
Distributed

 Computing

Privacy-Preserving Smart Contracts
for Industrial Services

Master’s Thesis

Marko Pichler Trauber

pimarko@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. David Kozhaya and Dr. Thomas Locher, ABB Corporate Research

Prof. Dr. Roger Wattenhofer

September 26, 2019

Acknowledgements

I would like to thank Professor Roger Wattenhofer and ABB Corporate Research
Center Switzerland for giving me an opportunity to write this thesis in their col-
laboration.

I would like to thank my supervisor, David Kozhaya, for challenging and sup-
porting me throughout the thesis. I am grateful for his patient and masterful
guidance. Furthermore, I would like to thank Thomas Locher for all the valu-
able discussions we had and for supporting me with his immense knowledge while
writing this thesis.

To my parents, Sanja and Petar. This thesis would not have been possi-
ble without you. Thank you for your unconditional support every step of the way
and the opportunity to follow my dreams. You are my heroes.

To my family, Justyna and Liam. I dedicate this thesis to my wife and
son who always had a smile for me in time of need. Thank you, Justyna, for en-
couraging me all along, listening to all my ideas, going with me through ups and
downs during my studies, always preparing warm food and countless nights you
were taking care of Roo. Thank you for believing in me and giving me strength.

i

Abstract

In this work, we propose a system for writing publicly verifiable privacy-preserving
smart contracts in distributed ledger technologies (DLT)s. Our approach com-
bines partially homomorphic encryption and zero-knowledge proofs in order to
support a wide range of privacy-preserving operations. We showcase the effective-
ness and the performance of our system by integrating it in Corda, a mainstream
permissioned DLT.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 3

3 Models 6

3.1 System Model . 6

3.2 Threat Model . 8

4 Problem Statement 11

4.1 Functionality . 11

4.2 Security . 12

5 Methods 14

5.1 Overview . 14

5.2 Notation . 17

5.3 Implementation . 18

5.3.1 Background and Tools . 18

5.3.2 Supported Operations . 21

5.4 Integration in Corda . 34

6 Security Analysis 37

7 Performance Evaluation 40

7.1 Experiment Setup . 40

7.2 Results . 41

7.2.1 Standalone System Performance 42

iii

Contents iv

7.2.2 System’s Performance in Corda 43

7.2.3 Realistic Industrial Use Cases 45

8 Summary 55

Bibliography 57

A Standalone System Performance A-1

List of Figures

5.1 System level overview of components and flows. 14

5.2 Privacy-preserving smart contracts integration in Corda 36

7.1 Bottleneck analysis for standalone system’s performance ordered
by increasing computation time. 43

7.2 Sizes of individual proofs for the supported operations. 44

7.3 Bottleneck analysis after integrating our system in Corda. 45

7.4 Corda’s dependency resolution time for validating and non-validating
notaries with and without privacy. 48

7.5 Bottleneck analysis for dependency resolution for validating and
non-validating notaries with and without privacy. 49

7.6 Performance for proof embedding strategies with increasing verifi-
cation time. 50

7.7 Bottleneck analysis for proof embedding strategies with increasing
verification time. 51

7.8 Wire transaction creation time for large proof embedding strategies. 52

7.9 Performance for large proof embedding strategies with constant
verification time. 53

7.10 Bottleneck analysis for large proof embedding strategies with con-
stant verification time. 54

v

Chapter 1

Introduction

Industrial service providers define the terms and conditions of the provided service
in a service level agreement (SLA). Such agreement imposes a set of rules on the
involved parties and governs their interaction. For example, an Internet Service
Provider (ISP) may have a SLA with a customer. However, ensuring that all rules
are indeed satisfied, as well as determining who is liable for violating SLA rules (if
such violation exists) remains a very challenging task to realize in practice. To this
end, and in order to realize the interaction in a distributed and decentralized way,
we propose distributed ledger technology (DLT) as the backbone. DLTs remove
the need for a trusted third party by shifting the trust to the honest majority,
who follows specific protocols that prevent malicious entities from corrupting the
system. Within a DLT, SLAs are implemented as smart contracts and embedded
in the transactions, which are stored on a distributed ledger. In order to attest
to a transaction’s validity, many parties validate smart contracts by executing
them on typically sensitive data. As data privacy is not preserved, an exploit of
sensitive information may entail serious financial repercussions and reputational
damage.

