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Abstract

Assessing the flower abundance in grasslands is a tedious and time consuming
process. It involves laying out vegetation squares and counting the flowers by
hand. This thesis investigates whether it is possible to determine the flower
abundance in grasslands from drone images using a deep learning approach. The
central building block is a Faster R-CNN object detection network architecture
[1] which is trained and evaluated on aerial image data of five flights and two
sites. The results show that the novel method developed throughout the thesis
meets or exceeds the accuracy of the hand counted extrapolation method for
some flowers. Besides being similarly or more accurate as well as less labor
intensive, the drone based abundance determination method allows for generation
of spatially explicit maps of flowers which goes beyond what can be done with
the traditional abundance assessment method. The results suggest that up to a
ground resolution of 5 mm / pixel, good performance can be expected for the well
performing flowers, including the ones being smaller than 2 cm in diameter. While
the results are very promising for some flowers, other flowers are detected poorly
due to various reasons such as lack of enough training data, appearance changes
due to seasonal phenology or flowers being too small to be reliably distinguishable
on the aerial images.
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Chapter 1

Introduction

1.1 Motivation

The service done by pollinators in farmlands is estimated to value more than
150 Billion Euros a year worldwide [2] and between 205 and 479 Million Swiss
Francs in Switzerland [3]. Their declining numbers motivate many ecologists to
study their interplay with the environment. This often includes the assessment of
flower abundance and distribution, which is an extremely time consuming task.

In the last 10 years, rapid development in sensor technology and robotics have
enhanced the capabilities of unmanned aerial vehicles (UAVs) such that today it is
both technologically possible and affordable to take ultra-high spatial resolution
images of large areas of grassland with UAVs. Additionally deep learning based
classification methods have appeared that are able to utilize the details of that
data. In this thesis the question is answered whether it is possible to get accurate
information about the flower abundance and distribution in grasslands from drone
images alone.

1.2 Background

1.2.1 Bees and Biodiversity

Numbers of flying insects have drastically declined in the past few decades. A
study conducted in Germany reports a 75 % decline of flying insect biomass
over the past 27 years [4]. Due to their importance as pollinators, these alarming
findings have drawn the attention of scientists to further study the reasons behind
this decline in insects. Pesticides could be a major contributor to increased
mortality of honey bee colonies [5]. Agricultural intensification may play a big
role as well [6]. Similarly, global warming might affect insect populations [7]. The
exact causes however have not been unearthed so far. Therefore a lot of ongoing
research is trying to shed light on this matter [8]. A lot of such studies about
bees or biodiversity require information about flowering plants within a certain

1



1. Introduction 2

area [9, 10].

Traditionally, information about plant abundance is acquired by counting the
flowers by hand. Since counting all flowers within a large area would be infeasible
due to the high workload, so called vegetation squares are distributed inside the
area of interest. These vegetation squares are generally 1 by 1 meters wide.
Within all such vegetation squares, the numbers of flowers of each species are
counted by hand and finally these numbers are extrapolated to the size of the
whole area of interest. If the positions of the squares are well chosen, this method
gives a good estimate of the abundance of flowers. This thesis investigates if this
process can be at least partly automated.

Such an automated approach faces several challenges. The first question that
has to be answered is: Are the numbers of flowers visible on the images compa-
rable to the numbers of flowers counted in the field by hand? The hypothesis
is that equally many or less flowers are counted on the images because some
flowers might be invisible since they are hidden behind other flowers, covered by
grass or just too small to be distinguishable. The results in section 4.1 show
that this hypothesis proves to be valid for some flowers but not for all of them.
Another open question is how well a deep learning algorithm can detect flowers
in overhead images with very limited resolution. The lower the drone flies, the
higher the resolution gets but the covered area decreases. Flying too low also
introduces a downwash onto the flowers caused by the wind of the rotors which is
undesirable. Detailed results on the effects of resolution changes are documented
in section 4.5.

1.2.2 Computer Vision

Computer Vision and in particular object detection in images has made major
progress in the past ten years [11]. [12] states object detection to be the task to
find objects in images, assign a class label to it and predict the bounding box
around it. This is a very complex task for a computer to do. It basically consists
of two subtasks: Firstly, finding the regions in an image that contain potential
objects and secondly, assigning a class label to each such region.

For the first task, two approaches exist. The first approach is to use a sliding
window approach that suggests a predefined set of bounding boxes and for each
of them, the image classification algorithm is run. This approach however is very
time and resource consuming because of the huge amount of possible bounding
boxes. Since the introduction of MultiBox [13] in 2014, state-of-the-art object
detection algorithms use convolutional neural networks (CNNs) to make region
proposals where an object is likely to be located. This approach has the benefit
that much fewer regions are proposed which improves prediction times by factors
of magnitudes [14].

For the second task of image classification, since winning the ImageNet com-
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Figure 1.1: Illustration of a Convolution Neural Network. [Diagram created with
www.draw.io]

petition [15] in 2012 by a large margin, the standard approach for object classifi-
cation is to use a deep convolutional neural network [16]. A convolutional neural
network is a network architecture with an input layer, an output layer and mul-
tiple so called hidden layers in between. For object classification, the network
takes the pixels of an image as input and as output predicts the likelihood for
each class label. An illustration of this architecture is depicted in Figure 1.1.
The hidden layers in CNNs used for object classification are mostly convolution
layers or pooling layers. In a convolution layer, a filter of a small size is moved
across the image and a convolution operation is applied. In the first few layers,
these filters detect low-level features such as edges in different orientations or
colors. In the middle layers, more complex shapes are detected by the filters such
as combinations of lower level features. In the final layers, whole objects can be
detected. Pooling layers (mostly max pooling layers) are used to downsample
an image. As the last layer, a fully connected layer is needed. With correctly
assigned weights to all edges in the last fully connected layer, each output class
can be predicted by combining the relevant features from the second last layer.

In this thesis the Faster-RCNN [1] network architecture is used. The Faster-
RCNN architecture improves on the Fast-RCNN [14] network architecture by
merging the region proposal network with the image classification network, which
has significant speed ups as a consequence.

A convolutional neural network can be trained end to end. This means that
the network can be trained by simply providing it with annotated images. With
a process called back propagation the weights inside the network are fine tuned
automatically such that the filters inside the different convolutional layers extract
meaningful features from the images. In order to get good results from a deep
convolutional neural network it has to be trained with a large amount of anno-
tated images. This requires huge amounts of computational power. Fortunately,
for the Faster-RCNN architecture, a pretrained network configuration can be
downloaded from the Tensorflow Github repository. The pretrained model used
in this thesis has been trained on thousands of images of the MS COCO dataset
[17] and is able to extract a lot of meaningful features from images. By further
training it on a custom dataset, the weights can be finetuned to this particular
object detection problem.



Chapter 2

Related Work

There are many recent papers that apply advanced machine learning techniques
to aerial or satellite images. For example, [18] showed good results in detecting
large mammals from aerial imagery in the African savanna. The authors specif-
ically had to deal with a large imbalance of foreground to background. [19] has
achieved precision and recall values of over 90 % in detecting shrubs from satellite
images.

[20] compares the performance of two different object detection network ar-
chitectures on aerial images of vehicles: Faster R-CNN [1] and a modified version
of YOLO [21]. The authors found that their modified version of YOLO is much
faster than the Faster R-CNN architecture. However, the Faster R-CNN archi-
tecture provides slightly better results in terms of precision and recall. Similar
results have been found by [22] and in a master thesis trying to detect wheat
heads in overhead images [23].

Detecting objects of sizes of only a few pixels is challenging. Standard net-
work architectures are not designed to detect such small objects by default as
demonstrated by [22]. [24] analyzes the reasons behind this observation. One
main cause for the poor performance is that stride sizes are too large such that
small objects are highly squeezed and have few features for detection in the in-
ternal feature maps. In addition to that, small objects match only a few anchors
and are therefore often left undetected which leads to low recall rates. How these
problems are tackled in this thesis is described in section 3.3.4. [25] has shown
good results on detecting tiny faces of only a few pixels decimeter. The main
insights of that paper are that context helps detecting small faces and so does
upscaling images by a factor of two. Both techniques are applied in this thesis
and are further explained in section 3.3.4.

4



Chapter 3

Method

3.1 Overview

The main goal is to estimate the abundance of flowers within a field from drone
images. To do so a deep convolutional neural network is trained to detect flowers
in drone images. To train a neural network, a large amount of training data is
necessary.

3.2 Data Collection

Training data in this thesis refers to images taken by a drone and flower annota-
tions made within these images by experts. An overview of the time consuming
process of collecting this training data can be obtained from figure 3.1 and is
described in more detail in the following subsections.

3.2.1 Preparation and Drone Flights

Firstly, a suitable field has to be selected. In this thesis a field in Linn (canton
of Aargau) and a small field in Lindau (canton of Zürich) have been chosen. The
former field has been farmed extensively during the last 15 years. This means
that the field has never been cut before the 15th of June in any of these years.
Also no fertilizers or any other treatments are used in this field, according to the
owning farmer. Due to this extensive farming, the biodiversity is very high. 40

Figure 3.1: Overview of training data collection process.

5



3. Method 6

(a) TransformerUAV drone (b) Vegetation Squares and GPS Marker

Figure 3.2: Photos taken in the test field in Linn.

different types of flowers have been found inside a 30 times 30 meters region of
this field between May 23rd and July 3rd 2019. The 25 most common ones are
listed in table 4.2.

Before flying the drone, vegetation squares as depicted in Figure 3.2b are dis-
tributed across the 30 times 30 meters test region. These vegetation squares are
used for the manual counting method of the vegetation information as described
in section 1.2.1. In the end, the results of the extrapolation of the number of
manually counted flowers are compared to the results of the method developed
in this thesis. In addition to the vegetation squares, some ground control points
(GCPs) are placed randomly inside the test region. GCPs are small signs with
a unique pattern facing upwards so that they can be recognized on the drone
images. One such GCP can be seen in Figure 3.2b in the lower right. The ex-
act GPS positions of all these GCPs are collected and later used in the Agisoft
software [26] as described in section 3.2.2.

The next step of the training data collection process is to fly the drone over
this field with a camera attached that takes aerial images of the field. In this
thesis a drone model called TransformerUAV [27] owned by Agroscope is used
(Figure 3.2a). Attached to it is a Sony ILCE-7RM2 [28] camera that takes 42.2
Megapixel photos in combination with a Zeiss Batis 1.8/85 telephoto lens [29].
In our experiments, the drone is flown at 19 meters above ground which yields a
ground resolution of around 1.5 millimeters per pixel. A flower with diameter of
3 centimeters is therefore around 20 pixels wide on the drone image. The above
mentioned drone can be programmed to automatically fly along a predefined
route and during the flight take a large amount of overlapping images.

Due to problems with the software of the above mentioned drone, a DJI
Matrice 600 PRO [30] is used as an alternative for the last two flights. The camera
used on that drone is a Sony ILCE-9 [31] with a 24.2 Megapixel resolution. In
order to have the same ground resolution, this drone is flown at 10 meters altitude.
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Date Site Weather Annotated
Flowers

Additional
Annotations

Orthophoto
created

Drone

May 23rd Linn sunny 1524 0 No TransformerUAV
June 6th Linn sunny 1125 0 No TransformerUAV
June 14th Linn sunny 838 1781 Yes TransformerUAV
June 29th Lindau sunny 2217 0 Yes DJI Matrice
July 3rd Linn sunny 658 1968 Yes DJI Matrice

Table 3.1: Overview of flights carried out for the thesis.

