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Abstract

Distributed Ledger Technology (DLT) maintains a shared ledger, consistently
stored on peers over a network, thanks to consensus protocols. This technology
often enables smart contracts, which are increasingly being used and promise a
revolution in the way assets are exchanged, as well in industry as in government
[1].

One state machine replication framework and two distributed ledgers are an-
alyzed here: BFTSMaRt, Corda R3, and Hyperledger Fabric. BFTSMaRT is
a replication library that offers a good basis for comparison to new distributed
ledgers implementing smart contracts, such as the two rivals Corda and Fabric.

Throughput in term of transactions per second is the main metric to evaluate
the performance of such technologies. Measuring it on a cluster of servers gives
results close to the performance in real-world deployments. The work accom-
plished in the thesis can be extended to perform measurements for a wide range
of uses cases.

Smart contracts have a cost. BFTSMaRt’s simplicity offers high throughput
but does not support smart contracts. Different implementations, workloads, and
number of clients often imply different performances. Often trade-offs between
implementation’s architecture and throughput are decisive before starting new
projects using this technology. For that reason, benchmarking is an important
factor to take into consideration.
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Chapter 1

Introduction

1.1 Distributed Ledgers

Ledgers1 have been used since ancient times to record assets, transactions, and
contracts. They evolved in time being stored on papyrus, paper, and nowadays
commonly in databases. Notaries, states, banks, and companies are currently
considered as trusted third parties that certify the validity of their records. They
are therefore centralized systems prone to attacks or loss of records [1].

Can we make ledgers more efficient, more secure, and remove the overhead of
a unique (sometimes physical) third party?

The emergence of Bitcoin in 2008 gave a new impetus to the study of dis-
tributed systems. The almost 50 years of studies that leads to the reliable
blockchain technology2 hides huge work on consensus algorithms, consistent repli-
cations, and security. Bitcoin itself leads to the emergence of smart contracts and
gave birth to the Distributed Ledger Technology (DLT).

Smart contracts aim to automate transactions between parties within a peer-
to-peer network by authenticating them in a distributed fashion. It moves the
disconnected trusted third party into the network’s participants themselves.

DLTs are split into two categories: permisionless or public DLT, which anyone
can join (Bitcoin, Ethereum, ...), and permissioned or private DLT, which is
restricted to pre-defined members (Corda, Fabric, Tendermint, ...). The first is
more suited for cryptocurrencies as anyone using it should be able to take part in
its network. The second is mostly designed for companies or governments. For
instance, a company could make use of it to automate some of their processes by
implementing smart contracts with their suppliers or clients in a secure, efficient,
and private form.

Some are convinced that the deployment of Distributed Ledgers in our daily
life is going to radically change our society. This technology will most likely

1synonyms: account or record books.
2The blockchain is a type of distributed ledger that is structured in a sequence of blocks and

is provably secure.

1



1. Introduction 2

replace some well established centralized ledgers within the next few decades,
and for that reason, be one of the biggest innovation of the 21st century [3].

1.2 Benchmarking of Distributed Ledger Technology

The thesis focuses on measuring the performance of private distributed ledgers.
It aims to give the reader a short introduction, an insight into how performance
was measured and throughput expectations of BFTSMaRt, Corda, and Fabric.

Distributed ledgers’ main ingredients are: servers, clients, a network, an appli-
cation, and transactions. Chapter 2 defines these components and their relations
in the first section. The three following sections introduce the above mentioned
replication framework and distributed ledgers and explain how these components
are mapped into their architectures.

Benchmarking is a vague task. Performance of networks systems can be
measured in all OSI layers3. As one goal of this thesis is to compare distributed
ledgers, it only considers the application level. Here, performance is defined by
its throughput in term of transactions per second, its transaction response time,
its transactions success and failure rate, between a client and servers. It omits
security aspects. The core of the work is presented in Chapter 3 and aims to help
the reader to reproduce and create new benchmarks.

As interest for this technology is growing, it is important to compare the dif-
ferent implementations in term of performance and platform-specific limitations.
Chapter 4 gives some measurement results for particular examples as well as their
interpretation.

The report is structured as follows: Chapter 2 introduces the analyzed dis-
tributed ledgers technologies by presenting their general key ideas. Chapter 3
presents the benchmarking methodology as well as how the benchmarks were
produced. Chapter 4 presents some benchmarking results, generated with the
tool Caliper, which was used and extended throughout the thesis. The results
are discussed and interpreted in Chapter 5, which concludes the report.

3An Open System Interconnection classifies a system’s components into layers.



Chapter 2

Distributed Ledger Technologies

Chapter 2 first gives definitions in order to understand what a distributed ledger
is, what it has to accomplish, and how servers, clients, consensus protocol, and
smart contracts are related. It then briefly presents in the following sections the
three concrete implementations of distributed systems, that are analyzed:

• BFTSMaRt, a byzantine fault tolerant replication framework implemented
in Java,

• Corda, a DLT using JVM1 and originally designed for finance, implementing
an order-execute architecture, and

• Fabric, a DLT using containers and known for its modularity, implementing
an execute-order-validate architecture.

1Java Virtual Machine

3
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2.1 Background

Key Concepts

For more information about distributed systems and networking in general, please
read [4] and [5].

Definition 2.1. Peer

Peers can be both client and server. They are often both in DLT. They are
sometimes referred to as parties or nodes in some documentations.

Definition 2.2. Peer-to-Peer Architecture

It is an architecture where there is no special party that provides a service or
manages the network resources. All responsibilities are uniformly divided among
the peers.

Definition 2.3. Consensus

A consensus algorithm is a protocol that aims to achieve agreement on shared
data in a distributed system. There exist many consensus algorithms such as
Paxos, Raft, PBFT (each having their pros and cons). It must meet three prop-
erties: termination, integrity, and agreement.

Definition 2.4. Transaction

A DLT’s transaction has parallels to real-life transactions. It aims to update
the distributed ledger state by changing the ledger’s content. A transaction could
be for example: a financial transaction, peer A sending money to peer B, which
changes the shared state such as all concerned peers are consistent with the
update; a diamond identity issuing transaction, which registers the diamond ID
and authenticity; a dummy transaction, which increments a number such that
all peers store the same number.

Definition 2.5. Smart Contract

A smart contract is a protocol intended to verify and improve performance
of a contract. Smart contracts allow:

• the issuance of tangible transactions without third parties,

• controlled access to the ledger,

• simple and structured encapsulation of data, and

• participants to execute certain aspects of a transaction automatically.
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Definition 2.6. Distributed Ledger

A distributed ledger is a database recording transactions that is shared, repli-
cated, and synchronized by members of a decentralized network of peers, having
the following features:

• its peers are bound together within a decentralized network and therefore
form a distributed system. They are replicated servers connected in a peer-
to-peer architecture, running the same application waiting on transactions
to occur,

• there is no centralized data storage or unique administrator. Members of
the network agree together on the database state by consensus,

• every transaction in the distributed ledger has a time-stamp and a unique
cryptographic signature in order to have an immutable history of all trans-
actions.

• they can implement smart contracts, and

• in contrast to centralized ledgers that are prone to cyber-attacks, an at-
tacker would usually need to modify more than one copy of the network’s
quorum for the attack to be successful. This makes the DLT secure.

Definition 2.7. Blockchain

A blockchain is a kind of distributed ledger. Data on a blockchain is organized
in blocks that are linked to one another and secured using cryptography.

Definition 2.8. Generic DLT Building Blocks

Figure 2.1 gives a generic view of a DLT building blocks. Level 3 defines the
mechanism and the location of code execution and its data storage, level 2 the
protocol for consensus, and level 1 the ledger data structure, how the distributed
ledger is structured and linked at a physical level [6].