Contributions. We propose a new system for writing smart contracts that
preserve the privacy of the distributed ledger data on which these smart con-
tracts operate. Our solution provides privacy-preserving verification leveraging
partially homomorphic encryption schemes and zero-knowledge proofs (ZKP) on
(un-)signed floating-point numbers and strings. As we aim to support a wide
range of secure operations, a fully homomorphic scheme, as presented in Gen-
try’s work [1], would be an ideal candidate. However, subsequent work [2] has
shown that current fully homomorphic schemes impose an impractically large
computational overhead. Therefore, we combine a partially homomorphic en-
cryption scheme with non-interactive ZKPs. Furthermore, we leverage an addi-
tional commitment scheme to overcome the limiting number of operations of the
partially homomorphic encryption scheme. The main aspects that characterize
our solution can be classified as follows:

1

1. Introduction 2

Extended Set of Operations. We support privacy-preserving algebraic
operations such as addition, subtraction, multiplication, and division on signed
floating-point numbers. In contrast to order-preserving encryption [3], which
suffers from severe security vulnerabilities as plaintext order is retained in the ci-
phertext space, we provide a secure way of performing comparisons on ciphertext
tuples. Furthermore, leveraging the ASCII bijective mapping, our system offers
both zero-knowledge set inclusion and ciphertext equality operation on textual
data.

Private-key-less Secrecy. Our solution does not require private keys for
ZKP generation or decryption of the values.

System Integration. We showcase a way to integrate our system in a
DLT to achieve confidential transactions. Privacy-preserving smart contracts
enable multiple parties to validate transactions, which in return significantly
improves DLT’s scalability in case of highly liquid assets in long transaction
chains. In addition to improving scalability, we optimize for performance in
terms of storage requirements on transacting parties by further expanding the
transaction validation process.

Generality. Our system is usable in any scenario where one party has to
prove a certain set of boolean expressions consisting of the aforementioned oper-
ators to another party without revealing any sensitive information, yet allowing
the other party to perform restricted computations on the encrypted data in the
intermediate computation steps.

In short, the main contributions of this thesis are:

• A privacy-preserving system with private-key-less secrecy supporting ba-
sic algebraic operations. In addition, we support secure comparisons on
signed floating-points numbers and both secure set inclusion and equality
operation on strings.

• A mechanism to integrate our system within an existing DLT, Corda. Our
mechanism includes numerous optimizations to Corda itself enabling higher
performance in scalability, storage, and throughput.

• An extensive evaluation of our system’s performance and overhead, both
standalone and when integrated within Corda.

Chapter 2

Related Work

Our work consists of two different research areas, distributed ledger technology
and privacy-preserving verification. We aim to combine the knowledge gathered
in these areas in order to provide confidential transactions for distributed indus-
trial service applications.

Distributed Ledger Technology. Our initial selection process for choosing
the most applicable DLT for the industrial use cases is based on the work by IBM
Research in Zurich [4], which presents a general overview of permission-less and
permissioned DLTs. This work discusses the problem of trust in the blockchain
protocols and compares both different DLTs and their consensus mechanisms. We
have identified Corda [5] and Hyperledger Fabric [6] as potential permissioned
DLT candidates. We have considered and investigated other permissioned DLTs,
such as Tendermint1, Symbiont2, and MultiChain3. The deficiencies of these
platform include unclear consensus mechanism correctness, proprietary software,
and lack of support for Byzantine network participants. Corda and Hyperledger
Fabric operate in a permissioned network supporting smart contract code written
in high-level programming language, such as Java. Previous work [7] has iden-
tified security and performance as one of the most influential DLT properties as
well as analyzed the main trade-offs between them. The most interesting ones,
confidentiality and auditability remain in our focus as we aim to provide transac-
tion confidentiality without a loss of transparency. A survey on confidentiality-
and privacy-preserving technologies for blockchains [8] compares the underly-
ing technologies utilized to satisfy the security triad of confidentiality, integrity,
and availability. Such technologies include stealth addresses [9] and ring signa-
tures [10] to achieve anonymity of participants, and Pedersen commitments [11]
and ZKPs to achieve transaction confidentiality. Corda’s research survey [12]
identifies the top ten obstacles for the adoption of distributed ledgers and argues
that scalability and privacy represent the biggest barriers along the way. In ad-

1https://tendermint.com/
2https://symbiont.io/technology
3https://www.multichain.com/

3

https://tendermint.com/
https://symbiont.io/technology
https://www.multichain.com/

2. Related Work 4

dition, the survey states how the research has focused more on user anonymity in
a distributed ledger rather than on their privacy, i.e., the confidentiality of their
transactional data. Challenges in scaling DLTs, with respect to the underlying
network, consensus protocols, storage requirements, and on-chain computations,
have been explored [13]. Among the proposed techniques are delegation of trust,
sidechains, and outsourcing transaction validation by leveraging cryptography.
Our solution provides transaction confidentiality and improves both the scalabil-
ity and storage requirements on network participants in DLTs such as Corda.