An overview of all flights is listed in figure 3.1.

3.2.2 Preparation of Images for Annotation

After the flight, the relative positions of the large amount of overlapping aerial
images are reconstructed and merged together into a large orthophoto represent-
ing the whole area. A software called Agisoft [26] is used to do so. Agisoft takes
all aerial images as inputs. It aligns all photos and generates a sparse point cloud
model. Optionally this sparse cloud model can be improved into a dense cloud
model. Finally the point cloud model can be used to build an orthomosaic. More
detailed descriptions of this process can be found in [32] and [33].

For the purpose of this thesis, the sparse point cloud is sufficient and has
even advantages over the dense point cloud generation. The problem of the dense
point cloud generation algorithm is that it distorts certain regions in the image in
order to have better alignments of the single photos. This is not desirable since
detecting distorted flowers in images is not the goal. Since the dense point cloud
generation is also computationally expensive and can take hours or days for a
large amount of overlapping images, it is not suitable because the day after the
drone flight, annotations must be made in the field.

Agisoft automatically detects the unique pattern on the GCPs to map the
GPS coordinates to each of them. The advantage of providing the positions
of the GCPs in the field is that Agisoft creates an image that is orthorectified
and georeferenced. Georeferencing of the images is later needed to display the
user’s position in the android annotation application as well as to be able to copy
annotations to other images that are georeferenced (c.f. 3.2.3 and 3.3 for further
reading).

Once Agisoft has created the orthophoto of the whole area of interest, this
orthophoto is to be loaded onto an Android tablet for the flower annotations.
However, Android tablets are not capable of handling such large orthophotos
(around 50000 times 50000 pixels for a 30 times 30 meters area). Therefore the
orthophoto is tiled into small chunks of 256 times 256 pixels in various zoom
levels. For this purpose a small image preprocessing tool has been developed
with a user interface as depicted in Figure 3.3. The user can select the large
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Figure 3.3: Image Preprocessing Tool used to tile large orthophotos before they
are annotated on a tablet.

orthophoto created by Agisoft as well as an output folder location, where the
tiled version of the orthophoto should be saved to. When clicking on ’Run’, the
tool will tile the orthophoto into suitable chunks utilizing the gdal library [34].
Along with the image tiles, the tool generates a small json file that contains some
metadata such as the dimensions and the geo information of the upper left and
the lower right corner of the original orthophoto. The tool makes sure that this
geo information is in the WGS84 coordinate system that is used by the worldwide
GNSS system. As an alternative, this conversion script can be executed using
the command line interface introduced in section 3.3.

3.2.3 Annotations on Android Tablet

For the annotations, an Android tablet application called PhenoAnnotator has
been developed. It can be downloaded from the Google Playstore. The advantage
of being able to make the annotations on a tablet is that they can be made directly
in the field. This is necessary because some flowers can be very hard to distinguish
in the image alone. If one can compare the image to the actual flowers on site,
the quality of the training data can be improved and it is made sure that the
number of false annotations is minimized.

A screenshot of the main window of the annotation application can be seen in
figure 3.4. The output folder created by the image preprocessing tool mentioned
in the previous subsection can be copied onto the Android tablet and imported
into the annotation application (1). The orthophoto is then displayed to the user.
If the geo information is included in the metadata file, the user’s GPS location is
indicated on top of the image (2). This helps the user navigate through the field.
The displayed image can be zoomed up to a level where the individual pixels are
visible. If the user clicks on any location in the image, the annotation settings on
the right appear. The user can select the type of flower from the list (3). Next to
each flower in the list, the number of already recorded occurrences are indicated
in brackets. If necessary, the position of an annotation can be fine tuned by
using the four buttons on the bottom (4). The user can dismiss the annotation
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Figure 3.4: Screenshot of the main window of the PhenoAnnotator application
for Android.

in processing by clicking on ’cancel/delete’ (5) or save it by clicking on ’save’
(6). Optionally, instead of a point annotation, a polygon can be drawn around
a region. To do so, the switch at the bottom (7) has to be activated. Already
saved annotations can also be edited or deleted again by simply clicking on them
inside the image. By clicking on the menu button on the upper left, the settings
screen can be opened. There the user can edit the list of flowers either manually
or by importing a predefined list from a csv file. Also an export of the flower list
to a csv file is possible. Furthermore, some zoom settings such as the maximal
zoom level or the zoom level at which the annotations should be displayed to the
user can be set. The application continuously saves the annotations to a json file
in the project folder. The application is programmed in Kotlin.

3.3 Training a Deep Convolutional Neural Network

Figure 3.5: Overview of the training process.
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Five iterations of the training data collection process as summarized in figure
3.1 are carried out for this thesis. An overview of all flights can be obtained from
table 3.1 Before being able to actually train a neural network with this data, it
needs to be preprocessed. Steps one to three of the overview in figure 3.5 are
carried out before training the neural network. They are the direct continuation
of the training data collection process described in the previous section. These
three steps are explained in the following three subsections. A python command
line interface as depicted in figure 3.7 developed during the thesis can be used to
carry out each of the five steps from the overview in figure 3.5.

3.3.1 Selection of Regions of Interest in Annotated Images

Since the annotation process takes a considerable amount of time, it is not pos-
sible to annotate all flowers within the 30 times 30 meters test region for every
iteration. Instead, all flowers within the 15 vegetation squares are annotated.
The flower detection model should only be trained on the image data within
these vegetation squares. Consequently a python script has been developed that
allows the user to cut out certain regions (polygon shaped) from the images.
Only the image pixels within these selected regions are kept while the rest of the
image pixels are overridden with black as in figure 3.6b. This ensures that the
tensorflow model does not learn non-annotated flowers as the background class.
For the polygon selection, the script utilizes the labelme program [35] as depicted
in figure 3.6a.

(a) LabelMe application (b) Result of the region selection script

Figure 3.6: Screenshots of the region selection script.

3.3.2 Leveraging Overlapping Images

Since the camera attached to the drone captures a large amount of highly over-
lapping images, the idea is to use these overlapping images as additional training
data. Since the flowers are pictured from a slightly different angle on each image
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and the background changes from image to image, this provides valuable addi-
tional training data. All single images can be exported as georeferenced images
in Agisoft. Since the images on which the annotations have been made on are
georeferenced as well, the locations of all annotations are also known within the
single images. Results of this annotation copying process show almost perfect
overlaps on images of 2018. When applying the same copying script to the new
images collected during this thesis, the results are not satisfying. The reason
is that the grass is very high in the new images which is not the case in the
images of 2018. The high grass moves markedly even in weak wind. Therefore
the flowers’ locations are not static but move around and inevitably turn out
to be different in every image. Since the copied annotations are mostly not in
the right position but a few centimeters shifted, a script lets the user view and
adjust all annotations in the LabelMe application. These slight adjustments of
the annotations take significantly less time than annotating new data.

3.3.3 Image Conversion into Tensorflow Readable Format

The training data consisting of image files alongside with json files containing the
annotations has to be converted into a format that is supported by Tensorflow
[36]. Running the python cli.py image-preprocessing command carries out
all steps necessary to prepare the data for the training.

First of all, because the Faster RCNN Network architecture takes at most
1000 times 1000 pixel images as inputs, the script tiles the images. Having 1000
times 1000 pixel tiles overwhelms the NVIDIA GeForce GTX 1080 GPU’s [37]
memory capacities. Therefore the default tile size is set to 450 times 450 pixels.
These image tiles are then upscaled to 900 times 900 pixel tiles as suggested in
[25] and justified in section 4.2.

Note that the annotations are stored as points or polygons so far. For the
training of the neural network however, the annotations have to be converted to

(a) Main page of CLI (b) Example of command description

Figure 3.7: Screenshots of the command line interface developed throughout the
thesis.
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Ranunculus Lotus
corniculatus

Galium
mollugo

Crepis
biennis

Centaurea
jacea

-Ranunculus
bulbosus

-Lotus
corniculatus

-Galium
mollugo

-Crepis biennis -Centaurea
jacea

-Ranunculus
friesianus

-Lathyrus
pratensis

-Achillea
millefolium

-Leontodon
hispidus

-Lychnis flos
cuculi

-Ranunculus
acris

-Daucus carota -Tragopogon
pratensis

-Carum carvi -Picris
hieracioides

Table 3.2: Flowers that are combined into one super class.

bounding boxes. The polygon annotations are easy to convert. As the bounding
box simply the surrounding rectangle is taken. If the annotation is a point, a
standard size in pixels for that particular flower is taken.

The number of training examples varies heavily from class to class. For some
flowers, less than 50 instances are annotated. 50 instances are very few by deep
learning standards. By default all classes that have less than 50 annotated in-
stances are not included in the training. This value can be adjusted with the
--min-instances INT option. Some flowers are combined into groups because
they have few annotated instances and they look similar to other flowers. Table
3.2 lists these combinations.

Once all training images are processed into the desired tile size, the images are
split up into train, test and validation set. For each input folder the user can de-
fine, what portion of that training data should be used for testing and validation.
It can also be chosen between random and deterministic splitting. Deterministic
splitting is designed such that running the splitting function multiple times yields
the same splitting result each time. This is useful for the comparison of different
configurations of certain parameters.

The script carrying out the whole conversion takes some additional optional
parameters such as --overlap INT. The integer parameter defines how many
pixels of overlap the image tiles should have. The idea is that the flowers po-
sitioned on the edge of two tiles are not lost as training data but are always
present as a whole in at least one tile. The Faster R-CNN paper states that
annotations crossing the image bounds do not influence the loss function. The
flag --tile-size INT defines the tile size to be used as Tensorflow input. It
can be defined multiple times which has the consequence of multiple tile sizes
being used as Tensorflow input. The idea of varying tile sizes is to obtain a more
robust network that trains more on the shape of the flowers rather than the size.
Note that by default each tile will be rescaled to 900 times 900 pixels before the
actual training. Therefore varying the tile size has actually the consequence of
the network being presented with different sizes of the flowers (with more or less
resolution details).
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3.3.4 Faster R-CNN Model Training

Running the train command in the command line interface starts the training
of a model. As the underlying network model, the Faster R-CNN architecture
is used. This architecture requires more compute power than other architectures
but it has been shown that it performs better on aerial images than other architec-
tures [20, 22, 23]. For the training, the default configuration of the Faster R-CNN
architecture is used with a few adjustments. The first_stage_features_stride
variable is set to the minimum of 8. Default is 16. It defines the output
stride of the extracted region proposal network feature map. Additionally the
height_stride and the width_stride variables of the grid_anchor_generator

are set to the minimum of 8 as well. Default for these variables would be 16 as
well. These changes slow down the training and the prediction process signifi-
cantly but it is necessary because it improves the performance on small flowers
that are just a few pixels wide. A smaller first_stage_features_stride value
has the consequence that the region proposal network of the Faster R-CNN ar-
chitecture outputs a feature map with a higher resolution. The height_stride

and the width_stride variables control the distance in pixels of two consecutive
anchors. An anchor is a location within the image from which various sizes of
possible bounding boxes to be evaluated are spanned. Having a large distance
between two such anchors might cause the network to miss flowers that are placed
in between two such anchors. These changes are suggested in the Faster R-CNN
paper itself [1] and specifically for small objects in [24].

