
Institut für
Technische Informatik und
Kommunikationsnetze

Truth be told: Benchmarking
BLE and IEEE 802.15.4

Master Thesis

Anna-Brit Schaper

schapera@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Romain Jacob
Reto Da Forno

Prof. Dr. Lothar Thiele

November 1, 2019

mailto:Anna-Brit Schaper<schapera@student.ethz.ch>

Acknowledgements

I would like to thank Romain Jacob, Reto da Forno and Andreas Biri for the
excellent supervision. This project would not have been possible without your
valuable input and support. Furthermore, I would like to express my gratitude
to Marco Zahner who went out of his way to provide us with access to the
anechoic chamber. I also thank Beshr Al Nahas, Carsten Herrmann and Marco
Zimmerling for the insights into their research. Finally, I would like to thank the
Computer Engineering Group around Prof. Dr. Lothar Thiele for providing the
resources I needed to conduct this project.

i

Abstract

A large body of recent flooding-based communication protocol proposals for wire-
less sensor networks exploit concurrent transmissions (CT). Many existing pro-
tocols are designed to run on the IEEE 802.15.4 physical layer. Thus, there is
extensive research on the conditions required for successfully receiving CT over
IEEE 802.15.4. While IEEE 802.15.4 is popular in the research community, Blue-
tooth Low Energy (BLE) has experienced a much wider commercial adoption.
BLE’s ubiquity makes its physical layers an attractive potential alternative for
CT-based protocols.
In this project, we performed an experimental investigation of the conditions
required for the successful reception of CT over IEEE 802.15.4 and the five phys-
ical layer options supported by BLE. We focused on the impact of the choice of
physical layer protocol, differences in packet contents and the time and power
offsets between the transmissions. Our experiments were performed in an ane-
choic chamber using nRF52840 dongles. We tested a wide range of parameter
combinations. To make our results more accessible, we created an interactive
visualisation of our data.

ii

Contents

Acknowledgements i

Abstract ii

Abbreviations v

1 Introduction 1

2 Background 3

2.1 Communication Modes . 3

2.1.1 IEEE 802.15.4 . 3

2.1.2 Bluetooth Low Energy (BLE) 5

2.2 Concurrent Transmissions on the Physical Layer 8

3 Methodology 13

3.1 Radio Platform . 15

3.2 Firmware . 19

3.2.1 Radio Interface . 20

3.2.2 Application . 25

3.3 Platform Profiling . 30

3.3.1 Transmission Timing Precision 31

3.3.2 Carrier Frequency Offset 33

3.4 Physical Setup . 34

3.5 Data Processing . 34

4 Results 36

4.1 No Power Difference . 37

4.2 Large Power Difference . 39

4.3 Medium Power Difference . 39

iii

Contents iv

5 Conclusion 48

A Physical Layer Techniques 50

A.1 Gaussian-Filtered Frequency-Shift Keying (GFSK) 50

A.2 Offset Quadrature Phase-Shift Keying (O-QPSK) 52

A.3 Spread Spectrum Techniques . 55

A.3.1 Direct-Sequence Spread Spectrum (DSSS) 55

A.3.2 Frequency Hopping Spread Spectrum (FHSS) 56

Bibliography 57

Abbreviations

AD advertising data

AHB Advanced High-performance Bus

API application programming interface

BER bit error rate

BLE Bluetooth Low Energy

BR/EDR Basic Rate/Enhanced Data Rate

CI coding indicator

CPFSK continuous-phase frequency-shift keying

CPU central processing unit

COTS commercial off-the-shelf

CRC cyclic redundancy check

CT concurrent transmissions

DMA direct memory access

DSSS direct-sequence spread-spectrum

EEP event end point

FEC forward error correction

FM frequency modulation

FHSS frequency-hopping spread-spectrum

GFSK Gaussian-filtered frequency-shift keying

GPIO general purpose input/output

GPIOTE GPIO tasks and events

v

Abbreviations vi

IEEE Institute of Electrical and Electronics Engineers

ISM industrial, scientific and medical

IR interrupt

ISR interrupt service routine

LE Low Energy

LED light-emitting diode

LR-WPAN low-rate wireless personal area network

MAC medium access control

MSK minimum shift keying

O-QPSK offset quadrature phase-shift keying

OS operating system

PCB printed circuit board

PDU protocol data unit

PER packet error rate

PHR PHY header

PHY physical layer

PN pseudo-noise

PPDU PHY protocol data unit

PPI programmable peripheral interconnect

PRR packet reception ratio

PSDU PHY service data unit

QPSK quadrature phase-shift keying

RAM random-access memory

RSSI received signal strength indicator

SDK software development kit

Abbreviations vii

SFD start-of-frame delimiter

SIG special interest group

SHR synchronisation header

SIR signal-to-interference ratio

SoC system-on-chip

ST synchronous transmissions

TEP task end point

TERM termination field

UART universal asynchronous receiver/ transmitter

UARTE universal asynchronous receiver/ transmitter with EasyDMA

USB Universal Serial Bus

UUID universally unique identifier

WPAN wireless personal area network

WSN wireless sensor network

Chapter 1

Introduction

In recent years, small, networked embedded systems have permeated our society.
From smart homes to industrial automation, many aspects of our lives depend
on reliable, low-power short-range wireless communication. Bluetooth Low En-
ergy (BLE) is one of the most pervasive communication technologies used for
this purpose. It is implemented on most modern smartphones and many other
peripherals. IEEE 802.15.4, which has found widespread use in the wireless sen-
sor network (WSN) research community over the years, presents an alternative.
Recently, protocols based on the IEEE 802.15.4 standard have also seen an in-
crease in popularity in commercial applications, particularly in the context of
home automation.
The goal of this project was to investigate the performance of both BLE and
IEEE 802.15.4 for one particular communication scenario: concurrent transmis-
sions (CT). CT describe a situation in which multiple transmitters within range
of the same receiver transmit at the same time. Traditional wireless routing
protocols go through great lengths to avoid this condition, as it can result in
packet loss caused by destructive interference.
However, since the publication of Glossy [1], the WSN research community has
moved away from this approach to protocol design. Instead of expending re-
sources on complex schemes to avoid CT, Glossy and many protocols since have
focused on creating conditions under which packets can be received despite being
transmitted concurrently.
In the project summarized by this report, we examined experimentally how the
required conditions for a successful reception of CT vary for different choices of
physical layer protocols, namely the physical layers of BLE and IEEE 802.15.4.
In Chapter 2, we outline some properties of these physical layers that are rele-
vant to CT. On top of that, we provide some background on existing research
into the conditions for successfully received CT. The methodology we used for
our experiments is described in Chapter 3. To make our results as applicable
to real-world scenarios as possible, we used small, low-power, low-cost commer-
cial off-the-shelf (COTS) transceivers which could easily be embedded into many
commercial wireless peripherals or deployed in a WSN testbed. Chapter 4 sum-

1

1. Introduction 2

marises our results. In Chapter 5, we draw some conclusions from our work and
outline potential areas of interest for future research.

Chapter 2

Background

In this project, we investigated the conditions for successfully receiving CT for
different physical-layer protocols. The first part of this chapters provides a brief
summary of the properties of these protocols that were relevant to our exper-
iments. Afterwards, we outline some factors that are known to affect CT and
relate them to the protocols.

2.1 Communication Modes

In this section, we introduce the IEEE 802.15.4 and BLE standards and highlight
the features of the protocols we used in our implementation and investigation of
CT.

2.1.1 IEEE 802.15.4

IEEE 802.15.4 is a wireless communication standard for low-rate wireless per-
sonal area networks (LR-WPANs). It targets the low-power and low-throughput
operation, which makes it a popular choice for use cases like WSNs and home
automation. The standard’s scope is limited to the physical and medium access
control (MAC) layers. Zigbee [2] and Thread [3] are popular higher level proto-
cols running on top of IEEE 802.15.4.
Besides the cyclic redundancy check (CRC), only physical layer features are re-
quired for the implementation of CT over IEEE 802.15.4. The IEEE 802.15.4
standard [4] defines multiple different physical layers (PHYs) for a variety of
frequency bands. In this project, we only use the offset quadrature phase-shift
keying (O-QPSK) PHY in the 2450 MHz band, which is part of the globally-
available 2.4 GHz ISM band. For ease of readability, we will refer to this PHY as
the IEEE 802.15.4 PHY or simply as IEEE 802.15.4. In the following we high-
light some properties of the PHY. A selection of those properties is summarized
in Table 2.1.

3

2. Background 4

PHY IEEE 802.15.4
2450 MHz O-QPSK

Coding DSSS

Bitrate [bit/s] 250 K
Bit Period [µs] 4

Symbol Rate [symbol/s] 62.5 K
Symbol Period [µs] 16

Chip Rate [chip/s] 2 M
Chip Period [µs] 0.5

S/Ico−channel [dB] not specified
Sensitivity [dB] -85

Packet Format Fig. 2.1

Table 2.1: Summary of some properties of the IEEE 802.15.4 O-QPSK PHY in
the 2450 MHz band. S/Ico−channel refers to the SIR under co-channel interference
required for low PERs. Sensitivity is the minimum input power level at the
receiver for which PER< 10 % (without interference).

Modulation IEEE 802.15.4 [4] uses direct-sequence spread-spectrum (DSSS)
with a spreading factor of 8 to improve reliability (see Appendix A.3.1). Its
spreading technique maps 4-bit symbols to nearly-orthogonal 32-chip pseudo-
noise (PN) sequences. The chips are then modulated onto a carrier using O-
QPSK modulation with half-sine pulse shaping (see Appendix A.2) and a chip
rate of 1/Tch = 2 Mchip/s.

Carrier Frequencies IEEE 802.15.4 [4] offers 16 channels, numbered 11 to
26, in the 2450 MHz band. The carrier frequency corresponding to channel k is
given by

fc = 2405 MHz + 5 MHz · (k–11) , k ∈ [11, 26] (2.1)

The standard specifies a tolerance of ±40 ppm on the carrier frequency. Thus,
the frequency deviation should be less than ±100 kHz.

Bitrate The provided bitrate is 250 Kbit/s since the PHY uses a chip rate of
2 Mchip/s and a spreading factor of 8.

Packet Format The structure of a IEEE 802.15.4 packet, which is called a
PHY protocol data unit (PPDU), is shown in Figure 2.1. Each packet starts
with a synchronisation header (SHR), which consists of a 4 B preamble and a
1 B start-of-frame delimiter (SFD). The SHR is followed by a 1 B PHY header

2. Background 5

SHR PHR PSDU

Preamble SFD Length Reserved PHY Payload

4 bytes 1 byte 7 bits 1 bit 1 to 127 bytes (including 2-byte CRC)

128µs 32µs 28µs 4µs 32 to 4064µs

Figure 2.1: Packet structure of a PPDU in the IEEE 802.15.4 O-QPSK PHY.

(PHR). The PHR consists of a 7-bit field, which specifies the length of the PHY
service data unit (PSDU) in bytes, and a reserved bit. The PSDU itself is
appended behind the PHR and contains the PHY payload. Due to the size of
the length field, the PSDU can have up to 127 B. If a CRC is used, the space for
user data in the PSDU is reduced by 2 B, the length of the CRC.

Receiver Characteristics The IEEE 802.15.4 standard [4] specifies a receiver
sensitivity of −85 dB. By the standard’s definition, this means that the receiver
must be able to achieve packet error rates (PERs) smaller than 10 % for packets
with 20 B PSDUs and input power levels at or above its sensitivity. Note, how-
ever, that this only applies when no interference is present. The standard does
not specify the amount of tolerable co-channel interference.

2.1.2 Bluetooth Low Energy (BLE)

Bluetooth is a widely-adopted wireless communication standard for wireless per-
sonal area networks (WPANs) in the 2.4 GHz ISM band that is managed by
the Bluetooth SIG [5]. Bluetooth technology distinguishes between two dif-
ferent radio versions: Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR)
for continuous data streaming and Bluetooth Low Energy (BLE) for low-power,
short-burst data transmissions [6]. While both versions support point-to-point
communication, BLE also includes protocols for broadcast and mesh network
topologies. Thus, BLE lends itself as an alternative to protocols built on top of
IEEE 802.15.4 in WSN scenarios.
The BLE standard defines a full protocol stack. To investigate the potential of
BLE-based CT, we are predominantly interested in the physical layer and some
aspects of the link layer. In Bluetooth, these layers are collectively referred to
as the Controller [7]. In the following, we will outline some properties of the LE
Controller.

Modulation BLE uses Gaussian-filtered frequency-shift keying (GFSK) mod-
ulation (see Appendix A.1) with a time-bandwidth product of 0.5 and a modu-
lation index between 0.45 and 0.55 [8].

2. Background 6

PHY LE 1M LE 2M LE Coded LE Coded
FEC Coding Scheme none none S=2 S=8

Bitrate [bit/s] 1 M 2 M 500 K 125 K
Bit Period [µs] 1 0.5 2 8

Symbol Rate [symbol/s] 1 M 2 M 1 M 1 M
Symbol Period [µs] 1 0.5 1 1

S/Ico−channel [dB] 21 21 17 12
Sensitivity [dB] -70 -70 -75 -82

Packet Format Fig. 2.2a Fig. 2.2a Fig. 2.2b Fig. 2.2b

Table 2.2: Summary of some properties of the four different BLE communication
modes. S/Ico−channel refers to the SIR under co-channel interference required for
a BER≤ 0.1 %. Sensitivity is the minimum input power level at the receiver for
which the PER is less than about 5 % (without interference).

Carrier Frequencies The LE Controller [8] supports 40 different commu-
nication channels. Each communication channel is associated with a carrier
frequency between 2402 MHz and 2480 MHz. Adjacent carrier frequencies are
2 MHz apart. Three of the channels, namely 37, 38 and 39, are reserved for
initial advertising. These primary advertising channels correspond to the carrier
frequencies 2402 MHz, 2426 MHz and 2480 MHz and were chosen to have min-
imum overlap with the commonly-used IEEE 802.11 channels 1, 6 and 11 [7].
Standard-compliant BLE systems must keep the carrier frequency drift during
any packet below 50 kHz and limit the total frequency deviation (including both
the initial offset and drift) to ±150 kHz.