Confidential Computation. Partially homomorphic encryption has been uti-
lized for confidential computation in numerous systems. CryptDB [14] is an ex-
ample system providing encrypted query processing building on onion encryption
layers. The inner most layer represents the least secure, deterministic encryption
of a value, whereas the outer most layer is encrypted using a secure, randomized
scheme. As operations are performed, onion layers are stripped down trading-
off the security for functionality. These operations include searching, ordering,
comparing, and adding values. SecureScala [15] has been proposed as a domain-
specific language used to express programs without any cryptographic knowledge
background. It leverages multiple encryption schemes to support a wide range of
operations including additions, multiplications, equality, and ordering. The ho-
momorphic addition property is satisfied using the Paillier encryption scheme [16].
The ElGamal encryption scheme [17] supports homomorphic multiplication prop-
erty. On the other hand, equality operation is leveraging a symmetric encryption
scheme such as randomized Advanced Encryption Standard (AES) [18] and the
ordering is supported by order-preserving encryption [3]. MorphicLib [19] is a
partially homomorphic library, which closely follows the solution provided in
CryptDB. It is offering partially homomorphic functions, which support execut-
ing queries on encrypted data. In comparison, our approach offers a wider, more
secure and more flexible set of operations by utilizing a combination of ZKPs
and a partially homomorphic encryption scheme. This approach avoids utilizing
multiple encryption schemes in an onion-layered fashion [14], [19], which requires
both excessive key generation and management. Our approach is more secure,
as it does not rely on a deterministic encryption scheme, which is vulnerable to
chosen-plaintext attacks [20].

Confidential Transactions in DLTs. Previous studies have shown interest
in achieving confidentiality of transactions in distributed ledgers. One of the
first systems that started the research on privacy preservation in distributed
ledgers was Zerocash [21]. Zerocash embeds the Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) into the transaction. No com-
plex logic or scripting capabilities are provided and a major criticism to the
system is the need for a trusted setup of initial zero-knowledge parameters.
Zether [22], a confidential payment mechanism for account based models, specif-

2. Related Work 5

ically compatible with Ethereum, operates on encrypted balances and exposes
methods to perform a restricted set of operations through cryptographic proofs.
Zether’s smart contracts contain the efficient ZKP system Σ-Bullets to provide
the transaction logic. Several platforms, such as Arpa [23] and Arbitrum [24]
provide privacy-preserving smart contracts which are executed in their Turing
complete Virtual Machines (VM). Arpa offers secure and verifiable computation
by transforming high-level functions into arithmetic circuits, which are evaluated
by parties using a Multi-party Computation (MPC) protocol. Raziel [25] is a
system similar to Arpa’s in that it provides both private and verifiable smart
contracts. Smart contracts are written in Obliv-Java, a modified OPEN-JDK for
secure computation. Enigma [26] is a decentralized computation platform provid-
ing a scripting language that performs MPC on the arithmetic circuit. Another
interesting approach has been taken by the inventors of Hawk [27], where smart
contracts have been split into public and private contracts. A public contract
includes a proof that the private contract has been executed correctly. A draw-
back of this approach is the manager entity, which executes private contracts
and, therefore, should be trusted. In the finance sector, a ZkLedger [28] system
has been proposed to provide a solution based on ZKPs using Pedersen com-
mitments for both confidential ledger information and auditing purposes. The
system is providing audit proofs for operations such as ratios, percentages, sums
and averages, while keeping the balances stored on the ledger hidden using the
Pedersen commitment scheme. Offline computation and attestation to its va-
lidity on-chain has been investigated and proposed by Zexe [29]. By contrast,
our solution does not rely on secure enclaves, VMs or arithmetic circuits, but
rather enables non-experts in cryptography to write privacy-preserving smart
contracts by integrating our portable system into their system infrastructure.
Furthermore, in comparison to Zether [22], our system is applicable to UTXO
models, supports secure operations on signed floating-point numbers and strings,
and provides more generic secure operations such as comparisons on ciphertext
tuples.

Chapter 3

Models

In this chapter, we provide an overview of the considered DLT model as well as
the assumed adversary model.

3.1 System Model

DLT Model. The underlying DLT model is the unspent transaction output
(UTXO) model operating on a permissioned network. In contrast to an account-
based model, as used, e.g., in Ethereum1, the UTXO model operates with states.
States are contained in transactions and each transaction consumes and creates
state(s). The sum of unspent states represents the owned assets. In a permis-
sioned network, as opposed to a permission-less one, such as Bitcoin2, all the
participants’ identities are known. We assume network participants to represent
the nodes in the network, i.e., system’s entities, whereas clients represent the
owners of these entities. A client might be a single person or an entire organ-
isation. Transaction life-cycle involves processes, which should be executed by
each transaction participant. A process includes signing, verifying, and storing a
transaction. All the processes are atomic, hence no partial process execution is
allowed. The communication relies on secure and weakly synchronous channels
between network participants. The secure channels are realized using the remote
procedure call framework gRPC 3, which utilizes the Advanced Message Queuing
Protocol/1.0 (AMQP)4 over Transport Layer Security (TLS) 1.3.