In contrast, the default anchor size of 256 pixels is not changed. This might
seem surprising because there is no flower that is 256 pixels in diameter. However
changing this default configuration slightly decreases the accuracy of the model,
as the results in section 4.2 confirm. As mentioned in section 2, a paper trying to
detect tiny faces [25] has reported similar results. It is likely that more context
does also help in detecting flowers just as it helps to detect faces.

Training can be carried out in two modes. Mode one trains the network with a
fixed number of steps and a preset schedule at which steps to reduce the learning
rate. Mode two uses the validation set to decide when to change the learning
rate and when to stop training. The advantage of the first method is that no
valuable training data is lost to the validation set and it is slightly faster since no
resources are spent on evaluating the performance on the validation data. The
advantage of the second approach is that the best time to stop training does not
have to be guessed but can be decided based on the prediction performance on
the validation set.

In mode two, every 2500 steps the training is paused and the prediction fol-
lowed by the evaluation algorithm is run on the validation set. The learning
rate is adjusted if for the last 15000 steps no further improvements were made.
After adjusting the learning rate two times from 3× 10−4 to 3× 10−5 and from
3× 10−5 to 3× 10−6, the training is stopped if for 15000 steps again no im-
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provement on the performance has been made. The number of 15000 steps is
chosen empirically. Reducing the learning rate twice by a factor of 10 is directly
adapted from the Faster R-CNN default configuration. The evaluation metric can
be chosen as either the f1 score or the mean average precision (mAP). Section
3.4 further explains the prediction and evaluation process.

The number of training examples varies heavily from class to class. Therefore
each flower is assigned a weight. The weight is inversely proportional to the
number of training examples and influences the loss function during training.
This ensures that the network does not just optimize to detect the most common
flowers. Each mistake on a less common flower has a much higher penalty to the
loss function as a consequence.

Once a network is fully trained it can be exported as an inference graph
with the export-inference-graph command of the command line tool. This
exported inference graph is then used by the prediction and evaluation scripts
described in section 3.4.

3.4 Usage of Trained Network

3.4.1 Predictions

Once a network is trained and the trained inference graph is exported, it can be
used to make predictions on unseen aerial imagery. The overview of the prediction
process can be obtained from figure 3.8. The first two steps are identical to the
training data collection process. The drone has to be flown over a field and the
aerial images have to be merged together with Agisoft. Once these two steps
are done, the region of interest has to be selected from the resulting orthophoto.
This is done in the same manner as it is done for the region selection during
the training process described in the last section and visualized in figure 3.6.
Because the LabelMe application is not able to handle large orthophotos, the
script decreases the resolution of the image before forwarding it to the LabelMe
application if necessary. Once the user has selected the region of interest of the
decreased resolution orthophoto, the script applies this selection to the original
orthophoto to remove the pixels that are not of interest.

Figure 3.8: Overview of prediction process.
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Figure 3.9: Illustration how the images are tiled for the prediction process.

Having a large image containing only the region of interest after these first
three steps, the prediction python script can be run. It draws the bounding
boxes of all found flowers onto the image and saves the statistics about the flower
abundance within the image to a json file. As in the training process, the image is
split up into tiles similar as it is done in [38]. By default 450 times 450 pixel tiles
are used which are scaled up to 900 times 900 pixel tiles before the prediction
algorithm is run on them. If a tile consists of only one color, the tile is skipped
without running the prediction algorithm.

To improve the prediction accuracy, the tiles have an overlap of 100 pixels
by default. This ensures that as long as a flower is not larger than 100 pixels in
diameter, it is fully visible on at least one tile of 450 times 450 pixels. Figure
3.9 illustrates how exactly the tiling is done. Each dotted square corresponds to
one tile. Each tile has a core which is marked by the solid line. First of all, the
predictions close to the edges of a tile are discarded. These are the regions outside
the core of a tile. In these regions the predictions are often error prone because
flowers might be only partly visible. All predicted bounding boxes whose centers
are within the core of a tile are kept for the final result. As can be seen in the
illustration, also these core regions have a small overlap. The problem without
this overlap is that a flower located at the border of two cores could be discarded in
both adjacent tiles because in both tiles the center of the predicted bounding box
could be slightly shifted towards the other tile. The overlap of the cores ensures
that no predictions are lost for this reason. Having this overlap introduces a new
problem of duplicate predictions. This is mitigated by applying non maximum
suppression with an intersection-over-union threshold of 0.3. Meaning that for
all predictions that have an overlap of more than 30 %, only the one with the
highest confidence score is kept. 30 % might seem as a small intersection area,
however empirical tests have shown that using 0.3 achieves the best results. This
is in line with [38], where 0.25 is used as a threshold.
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3.4.2 Evaluations

To evaluate the performance of a model, the predictions on the test set are
compared to the ground truth of the test set. The main metrics of interest are
precision and recall. To compute precision and recall values, the true positive
(TP), false positive (FP) and false negative (FN) predictions have to be known.
In order to obtain these values the following algorithm is carried out:

Firstly the predictions are sorted by their confidence. Then it is looped
through all the predictions and for each of them it is compared to all ground
truth bounding boxes of the same label. To compare two bounding boxes the
intersection-over-union (iou) formula is used:

iou =
intersection area

area of union

If the greatest iou value is greater than some threshold (default of 0.3), the
corresponding ground truth box is marked as used and the prediction is market as
true positive. If the largest iou value is lower than the threshold, the prediction
is marked as false positive. After this process is done for each prediction, all
ground truth entries that are not marked as used are counted as false negatives.
Having the TP, FP and FN numbers, the precision and recall values can easily
be calculated using the following formulas:

precision =
TP

TP + FP

recall =
TP

TP + FN

A good way to rate the performance of a model is to compute the F1 score.
The F1 score is calculated as follows:

F1 = 2 ·
precision · recall

precision+ recall

The better the precision and recall values are, the better the F1 score gets.
It rates precision and recall equally and reaches its maximum of 1 at perfect
precision and recall. As an alternative to the F1 score, the mean average precision
(mAP) as defined in the PASCAL VOC Challenge Development Kit [39] can be
used to rate a model’s performance. The evaluate command of the command
line interface computes all mentioned metrics. Optionally it also computes the
confusion matrix.
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3.4.3 Visualizations

Several options for visualizations exist in the command line tool. Firstly, the
visualize command which takes an input folder and an output folder as argu-
ments paints all annotations onto the images in the input folder and saves the
modified images to the output folder. The command understands all annotation
formats used throughout the thesis. These can be the json files created by the
android app, json files created by LabelMe application or the xml files created
during the image-preprocessing command. This makes the command a handy
tool for confirming the annotations at any stage of the process.

As a second option for visualization, the --visualize-predictions and
--visualize-groundtruth flags of the predict command can be set to True.
In addition to the json files containing the predictions and groundtruth annota-
tions, the script then generates copies of the input images and draws the bounding
boxes onto them. A similar option named generate-visualizations exists for
the evaluate command. It paints all erroneous predictions onto the input im-
ages. This includes the FN and FP predictions. False negatives are painted pink,
FP are painted red. If there is a FP and a FN at the same location, this means
that there is a confusion between two flowers which causes the script to paint an
orange bounding box in this case.

The third option is to generate heatmaps from predictions with a command
called generate-heatmaps. Given an image and the corresponding json file con-
taining the predictions, it draws a heatmap onto a copy of the image which indi-
cates the distribution and density of the flowers. The heatmaps can be generated
for individual flowers or for all flowers. If the input images are georeferenced,
there is the option to generate one heatmap from a collection of images. If the
images are overlapping, the heatmap indicates the average number of flowers
found at a particular position. A handy feature is the --window flag. The user
can provide the coordinates (in the swiss coordinate system CH1903+ / LV95
[40]) of the upper left and lower right corner of the desired output region. The
script will then output a heatmap of exactly that region. This allows for time
series generations. Example results of such time series generations can be viewed
in section 4.4. Comparisons between heatmaps generated from predictions on
an orthophoto and heatmaps generated from predictions of single overlapping
images are discussed in the same section.



Chapter 4

Results

4.1 Manual Counting vs Drone Image Based Tablet

Annotations

Since the exact same areas are annotated on the tablet as they are counted by
hand, we are able to directly compare the numbers of flowers annotated on the
drone images to the numbers of flowers counted by hand. Table 4.1 lists a subset
of all flowers found within the test fields. Some interesting observations can be
made from it.

To begin with, some flowers are hardly visible on the drone images and there-
fore significantly less instances are counted in the tablet annotations compared to
the hand counted data. Onobrychis viciifolia, medicago lupulina and to some ex-
tent trifolium pratense fall under this category. The blooms of medicago lupulina
are simply too small to be reliably identifiable on the drone images. In the case
of trifolium pratense and onobrychis viciifolia, the blooms would be big enough
but often they are hardly distinguishable from the background. Refer to table
4.2 for visualizations of 25 flowers found within the test fields. For many flowers
(leucanthenum vulgare, ranunculus, knautia arvensis and centaurea jacea) there
are more flowers annotated on the tablet than counted by hand.

Flower Hand Counted Tablet Annotations

leucanthemum vulgare 724 960
onobrychis viciifolia 483 105
lotus corniculatus 1943 748
salvia pratensis 142 127
ranunculus 431 474
knautia arvensis 371 471
trifolium pratense 129 72
medicago lupulina 117 5
centaurea jacea 25 28

Table 4.1: Comparison of hand counted results to tablet annotations.

18
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Achillea
millefolium

Anacamptis
pyramidalis

Anthyllis
vulneraria

Carum carvi Centaurea
jacea

Crepis
Biennis

Daucus carota

Dianthus
carthusiano-
rum

Galium
mollugo

Knautia
arvensis

Lathyrus
pratensis

Leontodon
hispidus

Leucanthemum
vulgare

Lotus
corniculatus

Lychnos flos
cuculi

Onobrychis
viciifolia

Picris
hieracioides

Prunella
vulgaris

Ranunculus
acris

Ranunculus
bulbosus

Ranunculus
friesianus

Rhinantus
alectorolophus

Salvia
pratensis

Tragopogon
pratensis

Trifolium
pratense

Table 4.2: Excerpts from aerial images of the most common flowers.

It should be noted that it is expected that the two data sets have slight
differences due to the fact that the hand counted data has always been collected
one day after the flight. In theory, the flower populations could have changed
during that time. However, the impact of the time shift should be negligible.

4.2 Parameter Tuning

Using the default configuration of the Faster R-CNN architecture does not gen-
erate satisfying results. Table 4.3 shows the effects of certain parameter choices.
For each configuration in table 4.3, a network is trained and evaluated. Each
configuration is trained and evaluated on the same data. All results are weighted
average values across all flower species meaning that all TP, FP and FN values
are summed up across all flower species and then the precision, recall and f1
score are calculated using these summed up values. All predictions having a con-
fidence score below 0.2 are ignored for the evaluation. This threshold is chosen
empirically.