PHY Choices Since the introduction of Bluetooth 5 [8], the LE Controller has
offered a choice of physical layer implementations: the classic LE 1M PHY, which
is also supported by Bluetooth 4, the LE 2M PHY, which offers a higher data
rate, and the LE Coded PHY, which uses error-correcting codes to prolong the
communication range [9]. As the LE Coded PHY supports two different coding
schemes (S=2 forward error correction (FEC) coding and S=8 FEC coding), we
need to distinguish between four different BLE physical layer communication
modes. Table 2.2 shows an overview of the four modes.

Bitrate and Symbol Rate Each of the BLE modes has a unique bitrate.
Thus, in the following, we will sometimes refer to a mode by its bitrate, i.e.
we may call the LE 1M PHY the “1 Mbit mode”, the LE 2M PHY the “2 Mbit
mode”, the LE Coded PHY with S=2 coding the “500 Kbit mode” and the
LE Coded PHY with S=8 coding the “125 Kbit mode”.
The LE 1M PHY and the LE Coded PHYs all have the same symbol rate of

2. Background 7

Preamble Access Address PDU CRC

r bytes 4 bytes 2 to 257 bytes 3 bytes

8µs 32
r

µs 16
r

to 2056
r

µs 24
r

µs

(a) Packet format for the BLE uncoded modes. r is based on the bitrate of the mode;
r = 1 for the LE 1M PHY and r = 2 for the LE 2M PHY.

Preamble Access Address CI TERM1 PDU CRC TERM2

80 symbols 4 bytes 2 bits 3 bits 2 to 257 bytes 3 bytes 3 bits

uncoded
FEC block 1
S=8 coding

FEC block 2
S=s coding

80µs 256µs 16µs 24µs 16 · s to 2056 · sµs 24 · sµs 3 · sµs

(b) Packet format for the LE Coded PHY modes. s refers to the coding scheme employed
by the mode, i.e. s = 2 for the 500 Kbit mode and s = 8 for the 125 Kbit mode.

Figure 2.2: Structure of BLE packets.

1 Msymbol/s. While the LE 1M PHY’s bitrate is equal to its symbol rate, the
LE Coded PHYs have lower bitrates because one bit is mapped to multiple
symbols in the coding process (2 for the S=2 coding scheme and 8 for the S=8
coding scheme). To achieve its higher bitrate, the LE 2M PHY uses a symbol
rate of 2 Msymbol/s.

Packet Format The BLE PHYs have slightly different packet formats, as il-
lustrated by Figure 2.2.
While all BLE packets start with a preamble, the length of this preamble differs
between the modes. For both uncoded modes, the preamble takes 8 µs to trans-
mit, i.e. it consists of 1 B in the LE 1M PHY and of 2 B in the LE 2M PHY.
The coded modes use a longer preamble; it is 80 symbols long, not coded and
takes 80 µs to transmit.
In all modes, the preamble is followed by a 32-bit access address. In the uncoded
modes, the access address is transmitted at the bitrate associated with the PHY.
Both coded modes, on the other hand, use the S=8 FEC coding scheme for the
access address. The same applies to the coding indicator (CI) field and TERM1
field, which are transmitted after the access address in the coded modes. To-
gether, the access address, CI and TERM1 field form FEC block 1. Due to its
S=8 coding, FEC block 1 is transmitted at a bitrate of 125 Kbit/s in both the
500 Kbit and 125 Kbit mode.
The actual data is transmitted in the protocol data unit (PDU), which can
contain up to 257 B. It follows the access address in uncoded packets and
FEC block 1 in coded packets. For error detection, a 3 B CRC is added to
the packet after the PDU. Uncoded packets end with the CRC. In the coded
modes, an additional termination field is appended to the packet. This TERM2
field forms FEC block 2 along with the PDU and CRC. FEC block 2 uses the

2. Background 8

FEC coding associated with the communication mode, i.e. S=2 coding in the
500 Kbit mode and S=8 coding in the 125 Kbit mode.

Receiver Characteristics The Bluetooth 5 Core Specification [8] makes some
demands on receiver performance. For instance, it specifies the receiver sensi-
tivities listed in Table 2.2 as the receiver input levels above which very low bit
error rates (BERs) are achieved. The specific BER limits depend on the pay-
load length, since the same BER with longer payloads will result in more packet
errors. Based on the BER limits specified by the standard, the PERs should be
below 5 % for input levels above the sensitivity.
An interesting characteristic for CT is the signal-to-interference ratio (SIR) for
co-channel interference, which we call S/Ico−channel. The BLE standard specifies
that the BER must be at most 0.1 % for an S/Ico−channel greater than the one
listed in Table 2.2 for the respective PHY. Note that the coded modes require a
lower ratio than the uncoded modes.

2.2 Concurrent Transmissions on the Physical Layer

Concurrent transmissions (CT) describe a scenario where multiple transmitters
in range of the same receiver simultaneously transmit packets. In CT, a suc-
cessful reception occurs when the receiver is able to correctly decode any one
of the transmitted packets. Ever since the publication of Glossy [1], many pro-
tocols have been proposed that make use of CT to provide efficient multi-hop
broadcast, e.g. [10–17]. These so called synchronous transmissions (ST) proto-
cols have mostly been built atop the IEEE 802.15.4 physical layer. As a result,
existing research on the conditions for successful CT predominantly focuses on
the IEEE 802.15.4 physical layer [1, 18–22]. However, recent work [23] has initi-
ated similar research on CT over the BLE physical layer.
Both IEEE 802.15.4 and BLE modulation use angle modulation (see Appendix A.1
and Appendix A.2). Thus, the signal arriving at the receiver from a transmitter i
can be written as

srx,i (t) = Arx,i (t) cos (2πfct+ θrx,i (t)) (2.2)

where fc is the carrier frequency, Arx,i(t) is the signal’s amplitude and θrx,i(t)
is its phase. When N transmitters are transmitting concurrently, the receiver
will receive a superposition Srx (t) of the signals originating from the different
transmitters. Using the harmonic addition theorem [24], we can express the
received signal as follows:

Srx (t) =

N∑
i=1

srx,i (t) = Arx (t) cos (2πfct+ Θrx (t)) (2.3)

2. Background 9

where

A2
rx (t) =

N∑
i=1

A2
rx,i (t) + 2

N∑
i=1

N∑
j>i

Arx,i (t)Arx,j (t) cos (θrx,i (t)− θrx,j (t)) (2.4)

Θrx (t) = arctan

∑N
i=0Arx,i (t) sin (θrx,i (t))∑N
i=0Arx,i (t) cos (θrx,i (t))

(2.5)

For the successful reception of CT, the receiver needs to be able to recover one
of the transmitted signals stx,i (t) from Srx (t). Let C be the transmitter whose
signal is to be received correctly. The signal transmitted by C is given by

stx,C (t) = Atx,C cos (2πfct+ θtx,C (t)) (2.6)

Determining the precise conditions under which a receiver can recover stx,i (t)
from Srx (t) is a complex task. Ultimately, they depend on the specifics of the
modulation of the transmitted signal and the decoding techniques used by the
receiver. Since a detailed analytical discussion of all the conditions for successful
CT is beyond the scope of this project, we will confine ourselves to outlining
some general factors that are known to play a role.

Power Delta Equation (2.4) and Equation (2.5) show that the amplitude
and phase of the received signal Srx (t) will tend towards the amplitude and
phase of the signal with the highest amplitude, which is typically (barring effects
introduced by the environment and physical setup) the signal transmitted at the
highest power. In fact, due to the way frequency modulation (FM) receivers are
designed, if srx,C (t) is sufficiently stronger than the interfering signals

Srx,I (t) =

N∑
i=1
i 6=C

srx,i (t) (2.7)

the receiver will lock onto srx,C (t) and the interfering signals will be suppressed [25,
26]. This phenomenon is referred to as the capture effect or, to distinguish it
from delay capture, as power capture. It must be noted that the receiver can
only capture the strongest signal if it arrives before or during the preamble of
the first of the weaker signals [11,17].
For IEEE 802.15.4, simulations have shown that a power delta between the signal
and interference of as little as 2 dB can be sufficient to support high reception
rates through the capture effect [19]. However, experimental results have indi-
cated that a 3 dB difference may be required in real systems [21,22,27].
According to Al Nahas et al. [23], successful reception of CT in the BLE physical
layer is possible with a power delta of 8 dB. For the coded BLE 125 Kbit mode,
his results indicates that the required difference is even lower; high reception
rates were reached at a 4 dB power delta.

2. Background 10

Packet Contents Consider the idealised case where all transmitted packets
arrive at the receiver with exactly the same phase offset and amplitude. If the
packets all have the same contents, constructive interference will produce an
Srx (t) that has the same phase as the srx,i (t) but a higher amplitude. Note that
this would be equivalent to receiving a single signal from a stronger transmitter.
Clearly, these are ideal conditions for recovering the packet contents. If, on the
other hand, the packet contents differ, some destructive interference will occur.
How detrimental this is to a successful reception depends on the exact conditions.
Power differences caused by other signals interfering constructively and coding
may help.

Time Delta Synchronizing multiple transmitters is a difficult task. In real
WSNs, transmitting packets from multiple transmitters at precisely the same
time is typically not possible. Thus, there will be some time offset τij between
the signals from transmitters i and j. In general, the phases of the two signals
differ, regardless of whether the packet content is the same or not. If the packet
from j is delayed by τij relative to the (same) packet from i, the phase of j will
be

θtx,j (t) = θtx,i (t− τij) (2.8)

Intuitively, we would assume that if τij is a symbol period or more, the situation
would be similar to the case where different packets are transmitted. Without
any correlation between symbols introduced by coding and with no power differ-
ences that would push the overall phase towards the phase of either i or j, we
would not expect to receive either packet.
On the other hand, if the delay is very small, we would still expect the demodu-
lation output at the receiver to fall into the correct decision region. In this case,
successful CT would be possible.
For IEEE 802.15.4 modulation, simulations performed by Wilhelm et al. [19]
and Ferrari et al. [1] suggest that any delay less than the symbol period can
be tolerated, provided there are no other phase offsets between the signals. On
the other hand, Escobar-Molero [28] claims that the maximum acceptable time
delta is lower in bandwidth-limited channels when pulse shaping is employed.
He suggests a threshold of half a symbol period.
In practical applications, additional phase offsets caused by the environment or
carrier frequency differences cannot typically be eliminated. Thus, some authors
propose using more conservative bounds on the maximum tolerable time delta.
Wilhelm et al. [19] recommend limiting τij to half a symbol period. Rao et al. [18]
keep the threshold of one symbol period, but introduce an additional condition
that limits Θrx (t) to π/4.
We are not aware of any existing analytical work on tolerable time delta values
for CT over the BLE physical layer. However, experimental work [23] indicates
that successful CT of signals with relative time offsets are only likely to reliably
occur in the coded BLE 125 Kbit mode and with delays of at most a quarter of

2. Background 11

a symbol period. For the other BLE modes, the packet reception ratio (PRR)
is 75 % or lower for offsets of less than a quarter of a symbol period and drops
even further for larger delays.

Coding Wilhelm et al. [19] argue that coding can have a large impact on the
performance of CT. They suggest that, for certain time offsets between signals,
the redundancy introduced by using a DSSS technique (see Appendix A.3.1)
in IEEE 802.15.4 can aid successful reception of both identical and differing
packets, particularly when symbol decisions are made on the raw demodulator
output (soft decision decoding) as opposed to a binarised output (hard decision
decoding).
Furthermore, delay capture can enable the reception of the first received packet
if interfering DSSS packets with the same coding arrive with a certain delay,
provided the signal strength of the interference relative to that of the first packet
is smaller than the receiver’s interference rejection margin [19,29].
We are not aware of analytical research on the effect of coding on CT in the
BLE physical layer. However, recent experimental work [23] has shown that the
coding of the BLE 125 Kbit mode in particular may improve the reliability of
CT.

Carrier Frequency Delta So far, we have assumed the carrier frequency to
be the same for all signals. However, in practice, the carrier frequencies are gen-
erated by different oscillators, each of which will be slightly inaccurate. Let fc,i
be the carrier frequency of transmitter i. If fc,i 6= fc, an additional phase offset
of 2π (fc,i − fc) t is introduced to the signal transmitted by i. Another trans-
mitter j will have a different carrier frequency fc,j , and thus a different carrier
phase offset. Unlike the phase differences introduced by delayed transmissions,
the differences between carrier phase offsets are not constant over time:

2π (fc,i − fc) t− 2π (fc,j − fc) t = 2π (fc,i − fc,j) t (2.9)

Due to this varying phase offset, the envelope of the superposition of the signals
transmitted by i and j will have a cosine shape with a frequency determined by
the difference between fc,i and fc,j [25]. Also, phase jumps of π are introduced
where the envelope crosses zero [28]. This interference pattern is called the beat-
ing effect [23, 28].
Carrier phase offsets can be detrimental to the success of CT [19,28]. Wilhelm et
al. [19] argue that the offsets should ideally be kept below 0.4π. However, the car-
rier frequency cannot always be controlled very precisely, particularly in COTS
systems.

Physical Environment An important point to note is that in real systems,
the received signal srx,i (t) always differs from the transmitted signal stx,i (t).

2. Background 12

Thus, even for just one transmitter, successful reception is not guaranteed. There
may be noise produced by transmitters that are not part of the CT setup. Even
in the absence of other sources emitting radio signals, multipath effects can have
an influence on reception rates. As the name suggests, these effects occur when a
signal reaches the receiver via a number of different paths because it is reflected
off surrounding objects. Since the lengths of these paths differ, srx,i (t) will be
a superposition of delayed components of the original signal. The delays mean
that the signal components are phase shifted relative to each other. Thus, even
for a single transmitter we may have a situation not dissimilar to CT, where the
receiver needs to recover a signal from a superposition of different signals with
different phases.
The path length also has an effect in the case of multiple transmitters. If trans-
mitters are positioned at different distances from the receiver, additional phase
offsets are introduced [18].

Number of Transmitters In the highly idealised case of perfect constructive
interference where the received signals from all transmitters are exactly equal,
increasing the number of transmitters would be beneficial for successful CT,
since the overall signal would be stronger. However, as we have seen, in practical
systems, there is always some phase offset between the different received signals.
Thus, a high transmitter density tends to add destructive interference and is
generally harmful to CT [28].

In this project, we predominantly focus on the impact of the power delta, packet
contents and time delta on the performance of CT. Our fourth parameter is
the physical-layer communication mode, which is either IEEE 802.15.4 or one
of the four BLE modes. The choice of communication mode implicitly sets the
coding. The related work we summarised in this section also shows us that
the communication mode may have an influence on the power and time delta
thresholds for the successful reception of CT. We investigated this relationship
as part of our experiments.