Figure 2.1: Generic DLT Building Blocks
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2.2 BFTSMaRt

Overview

BFTSMaRt is a Byzantine fault-tolerant state machine replication framework2

from 2008. It implements a simplified version of the BFT consensus algorithm.
It uses a state machine replication protocol which is similar to Paxos [2].

BFTSMaRt uses Java. This choice is justified by its popularity. The BFTS-
MaRt community nevertheless gives strong importance on performances [7]. The
library is open source, does not implement smart contracts, and also aims to be
integrated in other DLT such as Fabric.

Key Concepts

To learn more on BFTSMaRt, please read [2].

Replica

A replica is a peer running the BFTSMaRt’s library and an arbitrary application.
Replicas are started in different shell and can be located on different computer
systems. A replica is running within a server and is started in the root directory
with the command:

bftsmart.demo.APPLICATION_NAME.APPLICATION_NAMEServer -ID

Client

A client is also a peer running the BFTSMaRt’s library and an arbitrary appli-
cation. Replicas and clients communicate via a service proxy that takes care of
broadcasting messages. It is started in the root directory with the command:

bftsmart.demo.APPLICATION_NAME.APPLICATION_NAMEClient -ID -ARGUMENTS

Consensus

System machine replication is a technique where an arbitrary number of clients
issue commands to a set of replicas. These replicas implement a stateful service
that changes its state after processing the client commands and sends replies to
the client.

2A general method for implementing a fault-tolerant service by replicating servers and co-
ordinating client interactions with server replicas.
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The main purpose is to maintain consistency among replicas. The service is
replicated completely and consistently on each replica, which means:

• replicas only apply deterministic changes to state,

• all replicas start with the same state, and

• all replicas execute the same sequence of operations.

The first two requirements are met without any special library. The last
one requires communication. It requires the execution of a complex consensus
protocol to ensure commands are executed in the same order across all replicas.

The consensus protocol is an optimized version of BFT [7] and is therefore
designed to tolerate Byzantine faults3. Byzantine faults can be due to: software
bugs, skilled attacker who wants to gain control of replicas. The total number
of Byzantine replicas f cannot be larger than f ≤ N−1

3 , with N being the total
number of replicas in the network.

The network always contains a leader protocol replica that is not chosen by
the client or anyone that administrates the system. The protocol votes for a new
leader if a request timeout is triggered, the leader stops behaving as expected,
network delays, or more requests are queued than the system is able to process.

Transaction Flow (Figure 2.2)

1. Unordered requests, which are usually used for read-only commands, are
directly delivered to the service implementation.

2. The client manager verifies the request integrity and adds them to the
respective client’s queue.

3. The proposer thread is responsible for assembling a batch of requests and
transmitting the PROPOSE message of the consensus protocol.

4. The batch is then filled with pending requests until: (a) its size either
reaches a limit defined in the configuration file; or (b) it has no request left
in the queue. This thread is only active at the leader replica.

5. Every message to be sent by one replica to another is put on the out queue
from which a sender thread will get the message, serialize it, produce a
MAC to be attached to the message and send it using TCP sockets. It is
known as the ACCEPT phase.

6. When a decision is reached on a replica, the decided batch is put on the
decided queue. The WRITE phase starts.

3It can be any deviation from the expected behavior of a replica.



2. Distributed Ledger Technologies 8

7. The delivery thread is responsible for getting batches from this queue, de-
serialize all requests from the batch, remove them from the respective client
queues and mark the current consensus as finalized.

8. The request timer thread is periodically activated to verify if some request
remained for more than a pre-defined time on the pending requests queue.

Figure 2.2: BFTSMaRt replica staged message processing [2]
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Software Requirements

1. The reader needs to have Java and ant installed. (Eclipse has both)

2. Download the zip file from the official website4: library-1.1-beta

3. Unzip library-1.1-beta.zip, go into /library-1.1-beta

4. Configure the file "config/hosts.config" by writing the id, the IP address and the port
for each server

5. Configure the file "config/system.config" by changing the system.servers.num and the
inital system view (with server ids)

6. Always remove the "config/currentView" before each run, if the network has been re-
configured.

7. Be sure that the private and public keys exist for the defined server (it will take the
prefix "privatekey" and adds the server id as key name).

8. Start each server in a different shell:
./runscripts/smartrun.sh bftsmart.demo .counter.CounterServer -SERVER_ID

9. Start a client in a different shell:
./runscripts/smartrun.sh bftsmart.demo.counter.CounterClient -Process_ID -Increment
-Number_Ops

10. Any change must be compiled with ant -buildfile build.xml

4http://bft-smart.github.io/library/

http://bft-smart.github.io/library/
http://bft-smart.github.io/library/
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2.3 Corda

Overview

Corda was launched by the company R3 in November 2016 and its architecture is
mainly influenced by the financial industry. It claims good business-logic models
between firms and economic actors.

It is implemented in Kotlin and therefore runs on JVM. It offers an Enterprise
subscription which implements many useful functionalities. Each peer represents
a JVM runtime-environment and hosts Corda services and smart contracts ap-
plications named Cordapps.

Like Bitcoin, it uses the UXTO5 model: Corda’s transaction create immutable
states that are consumed by another transaction creating unspent transactions
or unconsumed states.

Key Concepts

These two papers offer a good introduction to Corda: [8] and [9].

Node

A node is a peer that hosts Corda services and smart contracts applications
named Cordapps, generated with the help of gradle6. Each node runs on a server
and its identity is stored on a shared network map service. It has the following
structure:

./

corda.jar # The core Corda libraries

node.conf # The node’s configuration files

cordapps/ # The CorDapp JARs installed on the node

certificates/ # The node’s certificates

brokers/ # Stores buffered RPC messages

artemis/ # Stores buffered P2P messages

drivers/ # Stores other drivers

5UXTO stands for "unspent transaction output".
6Gradle is an open-source build-automation system.
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Notary

A notary is a special node that prevents double-spends and at the same time
acts as a time-stamping authority. It can also validate transactions in which
case it is called a validating notary. A cluster of notaries enables the consensus
algorithm to run, but this functionality is unfortunately only available on Corda’s
Enterprise version.

Ledger

Each node maintains its own ledger. The ledger is then subjective from each
node’s perspective. Two nodes that are in relation are guaranteed to see the
same facts they share on the ledger.

State

States represent on-ledger facts and are immutable. States are created in a bit-
coin fashion by marking consumed states as historic and creating updated states
marked as unconsumed.

Vault

The vault stores all consumed and unconsumed states.

Contracts

Corda’s contracts are meant to check that a transaction is valid. It would directly
reject it if a contract’s clause is not satisfied. A contract execution is deterministic
and its acceptance is based on the transaction contents alone. It must be verified
by all validating parties. A peer is under no obligation to sign a transaction just
because it is contractually valid.

Flows

Flows automate the process of a transaction as a whole. It takes care of commu-
nication and ledger updates. They are closely related to transactions. There are
no broadcast messages.

Consensus

Consensus runs in a notary cluster. A transaction must achieve both validity and
uniqueness consensus to be valid. The validity consensus requires contractual
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validity and uniqueness consensus prevents double-spends.

Transaction Flow

A transaction is a proposal to update the ledger and will only be committed if
it does not contain double-spends, it is contractually valid, and signed by the
required peers.

Issuing transactions create new states in the network and committing should
be seen as modifying states. For that purpose each transaction has arbitrarily
many input states and output states.

Figure 2.3 shows the life-cycle of a transaction. The consensus between no-
taries occurs at step 9.

Figure 2.3: Corda transaction’s flow

Client

A client of the network can participate in the network by connecting to a node.
It connects to a node either via RPC7, an API, or directly through its shell via
SSH8. Once connected it can initiate flows (FLOW START), thus issue or commit
transactions in the distributed system in a secure way. (figure 2.4)

7Remote Procedure Call
8Secure SHell
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Figure 2.4: Corda node’s architecture

Software Requirements

Please refer to the following link for the installation9.