There is no standard train/test/validation set splitting rule in object detection
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problems. The MS COCO 2017 Detection Challenge [17] uses 25 % of the images
for testing and 3 % for validating while the Pascal Voc Challenge 2012 [41] uses
around one fourth of the images for testing and validating each. The ILSVRC
2017 Challenge [15] uses 4 % of the images for validating and 8 % for testing.
All these mentioned public challenges have massive amounts of data available.
Having significantly less data available, the decision is made to use 70 % of the
images of each flight for training, 20 % for testing and 10 % for validating for
the experiments in this section. This splitting strategy ensures that the majority
of the data is used for training but still large enough portions are available for
validation and testing.

As the first column of table 4.3 shows, using the original image size mainly
hurts the recall metric. The low recall value indicates that many flowers are not
detected by the trained network. Upscaling the images mitigates this problem
as can be seen from the other columns of table 4.3. In all configurations marked
with Upscaled Image, the training data is tiled into 450 times 450 pixel tiles.
Each such tile is then scaled up to a 900 times 900 pixel tile. The drawback is
that this slows down the training and prediction process.

The effect of adding a train overlap is not clear. While the recall, f1 score
and mAP slightly drop compared to the configuration with only upscaled images
(column 3 vs. column 2 in table 4.3), in combination with data augmentation
options, the performance of these three metrics is better with a train overlap
(column 5 vs column 4). The opposite happens with the precision metric. The
idea of a train overlap is to not loose any training data because of the tiling
process. The Faster R-CNN architecture ignores all cross boundary bounding
boxes during training.

Using data augmentation techniques and a train overlap within the training
pipeline results in the best performance in terms of recall, f1 score and mAP. The
precision metric is only insignificantly lower than in other configurations. The
following data augmentation options are used: random horizontal and vertical
flips, random brightness adjustments, random contrast adjustments, random sat-
uration adjustments and random box jittering. In all further experiments in the

Original
Image

Upscaled Image Various Image
Scales

Train Overlap Yes Yes Yes Yes Yes Yes
Data Augmentation Yes Yes Yes Yes Yes Yes
Anchor Size 128 Yes
Stride 16 Yes
Multiple Scales Yes

Precision 81.7 % 82.1 % 82.3 % 84.7 % 85.2 % 85.2 % 86.1 % 85.7 % 73.4 %
Recall 79.5 % 83.9 % 81.8 % 84.3 % 83.8 % 83.6 % 81.7 % 76.6 % 70.9 %
F1 Score 0.806 0.830 0.820 0.845 0.845 0.844 0.838 0.809 0.721
mAP 0.575 0.668 0.634 0.686 0.680 0.671 0.619 0.588 0.485

Table 4.3: Performance of various parameter configurations.
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subsequent sections the configuration with data augmentation, train overlap and
a minimum confidence score of 0.2 is used.

Three more configurations can be found in table 4.3. The fourth last column
contains the results with the base anchor size set to 128 pixels instead of default
value of 256. Recall, F1 score and mAP are slightly worse than with a base anchor
size of 256 pixels. This might seem surprising because none of the flowers have a
size of 256 pixels. The authors of [25] have found that context helps to detect tiny
faces. This is likely to be true for tiny flowers as well. Nevertheless, the effect
is not very significant. The third last column shows the performance with the
first_stage_features_stride, height_stride and width_stride parameters
set to 16. As hypothesized in section 3.3.4, the performance is worse than with
these values set to the minimum of 8. The recall value is notably lower than in
the configuration with the stride values set to 8. This is an indication that some
flowers are missed by the prediction network due to the lower coverage of anchors
and the lower resolution of the feature map. In the second last experiment, the
training images are tiled into stripes of various tile sizes (225, 300, 450 and 600
square pixels). The smaller the tile size the more tiles are generated of that size
such that the flowers are more or less equally distributed among the various tile
sizes. Each tile is again upscaled to 900 times 900 pixels and therefore the network
presented with variable flower sizes. The idea is that the network should learn
to detect flowers based on their shape and color rather than their size. Running
the prediction algorithm with 450 square pixel tiles however shows that the recall
value decreases compared to fixed sized tiles.

In the last experiment, all images are tiled into many tile sizes (300, 350,
400, 450, 500, 550, 600) and all tiles are used as training images. Therefore each
flower is presented in various sizes to the network. This experiment resulted in
very bad performance on the test images. Namely 73.4 % precision and 70.9 %

recall. When investigating the results it can be seen that for many flowers there
are multiple predictions from which all but the one with the highest score are
discarded by the non maximum suppression function. Quite often the prediction
with the highest score is not the correct one. Especially flowers of the same color
such as crepis biennis, lotus corniculatus and ranunculus are frequently confused.
For these flowers the size of the bloom seems to be an important feature learned
by the network. On the other hand, the prediction performance of leucanthemum
vulgare drops only marginally with a network trained on images with various tile
sizes. Since there are no flowers present in the two test sites with a similar
appearance, the size of the flower is not important to the prediction network.
Appendix A.3 contains some examples images of predictions.
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4.3 Application to Grassland Dataset

The idea of the experiments in this section is to simulate an as realistic as possible
situation. The data of the flight on June 14th is not used for training and
validation but is only used as test data. 90 % of the data of all other flights is
used as training data and 10 % as validation data. The decision of taking the
data of the flight on June 14th as the test set is made based on the fact that all
flowers present in the field on June 14th are present in at least one other data set,
either in the flights before or after. It would be even better to apply a trained
model to an unseen field. An obvious choice would be to use the field in Lindau
as test set. However, since the vegetation of that field is substantially less diverse
than the vegetation in Linn, this option discarded.

4.3.1 Performance inside Vegetation Squares

The prediction performance for each flower can be obtained from table 4.4. A
prediction is considered if its confidence is greater than 0.2. With the overall
precision and recall being 87 % and 84.2 % respectively, the results are better
than in the previous section. The vast majority of the flowers present in the
test data of June 14th are knautia arvensis, leucanthemum vulgare and lotus
corniculatus. These three flowers perform well and therefore the good overall
score is mainly determined by these three flowers. All the other flowers perform
worse than the overall performance indicates.

Table 4.5 shows the confusion matrix of this experiment. It is striking that

Flower Train
Instances

Test
Instances

Precision Recall mAP F1
Score

anthyllis v. 196 6 20.0 % 16.7 % 0.056 0.182
centaurea j. 742 53 73.0 % 50.9 % 0.382 0.6
crepis b. 124 21 36.8 % 66.7 % 0.325 0.475
dianthus c. 20 34 100.0 % 23.5 % 0.235 0.381
galium m. 546 16 19.5 % 50.0 % 0.1 0.281
knautia a. 429 438 89.6 % 94.1 % 0.879 0.918
leucanthemum v. 928 1022 96.5 % 88.6 % 0.861 0.924
lotus c. 2153 1026 87.4 % 85.5 % 0.772 0.864
onobrychis v. 92 95 77.6 % 47.4 % 0.407 0.588
rhinanthus a. 23 26 61.5 % 30.8 % 0.218 0.41
salvia p. 133 15 50.0 % 80.0 % 0.436 0.615
trifolium p. 109 7 9.5 % 57.1 % 0.104 0.163

Overall 5495 2759 87.0 % 84.2 % 0.398 0.855

Table 4.4: Performance of the prediction algorithm on all flower species present
in the field on June 14th. The numbers in the Train Instances and Test In-
stances columns refer to the ground truth annotations. The overall scores of the
performance metrics are weighted means.
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Anthyllis v. 1 - - - - - - 3 - - - - - - 2
Centaurea j. - 27 - - - 17 - - - 1 - - 3 3 2
Crepis b. - - 14 - - - - 5 - - - - - - 2
Dianthus c. - 3 - 8 - 1 - - 10 - - - - 6 6
Galium m. - - - - 8 - - - - - - - - - 8
Knautia a. - - - - - 412 1 - - - - - 2 - 23
Leucanthemum v. - - 1 - 1 4 906 - - - - - 1 - 109
Lotus c. - - 6 - - - 1 877 - - - - - - 142
Onobrychis v. - 1 - - - 1 - - 45 - - - - 11 37
Prunella v. - - - - - - - - - - - - - - -
Ranunculus - - - - - - - - - - - - - - -
Rhinanthus a. - - - - - - - 1 - - - 8 - - 17
Salvia p. - - - - - - - - - - - - 12 - 3
Trifolium p. - - - - - 1 - - - - - - - 4 2
False Positives 4 6 17 - 32 24 31 117 3 - 1 5 6 18 -

Table 4.5: The table shows the confusion matrix. The columns represent what
the model predicted and the rows represent what the model should have predicted
(the ground truth). The green, red, orange and brown numbers denote TP, FP,
FN and confusions between two flowers respectively.

there are only a few confusions between different flowers (brown). The much
more common cases are that flowers are predicted where there are none (red)
and flowers are not predicted where they should be (orange). The green entries
denote the correctly predicted flowers. Section A.1 in appendix A contains the
same confusion matrix but with relative values.

During the training phase each class is assigned a weight which is inversely
proportional to the number of instances present in the training data. This is to
make sure that the network does not only optimize on the frequent flowers. Table
4.4 shows that the flowers with little training data tend to not perform well. The
question is whether this is due to the lack of enough training data or because
assigning a weight to each class is not sufficient to regularize the loss function.
Therefore a seperate network is trained in which the three best performing flow-
ers (leucanthemum vulgare, lotus corniculatus and knautia arvensis) are ignored
and treated as background. With the mAP rising from 25.2 % to 31.5 % (f1
score improves from 47 % to 51.3 %) a certain improvement can be seen but
the performance is still significantly below what is satisfactory. Therefore the
possibility of leveraging two separately trained networks is not futher evaluated.

When looking at the predictions, there are various sources of errors apparent.
Some examples can be seen in table 4.6. For leucanthemum vulgare, a typical
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a) b) c)

d) e) f)

Table 4.6: Selection of typical mispredictions. All thin bounding boxes are correct
predictions. The bold red bounding boxes denote false positive and the bold violet
bounding boxes denote false negative predictions. There are various explanations
for the mispredictions: Overlapping flowers (a), partially faded flowers (b and e),
collections of flowers (c), missing ground truth annotations (d) and flowers that
are missing in the training data (f).

error occurs when two instances are very close to each other as in image a). In
that case often only one of the two flowers is detected. The missing annotation is
not caused by the non maximum suppression algorithm as a closer look discloses.
Another typical source of errors are flowers that are on the verge of fading. In the
case of image b) two flowers are detected that are not annotated in the ground
truth because the expert considered the flowers to be faded already. Even when
counting the flowers by hand it is sometimes difficult to decide if a flower should
be counted or not because of the seamless transition from blooming to faded.
Two main problems exist for lotus corniculatus. Firstly, the blooms of lotus
corniculatus are often arranged as small collections of blooms as visible in image
a) in the bottom left or in image c). In some cases the network predicts the
blooms of a collection as individual instances while in the ground truth the whole
collection is annotated as one instance. The opposite case is common as well.
The second problem of lotus corniculatus are false positive predictions caused by
missing ground truth annotations (as in image d)). These problems are further
discussed in section 5.0.1. The main error source of knautia arvensis is again
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blooms that look different because they are wilting as for example in image e).
In image f) the model erroneously predicts a knautia arvensis where there is a
anacamptis pyramidalis. Anacamptis pyramidalis is not included in the training
because too few training instances exist.