Chapter 3

Methodology

Before outlining our methodology, let us reiterate the goal of this project:

Objective To experimentally determine conditions for successful concurrent
transmissions (CT) in IEEE 802.15.4 and BLE in a repeatable fashion using
small, low-cost, COTS devices.

Based on this objective and the preexisting research on factors influencing the
success of CT we have summarised in Section 2.2, we can formulate a set of basic
requirements for the setup of our experiments:

R1 The setup must facilitate the concurrent transmission of packets from two
transmitters.

R2 There must be a receiver which listens for CT and is able to determine
whether either of the concurrently-transmitted packets is received success-
fully.

R3 The transmitter and receiver firmware must allow setting either IEEE 802.15.4
or any of the four BLE modes as the physical layer communication mode
for a transmission.

R4 It must be possible to vary and estimate the received power difference
between the two transmitted signals.

R5 The setup must provide a way to accurately control the time offset between
the transmissions of the concurrently-transmitted packets.

R6 The firmware must provide a choice of transmitting either identical or
different packets from the concurrently-transmitting transmitters.

R7 The experiments must be run in a controlled environment with little noise.

R8 The setup must use small, low-cost, COTS transceivers.

13

3. Methodology 14

Note that these requirements, if fulfilled, allow us to investigate the influence
of some choices of time delta, power delta, packet contents and communication
mode on the success of CT. We do not include the number of transmitters, the
physical environment and the carrier frequency offset in our variables. However,
with R7, we attempt to minimize the influence the effect of the environment
and create repeatable conditions. This should make it possible to perform future
research investigating the effect of changing the number of transmitters under
similar conditions. Unfortunately, R8 makes it very difficult to study the effect
of carrier frequency differences between the nodes, since there is typically no way
to precisely calibrate the carrier frequency offset of cheap COTS devices. We
leave it up to future work to investigate the influence of the carrier frequency
delta. As a result, our experiments have four variables:

V1 communication mode

V2 power delta

V3 time delta

V4 packet contents

To achieve our objective, we need to test if CT are successful for different com-
binations of values of the four variables, with multiple transmissions per com-
bination. Even if we only choose a few values for each variable, the number
of different combinations for all four variables can grow quite large. Thus, it
would become very tedious to manually change the setup for each change in
combination. Therefore, we introduce additional requirements:

R9 The transmitter and receiver firmware must be able to perform multiple
concurrent transmissions in a row and automatically cycle through at least
subset of all the different combinations of the settings for the communica-
tion mode, power delta, time delta and packet contents.

R10 The receiver must be able to save and output the results (successful/not
successful) of multiple concurrent transmissions along with the settings
under which they were obtained.

In the following sections, we will describe our methodology based on these 10
requirements. In Section 3.1, we introduce the hardware we used for our exper-
iments and the features it provides. We then proceed give an overview of the
software we programmed our hardware with to conduct the experiments (Sec-
tion 3.2). In Section 3.3, we describe some measurements we carried out to gain
a better understanding of the capabilities of our hardware and software setup,
particularly with respect to requirement R5. Finally, we briefly introduce our
physical setup (Section 3.4) and highlight what sort of processing we did on our
collected data (Section 3.5).

3. Methodology 15

3.1 Radio Platform

For our experiments, we used Nordic Semiconductor PCA10059 boards [30] as
transceivers. The PCA10059 board, also called the nRF52840 Dongle, is a
USB dongle carrying a Nordic Semiconductor nRF52840 system-on-chip (SoC),
a printed circuit board (PCB) antenna and some peripherals. The nRF52840 [31]
is an ARM Cortex-M4 based SoC for WPAN applications.
Our choice of transceiver was mainly informed by requirements R3 and R8.
With a size of about 1.5 cm× 4.6 cm and a cost of around 10 $ at the time of
writing, the nRF52840 Dongle qualifies as a small, low-cost COTS device. Thus,
it fulfils requirement R8. As an added benefit, most of the components required
for typical WPAN applications are contained within the nRF52840 itself, which
makes it relatively simple to transfer existing applications to a custom board.
The main feature of the nRF52840 is its 2.4 GHz multiprotocol radio, which sup-
ports all four BLE communication modes specified in Bluetooth 5, IEEE 802.15.4
and two proprietary radio modes. It is possible to switch between these modes
at runtime. Thus, the nRF52840 provides the necessary conditions to fulfil re-
quirement R3.
The comparatively large memory available on the nRF52840, namely 256 KB of
random-access memory (RAM) and 1 MB of flash, provides an excellent basis for
the receiver to save results from a large number of experiments, i.e. to comply
with requirement R10. Also, it means we do not really need to concern ourselves
with code size.
The nRF52840 contains a wide range of peripherals, some of which proved to
be very useful for our experiment. In the following, we will provide a short
introduction to these peripherals based on the Product Specification [31].

TIMER We need some way to measure time in order to fulfil requirement R5.
The TIMER peripheral runs on the nRF52840’s high-frequency clock source and
provides timers running on a frequency of 16 MHz. The frequency can be reduced
by dividing it with a prescaler value. The timers can be up to 32 bits wide, i.e.
they can run for

(
232 − 1

)
/fTIMER before rolling over. There are registers to

start, stop and reset the timer. It is possible to read the current time into a
register by triggering a task or to generate an event once the timer reaches a
user-defined value. The peripheral also provides so-called shortcuts, which are
connections between tasks and events within a peripheral. In the case of the
TIMER peripheral, these shortcuts make it possible to automatically stop and/or
clear a timer without central processing unit (CPU) involvement when it has
reached a user-defined value.

GPIO General purpose input/output (GPIO) pins are useful for interacting
with the nRF52840 through wired connections. The nRF52840 Dongle exposes

3. Methodology 16

15 pins for general use. Another four pins are connected to the LEDs on the
nRF52840 Dongle. The dongle’s user-configurable button and a reset button
also use general purpose input/output (GPIO) pins.

GPIOTE The GPIO tasks and events (GPIOTE) peripheral allow interacting
with GPIOs through tasks and events. When a GPIOTE channel is set up in
event mode for a GPIO pin, the pin will act as an input. Depending on the
configuration of the GPIOTE channel, events will be generated on either the
rising edges, falling edges or all edges of the input signal. On the other hand,
when the GPIOTE channel is set up in task mode, the associated pin is configured
as an output. The pin’s output can than be set, cleared or toggled by triggering
the corresponding tasks on the GPIOTE channel.

PPI The programmable peripheral interconnect (PPI) allows peripherals to
communicate with each other independently of the CPU through so-called PPI
channels. These channels connect an event end point (EEP) in one peripheral
to a task end point (TEP) in another peripheral. When the event associated
with the EEP occurs in the first peripheral, the PPI system triggers the task
associated with the TEP in the other peripheral.
For instance, assume the we want to set a GPIO pin once a timer reaches a cer-
tain value. In this case, we would first create a GPIOTE channel in task mode
for the GPIO pin. Then, we would set up a PPI channel with the timer event as
the EEP and the GPIOTE channel’s SET task as a TEP. After completing this
setup, enabling the PPI channel and starting the timer, we could proceed to do
other processing in the CPU; the setting of the pin would happen completely
autonomously.
Such setups connecting peripheral events with GPIOTE tasks is useful for de-
termining the relative timing of events by recording and analysing the output on
the pins. The PPI can help us achieve reliable timing without having to worry
about unforeseen processing delays in the CPU. Note, however, that the signals
on the PPI channels are synchronized to the 16 MHz clock. Thus, there will be
a delay of up to 62.5 ns between the event occurring on the EEP and the task
being triggered on the TEP. Shortcuts, which provide a service similar to the
PPI but within peripherals, are not synchronized to the clock and thus do not
experience such a delay.

RADIO We have already mentioned the nRF52840’s multiprotocol radio. How-
ever, in order to understand how we can use it to investigate CT, a more detailed
introduction to this peripheral is necessary.
Per requirement R5, we need to have tight control over when packets are trans-
mitted. Transmissions typically cannot start instantaneously. In most appli-
cations, radios are put into a low-power state when they are not transmitting

3. Methodology 17

DISABLED TXRU TXIDLE

TXTXDISABLE

TXEN

ramped up
/READY

START STOP
last bit sent
/PHYEND

packet sent
/END

DISABLE

DISABLE

DISABLE/DISABLED

address sent
/ADDRESS

SFD sent
/FRAMESTART

STATE
task or incoming event/output event

Figure 3.1: Transmitter radio states of the nRF52840. [31]

any packets to save energy. Before a transmission, the radio needs to wake up
from this state, which takes some time. Figure 3.1 shows the different states
and state transitions the nRF52840’s radio can go through over the course of a
transmission. There is an analogous system for receptions. Since we are mainly
interested in the transmission timing, we will not provide details on the receiver
states and refer the reader to the nRF52840 Product Specification [31].
On the nRF52840, the low-power state of the radio is called the DISABLED state.
The radio can be enabled by triggering the TXEN task in software, which makes
the radio move into a rampup state named TXRU. Once the radio is ramped up, it
issues a READY event and transfers to the TXIDLE state. The manufacturer claims
that the rampup time, i.e. the period between triggering the TXEN task in soft-
ware and the READY event occuring, is 40 µs with a typical jitter of 0.25 µs [31].
While the radio is in TXIDLE state, it transmits the carrier frequency. Triggering
the START task initiates the transmission of the packet. The RADIO peripheral
provides a shortcut between the READY event and START task. While a packet
is being transmitted, the radio is in the TX state. In the BLE modes, the radio
generates an ADDRESS event once the access address has been transmitted. Since
there is no such access address in IEEE 802.15.4 packets, the radio generates a
FRAMESTART event after the SFD in IEEE 802.15.4.
For the BLE uncoded modes, an END event indicates that the radio has finished
transmitting the packet and is moving back to the TXIDLE state. For modes that
use coding, i.e. the BLE coded modes and IEEE 802.15.4, the PHYEND event
fulfils the same function.
Upon triggering the DISABLE task the radio will go back to the DISABLED state
via the TXDISABLE state. According to the manufacturer’s specification [31], dis-
abling the transmitter takes 6 µs in the BLE 1 Mbit mode, 4 µs in the BLE 2 Mbit
mode and 21 µs in IEEE 802.15.4. During this time, the radio is in the TXDISABLE

3. Methodology 18

state. Once the radio is fully disabled, the DISABLED event is generated. Short-
cuts between the END or PHYEND event and the DISABLE task can be used to
automatically disable the radio after a transmission.
For the fulfilment of requirement R5, we need the time between triggering the
TXEN task and the start of the packet transmission, i.e. the transition to the TX

state, to be stable. We will investigate this more closely in Section 3.3.1.
Besides the transmission timing, we are interested in the signal power. On the
nRF52840, it is possible to select the output power of the transmitter in software.
There are 14 different options: −40, −20, −16, −12, −8, −4, 0, 2, 3, 4, 5, 6, 7
and 8 dBm. However, the actual output power varies depending on the supply
voltage and temperature. While setting the transmitter output power provides
us with a way to change the input power at the receiver, the actual received
power mostly depends on the physical setup and environment. Thus, the ability
to set the transmitter output power is not enough to fulfil requirement R4 on
its own. We would also need a very accurate model of the path loss in our setup.
Alternatively, we could measure the the received power of the signals from the
two transmitters for a given transmit power and setup. The RADIO peripheral
provides a received signal strength indicator (RSSI) mechanism, which allows
us to get an estimate of the received power. The RSSI measurements have a
resolution of 1 dB and an accuracy of ±2 dB for input levels between −90 dBm
and −20 dBm [31].
In the BLE modes, one can perform an RSSI measurement for a packet by en-
abling the shortcut between the ADDRESS event and the RSSISTART task. Af-
ter the packet is received, the measured RSSI can be accessed through the
RSSISAMPLE register. Since there is no ADDRESS event in IEEE 802.15.4, we
can replace the shortcut with a PPI channel between the FRAMESTART event and
the RSSISTART task for this mode.
Requirement R6 implies that we need to be able to set our own packet content.
The nRF52840 allows users to transmit and receive BLE packets complying with
the structures shown in Figure 2.2 and IEEE 802.15.4 packets following the for-
mat shown in Figure 2.1. Parts of the packets need to be stored in memory,
namely the PDU for BLE and the PHR and PSDU (except for the CRC) for
IEEE 802.15.4. The rest of the packet contents are set in radio registers. The
RADIO peripheral does not enforce the specifications on the packet structure set
by the higher levels of the BLE and IEEE 802.15.4 protocols. However, it does
add some constraints on the format of BLE PDUs, as shown in Figure 3.2a. In
the nRF52840 PDU structure, three variable-length fields are prepended to the
custom payload. The size of the three fields can be set in a radio register. The
length field is of particular interest. Since the BLE packet structure shown in
Figure 2.2 has no such field, a priori, the receiver has no way of knowing how long
a packet it is receiving is going to be. While the nRF52840 provides the option
to set a static packet length, in many applications, the packet length varies over
time. In these scenarios, a length field needs to be included in the packet at a
position known to both the transmitter and receiver.

3. Methodology 19

S0 Length S1 Payload

≤1 byte ≤15 bits ≤15 bytes 2 to (257 - length(S0) - length(Length) - length(S1)) bytes

(a) Format of BLE packets in memory on the nRF52840. Only the PDU is stored in
memory.

PHR PSDU without CRC

1 byte 1 to 127 bytes (or 1 to 125 bytes if a CRC is used)

(b) Format of IEEE 802.15.4 packets in memory on the nRF52840. Only the PHR and
PSDU (without the CRC) are stored in memory.

Figure 3.2: Structure of packets in memory on the nRF52840.

To transmit a packet, the RADIO peripheral needs to fetch the PDU/PSDU
from memory. To achieve this, it uses a module called EasyDMA. The radio’s
EasyDMA module functions as an Advanced High-performance Bus (AHB) bus
master connected to the AHB multilayer interconnect on the nRF52840. The
AHB multilayer allows multiple bus masters (like the radio’s EasyDMA module
or the CPU) to access different slaves (RAM blocks) in parallel. Note that the
each slave can only be accessed by one bus master at a time. Multiple bus mas-
ters attempting to access the same slave simultaneously are served by priority,
lower priority bus masters are stalled while the highest priority bus master is
using the slave. The CPU has the highest priority. Thus, while the radio is
transmitting or receiving, it may be advisable to avoid large memory transfers
to and from the same RAM AHB slave as the one containing the memory region
reserved for the PDU/PSDU.