1. Install all dependencies required by Corda,

(a) Intellij

(b) gradle should be wrapped in Corda’s code

2. Clone and use the corda-template or an existing Corda’s example on your machine,

3. Implement flows in the /workflows subfolder, contracts and states in the /contracts
subfolder,

4. Use JUnit to test the application locally,

5. Configure the nodes in build.gradle and generate the nodes under build/nodes (either in
Cordform or Dockerform) with the help of gradle,

6. Deploy the nodes on a network, and

7. Connect to a node to participate in the network created (see section 3.3.4).

9https://docs.corda.net/getting-set-up.html

https://docs.corda.net/getting-set-up.html
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2.4 Fabric

Overview

Hyperledger Fabric is an open-source system for deploying and operating permis-
sioned blockchains. The project started in December 2015 by the Linux Founda-
tion under the impulses of IBM, Intel, Fujitsu, and JP Morgan.

It is designed to map the complexity existing across the economic ecosystem.
For that reason Fabric is modular: it can run different consensus algorithms
and databases, and it can be used for different distributed applications and sup-
port different programming languages for its smart contracts: Go, Java, and
Javascript.

Fabric is implemented in Golang and uses container technology10 to deploy
its network to deliver a enterprise-ready network security, scalability, interoper-
ability, and portability.

Key Concepts

If the reader wants to read more about Fabric: [10] and [11].

Chaincode

A Chaincode is Fabric’s smart contract. It is a software that contains the business
logic of the system. A Chaincode is invoked when an application needs to interact
with the ledger.

Ledger

The shared ledger records the state and ownership of assets. The ledger consists
of the world state that describes the state of the ledger at a given point in time
and the blockchain which logs the transaction history.

Peers

Peers are fundamental in the network because each one hosts ledgers and smart
contracts. A peer executes Chaincode, accesses ledger data, and are the clients’
entry points. Some peers can be endorsers which may specify an endorsement
policy, which defines the necessary and sufficient conditions for a valid transac-
tion.

10A container is a standard unit of software that packages up code and all its dependencies so
the application can be ported quickly and reliably from one computing environment to another.
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Channel

A Channels allows a group of peers to create a separate ledger of transactions,
accessible only by members.

Organization

Peer nodes are owned by different organizations. Organizations manage their own
peers with the help of a Membership Service Provider that assigns an identity
(digital certificate) to each organization’s peer. Peers from different organizations
can be on the same channel. Organizations can be as big as a multinational
corporation or as small as a coffee shop.

Orderer

Orderers are peers that have the following roles:

• they manage the ordering service. The ordering service packages trans-
actions into blocks to be delivered to peers on a channel. It guarantees
the transaction delivery in the network. It communicates with peers and
endorsing peers, and

• they maintain the list of organizations that are allowed to create channels.

Figure 2.5: Fabric’s architecture

Consensus

The consensus occurs within the Ordering Service and involves Orderers. It
occurs at stage 6 in Figure 2.6. Fabric offers three main consensus algorithms:
Solo (one Orderer), Raft, and Kafka.
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Transaction Flow (see Figure 2.6)

1. A client signs and sends a transaction to endorsers (1),

2. its endorsing peers verify the signature and simulate the proposal using the
specified Chaincode (2),

3. proposal responses are inspected by the client (3),

4. the client assembles all endorsements into a transaction and submits it to
the Ordering service (4-5),

5. the new transaction block is validated by Orderers and committed (6-7),
and

6. all peers’ ledgers update their local ledgers (8).

Figure 2.6: Fabric transaction’s flow

Software Requirements

See references on the different installations on the following link11.

1. Install curl: sudo apt-get install curl.

2. Go to Docker install on ubuntu and follow the guidelines on installing, from package
(sudo dpkg -l ...).

3. Install docker compose 1.23.2.

4. Install Golang 1.12 and set its Path (export GOPATH=$HOME/go in /.bashrc).

5. Install NodeJs 8.11.X and npm 6.4.1.

6. Install Hyperledger Fabric 1.4 via Curl (see on website).

7. Implement the first chaincodes (see Section 3.3.4).

11https://hyperledger-fabric.readthedocs.io/en/release-1.4/getting_started.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/getting_started.html


Chapter 3

Methodology

In the following paragraphs, the benchmarking methodology is presented. The
reader will get an idea about the related work already accomplished in this field,
the assumptions taken through the thesis, and how the benchmarks were created.

3.1 Related Work

Some papers and articles aim to give performance results of specific distributed
ledgers: Fabric [12], Corda [13]. and BFTSMaRt [2].

Only few theses and papers have been published about comparing DLT’s per-
formance. Most of them concentrate on one or two parameters. For instance,
both Ethereum and Fabric have been compared in terms of workloads [14]. The
main reason is that it is not an easy task; different implementations often re-
quire different configurations and parameters. It makes comparison difficult and
sometimes even impossible: a Notary is totally different from an Orderer.

Often there is a gap between the paper’s results and the ones the reader might
get, because some do optimization and benchmarking at the same time [13] [15],
which does not give the same results when starting from scratch. They seem to
be more closely related to some "marketing benchmarks" and sometimes even
measure the throughput from the network perspective (how many transactions
occur per second in the network). Thus more nodes in the network implies higher
throughput.

Sometimes benchmarks are also a bit irrelevant as they run large networks,
locally on a laptop, thus not considering the main power of this technology: its
ability to distribute resources.

The Hyperledger foundation started the Hyperledger Caliper project in early
2018. This platform gathers all benchmarking tools for the Hyperledger technolo-
gies. They have the ambition to become a generic tool, extendable for any DLTs.
[16] and, more importantly, to bring developers together around this common
goal.

17
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3.2 Current Work

Overview

In this thesis two aspects are studied: the integration of BFTSMaRt, Corda, and
Fabric into a unique benchmarking tool and comparing them to one another. The
trade-offs are discussed based on measurements and architecture designs.

To distinguish this work from what has been done, a goal is to compare them
on a fair basis without optimizing them. As we cannot compare apples to oranges,
the decision was to take these platforms without modifications and measure how
many transactions a client can execute per second for each platform. Therefore,
throughput and response time are the main metrics.

Deploying peers on a cluster requires time and some understanding in the
technology itself. Another goal of the thesis is therefore to summarize the knowl-
edge acquired to give some useful tricks to the reader.

For these reasons, the decision taken was not to create a separate project, but
to fork Caliper, an existing project1 which is active in the field, with the hope
that the code could help others at some point.

Choice of Distributed Ledgers

In this project three different open source projects are analyzed: BFTSMaRt
(2008), Corda (2016), and Hyperledger Fabric (2015).

Originally, Tendermint was supposed to be benchmarked as well. Tendermint
was reconsidered and replaced by BFTSMaRt. The reason is that BFTSMaRt
also implements the BFT consensus protocol, it is 6 years older, and an adapter
is being developed to be run on top of Fabric.

Moreover, benchmarking a consensus framework gives interesting results about
the time spent in the networking and consensus layer. It is therefore a good
project to be compared to DLT projects. It is known for its efficient BFT imple-
mentation and has also already been used in many projects.2

Corda and Fabric are the main private DLTs. They are two direct rivals
proposing an open source implementation of DLT for enterprises and offering
end-to-end smart contract delivery within a network. Corda has an optimized
Entreprise version as well, which is partially analyzed here.