4.3.2 Performance outside Vegetation Squares

It is difficult to make statements about the performance of the model on the
full test field since there are no ground truth annotations present outside the
annotated vegetation squares. The only possibility is to compare the predictions
of the model to the extrapolations of the manually counted flowers. The numbers
of manually counted flowers are extrapolated to the size of the whole field which
is 730 square meters. Table 4.7 lists all flowers that perform reasonably well
inside the vegetation squares. For each flower species the number of detections
in the whole field is listed as well as the number of flowers predicted by the
extrapolation of the manual counting.

For centaurea jacea, knautia arvensis and lotus corniculatus the number of
drone based predictions is very similar to the extrapolation of the manually
counted number of flowers. The results are within 11 %, 3 % and 2 % respec-
tively. According to heatmaps generated from the drone based predictions (c.f.
section 4.4), these are also the flowers that have a relatively even distribution.
The extrapolation of the manually counted number of leucanthemum vulgare is
53 % higher than the number of drone based predictions. The question is, which
prediction is more accurate. Assuming that the performance of the prediction
algorithm is similar on the whole field as it is inside the annotated vegetation
squares, the extrapolation of the manual counting must be inaccurate. Even
when adding 8 % to the number of drone based predictions to compensate for
the low recall value of leucanthemum vulgare, the results still have a 47 % gap.

Flower Drone Based
Prediction

Extrapolation
of Manual
Counting

Relative
Difference

centaurea jacea 456 505 10.7 %
knautia arvensis 8059 8308 3.1 %
leucanthemum vulgare 7044 10778 53.0 %
lotus corniculatus 50365* 51139 1.5 %
onobrychis viciifolia 595 3761 532 %
salvia pratensis 209 673 222 %

Table 4.7: Predictions on the whole field of 730 square meters. The 50365 pre-
dicted lotus corniculatus are calculated as the multiplicative of the actual predic-
tions of the network (19389) and a ratio of 2.6. The numbers in table 4.1 suggest
that there are 2.6 blooms per prediction on average.
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To make matters worse, the extrapolation is based on the manually counted num-
ber of flowers which is lower than the number of tablet based annotations within
the vegetation squares as pointed out in section 4.1. If the tablet based numbers
were taken, the result of the extrapolation would be an additional 51 % higher
making them a total of 131 % higher than the drone based predictions.

The main reason for the bad results of onobrychis viciifolia is that it is very
hard to distinguish on the drone images. The most probable reason for the
unsatisfactory results of salvia pratensis is that the amount of training data is too
low to accomplish good results. A likely additional reason is an unrepresentative
choice of vegetation square locations for these flowers.

4.4 Density Distribution Maps

Figure 4.1 shows the predicted density distribution of all flowers in the field in
Linn on June 14th. The image in figure 4.1a is generated from the predictions on
the orthophoto covering the whole area. The image in figure 4.1b is generated
from the overlapping orthorectified and georeferenced single images. It is appar-
ent that the results are very similar. The total amount of flowers predicted on
the orthophoto is 2.8 % lower than the averaged number of predicted flowers on
the single images. In the case of leucanthemum vulgare it is 1.4 % more predic-
tions on the ortho image, for knautia arvensis and lotus corniculatus it 2.5 % and
3.4 % less respectively. These results suggest that there is not much accuracy to
gain with a lot of overlapping images. The only advantage is that per heatmap
pixel an averaged value can be calculated which smoothes false predictions. The
main disadvantage of predictions on the overlapping single images is that it takes
substantially more compute time. In addition to the heatmap in figure 4.1a il-
lustrating the overall abundance of all predicted flowers, the heatmaps in table
4.8 depict the abundance of some selected individual flowers in the field in Linn
on June 14th. The three heatmaps for leucanthemum vulgare, lotus cornicula-
tus and knautia arvensis are generated from the ortho photo. The last heatmap
shows the single image coverage of the field in Linn.

Table 4.9 contains a time series of an excerpt of the field in Linn. It illustrates
the difference of the abundance evolution of leucanthemum vulgare and lotus
corniculatus. It is conspicuous that lotus corniculatus is much more evenly dis-
tributed than leucanthemum vulgare. While leucanthemum vulgare has a peak
population on June 6th and on July 3rd the population is almost completely
faded, the peak population of lotus corniculatus is much less pronounced.
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(a) Generated from ortho image. (b) Generated from overlapping images

Figure 4.1: Density distribution maps of all flowers on June 14th.

Leucanthemum vulgare Lotus corniculatus

Knautia arvensis Image coverage

Table 4.8: Heatmaps of the field in Linn for various flower species. The last
image depicts the image coverage of the field.
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Table 4.9: Timeseries of the distribution of leucanthemum vulgare and lotus
corniculatus in the field in Linn.

4.5 Impact of Image Spatial Resolution

4.5.1 Predictions on Simulated Resolutions

The higher the drone can fly the more area can be covered with a single drone
flight. Table 4.10 demonstrates the effect of decreasing ground resolution on an
example excerpt of an aerial image containing a leucanthemum vulgare flower
and a lotus corniculatus collection of blooms. Figure 4.2a and 4.2b illustrate
the effect of decreasing ground resolution on the F1 score and the mAP respec-
tively. Both figures show that down to a ground resolution of 5 mm per pixel,
there is just a marginal decrease in prediction performance. Further decreasing
the ground resolution to 10 mm and 20 mm per pixel however has noticeable

1 mm/pixel 1.4 mm/pixel 2 mm/pixel 3.3 mm/pixel 5 mm/pixel 10 mm/pixel 20 mm/pixel

Table 4.10: Resolution degradation on an except of an aerial image.
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(a) Evolution of F1 score. (b) Evolution of mAP.

Figure 4.2: Evolution of performance metrics over various simulated ground res-
olutions.

negative effects on the model’s performance. As expected, the performance of
small flowers such as lotus corniculatus decreases disproportionately because at a
certain ground resolution they simply get indistinguishable. The average size of
a lotus corniculatus bloom is around 16 mm. The performance of larger flowers
such as leucanthemum vulgare (40 mm) and knautia arvensis (34 mm) degrades
notably slower. The graphs for the precision and recall metrics are omitted since
the trends are equivalent to the trends of the F1 score and the mAP metric.

Each training, test and validation image is first scaled down to the desired
ground resolution and then scaled up again. After upscaling, all datasets have the
same ground sampling distance (pixel size) as the original images again. This en-
sures that the flower’s sizes (in image pixels) are large enough to be detectable by
the faster R-CNN network architecture and prevents performance losses caused
by this problem as described in [25]. For each ground resolution a network is
trained and evaluated with the processed training images. In an additional ex-
periment, the resolution degradation is only applied to the test images but not to
the training and validation images. The results of this experiment can be found
in appendix A in section A.2.

4.5.2 Predictions on Low Resolution Flight

The results in the previous subsection suggest that a model trained and evaluated
on imagery with 2 mm/pixel ground resolution performs similarly well as with
1 mm/pixel ground resolution. The question is whether this holds true when
predicting on flight data that is originally captured with 2 mm/pixel ground
resolution. There are images of three flights on June 29th in Lindau. The first
flight is captured from 20 meters height with a ground resolution of around 2
mm/pixel. The second and third flight are captured from 11 meters altitude and
have a ground resolution of around 1 mm/pixel. The image data of the second
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Ground
Truth (n)

Prediction
on Flight 2

(1
mm/pixel)

Prediction
on flight 3 (1

mm/pixel)

Prediction
on flight 3

(simulated 2
mm/pixel)

Prediction
on flight 1 (2

mm/pixel)

achillea millefolium 201 +1 % +8 % -14 % -10 %
centaurea jacea 587 -3 % +6 % +12 % -16 %
centaurea jacea faded 1116 +10 % +1 % -29 % -82 %
lotus corniculatus 292 +6 % -33 % -35 % -40 %
leucanthemum vulgare 15 -27 % -27 % -27 % -72 %

Table 4.11: Prediction result variation for flights with different resolutions in
Eschikon, Lindau. The image data of flight 2 is included in the training and
validation data.

flight is annotated and included in the training/validation data. It is listed in
the Ground Truth column of table 4.11.

When using the model trained for the experiments in section 4.3 for predic-
tions on flight two of June 29th, the results are very good as the numbers in table
4.11 show. This is not surprising since these images are included in the training
data that is used to train the model. Also when predicting on flight 3, which
has 1 mm/pixel ground resolution as well, the numbers of predicted flowers are
very similar to the ground truth numbers except for lotus corniculatus which has
33 % less predictions.

The last two columns of table 4.11 are predicted with the model trained on
the simulated 2 mm/pixel ground resolution. When scaling down the image of
flight three by a factor of two and running the prediction algorithm, the accuracy
further drops but except for faded centaurea jacea not remarkably. The results
on the flight data which is captured with a 2 mm/pixel ground resolution are
considerably worse.

4.6 Time Measurements

In this section several time measurements are listed to give an idea about the
compute power needed for the different steps in the work process.

The duration of the image preprocessing script is mainly determined by the
amount of annotated input images. Another factor is the speed of the internet
connection which is used to download the pretrained model from the tensorflow
website. Preprocessing 410 mainly large (larger than 25 Megapixel) annotated
images containing around 8500 annotations in total takes around 20 minutes.
Two minutes of which are needed to download the pretrained Faster R-CNN
model configuration.

Training a model is the most time consuming process. On the computer
architecture used in the thesis, it takes roughly a day to completely train a well
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performing model. Although, already after a few hours the model performance
is within a few percent of the final model performance. Predicting the flower
abundance in the ortho image of June 14th takes 90 minutes on a GeForce GTX
1080 GPU [37]. The area covered on that ortho image is around 730 square
meters. Therefore prediction time for one square meter is around 7.4 seconds.

Generating heatmaps from predictions of a single image is quick. In contrast,
generating heatmaps from multiple overlapping images can take a considerable
amount of time. It depends on several factors. The prominent one is the num-
ber of single images. The more single images are used to generate the heatmap,
the longer it takes. The second factor is the resolution of the heatmap. High
resolution heatmaps take longer because for every single heatmap pixel the cov-
erage has to be determined. Generating a heatmap from 228 single images and a
heatmap resolution of 44 times 40 pixels takes around four minutes. Generating
a heatmap from the same 228 single images but with a heatmap resolution of
1000 times 910 pixels takes 20 minutes.
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Discussion

5.0.1 Flower Counting

Section 4.1 shows that for some flowers there are more flowers annotated on the
tablet than are counted by hand. This should not be the case and can only
be explained by the fact that counting flowers by hand is a very tedious pro-
cess. Mistakes happen very easily if a lot of flowers are present within a small
area. Annotating on an image on a tablet has the advantage that flowers are
marked and therefore the risk of counting twice or forgetting to count a flower is
minimized. When combining these falsely counted numbers with non optimally
chosen vegetation square locations, the extrapolations of the manually counted
flowers have the potential to be very inaccurate. This finding is a big motiva-
tion for this thesis since with a reliable flower detection model, the results can
be much more accurate than with the extrapolation from the manual counting.
Moreover, the drone based approach has other advantages. The potential to have
spatially explicit maps of flowers goes beyond what can be done with the tradi-
tional approach of extrapolating the manually counted numbers of flowers within
the vegetation squares. Also the workload is considerably lower once a trained
and reliable network is available.