UARTE To fulfil requirement R10, we need some way to retrieve the collected
results from the nRF52840. The universal asynchronous receiver/ transmitter
with EasyDMA (UARTE) module provides a way to achieve this. The peripheral
provides a simple UART interface that uses EasyDMA to read and write data
from and to RAM. UARTE’s EasyDMA module has a lower priority than both
the CPU and the radio’s EasyDMA module. However, this should not play a
major role for our setup since the data transfer via UARTE only needs to happen
once all receptions are finished.

3.2 Firmware

In this section, we introduce the firmware we used for our experiments. First, in
Section 3.2.1, we describe drivers we created in order to simplify the access to the
nRF52840 peripherals introduced in Section 3.1, with a particular focus on the
radio. In Section 3.2.2, we proceed to give an overview of our main application

3. Methodology 20

which schedules, transmits and receives the CT.

3.2.1 Radio Interface

While higher-level applications can make use of Nordic’s implementations of the
BLE and IEEE 802.15.4 protocol stacks, we needed more precise control of low-
level radio functions. Thus, we decided to create our own radio driver tailored to
our requirements. We implemented this driver as part of a partial port of Con-
tiki [32] to the nRF52840 Dongle. Contiki is an open-source operating system
(OS) for low-power sensor motes popular in the WSN community.
With this choice, we align ourselves with previous work on CT over BLE [23].
The authors of this work also implemented their firmware in Contiki and have
made their code publicly available [33]. Since they also worked with the nRF52840,
we were able to reuse some elements of their Contiki port, such as their clock and
rtimer implementations. In the interest of time, we focused on porting Contiki
features to the nRF52840 Dongle that were useful for our project. Besides the
radio, clock and rtimer drivers, this included a bare-bones serial-line driver re-
lying on the UARTE peripheral. We attempted structure our drivers in such a
way that they are extendable and reusable for other purposes.
The heart of our partial Contiki port is the radio driver. Our driver implemen-
tation follows Contiki’s radio application programming interface (API) [34]. In
the following we will provide a high-level overview of the driver and how an
application can interact with it.

Radio Settings

Contiki’s radio API allows an application to change radio settings by passing the
name of the parameter as well as its new value to the set value function. Our
driver implements some of the radio parameters defined by the API, including
the channel and transmission power. On top of that, it defines some parameters
that allow the user to change settings that are specific to the nRF52840, such
as the communication mode. Consult Table 3.1 or a non-exhaustive overview of
the radio parameters supported by our driver.
Internally, the driver saves the changed settings and adjusts the peripheral regis-
ters to implement the changes. Often, changing one setting may require updates
to multiple registers. For instance, when a new communication mode is selected,
the packet structure changes as well and the registers setting this structure need
to be updated. Also, the new register values may depend on other settings. For
instance, a channel number in a BLE mode will not correspond to the same car-
rier frequency as in IEEE 802.15.4. Thus, particularly after a mode change, the
application may need to reset some parameters. If it fails to do so, the driver
will use the default mode-dependent settings or, if the mode was used before,
the values that were previously set in the mode.

3. Methodology 21

Parameter Description Possible Values

TXPOWER Set the transmission
power.

{−40,−20,−16,−12,−8,−4,
0, 2, 3, 4, 5, 6, 7, 8} dBm

CHANNEL Set the communication
channel number.

BLE: [0,39]
IEEE 802.15.4: [11, 26]

MODE Set the communication
mode.

RADIO MODE {
MODE Ieee802154 250Kbit,
MODE Ble 1Mbit,
MODE Ble 2Mbit,
MODE Ble LR125Kbit,
MODE Ble LR500Kbit}

PDU TYPE Set the PDU type
(BLE only).

{ADV NONCONN IND}

ADVA Set the advertiser’s
address (BLE only).

6 B AdvA

RX BEHAVIOUR

ON PKT END

Set how the radio
should behave after a
packet was received.

NRF RADIO {
RX RESTART ON END

RX DISABLE ON END

RX IDLE ON END}

RX PACKET

RSSI ENABLED

Enable or disable RSSI
measurements on
received packets.

{true, false}

LAST RSSI Get RSSI measured for
the last received
packet.

[0,−127] dB or RSSI NONE

Table 3.1: Selection of radio parameters that can be set and/or accessed through
the radio API. When the parameters are passed to the API, their names need
to be prefixed by RADIO PARAM .

3. Methodology 22

S0 Length Payload
P
D
U

T
yp

e

R
F
U

C
h
S
el

T
xA

d
d

R
xA

d
d

Length Payload

4 bits 1 bit 1 bit 1 bit 1 bit 1 byte 1 to 255 bytes

Header

(a) General structure of BLE advertising channel PDUs.

S0 Length Payload

0100 0 0 1 0 Length AdvA AdvData

4 bits 1 bit 1 bit 1 bit 1 bit 1 byte 6 bytes 0 to 31 bytes

Header

(b) Structure of a BLE non-connectable and non-scannable undirected advertising PDU.

PHR PSDU without CRC

Length 0 AdvA AdvData

1 byte 6 bytes 0 to 31 bytes

(c) Structure of an IEEE 802.15.4 PHR and PSDU mimicking a BLE non-connectable
and non-scannable undirected advertising PDU.

Figure 3.3: Structure of advertising payloads in memory on the nRF52840.

In its current version, the driver does not have extensive safeguards against il-
legal settings chosen by the application. To avoid unforeseen consequences, the
user should not make any changes to the settings while the radio is not in the
DISABLED state, i.e. while it is in the process of transmitting or receiving a
packet.

Payload Preparation

To transmit a packet, an application first needs to call the API prepare func-
tion with a payload and length. The driver will then put this information into
a structure that complies with Figure 3.2 and save this structure to a transmit
buffer.
To preserve some degree of higher-level standard compliance and allow compa-
rability with previous work [23], we decided to follow the structure of Proximity
Beacon packets, which are also called iBeacons [35]. Proximity Beacons are BLE
advertising channel packets that are used to provide location services. All BLE
advertising channel PDUs follow the structure shown in Figure 3.3a. A 2 B ad-
vertising channel PDU header is prepended to the payload. Note how this format
fits into the in-memory PDU structure presented in Figure 3.2a.

3. Methodology 23

Length Type Data Length Type Data

2
by

te
s

F
la

gs

R
es

er
ve

d

26
by

te
s

M
an

u
fa

ct
u

re
r

S
p

ec
ifi

c
D

at
a

C
om

p
an
y
ID

B
ea
co
n
T
yp

e

U
U
ID

M
aj
or

M
in
or

P
ow

er

0x02 0x01 0x06 0x1A 0xFF 0x004C 0x00FF 0xnn..nn 0xnnnn 0xnnnn 0xnn

1 byte 1 byte 1 byte 1 byte 1 byte 2 bytes 2 bytes 16 bytes 2 bytes 2 bytes 1 byte

Flags Field Manufacturer Specific Data Field

AdvData

Figure 3.4: Structure of the advertising data (AdvData) block in iBeacon pack-
ets [8, 35–37].

The contents of the header and the structure of the payload depend on the
PDU type of the packet. The BLE standard [8] defines 15 different advertis-
ing channel PDU types. Proximity Beacons are based on the PDU type for
non-connectable and non-scannable undirected advertising events, which is also
called the ADV NONCONN IND PDU type. ADV NONCONN IND PDUs fol-
low the structure shown in Figure 3.3b. Their payload contains a 6 B advertiser’s
address (AdvA) field and an advertising data (AdvData) field that may be up
to 31 B long.
The AdvData block consists of zero or more advertising data (AD) structures.
Each AD structure begins with a length field, which outlines the size of the
structure (excluding the length field itself). This is followed by the structure’s
data type, which is one of the numbers specified in the Bluetooth Assigned
Numbers document [36]. The final part of the AD structure is the actual data.
Proximity Beacon AdvData blocks consist of a flag AD structure and an AD
structure for manufacturer specific data, as shown in Figure 3.4. The contents
of the universally unique identifier (UUID), major, minor and power fields in
the manufacturer specific data can be set by the user. Normally, the contents of
these fields play specific roles in providing a location service. However, for our
purposes, we can set them to whatever is required by our experiment setup.
ADV NONCONN IND PDUs are always transmitted using the BLE primary
advertising channels. The BLE standard specifies that ADV NONCONN IND
PDUs may only be sent over the LE 1M PHY. However, in order to get compa-
rable results, we used the same PDU structure across all BLE modes. In fact,
we even applied a similar format to our IEEE 802.15.4 packets. As shown in
Figure 3.3c, we split the IEEE 802.15.4 PSDU into an AdvA and an AdvData
field to mimic the ADV NONCONN IND payload.
To simplify sending standard-compliant BLE packets through the radio API, our
driver provides parameters for the PDU type and advertiser’s address that can

3. Methodology 24

be set with the set value function (see Table 3.1). When a BLE mode is set, the
prepare function will automatically put the provided payload into the format
specified by the PDU type. Because we are using ADV NONCONN IND PDUs
in all our experiments, the driver currently only supports this PDU type.
Since we use a non-standard format for our IEEE 802.15.4 packets, we have not
implemented an equivalent service for this communication mode in the driver.
Thus, to achieve the structure shown in Figure 3.3c, the application needs to
prepend the AdvA to the AdvData before passing the payload to prepare.
Similarly, to create an iBeacon packet, the application needs to put the Adv-
Data into the correct format before calling prepare. Our radio driver provides
a separate module to simplify the handling of iBeacon AdvData blocks.
In our current implementation of the driver, there is only one transmit buffer.
Thus, the application must ensure it does not prepare a new packet while the
previous one is still being transmitted. While this did not hinder our experi-
ments, it might be a good idea to set up a more sophisticated transmit buffer
structure when implementing more complex communication protocols.

Transmission

After preparing the payload, the application can call the transmit function to
initiate its transmission. The driver will set the PACKETPTR to the address of
the transmit buffer, enable the transmitter and start the transmission. Once the
CPU has initiated the radio rampup procedure it is not involved in the trans-
mission anymore. The transmitter is disabled automatically through a shortcut
when the transmission is finished.

Reception

An application can start listening for a packet by calling the on function. The
driver will then set the PACKETPTR to the address of a receive buffer and ramp
up and start the receiver. Once the radio is started, the application can check
whether a packet is currently being received by calling the receiving packet

function. The driver uses the state of the ADDRESS/FRAMESTART and END event
registers to determine whether this is the case.
Prior to calling on, the application can determine what the radio should do once
it has finished receiving a packet through a radio setting. The radio can either
remain in the idle state, immediately return into the receiving state, or disable
automatically. The first option requires no action from the nRF52840 radio, the
latter two are implemented using shortcuts. To turn the radio off manually, the
application can use the off function.
In the pending packet function, the driver uses the state of the CRCOK event
register to check whether a packet was received correctly. If there is a pending
packet, the application can use the read function to read the payload into an

3. Methodology 25

application buffer. Note that read should be called before starting a new recep-
tion, since currently only one receive buffer is being maintained by the driver.
The contents of this buffer will be overwritten by the next received packet.

RSSI Estimation

An application can enable RSSI measurements on received packets by setting
the RADIO PARAM RX PACKET RSSI ENABLED with the set value function. The
driver will then estimate the RSSIs of received packets using the techniques
outlined in Section 3.1. The application can access the RSSIs of the last re-
ceived packet using the get value API function. The corresponding parameter
is RADIO PARAM LAST RSSI.

3.2.2 Application

In the previous section, we introduced the partial Contiki port that formed the
backbone of the firmware we used in our experiments. In this section, we pro-
vide an overview of the of the part of the firmware that actually conducts the
experiments. We do this by explaining how it addresses each of the requirements
laid out at the beginning of this chapter.

R1 — Two Concurrent Transmitters In our experiments, we used two
nRF52840 Dongles as transmitters. Their firmware uses our partial Contiki
port, which we described in Section 3.2.1. The firmware transmits packets using
the transmit function of the radio API. Since the two transmitters are required
to transmit concurrently, we need some sort of synchronisation mechanism. To
keep matters as simple as possible and avoid having to deal with additional
wireless transmissions, we decided to introduce another nRF52840 Dongle as a
trigger: This third dongle triggers the transmissions on the two transmitters
by toggling GPIOs that are connected to pins on the transmitters with jumper
wires. We linked the transmitter GPIOs to GPIOTE channels in event mode
and set up interrupts tied to the GPIOTE input events. Thus, each time a
GPIO connected to a transmitter is toggled on the trigger dongle, an interrupt
is invoked on the transmitter. In the corresponding interrupt service routine
(ISR), the transmitter application clears the event and then immediately calls
the transmit function.
After initiating the transmission, the transmitter software waits for a set time
using an rtimer. We configured this time to be long enough for the radio to
finish transmitting the packet. In the rtimer callback, the firmware updates
its state, creates the next payload, prepares it for transmission by calling the
prepare function and then waits for the next trigger.

3. Methodology 26

The trigger dongle also uses an rtimer to leave enough time for the transmitters
to perform all these steps before the next transmission is triggered.

R2 — Receiver The fourth and final dongle we used in our experiments
adopts the role of the receiver. It must always be in receiving mode when the
transmitters are transmitting. To achieve this, the receiver firmware calls the on

radio API function multiple milliseconds before it expects the next transmission
to be triggered.
The receiver can estimate of the time of the next expected transmission because
it knows the statically set schedule of the trigger and the transmitters put state
information into the packets. Once the receiver receives a packet, it knows at
which point in the schedule it is, and thus how much time should pass between
the current transmission and the next. Based on the time at which the packet
with the state information was received, the receiver can determine at which
point to turn on next. The receiver uses an rtimer to schedule the next call of
the on function. Even if the receiver misses multiple subsequent packets, it can
independently update its schedule. However, because of clock drift, the receiver
does need to receive a new packet once in a while to remain synchronized. To
get synchronized in the first place, as soon as the receiver firmware is started, it
turns on the radio and keeps it on until it receives the first packet.
The receiver needs to be able to tell whether one of the concurrently transmitted
packets was received successfully. As a first check, it calls the pending packet

function to determine whether the CRC was correct. If so, it examines the packet
contents in more detail. Apart from the state information, the packet contents
are either static across all transmissions or randomized with a seed that can be
derived from the state. Thus, the receiver can construct the expected payload
based on the state information received in the packet. If the constructed payload
is identical to the received one, the receiver determines that one of the concurrent
transmissions was received correctly.
If either the CRC check or the payload comparison fails, the receiver decides it
has missed a packet. The same applies if a certain amount of time has passed
after the expected time of the next transmission and no packet start is detected.