1https://github.com/jutinguely/caliper
2https://github.com/bft-smart/library/wiki/Sponsors

https://github.com/jutinguely/caliper
https://github.com/bft-smart/library/wiki/Sponsors


3. Methodology 19

Metrics

The metrics used underneath are good indicators for measuring performance of
distributed systems:

• Throughput: trp = |{transactions}|
endbench−startbench

in [transactions per second] = [tps]

• Response time: rsp = endtx − starttx in [ns] 3

– Average response time: rsp =
∑

rsp
|{rsp}| ,

– Maximum response time: rspmax = max {rsp}, and
– Minimum response time: rspmin = min {rsp}

• Standard deviation (resp. time): stdrsp =
√

1
N

∑n
i=0(rspi − rsp)2 in [ns]

• Standard deviation (throughput): stdtrp = trpavg
stdrsp
rsp in [tps]

• Latency: time taken for a task execution in some parts (consensus latency,
communication latency, ...) in [ns]

• Fail/Success rate: number of transactions that are not/are accepted by the
system in percent

with startbench being the time measured at the beginning of the benchmark
and endbench at the end.4

Similarly starttx the time measured when the client sends a transaction (tx)
to the network and endtx when it receives a reply.

Setup

Local

A computer’s performance is bound by its own processing power. Running a
network locally enables testers to compare and discover some connections be-
tween parameters, but does not show how the network scales and the expected
throughput. Local benchmarks can therefore only be relevant if there is one val-
idating authority: one server (BFTSMaRt), one notary (Corda) and one orderer
(Fabric).

31[s] = 103[ms] = 109[ns]
4In Java, startbench is measured by the method System.nanoTime():Long and contains

enough bytes to store a large time interval as Long.MAX_VALUE = 9’223’372’036’854’775’807.
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Cluster

A cluster consists of interconnected servers communicating together. A cluster’s
computational power strongly depends on the number of computers it contains.
Clusters enable the deployment of DLT, as any distributed systems needs to have
distributed hardware (servers) to work.

Note that a lot of deployed distributed systems like VISANet, the credit card
network from Visa, build huge clusters to take advantage of replication and its
high computational power. They go even further to get the best performance:
they have machines assigned to specified tasks. This concept of dividing a node’s
functionality is known as sharding5.

The cluster used for benchmarking is composed of 50 nodes fully connected
and located at ABB Research Center. A maximal number of 17 servers was used
for the thesis (see Figure 3.1). Machines’ names are separated into Cheetahs and
Cougars. The following hardware are used: Intel(R) Core(TM) i5-4570 CPU
@ 3.20GHz for Cougars and Intel(R) Core(TM) i5-3470 CPU @ 2.70GHz for
Cheetahs. Both have 4 cores CPUs. The average round-trip ping between any
two machines is about 0.312 [ms].6

5Fragmenting nodes’ functionalities, more information on https://www.computerworld.
com/article/3336187/sharding-what-it-is-and-why-so-many-blockchain-protocols-rely-on-it.
html

6Value averaged over 100 measures between 4 machines.

https://www.computerworld.com/article/3336187/sharding-what-it-is-and-why-so-many-blockchain-protocols-rely-on-it.html
https://www.computerworld.com/article/3336187/sharding-what-it-is-and-why-so-many-blockchain-protocols-rely-on-it.html
https://www.computerworld.com/article/3336187/sharding-what-it-is-and-why-so-many-blockchain-protocols-rely-on-it.html
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3.3 Benchmarking

The following section describes in details how the benchmarks were done for each
DLT solution and gives useful recipes to deploy them.

The reader7 will find implementations of modules used to benchmark the
different DLT on the forked repository: https://github.com/jutinguely/caliper.

The modules have been implemented in order to integrate Caliper as adapters
and are for that reason named caliper-MODULE. Be aware that some adjust-
ments might be needed to reproduce the steps as DLT and the technologies used
evolve quickly.

3.3.1 A Generic Benchmarking Tool

Overview

The goal is to collect interesting information, such as response time and through-
put, from a distributed ledger running a particular application, in order to com-
pare its performance range with others. We want to know how many transactions
a client can execute per second.

To accomplish it, we need:

• to deploy a network of interconnected servers and configure them to run
the distributed ledger and (smart contract) application in question, and

• to have clients sending transactions to servers at a high rate during a time
interval to record the measured data.

The concrete servers and clients should therefore implement the following
abstractions:

7As some parts include tutorials, from now on until the end of Chapter 3, the third person
might be replace by the second person.

https://github.com/jutinguely/caliper
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Algorithm 1 ith Server’s Process
1: setup running environment, load (smart contract) application
2: connect to peers, elect leader if necessary, maintain secure connection
3: while server is up do
4: process incoming transactions (consensus, local execution)
5: if connection is interrupted then
6: goto 2
7: end if
8: end while

Algorithm 2 Client’s Process [ n: number of transactions, t: list<number of
threads>, s: list<request size>, ? p: list<other parameter> ]
1: setup running environment, load application
2: for each i in t do
3: create i threads
4: for each thread do
5: for each size in s do
6: for each i in [0..n/i] do
7: start timer
8: send(transaction) to a proxy that delivers them to servers
9: end timer and save it in list<time>

10: end for
11: end for
12: end for
13: compute metrics, save benchmark in results
14: reset environment, rest
15: end for
16: return results

Caliper

Caliper is a blockchain performance benchmark framework, which allows users
to test different blockchain solutions with predefined use cases and get a set
of performance test results. It was started by Hyperledger in early 2018 and
measures the following indicators:

• Transaction throughput

• Transaction latency (minimum, maximum, average, percentile)

• Success rate

• Resource consumption (CPU, Memory, Network IO, ...)
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It currently supports the Hyperledger blockchain projects: Burrow, Com-
poser, Fabric, Iroha, and Sawtooth.

Figure 3.2: Caliper’s flow diagram
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Extension of Caliper

Caliper makes it possible to implement adapters as modules to benchmark other
distributed ledgers. However Caliper is too over-constrained: it requires the use of
their benchmarking monitor, designed for Hyperledger technologies. It assumes
that other distributed ledgers have well defined API, accessible in Javascript.
Some DLT such as Corda requires their own development environment (gradle),
and cannot make use of the monitor because not all required parameters are
given: such as a method that gets the transaction’s state.

The red dashed line on Figure 3.2 bypasses the monitor to benchmark other
DLT solutions directly from the DLT’s client. The following sections partially
show the modules’ integration into Caliper. Furthermore, as Caliper is not stable
yet and changes its structure quite often, the benchmarks are mostly created
directly from the module root directory and not from the Caliper root directory.
The following emphasizes the main steps as end-points of the module and omits
their integration with the caliper root. The integration into Caliper requires
modifications of the caliper-core module and a few manipulations not so relevant
for the thesis.
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3.3.2 BFTSMaRt

Overview

BFTSMaRt is not a DLT, but can be tested exactly in the same way. The
difference here is that there is no overhead in embedding transaction in smart
contracts and instantiate lots of data structures. In fact, BFTSMaRt is only the
top layer where consensus on replication occurs.

The following emphasizes: how to deploy BFTSMaRt and how performance
indicator data is generated on a cluster.

Deployment on Cluster

The current goal is to deploy the file system from Section 2.2 on all servers
(cheetahs and cougars).

The first step is to clone the github repository or just copy the module:

https://github.com/jutinguely/caliper/packages/caliper-bftsmart

or scp8 the files manually onto worker@trinity, the managing server.

All well implemented clusters should have an authority that manages the
cluster’s servers in order to simplify their execution. Trinity offers commands
that distribute tasks to servers, two main commands are:

• trexec -SCRIPT -SERVERS, to execute commands on all servers, and

• trcp -FILE -SERVERS, to copy files on all servers.