Whether it is possible to get reliable predictions for a certain flower depends
on several factors. First, enough training data of the flower in question needs
to be available. The results suggest that with a few hundred instances good
performance can be achieved. Second, also the morphology of the flower has
an impact. Flowers such as galium mollugo are difficult for an object detection
network to predict reliably. The cause seems to be that this flower can sometimes
be very small and in other cases multiple instances of the same flower cover a
large area in which it is difficult to separate the single instances. In such cases
it would be interesting to see how an image segmentation network such as Mask
R-CNN [42], which predicts regions (pixels) that belong to a certain class, would
perform. Third, the size of a flower should span a certain minimum amount of
pixels. The results in section 4.5.1 state that with a 5 mm/pixel ground resolution
still good performance can be achieved for lotus corniculatus. This corresponds
to a flower diameter of around three to four pixels. The good results of lotus

32
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corniculatus are likely to be caused by its distinct color and the strong contrast
to the background. Other flowers of similar size such as onobrychis viciifolia or
trifolium pratense perform significantly worse. These flowers are much harder to
distinguish from the background. It is evident that distinguishability / contrast is
the fourth main factor which determines the prediction performance of a network
for a particular flower.

When taking a closer look at the results, a substantial portion of mispredic-
tions that negatively influences the model performance scores such as mAP and
F1 score is not fatal. This includes for example false positives that are in fact
missing annotations in the ground truth such as the examples in table 4.6. False
positive predictions of flowers that are on the verge of fading fall under this cate-
gory as well. The mispredictions caused by the confusion between single blooms
and collections of blooms of lotus corniculatus as described in section 4.3.1 are
not severe either. If such mispredictions were ignored, the performance scores
would be better.

These mispredictions exemplify the challenges that exist for the training data
collection. Even when being able to directly compare the image on the tablet
to the flowers on site, it is sometimes not clear how to annotate a flower. Lotus
corniculatus is a good example. They are often arranged as collections of blooms.
It is not uncommon however that there are single blooms that do not belong to a
collection. Since it is often not possible to distinguish the single blooms within a
collection, the whole collection is annotated as one instance. Unfortunately there
are border cases in which a single bloom very close to a collection is annotated
as a separate instance in the ground truth but the prediction algorithm includes
that flower in the collection and predicts only one bounding box. This results in
false negative predictions for the single blooms very close to the collection as the
examples in image c) in table 4.6 show. The opposite case that single blooms
are predicted which are annotated as a collection is common as well. The second
big problem for lotus corniculatus is that some instances are hardly visible on
the images because they are very small. Sometimes they are partly hidden by
other vegetation and sometimes weak motion blurr is present which makes it
even harder to distinguish between flower and background. This problem also
manifests itself in false positive and false negative predictions. False positive
predictions are mainly caused by background areas that look similar to a blurred
bloom and real blooms which are not present in the ground truth annotations
(as in image d)). The false negative predictions are often blooms that are small
and hardly distinguishable.

The issue of two overlapping blooms of leucanthemum vulgare being predicted
as one instance as in figure 4.6 a) could possibly be prevented by annotating flow-
ers with more accurate bounding boxes in the training data. The vast majority
of leucanthemum vulgare flowers is annotated with a dot in the center and the
standard size bounding box is used for training the network. For two overlapping
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flowers, each bounding box covers a large portion of the other flower as well.
Therefore the network learns to predict such overlapping flowers as one instance.
Furthermore, by using a standard size bounding box, the network learns to pre-
dict exactly this size of bounding box whereas the bounding boxes of overlapping
flowers should often be smaller. The network trained on various tile sizes seems
to predict overlapping flowers more reliably. The reason is that the network has
learned various bounding box sizes for the same flower and is therefore more
robust. Unfortunately, that network configuration has other drawbacks as de-
scribed in section 4.2. In a nutshell, there is a tradeoff between accuracy and
expenditure of time. Annotating flowers with polygons or bounding boxes of var-
ious sizes takes considerably more time than annotating the flowers with a single
dot in the center. In cases of very high density of flowers, the extra effort is likely
to pay off with an increased accuracy.

Due to malfunctioning of the drone’s software, there are no overlapping images
available for the first two flights on May 23rd and June 6th. If the drone’s
software worked from the beginning, there would be substantially more training
data available from the overlapping images.

For the bee studies carried out by Agroscope the number of single blooms is
of interest. A lot of flowers are arranged and predicted as collections of blooms
however. As demonstrated on the example of lotus corniculatus in section 4.3.2, it
seems to be a good idea to calculate an average number of blooms per annotation
from the hand counted data and multiply the prediction result with that ratio
to get the number of single blooms. Alternatively, an average number of blooms
per pixel could be calculated from the training data and hand counted data.
This value can then be multiplied with the total amount of pixels inside the
bounding boxes of the predictions to get the number of blooms. This technique
has the advantage that the bounding box sizes influence the predicted number
of blooms. This approach would be more robust if different fields have different
average amounts of blooms per collection.

5.0.2 Influences of the network configuration and image resolu-

tion

The prediction results on the data with 2 mm/pixel ground resolution in sec-
tion 4.5.2 are unsatisfactory. Especially because the results on a simulated 2
mm/pixel ground resolution are much better and comparable to the results with
1 mm/pixel ground resolution. It is difficult to identify the cause for this bad
performance. One reason might be that in the artificially scaled images, there is
more information contained than in the images captured at a higher flight level.
To create the artificial 2 mm/pixel resolution a lanczos filter is used. According
to [43] a lanczos filter offers the best compromise in terms of reduction of alias-
ing, sharpness, and minimal ringing compared to other image scaling techniques.
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The more likely reason however is that the image data of the 2 mm/pixel flight
is slightly blurred and not perfectly focused.

As documented in [25] it is advised to scale images up to improve the perfor-
mance of a network. The paper suggests to scale up all images with objects that
are smaller than 40 pixels in diameter by a factor of two. This is the case for the
vast majority of flowers dealt with in this thesis. The Faster R-CNN architecture
is not designed to detect very small objects such as flowers of just a few pixels
in decimeter [22, 24]. Therefore scaling up the images is an appropriate counter
measure which helped to improve the results in this thesis.

Data Augmentation options are a convenient way of artificially increasing the
amount of training data. One should be careful with applying too many augmen-
tation options. Since the flowers do not span a large number of pixels, they are
predicted based on minuscule details. Changing these details too much might be
counterproductive. Flips and random box jittering can be applied without hesi-
tation. They do not alter the important details but only the orientation or the
position of the bounding box. Brightness, contrast and saturation adjustment
should be applied moderately. In this thesis the maximal change is a delta of
25 %.

5.0.3 Practical considerations

The main test field in Linn is around 30 times 30 meters large. In order to have
enough overlapping images to generate an orthophoto of this area, a drone has to
fly over the field for about 20 minutes. This means that it is difficult to scale this
approach to larger areas. A way of overcoming this problem is to take sample
pictures at random locations of a larger field. Knowing the flight height and the
lens angle of the camera, one can calculate the covered area of the image. Running
the prediction algorithm on these sample images and extrapolating the numbers
of predictions to the size of the whole field can still achieve very good results. The
advantage over the manual counting flower abundance determination approach is
that a much larger sample size can be collected in very little time and effort. What
remains to be evaluated is whether the prediction algorithm generates similar
results close to the edges of an image compared to the center. The viewing angle
close to the edges is different than in the center of an image. Consequently there
could be a degradation in prediction performance. The orthophotos are created
only from the center regions of the single images.

Throughout the thesis various metrics are used to describe a model’s perfor-
mance. Precision, recall, F1 score and mAP all describe a certain aspect of a
model’s performance. It depends on the application case, which metric is most
important. If one tries to find a weed or invasive species within a field, it might
be better to predict too many than too few instances. In a precision agriculture
setting, the drone might directly forward the image information to a ground robot
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which navigates to the locations of the predicted weeds, validates the drone based
predictions and precisely sprays a minimal amount of pesticide onto the weed.
In this case a high recall value is desirable. Precision would not be very impor-
tant because the ground robot validates the drone based predictions with more
detailed information from close up. It is more relevant that as many instances
are detected as possible. In other cases it might not be necessary to detect as
many plants as possible but detecting one or a few plants is sufficient. In this
occasion a high precision is advantageous in order to minimize the occurrences
of false alarms (false positives). A possible example could be the detection of
jacobea vulgaris. Jacobea vulgaris is a weed that is unwanted by farmers due to
its poisonous nature. It is advised to fight this weed uncompromisingly once it
is found within a field [44]. The seeds of jacobea vulgaris can fly large distances
and therefore it can show up anywhere. A drone could help to detect this weed
in new locations. Because the plants have to be fought carefully by hand, it is
not necessary for the drone to detect all instances but just detecting the presence
of such a plant within a certain area would be helpful. It could give a farmer the
hint that he should check if an intervention is necessary in that area. Since false
alarms would be annoying, a high precision is desirable in such a scenario.

Precision and recall can easily be controlled with the minimum confidence
parameter. The higher the minimum confidence parameter of the prediction
script is set, the higher the precision gets. Lowering the minimum confidence
score increases the recall. For the abundance determination use case as studied
in this thesis a balanced precision/recall ratio is advantageous, because false
negatives and false positives are likely to cancel each other out and therefore a
good estimate of the abundance can be given. The F1 score is mainly determined
by precision and recall. The higher these two values are, the higher is the F1
score. A balanced ratio of precision and recall rewards the score even more.
Consequently, the F1 score is a good indicator of a model’s performance.

In none of the experiments any sort of cross validation is used. This is due
to the fact that training a model takes a lot of time and compute power. Time
and computational resource restrictions have made it impossible to include cross
validation into the experiments. Some spikes in figure 4.2 might be caused by the
lack of cross validation. Nonetheless, independent train, evaluation and test sets
are used. Therefore the results are not expected to be remarkably different with
other data splits. Apart from that, all aerial imagery collected for this thesis is
captured in sunny weather conditions. Future work should investigate the effects
of other weather conditions (e.g. cloudy diffuse) on the prediction performance.

The method developed in this thesis opens a wide range of imaginable use
cases beyond the substitution of manual flower counting. Weed control could be
realized as in the two examples given above. The multitemporal abundance maps
have the potential to map flowering dynamics quantitatively and spatially assess
co-occurrence of different flowers. By detecting certain indicator species, conclu-
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sions may be drawn about the soil properties. The presence of leucanthemum
vulgare for example is an indicator for lean meadows. In the context of qual-
ity assessment of meadows in connection with direct payments by the state or
canton, drone usage is imaginable. Detecting invasive neophyte plants in difficult-
to-access terrain such as reed terrain could replace manual checks. For some use
cases it might be beneficial to have real time detections. The method developed
in this thesis is not designed for that. By using the default configuration of the
Faster R-CNN architecture without upscaling the images, the prediction algo-
rithm can be sped up by a factor of four at least. The drawback is that the
accuracy is lower. Nevertheless, for some use cases this might be acceptable.
Using a more light weight object detection network design such as the SSD ar-
chitecture [45] can deliver further speed ups. However, the accuracy is expected
to be lower than with Faster R-CNN.