R3 — Communication Mode As explained in Section 3.2.1, the transmitter
and receiver firmware can select any of the four BLE modes or IEEE 802.15.4
to be the PHY by setting the RADIO PARAM MODE parameter to the desired mode
using the set value radio API function.

R4 — Power Delta It is very simple to set the transmit power in the trans-
mitter firmware; the application can set the RADIO PARAM TXPOWER parameter to
the desired value using the set value radio API function.
However, as mentioned in Section 3.1, setting transmit powers with a certain

3. Methodology 27

offset at the two transmitters does not necessarily mean that the received signals
will have the same power difference. We decided to perform RSSI measurements
to get an estimate of the received power delta. Unfortunately, we cannot perform
these measurements during the CT because the receiver can only measure the
RSSI of the superposition of the two signals. Thus, we need to perform separate
measurements.
Since we require rather static environmental conditions, it should be enough to
measure the RSSIs of the two transmitters once before a batch of transmissions.
Recording these measurements allows us to translate the transmit power delta
associated with a set of CT to an estimated RSSI delta, i.e. an estimated re-
ceived power delta, when analysing the results.
To collect the measurements, we used most of the same elements as for the
CT experiments. The main difference is that the two transmitters are triggered
alternately instead of concurrently. Also, the receiver needs to enable and per-
form RSSI measurements on received packets using the radio API as outlined in
Section 3.2.1.

R5 — Time Delta We have already discussed how we can make the two
transmitters transmit roughly concurrently. However, for our experiments, we
needed to be able to set an exact time delta between the two transmissions. We
achieved this by toggling the trigger GPIOs with an offset.
Our setup to create this offset is as follows: Instead of toggling the GPIOs in
the trigger’s rtimer callback, the application starts a 16 MHz timer in the TIMER
peripheral. The timer is set up such that it generates an event at time t0 and
another one at time t1 after its START task is triggered. t0 and t1 are chosen such
that t1− t0 is the desired time offset between the transmissions. Once the timer
has generated the two events, it is automatically stopped and reset through a
shortcut.
The timer events are connected to task mode GPIOTE channels through the PPI
system. The GPIOTE channels control the trigger GPIOs. This setup should
create the desired offset between the two trigger signals.
However, there are quite a few steps between the timer event on the trigger
dongle and the corresponding transmission start on the transmitter dongle. On
each of these steps, there might be some time jitter that could distort the actual
time offset between the two packets. To get an idea of the potential magnitude
of this deviation, we conducted some preliminary tests which are summarized in
Section 3.3.1.

R6 — Packet Contents As explained in Section 3.2.1, we used iBeacon pack-
ets for our experiments. Thus, the only parts of the payload that could freely be
set by the application were the UUID, major, minor and power fields. We used
the major, minor and power as well as the last two bytes of the UUID to convey
state information to the receiver.

3. Methodology 28

In experiments where two identical packets were to be transmitted, we set the
remainder of the UUID to some static value.
On the other hand, when the packets were meant to differ, we transmitted partly
randomized packet contents. In this case, for each transmission, the two trans-
mitters calculate seeds based on the current schedule state. The calculation
method differs between the two transmitters such that the two seeds for a CT
are always different. Based on the seed, the transmitters generate the first 14 B
of the UUID from a pseudo-random generator. We chose this method instead
of generating fully-random packet contents in order to simplify fulfilling require-
ment R2. Also, we decided against using static differing packet contents in order
to cover a wider range of signal combinations.

R7, R8 — Environment and Hardware Some of our requirements are
not related to the firmware. Our hardware requirements were addressed in Sec-
tion 3.1. In Section 3.4 we explain how we tackled our requirement for a con-
trolled environment with little noise in our physical setup.

R9 — Automation Let us address how our firmware setup handles transmit-
ting multiple CT in a row.
We call the process of concurrently transmitting one pair of packets a round.
Each round has a binary result: Either the transmission is successfully received,
or it is not. However, one such result tells us very little about the probability
of a successful reception. To produce a more meaningful output, the firmware
needs to perform multiple rounds under the same conditions. The accumulation
of the results from such a batch of rounds can then be translated into a PRR.
We call this PRR value, along with the conditions under which it was obtained,
a sample. The conditions for a sample consist of the chosen settings for the four
variables V1 to V4, i.e. the communication mode, power delta, time delta and
packet contents.
To simplify collecting samples under a wide range of combinations of V1 to V4,our
firmware automatically changes the conditions after each sample it collects. We
call the process of the firmware running through all samples for a set of desired
variable combinations a run.
Somewhat arbitrarily, we decided to only vary the communication mode, power
delta and time delta within a run. Whether the packet contents were the same
or different was only changed between runs. The main reason for this approach
was to reduce the runtime and results storage space required for a single run.
To ensure all dongles update their communication mode, power delta and time
delta settings at the same time, they all need to be aware of how many rounds
are left to in the current sample. This information is communicated using the
state information sent with the packets in the shape of a round number. The
total number of rounds is programmed into the firmware by passing it to the pre-
processor, as are all the variable combinations the firmware needs go through.

3. Methodology 29

Values

Round Interval 35 ms
+1000 ms on mode changes
+100 ms on power changes

Rounds per Sample/
RSSI Measurement Configuration

20

Communication Modes {BLE 1 Mbit
BLE 2 Mbit
BLE 500 Kbit
BLE 125 Kbit
IEEE 802.15.4}

Time Deltas {i ∀i ∈ [−15, 15],
±20± 5 · j ∀j ∈ [0, 6],
±60± 10 · k ∀k ∈ [0, 4],
±120± 20 · l ∀l ∈ [0, 1]} tick

Transmit Power Deltas {±(8− i) ∀i ∈
{−8,−4, 0, 2, 3, 4, 5, 6, 7, 8}} dB

Transmit Powers {−8,−4, 0, 2, 3, 4, 5, 6, 7, 8} dBm

Table 3.2: Parameter choices for our CT experiments. Note that we use the
maximum TIMER frequency of 16 MHz and thus 1 tick = 1/16 µs = 62.5 ns.

Besides the round number, the state contains information on the current settings
for the communication mode, power delta and time delta. Between transmission,
the dongles update their settings based on the current state.
As mentioned in our approach to R4, our firmware needs to perform a set of
RSSI measurements at the beginning of each run. More specifically, for each
combination of communication mode, transmit power and transmitter, it needs
to collect the RSSIs of multiple packets. To automate this we used a very sim-
ilar approach to the one we just described for the CT. The main difference is
that the state information consists of the measurement number, communication
mode, transmit power and transmitter. Also, during the RSSI collection phase,
a round describes the transmission of a packet from just one transmitter.
Table 3.2 shows how we set the parameters for all of our runs. We chose to do
20 rounds per configuration to get a somewhat meaningful result whilst keeping
the number of rounds per run to a reasonable number. For the setup shown in
Table 3.2, the firmware needs to perform 118 000 CT rounds across 5900 different
parameter combinations and 2000 RSSI rounds across 100 different parameter
combinations. Performing an entire run, including both the CT and RSSI rounds,
takes less than 74 min.

3. Methodology 30

R10 — Extracting Results Due to our physical setup (see Section 3.4), we
could not read out results until after a run had completed. Thus, the receiver
needed to store all the results obtained during a run. Storing all 2000 RSSI mea-
surements requires 2000 B. If the firmware were to store the results of all 118 000
CT rounds separately, the same way as the RSSI measurements, it would require
quite a lot of memory. However, we do not really care which of the rounds for a
parameter combination was successful, just how many. Thus, we can introduce
a counter variable for each CT parameter combination. The receiver increments
this counter when it receives a packet under the conditions specified by the pa-
rameter combination. Since the firmware performs 20 rounds per sample, the
maximum counter value is 20. This fits comfortably into a single byte. Thus,
only 5900 B are required to store all CT results. In total, this results in a memory
requirement of 7900 B, which the 256 KB RAM of the nRF52840 should easily
be able to accommodate.
However, these 7900 B only store the results themselves and none of the param-
eter combinations associated with them. As it turns out, this is not a problem,
provided the results are stored in the order in which they were obtained. Since
the receiver knows the schedule, i.e. the order in which the different parameter
combinations were tested, it can recalculate the settings for a given result based
on its index in the order.
In fact, this is precisely what the receiver firmware does when the results are read
out: One by one, it fetches the results from memory, calculates the associated
parameter combination and prints out both using the serial-line driver.
Once a run is finished, the firmware starts listening for a UART input. As soon
as it receives an input followed by a line break, it starts writing the results to the
serial output. We used an adapter to connect the pins assigned to the UART by
the firmware to a USB port on a computer. On the computer’s end, we used a
simple Python script for the serial communication.

3.3 Platform Profiling

In relation to requirement R5, we needed to determine with how much precision
we could set the time offset between the transmissions. With the methods de-
scribed in Section 3.3.1, we determined that the jitter we could expect to incur
on the transmission time delta in our experiments is about 124 ns.
While we did not put much weight on the carrier frequency offset, we attempted
to chose transmitter dongles for our experiments that were close in frequency.
This process is outlined in Section 3.3.2.

3. Methodology 31

PPI

TIMER
event

GPIOTE
task

PPI

TIMER
event

GPIOTE
task

GPIOTE
event

ISR

IR

call
transmit

transmit

function

disable
all IRs

prepare
transmission

TXEN
task

reenable
IRs Shortcut

READY
event

START
task

ADDRESS
event

GPIOTE
event

ISR

IR call
transmit

transmit

function

disable
all IRs

prepare
transmission

TXEN
task

reenable
IRs

Shortcut

READY
event

START
task

ADDRESS
event

∆Ttx,in ∆Ttx,out

∆Tset

∆Ttrigger

ttrigger

tTX1

tTX0

Figure 3.5: Overview of the events and processes leading up to a transmission
for a CT round.

3.3.1 Transmission Timing Precision

Per requirement R5, the firmware needs to have precise control over the timing of
transmissions. Let us assume that we can set the time delta on the trigger dongle
with a high degree of accuracy. This is reasonable to assume, since our choices
for the time offset ∆Tset are very short (≤ 87.5 µs). Thus, there should not be
much clock drift during the time delta. Unfortunately, as we have mentioned in
Section 3.2.2, this does not guarantee that the actual offset of the transmissions
is equally accurate.
In Figure 3.5, we provide an overview of the steps the firmware needs to take
between the firing of the trigger timer and the actual transmission. Each of
these steps may introduce some jitter, and the imprecisions will add up over all
of them. To get an idea of the degree of imprecision we would incur during our
experiments, we performed some preliminary timing measurements using Saleae
Logic 8 and Logic Pro 16 logic analysers, which have a maximum sample rate of
100 MS/s and 500 MS/s respectively.
The first point at which we could investigate the jitter on the time delta was on
the trigger dongle output. To get to this point, the signal needs to travel through
a PPI channel from the TIMER peripheral to the GPIOTE peripheral and change
the output level. To measure the jitter, we connected the 500 MS/s logic anal-
yser to the trigger GPIOs. We perfomed 15 runs of 600 concurrent transmissions
each with no time offset and found that for each run, all time offsets ∆Ttrigger
were within about 2 ns of each other. This corresponds to the precision of the

3. Methodology 32

logic analyser.
From the outputs of the trigger dongle, the signals need to propagate across the
jumper wire to the inputs at the transmitter dongles and be detected by the
GPIOTE peripheral. We also attempted to get an idea of a jitter on the time
offset at this point, ∆Ttx,in. To measure this, we used the GPIOTE event as
an EEP for a PPI channel whose TEP was another GPIOTE channel. During
the same set of transmissions as we just described, we also connected the logic
analyser to the pin associated with this other GPIOTE channel. For each run,
all time offsets ∆Ttx,in were within about 122 ns of each other. This is quite an
increase from the 2 ns range we observed at the trigger output. However, remem-
ber that PPI channels are synchronized to a 16 MHz clock. Thus, depending on
the time GPIOTE event occurs, the signal may be delayed by anywhere between
0 and 62.5 ns on each transmitter. Therefore, the measured jitter may largely be
an artifact of our measurement setup.
In the experiment firmware, the GPIOTE event invoked by the trigger input is
not connected to a PPI channel, but generates an interrupt. In the ISR, the
firmware clears the interrupt and then immediately calls the transmit function
defined by the radio API. In the transmit function, the CPU performs multiple
instructions to prepare the radio for transmission.
Interrupts occuring during this preparation phase are a serious danger to the
timing precision. We confirmed this by intentionally generating interrupts dur-
ing the preparation phase. With these interrupts, we were able to arbitrarily
delay the individual transmissions. By placing an infinite loop into the disrupt-
ing ISR, we could even prevent the radio from transmitting at all. To prevent
such disruptions, we created an option to disable all interrupts at the start of
the transmit function and reenable them at the end of the function. Enabling
this option only leaves the time between the GPIOTE event and the start of
transmit function unprotected.
After preparing the transmission, the transmit function triggers the TXEN task.
From this point on, the transmission is handled entirely by the radio. Thus, the
firmware can safely reenable interrupts and exit the transmit function and ISR.
In the meantime, the radio will ramp up and generate a READY event once it is
done. For our experiments, we have enabled the shortcut between READY event
and START task. Thus the transmission will start automatically after the ram-
pup.
Ultimately, we are interested in the time at which the packet transmission starts.
The nRF52840 provides no convenient way to measure this. However, we can
just as well investigate the time offset at some other fixed point in the packets.
For our measurements, we used the ADDRESS events (or FRAMESTART events in the
case of IEEE 802.15.4) to measure ∆Ttx,out. We set up a PPI channels from these
events to GPIOTE outputs and connected the 500 MS/s logic analyser. We used
this setup to investigate the jitter on ∆Ttx,out for all ∆Tset ∈ {i·125 ns| i ∈ [0, 10]}
and across all 5 communication modes. For each combination of mode and ∆Tset,
we performed 3 runs of 1200 concurrent transmissions each. We found that for

3. Methodology 33

Transmitter A B C

Measurement 0 2405.045 MHz 2405.046 MHz -
Measurement 1 2405.046 MHz 2405.048 MHz 2405.049 MHz
Measurement 2 - 2405.049 MHz 2405.049 MHz

Table 3.3: Actual carrier frequencies measured for a set carrier frequency of
2405 MHz on the transmitters used for the experiments.

each run, the time offsets were within 124 ns of each other. As before, quite a
large part of the jitter could be caused by the PPI system, which we used for
our measurements.
For future application, it is also interesting to get an idea of how much of the jit-
ter is caused by the transmit function and radio rampup. To investigate this, we
made our firmware generate an event immediately after the transmit function,
which we connected to our 100 MS/s logic analyser using the PPI and GPIOTE
peripherals. We then proceeded to measure the time offset between the event at
the beginning of the transmit function and the ADDRESS event (or FRAMESTART

event) on a single transmitter. For each communication mode, we performed 8
runs of about 800 transmissions each, during which we generated various types
of interrupts. In each run, we found that the periods measured were all within
about 10 ns of each other, which corresponds to the maximum precision the logic
analyser can provide.
This leads us to believe that most of the 124 ns jitter on ∆Ttx,out is likely caused
either by the process of registering the trigger signal input, i.e. the interrupt or
our measurement set up.