Deploying nodes is done once from the $HOME/caliper/packages/caliper-
bftsmart/cluster, with the bash script:

setup_trinity_bftsmart.sh -PATH -MACHINES

For example, to deploy it on 4 servers: ./setup_trinity_bftsmart.sh /home/-
worker/julien cougar1-4.9

Benchmark Generation

In this subsection, the client implementation and the benchmark deployment are
presented. Note that the library is assumed to be deployed across servers.

Please look at the two files in the github repository: ThroughputLatency-
Client.java and ThroughputLatencyServer.java for concrete implementations. These

8secure copy protocol via SSH
9see code A.1.1

https://github.com/jutinguely/caliper
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two files adhere to the generic view of a client and a server from Section 3.3.1.
These files give a basis for other benchmark applications.

If you decide to modify the class files or configurations files, you must prop-
agate the modifications to all servers: it can be done by calling the following
command again or a modified version of it from the manager:

./setup_trinity_bftsmart.sh -PATH -MACHINES .

Once the client and server classes are ready, you need to configure the hosts.config
and system.config files with the right IP and parameters (signatures, DOS, Byzan-
tine nodes, ...).

You can modify the benchmark parameters in launchbenchmark.sh (request’s
sizes, number of threads, application to run...) and start the benchmark from
the managing server (worker@trinity). The servers names and IPs must have
consistently configured between the file A.1.2 and the hosts.config configuration
file.

For example to launch the increment benchmark run from the /cluster sub-
folder:

./launchbenchmark.sh -NUMBER_TRANSACTIONS.

The results are stored in JSON format and split in: input parameters, output
parameters and indicates the metrics used. This format is then easy to manip-
ulate. You can find them in the cluster’s shared folder /nas/scratch/julien/bfts-
mart/results, or a similar shared folder that you specified in launch_benchmark.sh.
Each file name contains the number of threads, the request size and the thread
ID that generated it.
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3.3.3 Corda

Overview

Corda’s trivial way to benchmark Cordapps is via JUnit. From there it is quite
easy to get an idea on how long processes or methods take to execute. However,
we want to test deployed networks.

Challenges highlighted here are: deploying network in an efficient way, im-
plementing a notary cluster, connecting a Corda’s client to the network, and
connecting the client to Caliper.

Deployment on Cluster

Corda has a module to generate the nodes’ filesystem. The user can choose
between Cordform or Dockerform.10

The choice was to use Docker to facilitate the network’s deployment. However,
the use of Dockerform requires some modifications in order to make it work.
The following script, located in caliper-corda/cordapps, modifies the current node
structure to make deployment with docker-compose possible:

./configure_for_docker.sh -PROJECT_NAME 11

It takes about a minute to compile the project, create the applications and
corda’s jars to create corda’s nodes structure (structure from 2.3), located in
/build cordapp’s subfolder, and build the containers (PartyA, PartyB, PartyC
and Notary).

Once this bash script finishes, you find Corda Nodes embedded in Docker
Containers. You can either 1) start them locally and log in, or 2) deploy them
on a cluster:

1. You can simply go into /cordapps/PROJECT/build/nodes and execute
docker-compose up to start the network. It takes about a minute and the
nodes can be accessed only once that all ports have been opened. Then
open another shell and connect to PartyA with the command ssh localhost
-p 2223 -l user1 and the pre-defined password test. From there, you can
see the flows by typing flow list, see its peers (run networkMapSnapshot)
or start flows.

2. If you modify a node’s file, you can just regenerate the container with
docker-compose up –build –d. Docker takes quite a lot of memory (300MB
per peer), use docker system prune to remove unused containers.

10https://docs.corda.net/head/generating-a-node.html
11command requiring material from sub-folder cordapps/utils

https://docs.corda.net/head/generating-a-node.html
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When the container images exist for each party (look with docker ps), you
can export the images into zip files with Docker export notary > notary.gz
for each container name (parties). The containers are zipped and placed
into the folder where the operation is done (most probably under PRO-
JECT/build/nodes). If working locally, export it on the cluster with scp
./containers/* worker@trinity:/nas/scratch/PATH/containers. Then use
trcp to export the zip onto other servers and then docker import notary.gz
notary to import them on the server’s docker instance.

Lastly, you need to setup a Docker Swarm network between peers to enable
communication. Choose a server to be the leader, log in via ssh cheetah1
and type Docker swarm init. You get a token back. Other servers (hosting
other parties) can join the Swarm with docker swarm join -TOKEN.

From there, the required servers are connected over an overlay network.
They need to change their docker-compose.yml file such that all peers can
join the network. Please look at Figure 3.3 to fill in your file. The use of
docker stack deploy is also possible but not developed here.

Figure 3.3: Corda’s Swarm configuration

Notary Cluster

Notary Cluster is Corda’s core concept. However, its actual deployment and
implementation is badly documented. It does not seem to be fully ready yet.
Furthermore this central concept is unfortunately not implemented in its OS
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version and requires the Enterprise paid version.

For these reasons, in the thesis, only one validating ordering node is used.

Corda’s Client

There are three ways to connect to Corda nodes: either through their shells with
ssh, through a rpc client, or through rpc via a webserver.

The first has previously been achieved with the caliper client to automate the
process of sending transactions at a high rate. The performance was astonishingly
low due to the ssh connection overhead.

To bypass this and get better throughput, the use of Corda’s native environ-
ment is necessary (via rpc). That is the main reason why this package does not
use the Caliper client and monitor frameworks (see Figure 3.4). The caliper-corda
module:

• deploys the nodes as docker containers,

• starts the webserver which is bound to its Cordapps,

• sends http-request to request benchmarks, measure performances in JVM,
and

• logs JSON results containing all measurements into a file.

Benchmark generation

In order to launch a benchmark you will first need to have a Cordapp to bench-
mark, either by implementing from scratch from the Cordapp-template or by
taking an example from caliper-corda/cordapps/*. You will then execute:

./configure_for_docker -PROJECT_NAME

and start the containers with docker-compose up.

Once done, go into /PROJECT/ and run

./gradlew runTemplateClient

to start the Client.java or Client.kt class from the Client module (either from
intellij or from a terminal). They have to follow the same structure as in Section
3.3.1 (refer to the projects implemented in the thesis).

All parameters are defined directly from within the class itself. From there,
the results are given at the end of the benchmark and written in the cordapp’s
sub-folder results.
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Another way to automate the whole process is to use the web-server as shown
on Figure 3.4. This is explained in the README.md file in the caliper-corda
directory. This is implemented in the caliper-corda/lib sub-directory. The code
is self-explanatory.

Figure 3.4: caliper-corda flow diagram

Figure 3.4 shows the problem when trying to integrate in caliper-core. The
use of the monitor is not possible and has to be bypassed by a Client’s webserver
listening to Caliper’s requests12.

12read more in README.md
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3.3.4 Fabric

Overview

As both Caliper and Fabric are Hyperledger projects, getting benchmark locally
in Fabric is simple: just use caliper. The steps are self-explainatory and therefore
not detailed in the report.

Deploying them on a cluster is another story, although Caliper proposes a way
using Zookeeper13. This section describes an alternative deployment method with
Docker Swarm and Docker Stack. It will then give a summary on benchmarking
it on a cluster.

Deployment on Cluster

Here, a way to deploy Fabric on a cluster is presented. The explanations refer to
the Trinity cluster and thus might differ from the reader’s cluster. The code can
be found under caliper-fabric/cluster It assumes all requirements from Section 2.4
have been installed on all servers. The following concern: 1) defining a network
setup, 2) installing mongoDB in multihosts, 3) binding servers in a Docker Swarm
and Docker Stack, 4) starting Fabric’s components on all servers, and finally 5)
running a chaincode, all on the cluster.