The suite of tools developed throughout the thesis is easy to install (c.f.
appendix B.1) and can be applied to any sort of object detection problem on
aerial images. The time consuming task of training data collection by annotating
aerial images can be carried out on the PhenoAnnotator application for Android
or with the widely used LabelMe application for desktop operating systems. The
script that copies annotations onto overlapping images can be a powerful way of
increasing the amount of training data without major efforts.

During the thesis, several lessons have been learned. Choosing a test field
that is a fourty minute drive away from the Agroscope center in Reckenholz has
not been optimal. In a few occasions a closer location would have been more ef-
ficient. Second, if from the beginning the more popular and well-engineered DJI
drone was used, the troubles caused by the TransformerUAV drone could have
been prevented. More training data would be available as well as orthophotos of
all four flight dates. Third, using a Linux operating system from the beginning
would have prevented several complications with the Tensorflow object detec-
tion framework. Tensorflow is widely used on Linux and therefore it is likely
to be better optimized and documented for the Linux operating system. Fi-
nally, implementing the possibility to draw bounding box annotations within the
PhenoAnnotator application in addition to point and polygon annotations would
have been a good idea. As mentioned above, more accurate bounding boxes could
have been annotated this way and the model performance could have possibly
been improved for some flowers.
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Figure 5.1: Typical prediction example.

Figure 5.2: Aerial photograph of the test site in Linn.
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Conclusion

To conclude, the thesis shows that there is great potential in combining very high-
resolution UAV remote sensing with object detection in an ecological context. It
has been shown that determining the abundance of flowers in grasslands can be
done with drones and object detection if certain requirements are fulfilled. The
most important requirement is that a lot of training data is available. Further-
more, the flowers have to be distinguishable on the RGB images meaning that
they should be large enough to spread across multiple pixels on an image. Last
but not least, the flowers should not be a plant that expands over large areas in
which the individual instances are difficult to keep apart.

If these requirements are fulfilled, the drone based abundance determination
approach described in this thesis achieves similar results as the extrapolations
of the manual flower counting and for some flowers significantly improves the
accuracy of the abundance prediction. The drone based approach minimizes
the risk of mispredictions caused by inadequately placed vegetation squares or
mistakes during the manual counting of the flowers.

While for some flowers the results are very good, for others this is not the
case. Therefore this approach is not suitable to determine the complete flower
abundance in grasslands with a rich bio diversity but only part of it. This could
be improved in the future with more training data and a higher ground sampling
distance. Apart from that, the thesis opens the door to a broad range of imagin-
able use cases. The whole work process described in the thesis can be applied to
any other aerial object detection task. All tools are well documented and easy to
install and reuse. (See installation instructions in appendix B.1 and user manual
in appendix C.)
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Appendix A

Additional Results

A.1 Confusion Matrices

In this section the same confusion matrices are displayed as the one in table 4.5
but with relative values. Table A.1 focuses on recall. Therefore all values are
percentage values relative to the number of ground truth annotations. Table A.2
focuses on precision and therefore all numbers are percentage values relative to
the number of predictions made by the network for a specific flower.
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Anthyllis v. 16.7 - - - - - - 50.0 - - - - - - 33.3
Centaurea j. - 50.9 - - - 32.1 - - - 1.9 - - 5.7 5.7 3.8
crepis b. - - 66.7 - - - - 23.8 - - - - - - 9.5
Dianthus c. - 8.8 - 23.5 - 2.9 - - 29.4 - - - - 17.6 17.6
Galium m. - - - - 50.0 - - - - - - - - - 50.0
Knautia a. - - - - - 94.1 0.2 - - - - - 0.5 - 5.3
Leucanthemum v. - - 0.1 - 0.1 0.4 88.6 - - - - - 0.1 - 10.7
Lotus c. - - 0.6 - - - 0.1 85.5 - - - - - - 13.8
Onobrychis v. - 1.1 - - - 1.1 - - 47.4 - - - - 11.6 38.9
Prunella v. - - - - - - - - - - - - - - -
Ranunculus - - - - - - - - - - - - - - -
Rhinanthus a. - - - - - - - 3.8 - - - 30.8 - - 65.4
Salvia p. - - - - - - - - - - - - 80.0 - 20.0
Trifolium p. - - - - - 14.3 - - - - - - - 57.1 28.6

Table A.1: The table shows the confusion matrix. The columns represent what
the model predicted and the rows represent what the model should have predicted
(the ground truth). The green, orange and brown numbers denote TP, FN and
confusions between two flowers respectively. The numbers are relative to the
number of ground truth annotations of a specific flower.
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Anthyllis v. 20.0 - - - - - - 0.3 - - - - - -
Centaurea j. - 73.0 - - - 3.7 - - - 100 - - 12.5 7.1
crepis b. - - 36.8 - - - - 0.5 - - - - - -
Dianthus c. - 8.1 - 100 - 0.2 - - 17.2 - - - - 14.3
Galium m. - - - - 19.5 - - - - - - - - -
Knautia a. - - - - - 89.6 0.1 - - - - - 8.3 -
Leucanthemum v. - - 2.6 - 2.4 0.9 96.5 - - - - - 4.2 -
Lotus c. - - 15.8 - - - 0.1 87.4 - - - - - -
Onobrychis v. - 2.7 - - - 0.2 - - 77.6 - - - - 26.2
Prunella v. - - - - - - - - - - - - - -
Ranunculus - - - - - - - - - - - - - -
Rhinanthus a. - - - - - - - 0.1 - - - 61.5 - -
Salvia p. - - - - - - - - - - - - 50.0 -
Trifolium p. - - - - - 0.2 - - - - - - - 9.5
False Positives 80.0 16.2 44.7 - 78.0 5.2 3.3 11.7 5.2 - 100 38.5 25.0 42.9

Table A.2: The table shows the confusion matrix. The columns represent what
the model predicted and the rows represent what the model should have predicted
(the ground truth). The green, red, orange and brown numbers denote TP, FP,
FN and confusions between two flowers respectively. The numbers are relative to
the number of predictions of a specific made by the network.

A.2 Predictions on Simulated Resolutions

Section 4.5.1 presents the effect of decreasing the image resolution. When ap-
plying the resolution degradation only to the test images but leaving the train-
ing images and validation images at the full resolution to train a network, the
performance drops much more rapidly as can be seen in figure A.1b and A.1a.

(a) Evolution of F1 score. (b) Evolution of mAP.

Figure A.1: Evolution of performance metrics over various simulated ground
resolutions with a model trained only on the full resolution images (1 mm/pixel
ground resolution).
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Considering the example images in table 4.10, this makes sense because the im-
ages at full resolution are distinctly different from the images with lower ground
resolution. This means that it is not possible to train a network with high ground
resolution images and using it to run the prediction algorithm on lower ground
resolution images.

A.3 Mispredictions of Network Trained on Multiple

Ground Resolutions

The network trained on multiple tile sizes (last column in table 4.3) generates
unsatisfying results, especially for flowers with the same color. Figure A.2a de-
picts a typical source of errors. All yellow flowers in the image are ranunculus.
However, the network cannot differentiate between the various yellow flowers that
it is trained on. For one instance it predicts crepis biennis (violet bounding box)
and ranunculus (green bounding box). Because the confidence score of crepis
biennis is higher than the one of ranunculus, the ranunculus prediction is dis-
carded by the non maximum suppression function. Two more flowers are falsely
predicted as crepis biennis and the last instance on the right is predicted as lotus
corniculatus (blue bounding box).

The problems for overlapping leucanthemum vulgare described in section 4.3.1
seem to be less severe with a network trained on multiple tile sizes. Figure
A.2b illustrates the prediction performance on leucanthemum vulgare. It can be
obtained that all overlapping flowers are correctly predicted. The reason appears
to be that the network uses varying bounding box sizes to predict the flowers
instead of just one.

(a) Multiple predictions for one flower. (b) Overlapping leucanthemum vulgare

Figure A.2: Example results of the network trained on multiple tile sizes.
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Installation

B.1 Installation instructions

1. Download the MasterThesis Github repository and extract it. This can
either be done by downloading the repository as a zip file from https:

//github.com/tschutli/MasterThesis and extracting it or by cloning the
repository using the following command:

git clone https://github.com/tschutli/MasterThesis

2. Download Anaconda with Python 3.7 from https://www.anaconda.com/

distribution/ and install it.

3. Open the Anaconda Prompt Program, change to the previously downloaded
MasterThesis folder and run the following command:

conda env create -f environment.yml

This will install all python dependencies including the Tensorflow library
with GPU support.

4. Run the following command to install the LabelMe application:

pip install labelme

5. Inside the Anaconda Prompt change directory to Tensorflow and run the
following two commands:

conda activate tf_gpu

python cli.py

B-1
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6. Done! You should now be able to use the command line interface de-
veloped during this thesis. Just follow the instructions displayed by the
above command or watch the tutorial videos located in Masterthesis/

Documentation/TutorialVideos.

B.2 Remarks

• You should not need any administrator rights.

• The described installation installs a pre-compiled version of Tensorflow.
This version is not optimized for certain special CPU instructions. If you
have a CPU that supports special CPU instructions such as the ones from
the AVX or AVX2 set, you can build Tensorflow from source. This is how-
ever a very tedious process. If you run the code on a GPU, using an opti-
mized version of Tensorflow does not improve the performance significantly
since it only optimizes the execution on the CPU.

• The standard pixel size of each flower can be defined in the flower_info.py
file. If you annotate images on the PhenoAnnotator tablet with point an-
notations, add the standard pixel sizes of your classes to this file.

• The PhenoAnnotator tablet app can be downloaded from the Google Play-
store.
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User Manual For Command Line

Tool

The command line tool developed during the thesis is used as follows:

Usage: python cli.py [OPTIONS] COMMAND [ARGS]

The following list of commands is available:

• annotate Annotate images or adjust existing annotations.

• copy-annotations Copy Annotations to geo referenced images.

• evaluate Evaluate Predictions.

• export-annotations Export annotations to shape files.

• export-inference-graph Export the trained inference graph.

• generate-heatmaps Generate heatmaps from predictions.

• image-preprocessing Prepare a folder with annotated images for
training.

• predict Run Prediction.

• prepare-for-tablet Prepare an image for the Android Annotation
App.

• train Train a network.

• visualize Visualize Bounding Boxes.

Each command is described in more detail in the following sections. Along
with a brief description of what the command does, all arguments and options
are described.

C-1
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C.1 annotate

Running this command will open the LabelMe Application with which all images
in the input-folder can be annotated. If the images in the input folder are already
annotated, these annotations can be viewed and adjusted.

python cli.py annotate [OPTIONS] INPUT_FOLDER

Arguments:

INPUT_FOLDER

Input folder path containing images.