3.3.2 Carrier Frequency Offset

As explained at the beginning of this chapter, we did not focus on the carrier
frequency offset in this project. However, to minimize its influence, we chose to
use nRF52840 dongles whose frequencies were close to each other. To measure
the offset, we transmitted an unmodulated carrier 2405 MHz from each dongle
that was available to us. We used a software-defined radio to estimate the actual
frequency that was transmitted. The closest frequencies we could identify are
listed in Table 3.3. However, the frequencies tended to vary quite a lot over time.
Thus, our confidence in these estimates is fairly low.
Nevertheless, based on the measurements, we chose to use two different pairs of
transmitters in our experiments: A and B with an estimated offset of 1 kHz to
2 kHz as well as B and C with an estimated offset of 0 kHz to 1 kHz.

3. Methodology 34

3.4 Physical Setup

To fulfil requirement R7, we needed to find a controlled environment with little
noise to run our experiments in. We chose an environment built for precisely
this purpose, namely an anechoic chamber.
As outlined in Section 3.2.2, we required three nRF52840 dongles for our exper-
iments: a receiver, two transmitters placed at an approximately equal distance
from the receiver, and a trigger connected to the transmitters with jumper wires.
Our setup is shown in Figure 3.6.
We used coin cells to power the receiver and trigger dongles. The transmit-
ters, on the other hand, were supplied by the same power bank. We made this
choice to avoid unexpected transmit power offsets caused by a difference in sup-
ply voltages. Unfortunately, many commercially available power banks require
a minimum current draw to continually supply power. Since our transmitters
alone did not reach this current draw, we attached an extra device drawing a
higher current to the power bank.
During experiment runs, we left and closed the chamber, keeping the environ-
ment as undisturbed as possible. We used a timer in the trigger firmware to
delay the first transmission. This gave us enough time to leave the chamber
after programming the dongles.
Between experiments, we repositioned the transmitters slightly in order to get
results for a range of different positions.

3.5 Data Processing

Due to our large parameter space, we collected a lot of data in our experiments.
We created a web browser application to get an overview of our results and
present them in a helpful way using Dash [38], a Python framework for data
visualisation.
Besides organising and displaying the results, our data processing application
also had to convert the transmit power settings used for the CT to RSSI values.
To achieve this, we calculated the median of all 20 RSSI measurements collected
for the transmit power and the associated mode and transmitter at the beginning
of the run. This median was the value we mapped the transmit power to. After
performing such a conversion for both transmitters involved in a pair of CT, we
subtracted the RSSI medians to get an estimate of the received power delta.

3. Methodology 35

(a) Overall setup for the CT experiments. The fixture on the left holds the receiver.
The two transmitters are placed on the ends of the horizontal bar on the fixture on the
right. The trigger is located between the transmitter behind the horizontal bar. The
two fixtures are roughly 4.8 m apart.

(b) Receiver fixture. (c) Transmitter fixture.

Figure 3.6: Physical setup used for the CT experiments.

Chapter 4

Results

In this chapter, we provide a brief overview of our CT experiments on the pa-
rameter space presented in Table 3.2. Due to time constraints not all of our runs
covered all parameter choices: Since we were mostly interested in smaller time
deltas for which we might expect constructive interference, we did not include
some of the larger time deltas in every run. Also, for some of the lower transmit
power settings, the power of the received signal was below the receiver sensitivity
in some runs, even during the RSSI measurements when just one transmitter was
transmitting. We excluded any CT sample for which we were unable to obtain
an RSSI estimate from our results.
Due to the large size of the parameter space, we will not cover all of our measure-
ments in this report. Instead, we invite the reader to explore our results using
the interactive visualisation we created as part of this project and submitted
with this report.
In the remainder of this chapter, we will focus on the general trends we observed
in our results. We will use some of the plots from our visualisation to illustrate
these trends. In the plots,

• each point corresponds to a PRR sample generated from 20 CT rounds,

• solid lines show medians on the PRR values and

• shaded areas denote 75 % confidence intervals on the medians.

Our analysis is structured as follows: First, we examine the case of no power
delta (Section 4.1). Next, in Section 4.2, we look at the performance of CT
with large power offsets. In Section 4.3, we determine what constitutes such a
“large power offset”, i.e. we investigate for which parameter region the behaviour
observed in Section 4.2 applies. We also address the CT performance for power
deltas that do not fall into either of the parameter regions covered by Section 4.1
and Section 4.2.

36

4. Results 37

4.1 No Power Difference

In this section look at the PRRs obtained for a power delta of zero for different
time offsets. With no power delta, we expect to have to rely solely on constructive
interference and coding for successful packet receptions since the capture effect
does not apply. Note however, that RSSI measurements on the nRF52840 only
have a granularity of 1 dB and an accuracy of ±2 dB. Thus, we cannot rule out
that some power capture may occur, even when we estimate the received signal
strength offset to be zero.
We will consider the cases of the same and different packet contents separately.

Same Packets

Our results for CT of identical packets under no power delta are shown in Fig-
ure 4.1. First, we consider Figure 4.1b, which focuses on the PRRs for small
time offsets. For small time deltas we are clearly able to receive some packets.
This can likely be attributed to constructive interference. What is interesting is
the difference between the modes.
As expected, the high coding rate of BLE 125 Kbit seems to provide an advan-
tage. If the time delta is 2 tick = 0.125 µs or less, we can still achieve perfect
reception rates, even more reliably than for IEEE 802.15.4.
BLE 500 Kbit with its lower coding rate does not perform as well, even for very
small time deltas we did not see a single run with a perfect PRR. It is surprising
that BLE 500 Kbit seems to perform worse than BLE 2 Mbit. We would expect
that its coding and lower symbol rate would give BLE 500 Kbit an advantage.
Instead, the range of time deltas at which reception is possible is smaller than
for BLE 2 Mbit, as are the median PRRs for each given time delta (except for
some time deltas where the PRRs are comparable).
In fact, BLE 2 Mbit performs remarkably well overall, for time deltas smaller
than 4 tick = 0.25 µs, it achieves higher median PRRs than BLE 1 Mbit, which
has a longer symbol period. However, the range of time deltas for which any
reception at all is possible is wider for BLE 1 Mbit.
The results for IEEE 802.15.4 differ significantly from those for the BLE modes.
While we observe a slight peak in the median PRR around zero time delta, there
is a lot of variation in PRRs across runs. Also, the median PRR does not drop to
zero within the range of the small time delta values shown by figure Figure 4.1b.
Looking at the results for the full range of time deltas we tested, which is shown
in Figure 4.1a, we observe what seems to be some sort of periodic pattern
IEEE 802.15.4. This looks very similar to the pattern observed when trans-
mitting different data, which we discuss below.
Coding also seems to help with BLE 125 Kbit reception rates under larger time
deltas. While most packets are lost, the reception rates for very large time deltas
are larger than those for the other BLE modes.

4. Results 38

(a) PRR measurements for the entire parameter range of time offsets.

(b) PRR samples with small time offsets.

Figure 4.1: PRR measurements from 12 runs for CT of identical packets with
an estimated power difference of 0 dB ±0.5 dB. 1 tick = 62.5 ns.

4. Results 39

Different Packets

When concurrently transmitting different packets at no power difference, we do
not receive anything for the BLE 1 Mbit, BLE 2 Mbit and BLE 500 Kbit modes.
As we can see from Figure 4.2, in the BLE 125 Kbit mode, we do occasionally
receive some packets. This is most likely made possible by the FEC with the
high coding rate. It must also be noted that large parts of our packets are still
identical due to the iBeacon structure we have chosen. It would be interesting
to repeat our experiments with larger packet that contain more randomized con-
tent.
IEEE 802.15.4 is the only mode that enables us to achieve reasonably high re-
ception rates with different packets and zero power delta. We attribute this to
its use of DSSS.
In fact, the PRR pattern we observed for IEEE 802.15.4 across different time
deltas looks very similar to that observed by Wilhelm et al. [19]. Their simu-
lations show that the coding gain provided by the DSSS scheme employed by
IEEE 802.15.4 for receivers with soft decision decoding is the highest for time
deltas of 4kTch+2Tch, k ∈ Z, where the Tch is the chip period. Since Tch = 8 tick,
we would expect to achieve higher PRRs for time deltas around 16, 48, 80, 112
and 144 tick. Figure 4.2a seems to confirm this.

4.2 Large Power Difference

For very large power deltas we achieved perfect PRRs across all time deltas,
modes and packet contents, barring a few outliers. We attribute this to power
capture. In particular, for the BLE modes, this applies to power deltas above
the receiver co-channel selectivity values specified by the Bluetooth standard and
listed in Table 2.2. However, we observed that some power deltas below these
levels are also sufficient. We examine the bounds for power capture more closely
in the next section.

4.3 Medium Power Difference

From our experiments we observed that the minimum power delta required to
achieve near-perfect PRRs through the capture effect seems to depend on the
mode, packet content and time delta. We illustrate this for some example values
in Table 4.1. In our discussion of this power delta threshold and the parameter
range between zero and the threshold, we first consider the cases of different
packets and the same packets separately.

4. Results 40

(a) PRR measurements for the entire parameter range of time offsets.

(b) PRR samples with small time offsets.

Figure 4.2: PRR measurements from 12 runs for CT of packets with differing
contents with an estimated power difference of 0 dB ±0.5 dB. 1 tick = 62.5 ns.

4. Results 41

Time
Delta

[µs]

Recommended Power Delta for PRR ≥ 90 % [dB]

IEEE
802.15.4

BLE
1 Mbit

BLE
2 Mbit

BLE
125 Kbit

BLE
500 Kbit

Same data
0 2 3 4 1 3

0.125 3 5 5 2 7
0.25 4 6 6 2 8
0.5 4 8 9 6 12

0.9375 3 10 10 7 12
>0.9375 3 13 11 8 11

Different Data
0 4 10 9 2 6

0.125 4 11 9 3 6
0.25 4 11 9 3 9
0.5 5 10 11 4 9

0.9375 4 12 10 6 12
>0.9375 5 12 10 9 11

Table 4.1: Minimum power difference required to achieve PRRs ≥ 90 % using
CT for different time deltas. Excludes outliers.

Different Packets

In theory, when different packets are transmitted, we would expect the required
power delta for each mode to be the roughly the same across all time delta val-
ues. Since there should be no constructive interference, this would be the level
at which power capture kicks in. Indeed, we observed this behaviour for the
IEEE 802.15.4, BLE 1 Mbit and BLE 2 Mbit modes.
On the other hand, the BLE Coded PHYs produced some surprising results. In
these modes, the power delta boundary appears to be dependent on the time
delta. We do not have an explanation for this, but assume it is due to their
coding. It would be interesting to investigate this further.
Overall, the uncoded BLE modes behave very similarly in terms of power cap-
ture. This is also illustrated by Figures 4.3b, 4.4b, 4.5b and 4.6b. Where power
capture is concerned, BLE 500 Kbit outperforms the uncoded BLE modes for
the time delta range we investigated. However, for larger time deltas, their per-
formance difference shrinks. Power capture is possible at lower power deltas
for the BLE 125 Kbit mode than for all other BLE modes. For time deltas
. 6 tick = 0.375 µs, it even outperforms IEEE 802.15.4. However, for larger time
deltas, IEEE 802.15.4 provides the best power capture performance.

4. Results 42

Same Packets

When the transmitted packets are the same, there is a clear trend in the power
delta boundary for all BLE modes: The minimum power delta required for good
PRRs increases with the time delta. This is not only illustrated by Table 4.1,
but also by Figures 4.3a, 4.4a, 4.5a and 4.6a. We assume that constructive in-
terference helps to reduce the capture threshold for small time deltas.
When looking at CT of the same packets in the medium powerd delta range,
BLE 500 Kbit is particularly interesting. We saw in Section 4.1 that BLE 500 Kbit
seems to perform worse than the BLE uncoded modes under pure constructive
interference. On the other hand, our investigation of the power capture of differ-
ent packets seems to indicate it performs better than the BLE uncoded modes
in terms of the capture effect. The question is how BLE 500 Kbit performs com-
pared to the BLE uncoded modes when the two effects work together. Figure 4.7
gives us an indication. Even for small power offsets, the lower performance under
constructive interference is not noticeable anymore.
Contrary to the BLE modes, IEEE 802.15.4 does not seem to exhibit a corre-
lation between the minimum power delta required to achieve PRRs ≥ 90 % for
CT with identical packets and the time delta.

4. Results 43

(a) PRR measurements from 12 runs for CT of packets with the same contents.

(b) PRR measurements from 12 runs for CT of packets with differing contents.

Figure 4.3: PRR measurements for CT with a time offset of 0 µs.

4. Results 44

(a) PRR measurements from 12 runs for CT of packets with the same contents.

(b) PRR measurements from 12 runs for CT of packets with differing contents.

Figure 4.4: PRR measurements for CT with a time offset of 0.25 µs.

4. Results 45

(a) PRR measurements from 12 runs for CT of packets with the same contents.

(b) PRR measurements from 12 runs for CT of packets with differing contents.

Figure 4.5: PRR measurements for CT with a time offset of 0.5 µs.

4. Results 46

(a) PRR measurements from 12 runs for CT of packets with the same contents.

(b) PRR measurements from 12 runs for CT of packets with differing contents.