1. All deployed networks are composed of servers, each one hosting an orga-
nization. Each organization contains at least: two peers (one endorser)
and a certificate authority. All can contain an orderer. In our increment
use case only one Ordering service is implemented as "Solo" on cheetah3,
representing the network administrator. cheetah5 and cheetah6 hold two
organizations (seen as the client-supplier relation). The reader can open
new terminals for different ssh sessions to the servers.

2. Every server instance needs to have a mongoDB instance running. The
reader can install it with sudo apt-get install mongodb. The ports and
connection parameters need to be modified by executing:

mongoose.connect(’mongodb://cheetah3:27017,...,cheetah5:27017/admin?replicaSet=rs0’)

in the files database.js. Once installed, the script ./startDB.sh needs to be
called on each server. The leading server will need to open a new terminal
and run mongo.

3. Like in Corda, servers are communicating through a Docker Swarm: initi-
ate a Swarm Orchestrator with docker swarm init, make others join with

13ZooKeeper is a centralized service for maintaining configuration information, naming, pro-
viding distributed synchronization, and providing group services.
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docker swarm join-token manager, join other nodes to the swarm network
as "managers" with docker swarm join –token TOKEN and finally create
an overlay network with docker network create –attachable –driver overlay
fabric.

4. Once steps 1-3 are done, docker containers can be started. For that, the
reader opens a new terminal for each server and runs the script ./start-
Cluster.sh. You can verify that your network is up and running thanks to
docker ps, docker service ls, docker node ls, and docker stack ls. The file is
self explanatory.

5. You can then launch your Chaincode either with Fabric’s SDKs or manually
from a terminal by following this tutorial:

https://hyperledger-fabric.readthedocs.io/en/stable/install_instantiate.html

There are other ways to create a Fabric network, Caliper uses for instance
Zookeeper instead of Docker Swarm. Both make sense if they run the Fabric’s
kafka consensus algorithm. This tutorial14 explains how to make use of it.

Benchmark Generation

As the client’s implementation, using Docker Swarm/Stack is not finished, the
benchmarks are generated with the help of Caliper. In order to deploy your
network, you can use Zookeeper for now:

1. Start Caliper’s zooservice: caliper zooservice start

2. Launch a caliper-zoo-client on eah target machine using Caliper CLI: caliper
zooclient start -w /myCaliperProject -a <host-address>:<port> -n my-sut-
config.yaml

3. Modify the client type setting in configuration file to "zookeeper":
For example:

" c l i e n t s " : {
" type " : " zookeeper " ,
" zoo" : {

" s e r v e r " : "10 . 229 . 42 . 159 : 2181" ,
" c l i en t sPe rHos t " : 5

}
}

4. Launch benchmark as explained on caliper on any machine.

14https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html

https://hyperledger-fabric.readthedocs.io/en/stable/install_instantiate.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/kafka.html


Chapter 4

Measurements

In this chapter, the results from the benchmarks are presented, explained and
interpreted. A simple application is mapped to each DLT solution in order to
compare their performances (see code A.2 for the increment example). The sec-
tion with an asterisk are here to add more examples, but do not help in comparing
DLTs.

While reading the results, keep in mind the throughput of some interesting
distributed systems as a basis for comparison:

VISANet: ∼ 20′000 < [tps]
Bitcoin: ∼ 6 [tps]

Ethereum: ∼ 15 [tps]

Table 4.1: VisaNet, Bitcoin and Ethereum throughput

4.1 Results

4.1.1 BFTSMaRt

Overview

In the first benchmark session, we are interested in looking how this replication
framework 1) scales with many servers involved in the consensus protocol, 2) im-
pacts multi-threading, 3) the response size and 4) signatures have on throughput.
Therefore, we run different benchmarks in function of:

1. the number of servers (2, 4, 8, 16),

2. the number of threads (1, 10, 50, 100),

3. the request/response size (4, 64, 512, 1024 [bytes]), and

34
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4. signed and not signed transactions (signed, not signed),

using the increment example from annex A.2.

We are interested in looking for the optimum number of threads. Having too
many threads deteriorates performance (overhead in synchronization) and too
few might not use the computer’s ability to process transactions in parallel: the
client needs to wait on the previous transaction to go on with the next1.

In the following pages the reader will find the results of the 128 benchmarks,
each one running 1′000′000 transactions. The standard deviation is calculated
based on a 68.27% confidence interval ([µ−σ, µ+σ]). The execution took about
18 hours 43 minutes.2

Figure 4.1 shows: the connection from a remote desktop to the cluster man-
ager. From the manager all script are launched to deploy the BFTSMaRt library
and commands to a subset of servers or to clients.

Figure 4.1: BFTSMaRt: benchmarking setup

1To know more about pipelining, please read https://en.wikipedia.org/wiki/Instruction_pipelining.
2It takes into account the setup time.

https://en.wikipedia.org/wiki/Instruction_pipelining
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No Signature

Figure 4.2: BFTSMaRt: 2 servers, no
signature

Figure 4.3: BFTSMaRt: 4 servers, no
signature

Figure 4.4: BFTSMaRt: 8 servers, no
signature

Figure 4.5: BFTSMaRt: 16 servers, no
signature

Multiplying the number of servers by 2 seems to reduce the throughput by
a factor of about 2. This can be shown from Figures 4.2 to 4.5. Therefore, the
main overhead with no signature lies in the number of servers participating in
the network.

The optimum number of threads for this application varies, although 50 is a
good candidate for low number of servers and 10 for higher number of servers.
This number decreases with more servers. Request sizes impact the throughput
in a difference of few 1000s transactions per second between the different sizes.
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With Signatures (change of scale!)

Figure 4.6: BFTSMaRt: 2 servers,
with signatures

Figure 4.7: BFTSMaRt: 4 servers,
with signatures

Figure 4.8: BFTSMaRt: 8 servers,
with signatures

Figure 4.9: BFTSMaRt: 16 servers,
with signatures

The number of servers involved in the consensus does not affect the through-
put as much as with no signature.

From 10 threads adding threads does not affect the performance that much.
Therefore, the optimum seems to be 10 threads. (see Figure 4.9)

Request sizes do not affect throughput as much as with no signature (they
have almost the same shape).
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Interpretation

BFTSMaRt is really optimized. Adding more servers in the consensus does not
add a huge overhead in the system. Communication is of course more important
with many machines.

The request/response sizes do not play a role when transactions are signed.
Therefore, the main overhead of BFTSMaRt probably lies in signatures, which
cost a lot and reduce the throughput by a factor between 3 and 10.

In general, having a high request/response size impacts the throughput as
shown in the graphics. Interestingly, more threads does not mean more through-
put; such benchmarks can help finding the right number for a given application.

A high standard deviation is observed in almost all measurements. This comes
from the addition of all communication waiting time in queues, which varies.

The benchmarks with signatures would have probably been more interesting
with higher values (sizes, number of threads), as signatures are the throughput’s
overhead here.

Figure 4.10: BFTSMaRt: effects due to number of servers

Figure 4.10 shows the impact of the number of servers running the increment
example for a request size of 4 bytes (enough to hold an integer). The reader can
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see that when the server just writes on one server, it goes 4 times faster, because
it does not need to communicate. The number of server n is chosen, allowing f
byzantine nodes and satisfying the equation: 3f + 1 ≤ n.

Figure 4.11: BFTSMaRt: time per
phase

Figure 4.12: BFTSMaRt: response
time distribution

Figure 4.11 shows the average amount of time spent in the phases: PRO-
POSE, ACCEPT and WRITE with 4 servers executing the increment example.
In this benchmark, we see that server 1 is the leader because times within the
PROPOSE and WRITE phases are higher. The ACCEPT phase duration is
about the same for all.

Figure 4.12 shows the response times’ distributions for each benchmark, run-
ning the increment example.
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4.1.2 Corda

Overview

This benchmark session exposes the results of the increment example for Corda.
It then presents the performance results of a financial real use case in Corda in
the second part to give a real use case benchmark.