Options:

–roi-strip BOOLEAN

If the roi-strip flag is set to True, the user can select Regions of
Interest (RoI) in the images. To do so, the user has to draw one
or multiple polygons around the region(s) of interest and label them
’roi’. After the user has labelled all images accordingly, only the
Regions of Interest (RoI) are kept in the images. The rest of the
pixels are overriden with black. [default: False]

-h, –help

Show help and exit.

C.2 copy-annotations

If you have one folder with annotated images that are geo referenced, with this
command you can copy the annotations from that folder to other images that
are also georeferenced. An image can be georeferenced in the standard geotif
format in any coordinate system. Alternatively, it can be a normal png or jpg
image with a json file called imagename_geoinfo.json in the same folder. The im-
agename_geoinfo.json file must contain the following information in the WGS84
coordinate system: {"lr_lon": a, "lr_lat": b, "ul_lon": c, "ul_lat": d} With
CTRL+C the execution of the script can be interrupted. In the one-by-one mode,
the execution can later be continued.

python cli.py copy-annotations [OPTIONS] ANNOTATED_FOLDER

TO_BE_ANNOTATED_FOLDER OUTPUT_FOLDER

Arguments:
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ANNOTATED_FOLDER

Folder path containing georeferenced annotated images.

TO_BE_ANNOTATED _FOLDER

Folder path containing georeferenced images.

OUTPUT_FOLDER

Folder path where the results should be saved to.

Options:

–one-by-one BOOLEAN

If True, the annotations will be applied to one image in the ’to-
be-annotated-folder’ at a time. It will be shown to the user in the
LabelMe Application such that the user can check and adjust the
copied annotations. [default: True]

-h, –help

Show help and exit.

C.3 evaluate

If the images on which the predictions algorithm was run on had groundtruth
information, this command will evaluate the performance of the prediction algo-
rithm on these images. (Evaluation of Precision, Recall, mAP and F1 score)

python cli.py evaluate [OPTIONS]

Options:

--project-dir PATH

Provide the project folder that was used for the predictions.

--predictions-folder PATH

The folder where the predictions were saved to.

--evaluations-folder PATH

The folder where the evaluation results should be saved to.

--iou-threshold FLOAT RANGE

Defines what is the minimum IoU (Intersection over Union) overlap
to count a prediction as a True Positive. [default: 0.3]
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--generate-visualizations BOOLEAN

If True, the erroneous predictions will be printed onto the images and
saved to the evaluations-folder [default: False]

--print-confusion-matrix BOOLEAN

If True, the confusion matrix will be printed to the console in latex
table format. [default: False]

--min-score FLOAT

The minimum score a prediction must have to be included in the
evaluation [default: 0.5]

--visualize-info BOOLEAN

If True, in addition to the bounding boxes, info about the mispredic-
tions is painted above the boxes. [default: False]

-h, --help

Show help and exit.

C.4 export-annotations

Exports the trained network to a format that can then be used to make predic-
tions.

python cli.py export-annotations ANNOTATION_FOLDER OUTPUT_FOLDER

Arguments:

ANNOTATION_FOLDER

Folder path containing annotated images.

OUTPUT_FOLDER

The desired output folder path where the shape files should be saved
to.

C.5 export-inference-graph

Exports the trained network to a format that can then be used to make predic-
tions.

python cli.py export-inference-graph [OPTIONS]

Options:
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--project-dir PATH

Provide the project folder that was also used for the training.

--model-selection-criterion [mAP|f1]

If the train command was executed with the ’–with-validation True’
flag, the model with the best performance on the validation set is
exported (in terms of either mAP or f1 score). [default: f1]

--checkpoint INTEGER

If a specific checkpoint should be exported, the checkpoint id can be
provided with this flag.

-h, --help

Show help and exit.

C.6 generate-heatmaps

python cli.py generate-heatmaps [OPTIONS]

PREDICTIONS_FOLDER OUTPUT_FOLDER

Arguments:

PREDICTIONS_FOLDER

The folder containing the predictions.

OUTPUT_FOLDER

The folder where the heatmaps should be saved to.

Options:

--heatmap-width INTEGER

Defines the the number of pixels the heatmap will have on the x axis.
The height of the heatmap is chosen such that the width/height ratio
is preserved. This heatmap will finally be resized to the size of the
input (or background) image. [default: 100]

--max-val INTEGER

If defined, it denotes the maximum value of the heatmap, meaning
that all values in the heatmap that are larger than this max_val will
be painted as red.

--flower TEXT

For which class the heatmap should be generated. If None is pro-
vided, only the overall heatmap for all classes is generated. This flag
can be defined multiple times.
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--min-score FLOAT

The minimum score a prediction must have to be included in the
heatmap. [default: 0.5]

--overlay BOOLEAN

If True, the heatmap is drawn onto a copy of the input image. Oth-
erwise it is drawn without any background. [default: True]

--output-image-width INTEGER

The width of the output image, the height is resized such that the
width/height ratio is preserved. [default: 1000]

--generate-from-multiple BOOLEAN

If True, the script takes all predictions in the input folder and gener-
ates one heatmap from all of them. For this option, the input folder
needs to contain georeferenced images and the background-image op-
tion has to be set. [default: False]

--background-image PATH

The path to the image that should be used as background for the
heatmap. (The background can still be deactivated with the –overlay
flag but it needs to be provided as a frame for the heatmap.) If
generate-from-multiple is set to False, this option is ignored.

-–-window FLOAT...

Four float values indicating the [ulx, uly, lrx, lry] coordinates in the
swiss coordinate system LV95+ of the area that should be used for
the heatmap.

--with-colorbar BOOLEAN

If True, a colorbar will be printed onto the output image. [default:
True]

-h, --help

Show help and exit.

C.7 image-preprocessing

Running this command converts one or multiple input folders containing an-
notated images into a format that is readable for the Tensorflow library. The
input folders must contain images (jpg, png or tif) and along with each image a
json file containing the annotations. These json files can either be created with
the widely used LabelMe Application or with the AnnotationApp available for
Android Tablets.

python cli.py image-preprocessing [OPTIONS]
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Options:

-i, --input-folder PATH

Input Folder Path (can be defined multiple times)

-t, --test-split FLOAT RANGE

Float between 0 and 1 indicating what portion should be used for the
test set (must be the same number as input folders -> one number
for each folder)

-v, --validation-split FLOAT RANGE

Float between 0 and 1 indicating what portion should be used for
the validation set (must be the same number as input folders -> one
number for each folder)

--project-folder PATH

This project directory will be filled with various subfolders used dur-
ing the training or evaluation process.

--tile-size INTEGER

Tile size to use as tensorflow input (squared tiles). Can be more than
one! [default: 450]

--split-mode [random|deterministic]

Test set / Train set splitting technique. Deterministic mode ensures
that an input directory is split the same way if this command is
executed multiple times. [default: random]

--min-instances INTEGER

Minimum instances of one class to include it in the training [default:
50]

--overlap INTEGER

The image tiles are generated with an overlap to better cover flowers
on the edges of the tiles. Define the overlap in pixels with this flag.
[default: 50]

--model-link TEXT

The link from where the pretrained model can be downloaded.

-h, --help

Show help and exit.

C.8 predict

Runs the prediction algorithm on images (png, jpg and tif) of any size.
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python cli.py predict [OPTIONS]

Options:

--project-dir PATH

Provide the project folder that was used for the training.

--images-to-predict PATH

Path to a folder containing images on which the prediction algorithm
should be run.

--predictions-folder PATH

Path to a folder where the prediction results should be saved to.

--tile-size INTEGER

Image Tile Size that should be used as Tensorflow input. [default:
450]

--prediction-overlap INTEGER

The image tiles are predicted with an overlap to improve the results
on the tile edges. Define the overlap in pixels with this flag. [default:
50]

--min-score FLOAT

Float between 0 and 1 indicating the minimum confidence a predic-
tion must have to be considered. [default: 0.5]

--visualize-predictions BOOLEAN

If True, the prediction bounding boxes are painted onto copies of the
input images and are saved to the predictions-folder. [default: True]

--visualize-groundtruth BOOLEAN

If True, the groundtruth bounding boxes are painted onto copies of
the input images and are saved to the predictions-folder. [default:
False]

--visualize-score BOOLEAN

If true, the score is printed above each bounding box. [default: False]

--visualize-name BOOLEAN

If true, the class name is printed above each bounding box. [default:
False]

--max-iou FLOAT

Float between 0 and 1 indicating the maximal iou for the non maxi-
mum suppression algorithm. For all predictions with an iou greater
than max-iou, only the one with the better score is kept. [default:
0.3]
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-h, --help

Show help and exit.

C.9 prepare-for-tablet

Given an input-image (any format) and an output-folder, the command tiles
the input-image into tiles of suitable size for an android tablet. If the input
image is georeferenced (can be georeferenced tif or other image format with a
imagename.imageformat.aux.xml file in the same folder(=>see gdal)), the script
generates additional files with geo information that are read and used by the
tablet app for displaying the user location. An additional advantage of using a
georeferenced image as input is that after annotating on the tablet, all annota-
tions can be copied onto other georeferenced images with the copy-annotations
commmand.

python cli.py prepare-for-tablet [OPTIONS] INPUT_IMAGE

OUTPUT_FOLDER

Arguments:

INPUT_IMAGE

Path of the input image that should be tiled to be usable on the
tablet.

OUTPUT_FOLDER

The path of the desired output folder.

Options:

--tile-size INTEGER

Tile size to use for tablet. Too large tile sizes can cause the app to
crash. [default: 256]

-h, --help

Show help and exit.

C.10 train

Trains a network. Pressing CTRL+C during the training process interrupts the
training. Running the train command again will resume the training. If you want
to start training from the beginning, make sure that the contents of the <path
to project-folder>/training folder are all deleted.
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python cli.py train [OPTIONS]

Options:

--project-dir PATH

Provide the project folder that was also used for the image-preprocessing
command.

--max-steps INTEGER

Max Training steps to carry out. [default: 130000]

--with-validation BOOLEAN

If true, the training process is carried out as long as the validation
error decreases. If false, the training is carried out until max-steps is
reached. [default: True]

--stopping-criterion [mAP|f1]

If the train command was executed with the ’–with-validation True’
flag, the training is stopped once either the mAP or the f1 score stop
improving. [default: f1]

-h, --help

Show help and exit.

C.11 visualize

Draws the bounding boxes on each image in the input folder. The input folder
therefore needs to contain images (png, jpg or tif) and annotation files (LabelMe
json, AnnotationApp json or Tensorflow xml format)

python cli.py visualize [OPTIONS] INPUT_FOLDER OUTPUT_FOLDER

Arguments:

INPUT_FOLDER

The folder containing images and annotation files.

OUTPUT_FOLDER

The folder where the visualizations should be saved to.

Options:

--with-name-info BOOLEAN

If True, the name will be printed on top of each bounding box. If
False, only the bounding boxes will be drawn. [default: True]
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--clean-output-folder BOOLEAN

If True, all contents of the output folder will be deleted before the
execution of the command. [default: True]

-h, --help

Show help and exit.
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