Figure 4.6: PRR measurements for CT with a time offset of 3.125 µs.

4. Results 47

(a) PRR measurements for an estimated power difference of 2 dB ±0.5 dB.

(b) PRR measurements for an estimated power difference of 4 dB ±0.5 dB.

(c) PRR measurements for an estimated power difference of 6 dB ±0.5 dB.

Figure 4.7: PRR measurements from 12 runs for CT of identical packets with
small time deltas. 1 tick = 62.5 ns.

Chapter 5

Conclusion

In this project, we experimentally investigated conditions for successful CT in
BLE and IEEE 802.15.4 using nRF52840 dongles. We focused on the impact of
the communication mode, power delta, time delta and packet contents.
Our results demonstrate that a successful reception of CT is indeed possible
under either of the following conditions:

• High power delta: For very high power deltas, we achieved high PRRs
independent of the values of the other parameters, presumably due to the
capture effect. For lower power deltas, whether receptions were successful
depended on the values of the other parameters.

• Small time delta, same packets: For small enough time deltas, we were
able to receive concurrently transmitted packets with identical contents
across all modes. This was the case even when no measurable power offset
was present. However, in this case, only the BLE 125 Kbit mode achieved
a median PRR >90 %. The maximum median PRRs for the other modes
were between 60 % and 75 %. Even small power deltas were able to increase
the performance significantly. An estimated power delta of 2 dB, produced
median PRRs of 100 % across all modes for small enough time offsets.

• IEEE 802.15.4 or BLE 125 Kbit PHY: Even when neither of the other
conditions was fulfilled, such as in the case of no power delta and different
packets, we were able to receive CT when using these modes. In fact,
IEEE 802.15.4 and BLE 125 Kbit performed better than or comparable to
the other modes across all conditions. We assume this is because of their
coding.

Based on these observations, it seems reasonable to assume that the key enablers
of successful receptions of CT are power capture, coding and, to a lesser extent,
constructive interference. It is difficult to predict how combinations of these
effects will influence the performance of a pair of CT. Thus, our most significant
contribution is the interactive visualisation of our results. It allows a user to

48

5. Conclusion 49

easily explore the impact of a wide range of different combinations on CT.
However, we do not recommend using our results as a quantitative predictor for
the performance of CT in practical applications without further analysis. This
is because our experiments did not investigate all potential influences on the
successful reception of CT. In particular, the number of transmitters, carrier
frequency offset, physical setup and environment may play a significant role. We
leave the investigation of these effects up to future work, along with the following
topics:

• Theory behind CT over BLE: An analytical study of CT over BLE, similar
to the one performed by Wilhelm et al. [19] for IEEE 802.15.4, would be
useful to gain an even more detailed understanding of the effects at play.
In particular, it would be interesting to learn why the coded BLE modes
behave so peculiarly for concurrent transmissions of the same packets at
no power difference: While the PHY with S = 8 coding seems to benefit
significantly from its coding, the PHY with S = 2 coding seems to per-
form worse than the uncoded modes. Also, a theoretical analysis might
help us find an explanation for the relationship between the power cap-
ture threshold and the time delta in the coded modes for CT of different
packets.

• Performance tradeoffs: We observed that IEEE 802.15.4 and BLE 125 Kbit
achieved the best performance. However, note that these modes also have
the lowest bitrates and highest redundancy in their transmissions. Thus,
the transmission of a payload will take longer and require more energy
than in the other modes. As a result, it could potentially be more efficient
to use one of the other modes and retransmit the payload if the original
transmission fails. Investigating these kinds of tradeoffs would be very
valuable for the design of higher-level protocols based on CT.

Appendix A

Physical Layer Techniques

A.1 Gaussian-Filtered Frequency-Shift Keying (GFSK)

BLE uses binary Gaussian-filtered frequency-shift keying (GFSK) modulation,
which is based on continuous-phase frequency-shift keying (CPFSK). CPFSK
modulation turns symbols into sinusoidal signals of different frequencies. In
binary CPFSK, symbols directly represent bits. Thus, a bit 1 is associated with
frequency f1 and a bit 0 corresponds to frequency f2. Following a notation
similar to Haykin’s [26], we can write a CPFSK signal for 0 ≤ t ≤ Ts as

s(t) =

√

2Es
Ts

cos (2πf1t+ θ (0)) for symbol 1√
2Es
Ts

cos (2πf2t+ θ (0)) for symbol 0
(A.1)

where

Es = energy per symbol
Ts = symbol duration
θ(0) = phase at time t = 0

We can rewrite the frequencies in terms of an unmodulated carrier frequency fc
and a frequency deviation fd, which we define as

fc =
f1 + f2

2
(A.2)

fd = |f1 − f2| (A.3)

Assuming f1 > f2 without loss of generality, we can rewrite Equation (A.1) as

s(t) =

√
2Es
Ts

cos (2πfct+ θ (0) + 2πfdtm0) , 0 ≤ t ≤ Ts (A.4)

where m0 = 1 if the symbol is 1 and m0 = −1 if the symbol is 0. Assume
mi ∈ {±1} is transmitted during iTs ≤ t ≤ (i+ 1)Ts. In CPFSK, the phase θ(t)

50

A. Physical Layer Techniques 51

needs to be continuous. Thus, we require

θ(t) = θ (0) + 2πfdtm0, 0 ≤ t ≤ Ts
θ(t) = θ (0) + 2πfdTsm0 + 2πfd(t− Ts)m1, Ts ≤ t ≤ 2Ts

θ(t) = θ (0) + 2πfdTsm0 + 2πfdTsm1 + 2πfd(t− 2Ts)m2, 2Ts ≤ t ≤ 3Ts
...

θ(t) = θ(0) + 2πfdTs

i−1∑
j=0

mj + 2πfd(t− iTs)mi, iTs ≤ t ≤ (i+ 1)Ts

(A.5)

We can write a representation of the sequence of transmitted symbols in the form
of a sum of rectangular pulses r(t) of duration Ts and amplitude 1/2Ts:

m(t) =
∑
i

mir(t− iTs) r(t) =

{
1/2Ts 0 ≤ t ≤ Ts
0 otherwise

(A.6)

Using Equation (A.6) we can rewrite Equations (A.5) as

θ(t) = θ(0) + 4πfdTs

∫ t

−∞
m(τ)dτ (A.7)

It is common to describe a CPFSK modulation in terms of the modulation index
h, which relates the frequency deviation to the symbol duration:

h = 2fdTs (A.8)

With the modulation index, we can simplify the signal model for CPFSK to

s(t) =

√
2Es
Ts

cos

(
2πfct+ θ(0) + 2πh

∞∑
i=−∞

mi

∫ t

−∞
r(τ − iTs)dτ

)
(A.9)

The rectangular nature of symbol pulses causes abrupt changes in frequency.
These abrupt changes result in a large transmission bandwidth, which is undesir-
able. To mitigate this, GFSK passes the input through a Gaussian pulse-shaping
filter before frequency modulation. The filter smoothes the transitions between
symbols. A Gaussian pulse-shaping filter with a 3 dB baseband bandwidth B
has an impulse response of

hG(t) =

√
2π

ln 2
B exp

(
−2π2

ln 2
B2t2

)
(A.10)

Its response g(t) when applied to a rectangular pulse

r̃(t) =

{
1 0 ≤ t ≤ Ts
0 otherwise

(A.11)

A. Physical Layer Techniques 52

and normalized to ∫ ∞
−∞

g(t) =
1

2
(A.12)

is given by [39]

g(t) =
1

4Ts

(
erfc

(
πBTs

√
2

ln 2

(
− t

Ts

))
− erfc

(
πBTs

√
2

ln 2

(
1− t

Ts

)))
(A.13)

where erfc(u) is the complementary error function

erfc(u) =
2√
π

∫ ∞
u

exp
(
−t2
)
dt (A.14)

The time-bandwidth product BTs is a design parameter. The signal model for
GFSK is the result of replacing the rectangular pulses r(t) with the filtered pulses
g(t) in the CPFSK signal model (Equation (A.9)):

s(t) =

√
2Es
Ts

cos

(
2πfct+ θ(0) + 2πh

∞∑
i=−∞

mi

∫ t

−∞
g(τ − iTs)dτ

)
(A.15)

A.2 Offset Quadrature Phase-Shift Keying (O-QPSK)

IEEE 802.15.4 modulation of chip sequences is based on offset quadrature phase-
shift keying (O-QPSK) [4]. Quadrature phase-shift keying (QPSK) represents
information in terms of four different symbols. Each of these symbols is asso-
ciated with a phase. The four different phase values are equally spaced and
typically chosen as π/4, 3π/4, 5π/4 and 7π/4. For symbol i ∈ [1, 4], this results
in the signal

si(t) =

{√
2Es
Ts

cos
(
2πfct+ (2i− 1)π4

)
0 ≤ t ≤ Ts

0 otherwise
(A.16)

With the definitions of the in-phase carrier

φI(t) =

√
2

Ts
cos (2πfct) , 0 ≤ t ≤ Ts (A.17)

and the quadrature carrier

φQ(t) =

√
2

Ts
sin (2πfct) , 0 ≤ t ≤ Ts (A.18)

A. Physical Layer Techniques 53

Table A.1: QPSK signal space for Gray-coding.

symbol chip pair phase message point coordinates

i even chip odd chip [radians] si,I si,Q

1 1 0 π/4 +
√
Es/2 −

√
Es/2

2 0 0 3π/4 −
√
Es/2 −

√
Es/2

3 0 1 5π/4 −
√
Es/2 +

√
Es/2

4 1 1 7π/4 +
√
Es/2 +

√
Es/2

we can also express the signal as

si(t) = si,IφI(t) + si,QφQ(t), 0 ≤ t ≤ Ts (A.19)

where

si,I =
√
Es cos

(
(2i− 1)

π

4

)
(A.20)

si,Q = −
√
Es sin

(
(2i− 1)

π

4

)
(A.21)

Encoding the pairs of chips into symbols using Gray-encoding yields the mapping
shown in Table A.1. With this mapping, the value of an even chip is directly
associated with the sign of the in-phase component. The values of odd chips are
linked to the sign of the quadrature component.
A closer look at the mapping reveals that a change in both the even and odd chip
between symbols results in a phase shift of ±180◦. When the signal is filtered,
this can result in large amplitude variations [26,40]. This also happens for phase
changes of ±90◦, which are caused by a change in value of a single chip, but to
a much lesser extent. O-QPSK limits phase changes to ±90◦ by staggering the
in-phase and quadrature components:

φI(t) =

√
2

Ts
cos (2πfct) , 0 ≤ t ≤ Ts (A.22)

φQ(t) =

√
2

Ts
sin (2πfct) ,

Ts
2
≤ t ≤ 3Ts

2
(A.23)

Thus, the signal model for O-QPSK modulation is given by

s(t) =

√
2Es
Ts

∞∑
k=−∞

c2k cos (2πfct) p(t−kTs)−c2k+1 sin (2πfct) p

(
t−
(
kTs +

Ts
2

))
(A.24)

where cj = −1 if the jth chip is 0, cj = 1 if the jth chip is 1 and

p(t) =

{
1√
2

0 ≤ t ≤ Ts
0 otherwise

(A.25)

A. Physical Layer Techniques 54

In the 2.4 GHz band, IEEE 802.15.4 uses a modified version of this basic O-QPSK
modulation: Each chip is spread across two chip periods (Ts = 2Tch, Es = 2Ech)
and half-sine pulse-shapes p̃(t) are used instead of rectangular ones p(t) [4]:

s(t) =

√
2Ech
Tch

∞∑
k=−∞

c2k cos (2πfct) p̃(t−2kTch)−c2k+1 sin (2πfct) p̃ (t− (2k + 1)Tch)

(A.26)

p̃(t) =

{
sin
(

πt
2Tch

)
0 ≤ t ≤ 2Tch

0 otherwise
(A.27)

O-QPSK with half-sine pulse shaping is equivalent to minimum shift keying
(MSK) [19, 41]. To be consistent with popular notation when showing this, we
reindex the chips such that odd-indexed chips are modulated onto the in-phase
carrier and even-indexed chips are modulated onto the quadrature carrier:

s(t) =

√
2Ech
Tch

∞∑
j=−∞

c2j−1 cos (2πfct) p̃(t−(2j − 1)Tch)−c2j sin (2πfct) p̃ (t− 2jTch)

(A.28)
Using the identities

sin
(
α− nπ +

π

2

)
= cos (α) cos (nπ) , α ∈ R, n ∈ Z (A.29)

sin (α− nπ) = − sin (α) cos (nπ) , α ∈ R, n ∈ Z (A.30)

s(t) can be rewritten as an MSK signal

s(t) = I (t) cos

(
πt

2Tch

)
cos (2πfct) +Q (t) sin

(
πt

2Tch

)
sin (2πfct) (A.31)

where

I(t) =

√
2Ech
Tch

∞∑
j=−∞

Ij(t) (A.32)

Ij(t) =

{
c2j−1 cos (πj) (2j − 1)Tch ≤ t ≤ (2j + 1)Tch

0 otherwise
(A.33)

=

{
cos
(
π
2 (2j + 1− c2j−1)

)
(2j − 1)Tch ≤ t ≤ (2j + 1)Tch

0 otherwise
(A.34)

Q(t) =

√
2Ech
Tch

∞∑
j=−∞

Qj(t) (A.35)

Qj(t) =

{
−c2j cos (πj) 2jTch ≤ t ≤ (2j + 2)Tch

0 otherwise
(A.36)

=

{
− sin

(
π
2 (2j + 1− c2j) + π

2

)
2jTch ≤ t ≤ (2j + 2)Tch

0 otherwise
(A.37)

A. Physical Layer Techniques 55

MSK can also be viewed as a special case of CPFSK (see Appendix A.1 or [26])
with modulation index h = 1

2 . To make the frequency modulation more explicit,
we can also write s(t) as

s(t) = cos

(
2πfct+ d (t)

πt

2Tch
+ θ (t)

)
(A.38)

where

d (t) = −I (t)Q (t) ∈ {−1, 1} (A.39)

θ (t) =
πt

2
(1− I (t)) ∈ {0, π} (A.40)

More details on the relationship between O-QPSK, MSK and CPFSK can be
found in [42].

A.3 Spread Spectrum Techniques

Spread-spectrum techniques are widely used in digital communications to avoid
narrowband interference by spreading a data signal across a wider bandwidth
than necessary using a spreading code that is independent of the data transmit-
ted. [26] Popular spread-spectrum techniques include frequency-hopping spread-
spectrum (FHSS) as well as direct-sequence spread-spectrum (DSSS).