We want to measure the throughput for the 4 different examples and study
the effects of3:

• the number of threads (1, 10, 50, 100, 500, 1000)4, and

• Corda OS5 and Corda Enterprise6

on throughput. For this, we use 10′000 transactions, two parties and one no-
tary7. One benchmark takes between 20 and 50 minutes. The standard deviation
is calculated based on a 68.27% confidence interval ([µ− σ, µ+ σ]).

As shown on Figure 4.13, the number 1 represents a notary validating an
update to the ledger (hence an increment operation or an issuance). The number
2 represents a notary validating a transaction between peer1 and peer2. In the
second part, number 1 is used to issue cash, number 2 is used for the payment
example.

Figure 4.13: Corda: benchmarking setup

3Here we do not analyze the effect of request/response size as it would require to change the
data-structure before each deployment (hard at runtime).

4for the same purpose than in BFTSMaRt
5Open Source
6To run Corda Enterprise, replace corda.jar in nodes directory by the Entreprise corda.jar

(can be found in trial version)
7Notary cluster is not implemented in OS version yet.
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Increment Example

The increment example had to be transcript into a Cordapp.

Figure 4.14: Corda: increment issue Figure 4.15: Corda: increment

Here, we see that consuming states to create a new one costs about 3 times
more than just issuing transactions (see Figures 4.14 - 4.15).

* Finance Example from Corda

This example does not bring anything to the comparison of other DLTs, it just
analyzes two flows from the official finance Cordapp, that could be real deployed
application. "Cash Issue" aims to create accounts; it assigns an amount to an
owner via a notary. "Payment" consumes an account balances and create two
output accounts one for the debtor and one for the creditor. As the debtor
and creditor are always identical, this application is just consuming the debtor
account.

Figure 4.16: Corda: cash issue Figure 4.17: Corda: payment
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In this example, the difference between creating and consuming a state is even
more distinguishable. Each benchmark sent 10’000 transactions. This shows how
costly it is to walk the chain to the original transaction in Corda.

Interpretation

Corda’s results might seem poor. However it is necessary to look at Corda’s
functionalities. Corda:

1. offers a straightforward experience: it uses quite easy concepts,

2. offers good privacy because it uses point-to-point messaging, and

3. deploys Cordapps with less efforts (using high level programming languages).

More astonishing is their wish to separate multi-threading and single-threaded
applications. If reasonable performance or building a notary cluster are wanted,
then the developer needs to choose the Enterprise version.

These results are satisfactory for low throughput applications. The reader
might want to reconsider their choice if he needs to request over hundreds trans-
actions per second.

The results match with the ones obtained by Corda in another study [17]. It
was hard to obtain the same performance, as sharding and Enterprise’s source
code was necessary.

Moreover, batching transactions together is not offered in Corda in contrast
to Fabric. This would certainly improve performance, but contradict Corda’s
design at the same time.

Corda uses direct communication and does not have have to account for the
time it takes to broadcast a message to the entire network. Individual transac-
tions are sent directly to the involved parties. It is a very quick process. In our
case, though, batching would have helped as we always involve the same peers.
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4.1.3 Fabric

Overview

We are running the increment example on Fabric. The channel is configured
with a batch timeout of 250 [ms], a maximal batch size of 100. These value can
be modified on channel’s creation. These values will stay constant through the
benchmarks.

We use 10′000 transactions and analyze the performance of the increment
application under different sending rates and output the throughput and average
response time. We look at three different operations on the peer’s ledger: issue,
increment, query and transfer.

Figure 4.18 shows the two configurations we use. The number 1 is the con-
figuration where we have only one peer under one organization. This case will
enable comparison with Corda. The second one is useful to see how a second
organization within the channel. The increment example is implemented in a
chaincode8.

Figure 4.18: Fabric: benchmarking setup

8can be found on repository under benchmark/simple
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Increment Example on 1 organization

Figure 4.19: Fabric: increment on 1 organization

The throughput for incrementing a counter is 50 [tps] better than the one
obtained by Corda. Augmenting the sending rate has no impact as it is bound
by the network capacity. Here, we see that Fabric batches lots of transactions
together as the average response time is about 0.4 [s] (about 100).

Figure 4.20: Fabric: query on 1 orga-
nization

Figure 4.21: Fabric: issue on 1 organi-
zation

As in Corda’s Enterprise edition, the throughput to issue transactions is
bound to about 170 [tps].
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* Increment Example on 2 organizations

Figure 4.22: Fabric: increment on 2 organizations

Adding another organization in the Channel is not free, even with a Solo
ordering service. Both peers needs to synchronize. The throughput is therefore
a bit lower.

Figure 4.23: Fabric: query on 2 orga-
nizations

Figure 4.24: Fabric: issue on 2 organi-
zations

Interpretation

For the increment example, both Corda and Fabric solution seem to be have
similar throughput’s ranges. We can expect better from Fabric with higher max-
imal batch sizes and configurations. This is however not shown here. Some more
interesting results about Fabric’s performance can be found here [12].
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Conclusion

This work gives insights into benchmarking DLT. On the one hand, BFTSMaRt
gave high throughput due to its simple consensus framework. On the other hand,
Corda achieved an astonishingly low throughput, but gives us the whole infras-
tructure to implement a one-to-end smart contract application. Fabric seems to
be the good intermediary: a solution with reasonable throughput and function-
ality to implement smart contracts in a more flexible way. A downside of Fabric
is its deployment complexity.

The main limitation of the work accomplished is the consensus protocols in
DLTs. Our benchmarks are not taking into account this part of the transac-
tion. Therefore throughput with the consensus part can be expected to be even
lower than the results obtained. This work has defined DLT performance by
the throughput. This assumption is also a limitation of the work accomplished.
These systems needs to take much more into account to be evaluated and thus
compared, such as: cryptography, CPU consumption, consensus algorithm used,
etc.

Telling which one would be more suited for a particular application would
be too subjective for now. The advise to take away from this thesis is to look
at the level of throughput the application needs in order to work well. If one
wants to replicate data from sensors collecting thousands data measurement per
second, BFTSMaRt would be more suitable. If one wants to implement a low
throughput application, such as an application that records houses’ ownership,
then a framework such as Corda would be more appropriate. For common use
cases Fabric would probably be the best solution, modifiable enough to respond
to precise needs.

These benchmarks are in some ways interesting to compare with the "mar-
keting benchmarks" that promise high throughput. It shows how important per-
formance is for them: giving high numbers is much more appealing than listing
advantages of their solution.

Benchmarking DLT is not a trivial task. Caliper looks for developers to
extend the tool, make it more reliable, and enable new DLT and parameters.

46
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As many applications follow from DLT, many particular use cases and smart
contract applications can be tested on different distributed ledgers.

Caliper or similar projects will integrate great extensions in the next few years
that will enable it to benchmark any DLT. From that point on, we will be able
to segment DLTs into specializations. Once that is possible, the deployment of
such technology will be even easier and enable large scale deployment of smart
contract applications.
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Appendix A

Annexes

A.1 BFTSMaRt Benchmarks bash script

A.1.1 setup_trinity_bftsmart.sh

#!/ bin /bash

PATH=$1
MACHINES=$2

t r exec "rm −r $PATH/ l i b r a ry −1.1−beta " $MACHINES

trcp l i b r a ry −1.1−beta / $MACHINES

t r exec "mv . / . . / l i b r a ry −1.1−beta / $PATH" $MACHINES

A.1.2 launchbenchmarks.sh

#!/ bin /bash
# @Julien Tinguely 2019

# 1 . c on f i g u r a t i o n s : lauch number o f nodes 1 2 4 8 16 −−−−−−−−−−−−−−−−−−−−−−−−−
# − modify host s . con f ig , system . con f i g IPs
# − s e t maxbatchsize , #f au l t y ?

