ib

-- | All equivalent types can be trivially forwarded
instance Forwardable i i where

forward = id

Now we need to somehow encode a request path in a type. In such a request
path the important constraint is that messages are only sent in one direction,
meaning node indices can only be forwarded in one direction as well. Looking at
it from the perspective of a single node in the request path, we can forward from
its predecessor to the current node and from the current node to its successor.
Encoding this as a typeclass leaves us with the following for representing a node
(index).

class ( Forwardable (Pred i) i
, Forwardable i (Succ i)
) => NodeIndex i where

-- The type representing the previous node
type Pred i :: *
-- The type representing the successor node
type Succ i :: *

Now of course defining different types for every node along the request path is
impossible, we can only use this to prove correctness. So for the implementation,
we can use normal integers to represent all nodes.

type Node = Int

instance NodeIndex Node where
-- Predecessors and successors in the request path are
-- all nodes represented by integers as well
type Pred Node = Node
type Succ Node = Node

A.2 Arvy Heuristic Abstraction

The most important part of defining an Arvy algorithm is the heuristic it uses to
decide the new parent node. We extend this to the notion of a behavior, which
includes not only how new parents are selected, but also how it gets decided what
a request message looks like, how the initial message is generated, and what the
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final node receiving the message does. Each node on the request path should be
allowed to run arbitrary code.

For representing computations we use the relatively new effect library Poly-
semy. In this library a computation is described with the type Sem r a where r
represents the possible effects it can have and a being the result of the computa-
tion. As an example, a computation that’s allow to use randomness and returns
a boolean is described by the type Sem ’[Random] Bool. With this said, the
main type for defining an Arvy heuristic is defined as follows.

{- |
An Arvy heuristic for a dynamic algorithm.
- @i@ is the node index type
- @msg :: * -> *@ is the type of request messages passed between

nodes, parametrized by the node index type for allowing messages
to forward node indices

- @r@ is the effects the algorithm runs in, which can include
effects parametrized by @i@ in order to allow effects dependent
on indices -}

data ArvyBehavior i msg r = ArvyBehavior
{ -- | What message the node making the request should send to

-- its parent
arvyMakeRequest
:: i -- ^ The current node index
-> Succ i -- ^ The index of the parent node
-> Sem r (msg i) -- ^ Returns the message to send to the parent

, -- | Which parent an intermediate node should select when
-- receiving a message, and what message to forward to its
-- parent
arvyForwardRequest
:: msg (Pred i) -- ^ The received message
-> i -- ^ The current node index
-> Succ i -- ^ The parent node
-> Sem r (Pred i, msg i) -- ^ The new parent to select and

-- the message to forward

, -- | Called only for the last node in the request sequence
-- that's holding the token
arvyReceiveRequest
:: msg (Pred i) -- ^ The received message
-> i -- ^ The current node index
-> Sem r (Pred i) -- ^ The new parent to select

}

https://hackage.haskell.org/package/polysemy
https://hackage.haskell.org/package/polysemy
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This succinct-yet-complicated type includes a lot of information. As an
overview, when a node makes a request for the token, arvyMakeRequest is called,
which generates a message to be sent to the nodes parent. Then when a message
arrives at a node, depending on whether it has the token or not, the functions
arvyReceiveRequest or arvyForwardRequest are called respectively, the lat-
ter of which then needs to generate another message for forwarding. Function
arvyForwardRequest is the most interesting one since it has to handle both re-
ceiving and sending a message, so we will look more closely at its type signature.

For one it says that nodes receive messages of type msg (Pred i) whose
values can only include node indices of predecessors to the current node in the
request path. It then needs to return a value of Pred i as the new parent for the
current node. With the way node indices are defined in the previous section, the
only possible values to return are ones received from the message. This means to
select a new parent, nodes have to decode the message which will contain node
indices given by past nodes, then return one of them.

In addition, the function receives values i and Succ i representing the current
node index and the current nodes parent respectively. In addition to the new
parent node to select, the function also needs to return a msg i representing the
message to be forwarded. The msg type being parametrized by i enforces that
this message can only contain node indices to previous nodes (since all previous
node indices Pred i can be forwarded to i) or the current node (which is of type
i already). Succ i however can’t be sent in the message because there’s no way
to convert it to type i.

Functions arvyMakeRequest and arvyReceiveRequest are special cases of
arvyForwardRequest. The former is special in that a node making a request
does not receive any message and it doesn’t need to select a new parent since it
becomes the root. The latter is special in that the final root node receiving the
request doesn’t have a parent and doesn’t need to forward a message. Having
separate functions for these greatly simplifies the code.



Appendix B

Non-converging Dynamic Star

In section Section 2.7 we introduced the Dynamic Star heuristic, which eventually
converges to a static tree. This is because as the total number of request increases,
changes to nvi matter less. After R ∈ N requests, another request can only cause
a maximum change to pvi of

∣∣∣pvi − p′vi ∣∣∣ =
∣∣∣∣∣ nvi∑

j n
v
j

− n
′v
i∑
j n

′v
j

∣∣∣∣∣ =
∣∣∣∣nviR − nvi + {0, 1}

R+ 1

∣∣∣∣
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∣∣∣∣nviR+ nvi − nviR+ {0, 1}R
R(R+ 1)

∣∣∣∣ =
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R(R+ 1)

≤ R

R(R+ 1)
=

1

R+ 1
→R→∞ 0

(B.1)

where {0, 1} is 1 or 0 depending on whether nvi was incremented or not.

This is problematic because it means the longer a system runs, the less it’s
adapting to changes in the probability pattern. If after 10100 requests a request-
controlling adversary shows up, it could exploit this practically static tree by
constantly bouncing requests between nodes with a slow connection. If this were
to happen in the beginning, it wouldn’t be a problem as the heuristic could adapt
to this by choosing a better star center quickly. This means the algorithm’s
behavior is dependent on how long it has been running. In this thesis we only
look at uniform request patterns where this does not happen, but here we will
shortly discuss a remedy for this.

An idea to solve this problem is to give less weight to older requests, which
can be done in multiple ways:

• After every increment of nvi by one, all counts get decreased by a constant
factor: ∀i : nvi ← α · nvi with 0 < α < 1. If this was a global view
this would work well, since after R requests an original contribution to
nglobali of 1 would be reduced to αR, implementing an exponential weight
falloff. However since this isn’t a global view, it won’t work as well, because
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depending on the propagation speed with |S|, the nvi will be more outdated,
resulting in old requests having more weight than they would have in a
global view.

• A slight improvement over this can be achieved: For each message sent from
v, the total amount of requests known

∑
j n

v
j is sent along as well. When

received by u, it’s possible for it to calculate the difference of known requests
d :=

∑
j n

v
j −
∑

j n
u
j . This means all nui are about that many requests more

in the past than nvi , so an update is done on them to compensate for this:
∀i : nui ← αd · nui . This is better because the multiplication with α doesn’t
depend on the selection of |S| anymore, resulting in older values being more
accurately weighed.

• With the requirement of nodes having a synchronized clock it’s possible to
improve on this: Every fixed time step, all counts in all nodes get decreased
by the factor: ∀i : nvi ← α · nvi . This is now an accurate time-based expo-
nential falloff, independent of both the propagation speed and the request
pattern.
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