A.3.1 Direct-Sequence Spread Spectrum (DSSS)

In direct-sequence spread-spectrum (DSSS), the data signal is multiplied with a
pseudo-noise (PN) signal of a higher bitrate, which is known to both the sender
and receiver. The resulting bits at this higher bitrate are called chips. The
spreading factor describes how many chips form a single data bit. The high-
bitrate PN signal has a much wider bandwidth than the data signal. Thus, the
power of the resulting signal is spread across a wide frequency band.
At the receiver, the received signal is modulated with the same PN signal. If no
noise was present in the channel, this will transform the wideband signal back
into the original narrowband data signal. Even if there was additive narrow-
band interference in the channel, the receiver can recover the original signal.
The multiplication with the PN sequence spreads the power of the narrowband
noise across a wide frequency band, while the original signal has its power con-
centrated within a narrow band. Thus, the data and noise signal are clearly
distinguishable.
The type of DSSS modulation the IEEE 802.15.4 physical layer [4] uses dif-
fers slightly from this conventional notion of DSSS. It employs a 16-ary quasi-
orthogonal DSSS modulation technique, where 4 bits form a symbol and each
symbol is then mapped to one of 16 nearly-orthogonal 32-chip PN sequences.
This corresponds to a spreading factor of 8.

A. Physical Layer Techniques 56

A.3.2 Frequency Hopping Spread Spectrum (FHSS)

In frequency-hopping spread-spectrum (FHSS) the data signal is spread sequen-
tially by switching carrier frequencies during the transmission of the signal [26].
BLE uses FHSS [7] to improve reliability. While we do not consider this fea-
ture in our investigation of CT in the physical layer, it is worth noting that
FHSS can improve the performance of higher level protocols, including those
based on CT, as shown by several successful entries to the EWSN dependability
competition [43], such as [16,17].

Bibliography

[1] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in Proceedings of the 10th
ACM/IEEE International Conference on Information Processing in Sensor
Networks. IEEE, 2011, pp. 73–84.

[2] Zigbee Alliance, “Zigbee 3.0 — Zigbee Alliance.” [Online]. Available:
https://zigbee.org/zigbee-for-developers/zigbee-3-0/ (accessed October 16,
2019).

[3] Thread Group, “What is Thread.” [Online]. Available: https://www.
threadgroup.org/What-is-Thread (accessed October 16, 2019).

[4] IEEE Standard for Low-Rate Wireless Networks (802.15.4-2015). USA:
IEEE, 2016.

[5] Bluetooth SIG, “Bluetooth Technology Website.” [Online]. Available:
https://www.bluetooth.com (accessed October 16, 2019).

[6] Bluetooth SIG, “Radio Versions — Bluetooth Technology Website.”
[Online]. Available: https://www.bluetooth.com/bluetooth-technology/
radio-versions/ (accessed October 16, 2019).

[7] C. Gomez, J. Oller, and J. Paradells, “Overview and Evaluation of Blue-
tooth Low Energy: An Emerging Low-Power Wireless Technology,” Sensors,
vol. 12, no. 9, pp. 11 734–11 753, 2012.

[8] Bluetooth Core Specification, Bluetooth SIG, December 2016, Version 5.0.

[9] M. Woolley and S. Schmidt, “Bluetooth 5 Go Faster. Go Further,” Bluetooth
SIG, 2017.

[10] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power Wireless
Bus,” in Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, ser. SenSys ’12. New York, NY, USA: ACM, 2012, pp.
1–14.

[11] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and Effi-
cient All-to-all Data Sharing and In-network Processing at Scale,” in Pro-
ceedings of the 11th ACM Conference on Embedded Networked Sensor Sys-
tems, ser. SenSys ’13. New York, NY, USA: ACM, 2013, pp. 1:1–1:14.

57

https://zigbee.org/zigbee-for-developers/zigbee-3-0/
https://www.threadgroup.org/What-is-Thread
https://www.threadgroup.org/What-is-Thread
https://www.bluetooth.com
https://www.bluetooth.com/bluetooth-technology/radio-versions/
https://www.bluetooth.com/bluetooth-technology/radio-versions/

Bibliography 58

[12] D. Yuan, M. Riecker, and M. Hollick, “Making Glossy Networks Sparkle:
Exploiting Concurrent Transmissions for Energy Efficient, Reliable, Ultra-
low Latency Communication in Wireless Control Networks,” in European
Conference on Wireless Sensor Networks. Springer, 2014, pp. 133–149.

[13] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza, “Data Prediction +
Synchronous Transmissions = Ultra-low Power Wireless Sensor Networks,”
in Proceedings of the 14th ACM Conference on Embedded Network Sensor
Systems CD-ROM, ser. SenSys ’16. New York, NY, USA: ACM, 2016, pp.
83–95.

[14] P. Zhang, A. Y. Gao, and O. Theel, “Less is More: Learning More with
Concurrent Transmissions for Energy-Efficient Flooding,” in Proceedings of
the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services. ACM, 2017, pp. 323–332.

[15] R. Lim, R. Da Forno, F. Sutton, and L. Thiele, “Competition: Robust
Flooding Using Back-to-Back Synchronous Transmissions with Channel-
Hopping,” in Proceedings of the 2017 International Conference on Embedded
Wireless Systems and Networks, ser. EWSN ’17. USA: Junction Publishing,
2017, pp. 270–271.

[16] A. Escobar, F. Moreno, A. J. Cabrera, J. Garcia-Jimenez, F. J. Cruz,
U. Ruiz, J. Klaue, A. Corona, D. Tati, and T. Meyerhoff, “Competition:
BigBangBus,” in Proceedings of the 2018 International Conference on Em-
bedded Wireless Systems and Networks, ser. EWSN ’18. USA: Junction
Publishing, 2018, pp. 213–214.

[17] A. Escobar-Molero, J. Garcia-Jimenez, J. Klaue, F. Moreno-Cruz, B. Saez,
F. J. Cruz, U. Ruiz, and A. Corona, “Competition: RedNodeBus, Stretching
out the Preamble,” in Proceedings of the 2019 International Conference on
Embedded Wireless Systems and Networks, ser. EWSN ’19. USA: Junction
Publishing, 2019, pp. 304–305.

[18] V. S. Rao, M. Koppal, R. V. Prasad, T. V. Prabhakar, C. Sarkar, and
I. Niemegeers, “Murphy loves CI: Unfolding and Improving Constructive
Interference in WSNs,” in IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications. IEEE, 2016, pp.
1–9.

[19] M. Wilhelm, V. Lenders, and J. B. Schmitt, “On the Reception of Concur-
rent Transmissions in Wireless Sensor Networks,” IEEE Transactions on
Wireless Communications, vol. 13, no. 12, pp. 6756–6767, Dec 2014.

[20] C. Liao, Y. Katsumata, M. Suzuki, and H. Morikawa, “Revisiting the
So-Called Constructive Interference in Concurrent Transmission,” in 2016

Bibliography 59

IEEE 41st Conference on Local Computer Networks (LCN), Nov 2016, pp.
280–288.

[21] J. Park, J. Jeong, H. Jeong, C. M. Liang, and J. Ko, “Improving the Packet
Delivery Performance for Concurrent Packet Transmissions in WSNs,”
IEEE Communications Letters, vol. 18, no. 1, pp. 58–61, January 2014.

[22] C. Gezer, C. Buratti, and R. Verdone, “Capture effect in IEEE 802.15.4
networks: Modelling and experimentation,” in IEEE 5th International Sym-
posium on Wireless Pervasive Computing 2010, May 2010, pp. 204–209.

[23] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Concurrent Transmisions
for Multi-hop Bluetooth 5,” in Proceedings of the 2019 International Con-
ference on Embedded Wireless Systems and Networks, 2019.

[24] E. W. Weisstein, “Harmonic Addition Theorem. From MathWorld—
A Wolfram Web Resource,” http://mathworld.wolfram.com/
HarmonicAdditionTheorem.html.

[25] K. Leentvaar and J. Flint, “The Capture Effect in FM Receivers,” IEEE
Transactions on Communications, vol. 24, no. 5, pp. 531–539, 1976.

[26] S. S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2001.

[27] D. Son, B. Krishnamachari, and J. Heidemann, “Experimental Study of
Concurrent Transmission in Wireless Sensor Networks,” in Proceedings of
the 4th international conference on Embedded networked sensor systems.
ACM, 2006, pp. 237–250.

[28] A. Escobar-Molero, “Improving reliability and latency of Wireless Sen-
sor Networks using Concurrent Transmissions,” at-Automatisierungstechnik,
vol. 67, no. 1, pp. 42–50, 2019.

[29] D. Davis and S. Gronemeyer, “Performance of Slotted ALOHA Random
Access with Delay Capture and Randomized Time of Arrival,” IEEE Trans-
actions on Communications, vol. 28, no. 5, pp. 703–710, May 1980.

[30] nRF52840 Dongle — PCA10059 v1.0.0 — User Guide, Nordic Semiconduc-
tor, January 2019, v1.1.

[31] nRF52840 Product Specification, Nordic Semiconductor, February 2019,
v1.1.

[32] “The Contiki Operating System.” [Online]. Available: https://github.com/
contiki-os/contiki (accessed October 18, 2019).

[33] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “BlueFlood.” [Online].
Available: https://github.com/iot-chalmers/BlueFlood (accessed October
19, 2019).

http://mathworld.wolfram.com/HarmonicAdditionTheorem.html
http://mathworld.wolfram.com/HarmonicAdditionTheorem.html
https://github.com/contiki-os/contiki
https://github.com/contiki-os/contiki
https://github.com/iot-chalmers/BlueFlood

Bibliography 60

[34] “Contiki OS Radio API.” [Online]. Available: https://github.com/
contiki-os/contiki/blob/master/core/dev/radio.h (accessed October 18,
2019).

[35] Apple Inc., Proximity Beacon Specification, September 2015, Release R1.
[Online]. Available: https://developer.apple.com/ibeacon/

[36] Bluetooth SIG, “Assigned numbers and GAP — Bluetooth Technology
Website.” [Online]. Available: https://www.bluetooth.com/specifications/
assigned-numbers/generic-access-profile/ (accessed October 16, 2019).

[37] Supplement to the Bluetooth Core Specification, Bluetooth SIG, January
2019, Version 8.

[38] “Dash User Guide,” Plotly. [Online]. Available: https://dash.plot.ly
(accessed October 21, 2019).

[39] A. F. Molisch, Wireless Communications, 2nd ed. Chichester, West Sussex,
U.K: Wiley, 2011.

[40] S. Pasupathy, “Minimum shift keying: A spectrally efficient modulation,”
IEEE Communications Magazine, vol. 17, no. 4, pp. 14–22, 1979.

[41] S. Gronemeyer and A. McBride, “MSK and Offset QPSK Modulation,”
IEEE Transactions on Communications, vol. 24, no. 8, pp. 809–820, 1976.

[42] F. Xiong, Digital Modulation Techniques, ser. Artech House Telecommuni-
cations Library. Artech House, 2000.

[43] M. Schuß, C. A. Boano, M. Weber, and K. Römer, “A Competition to
Push the Dependability of Low-Power Wireless Protocols to the Edge,”
in Proceedings of the 2017 International Conference on Embedded Wireless
Systems and Networks, ser. EWSN ’17. USA: Junction Publishing, 2017,
pp. 54–65.

https://github.com/contiki-os/contiki/blob/master/core/dev/radio.h
https://github.com/contiki-os/contiki/blob/master/core/dev/radio.h
https://developer.apple.com/ibeacon/
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://dash.plot.ly

Index

DSSS, 11
IEEE 802.15.4, 3

beating effect, 11
BLE, see Bluetooth Low Energy
Bluetooth, 5
Bluetooth Low Energy, 5

capture effect, 9
carrier frequency, 4, 6, 50
chips, 4, 55
complementary error function, 52
concurrent transmissions, 8
continuous-phase frequency-shift

keying, 50
CPFSK, see continuous-phase

frequency-shift keying
CT, see concurrent transmissions

delay capture, 11
direct-sequence spread-spectrum, 55
DSSS, see direct-sequence

spread-spectrum

FHSS, see frequency-hopping
spread-spectrum

frequency deviation, 4, 6, 50
frequency-hopping

spread-spectrum, 55, 56

Gaussian pulse-shaping filter, 51
Gaussian-filtered frequency-shift

keying, 50

GFSK, see Gaussian-filtered
frequency-shift keying

in-phase carrier, 52

minimum shift keying, 54
modulation index, 5, 51, 55
MSK, see minimum shift keying
multipath, 12

offset quadrature phase-shift
keying, 52

O-QPSK, see offset quadrature
phase-shift keying

PN, see pseudo-noise
power capture, 9
primary advertising channels, 6
pseudo-noise, 55

QPSK, see quadrature phase-shift
keying

quadrature carrier, 52
quadrature phase-shift keying, 52

sensitivity, 5, 8
signal-to-interference ratio, 8
SIR, see signal-to-interference ratio
spread-spectrum techniques, 55
spreading factor, 55
ST, see synchronous transmissions
synchronous transmissions, 8

time-bandwidth product, 5, 52

61

	Acknowledgements
	Abstract
	Abbreviations
	1 Introduction
	2 Background
	2.1 Communication Modes
	2.1.1 IEEE 802.15.4
	2.1.2 Bluetooth Low Energy (BLE)

	2.2 Concurrent Transmissions on the Physical Layer

	3 Methodology
	3.1 Radio Platform
	3.2 Firmware
	3.2.1 Radio Interface
	3.2.2 Application

	3.3 Platform Profiling
	3.3.1 Transmission Timing Precision
	3.3.2 Carrier Frequency Offset

	3.4 Physical Setup
	3.5 Data Processing

	4 Results
	4.1 No Power Difference
	4.2 Large Power Difference
	4.3 Medium Power Difference

	5 Conclusion
	A Physical Layer Techniques
	A.1 Gaussian-Filtered Frequency-Shift Keying (GFSK)
	A.2 Offset Quadrature Phase-Shift Keying (O-QPSK)
	A.3 Spread Spectrum Techniques
	A.3.1 Direct-Sequence Spread Spectrum (DSSS)
	A.3.2 Frequency Hopping Spread Spectrum (FHSS)

	Bibliography