# arg number o f t r an s a c t i on s to send
t r an s a c t i on s=$1
# machine cougar6 i s the c l i e n t
c l i e n t=cougar6
# output f i l e base name
d i r=results_BFTSMaRt_${ t r an s a c t i on s }

# cr ea t e f o l d e r f o r r e s u l t s f o r each setup (2 , 5 , 8 , 16 )
echo "Create d i r e c t o r y f o r r e s u l t s "
t r exec "mkdir /nas/ s c ra t ch / j u l i e n / $d i r /" $ c l i e n t
t r exec "mkdir /nas/ s c ra t ch / j u l i e n / $d i r /2 s e r v e r s " $ c l i e n t
t r exec "mkdir /nas/ s c ra t ch / j u l i e n / $d i r /4 s e r v e r s " $ c l i e n t
t r exec "mkdir /nas/ s c ra t ch / j u l i e n / $d i r /8 s e r v e r s " $ c l i e n t
t r exec "mkdir /nas/ s c ra t ch / j u l i e n / $d i r /16 s e r v e r s " $ c l i e n t

# as s i gn machines used f o r benchmarks
echo " Star t s e s s i o n "
s e r v e r s 2=(cougar1 cougar2 )
s e r v e r s 4=(cougar1 cougar2 cougar3 cougar4 )
s e r v e r s 8=(cougar1 cougar2 cougar3 cougar4 cougar7 cougar8 cheetah1 cheetah2 )
s e rv e r s 12=(cougar1 cougar2 cougar3 cougar4 cougar7 cougar8 cheetah1 cheetah2
cheetah3 cheetah4 cheetah5 cheetah6 )

s e rv e r s 16=(cougar1 cougar2 cougar3 cougar4 cougar7 cougar8 cheetah1 cheetah2
cheetah3 cheetah4 cheetah5 cheetah26 cheetah22 cheetah23 cheetah24 cheetah25 )

# Each machine has a corresponding id ( see c on f i g / host s . c on f i g −/system . con f i g )
d e c l a r e −A id s=( [ " cougar1 " ]=1001 [ " cougar2 " ]=1002 [ " cougar3 " ]=1003
[ " cougar4 " ]=1004 [ " cougar7 " ]=1005 [ " cougar8 " ]=1006 [ " cheetah1 " ]=1007
[ " cheetah2 " ]=1008 [ " cheetah3 " ]=1009 [ " cheetah4 " ]=1010 [ " cheetah5 " ]=1011

A-1
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[ " cheetah26 " ]=1012 [ " cheetah22 " ]=1013 [ " cheetah23 " ]=1014 [ " cheetah24 " ]=1015
[ " cheetah25 " ]=1016)

# 2 . For arg setup do benchmarks r eques t_s i z e x #c l i −−−−−−−−−−−−−−−−−−−−−−−−−−
launch ( ) {

s e r v e r s=($@)
c l i e n t=cougar6
l en=${#s e r v e r s [@]}
f o l d e r=" $ len " s e r v e r s
# pr in t output f i l e name
echo "name o f f o l d e r : results_BFTSMaRt/ $ f o l d e r "
# i t e r a t e on r e sque s t s i z e
f o r s i z e in 4 256 1024
do

# i t e r a t e on number o f threads
f o r c l i in 1 10 50 100
do

echo "A. Benchmark on $ len s e r v e r s with $ c l i c l i e n t s and r eque s t s s i z e
$ s i z e bytes −−−−−"

# s t a r t a l l s e r v e r s
echo "B. BRING a l l s e r v e r s up"
f o r s in ${ s e r v e r s [@]}
do

echo " $s with id ${ id s [ $s ] } "
t r exec "cd /home/worker/ j u l i e n / l i b r a ry −1.1−beta / ;
. / r un s c r i p t s / smartrun . sh bftsmart . demo . benchmark . ThroughputLatencyServer

${ id s [ $s ] } $ s i z e f a l s e 0 0" $s ;
echo " He l lo "
s l e ep 2

done

echo "B2 . Waiting 6 sec "
s l e ep 6

# s t a r t the c l i e n t
echo "C. S ta r t i ng benchmark on $ len s e r v e r s with $ c l i c l i e n t s
, r eque s t s s i z e $ s i z e bytes and $ ( ( $ t r an sa c t i on s / $ c l i ) ) txs "

t r exec "cd /home/worker/ j u l i e n / l i b r a ry −1.1−beta / ;
. / r un s c r i p t s / smartrun . sh bftsmart . demo . benchmark . ThroughputLatencyClient 1001

$ c l i $ ( ( $ t r an sa c t i on s / $ c l i ) ) $ s i z e 0 true 0" $ c l i e n t ;

#echo "Wait $ ( ( $ c l i ∗20)) sec to complete ( be t t e r too long than too shor t ! ) "
#s l e ep $ ( ( $ c l i ∗20))
s l e ep 2

echo "D. Move r e s u l t s to /nas/ s c ra t ch / r e s u l t s "
# dont f o r g e t to change f o l d e r name 4 s e r v e r s
t r exec "mv /home/worker/ j u l i e n / l i b r a ry −1.1−beta / r e s u l t s /∗

/nas/ s c ra t ch / j u l i e n / $d i r / $ f o l d e r /" $ c l i e n t
done
# k i l l s e r v e r s a l l threads and p ro c e s s e s hanging !
echo "E. K i l l s e r v e r s "
t r exec " p k i l l −f ’ java ’ " $ c l i e n t
f o r s in ${ s e r v e r s [@]}
do

echo " k i l l java p ro c e s s e s on . . . $s "
t r exec " p k i l l −f ’ java ’ " $s

done

echo "F . Wait 15 sec −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
s l e ep 15

done

}

# setup means r ep l a c i ng the system . con f i g f i l e be f o r e the benchmark launch
# con f i g depends on the s e r v e r s .
setup ( ) {

s e r v e r s=($@)
l en=${#s e r v e r s [@]}

t r exec "rm /home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g / currentView" $ c l i e n t

t r exec "cp /nas/ s c ra t ch / j u l i e n /SystemConfigs / $ len / system . con f i g
/home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g " $ c l i e n t

t r exec "cp /nas/ s c ra t ch / j u l i e n /SystemConfigs / $ len / host s . c on f i g
/home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g " $ c l i e n t

f o r s in ${ s e r v e r s [@]}
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do
echo " setup $s "
t r exec "rm /home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g / currentView" $s
t r exec "cp /nas/ s c ra t ch / j u l i e n /SystemConfigs / $ len / system . con f i g

/home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g " $s
t r exec "cp /nas/ s c ra t ch / j u l i e n /SystemConfigs / $ len / host s . c on f i g

/home/worker/ j u l i e n / l i b r a ry −1.1−beta / con f i g " $s
done

}

# benchmarks −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

setup ${ s e r v e r s 2 [@]}
launch ${ s e r v e r s 2 [@]}
s l e ep 10
setup ${ s e r v e r s 4 [@]}
launch ${ s e r v e r s 4 [@]}
s l e ep 10
setup ${ s e r v e r s 8 [@]}
launch ${ s e r v e r s 8 [@]}
s l e ep 10
setup ${ s e rv e r s 16 [@]}
launch ${ s e rv e r s 16 [@]}
s l e ep 10

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.2 Increment example

Algorithm 3 Server
c← 0
while up do
service.receive(increment())
...consensus and replication...
c← c+ 1

end while

Algorithm 4 Client, [n: Number of transactions]
1: nTX ← n
2: i← 0
3: while i ≤ nTX do
4: service.send(increment())
5: record response times
6: # wait on service’s response
7: i← i+ 1
8: end while
9: return results
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