Corda. We have selected Corda as a UTXO model representative. The ratio-
nale behind our choice is backed up by a list of key advantages that Corda as
DLT has to offer. Among the most important ones being the communication on
a need-to-know basis, which offers a way to tackle the fundamental properties

1https://www.ethereum.org/
2https://bitcoin.org/bitcoin.pdf
3https://grpc.io/docs/guides/auth/
4www.amqp.org/

6

https://www.ethereum.org/
https://bitcoin.org/bitcoin.pdf
https://grpc.io/docs/guides/auth/
www.amqp.org/

3. Models 7

of DLTs - scalability and privacy. We are utilizing Corda as an underlying mes-
saging system to showcase usage scenarios of our system for privacy-preserving
industrial service applications. Since information in Corda is disseminated on
a need-to-know basis, there is no global ledger. Instead, different parts of the
ledger are stored with different nodes of the system. Under this mode of opera-
tion, Corda utilizes two consensus mechanisms to ensure uniqueness and validity
of transactions. Double-spending is prevented in Corda using uniqueness consen-
sus. This consensus is achieved by the notary service, a cluster of entities, that
keep track of the states’ consumption. If a state has been previously spent, the
notary service will prohibit the state from being consumed in a different trans-
action. On the other hand, as Corda supports smart contracts that govern the
transaction’s validity, a validation consensus exists as well. All the participants,
involved in a transaction, have to validate the transaction by executing the logic
defined in the smart contracts. This process involves access to all the transaction
details, hence potentially sensitive data. The clear disadvantage arising from a
need-to-know information spread is a transaction dependency resolution. More
specifically, a party that is new to a long transaction chain, has to “walk the
chain” in order to verify each transaction it has not verified up to the issuance
transaction. This introduces a computational bottleneck in case of highly liquid
assets. An alternative approach to having participants validate transactions, is to
delegate this job to the notary cluster. As opposed to having peers perform trans-
action resolution, the notary service attests to the validity of a transaction chain
and hence removes the need of “walking the chain”. Additionally, the sharding
effect is enhanced as transactions are, at any point in time, provided only to the
relevant participants. The downside of validating notaries is the clear violation
of Corda’s original notion of confidentiality as notary service obtains access to all
the data stored across the transactions in the network. Corda’s communication
takes place in flows [5], which are small multi-party sub-protocols. These block-
ing protocols allow suspending and resuming communication between parties. A
transaction itself goes through the following stages prior to being placed on the
ledger:

• Transaction builder. Gathers input and output states.

• Wire transaction. Serializes the transaction object, i.e., transforms it into
a series of bytes.

• Signed transaction. Appends the participants’ signatures to a Wire trans-
action.

• Ledger transaction. Derived from Wire transaction and used during the
transaction verification process. It includes de-serialising states.

3. Models 8

3.2 Threat Model

Corda’s threat model following the STRIDE framework5 has been analysed in
prior work.6 We assume n = 3f + 1, where n corresponds to the number of
network participants and f to the maximum number of malicious, Byzantine
participants in the system. This assumption is important in order to achieve
a consensus among network participants. As we are considering a permissioned
DLT, where identities of network participants are known, the network is assumed
to be resilient to Sybil attacks. In a Sybil attack, an adversary controls a major-
ity of network participants, therefore having the largest influence, which may
be used to corrupt the system. We assume a computationally bounded adver-
sary, who may be passive or active. A passive adversary is assumed to be an
honest, but curious entity. Such an entity may read the data in transit or on
the ledger, but may not modify it. On the other hand, an active adversary is
additionally assumed to be able to modify the data. We assume that an active
adversary may not delay or drop the data in transit. We divide the threat model
into process and communication threats. Under process threats we consider any
action performed by a network participant, whereas communication corresponds
to serialized transaction objects in transit.

Active Adversary. In the following, we present an overview of security threats
that an active adversary, who may be a network participant, poses.

Communication Threats. We assume that an adversary may not delay or
drop data in transit. On the other hand, it may read and modify it. Due to the
utilization of secure channels, which provide confidentiality, integrity, and mutual
authenticity, all the considered communication threats are mitigated.

Process Threats. Following Corda’s threat model7, the following summarizes
and enhances possible attacks.

Spoofing. An adversary may impersonate an existing organisation to join the
Corda Network.

Tampering. An adversary may gain access to the network participant’s local
storage and modify the data. Such an attack would not affect other network
participants, but would compromise the transaction history of the specific par-
ticipants. Furthermore, compromising the network map, an entity responsible

5https://docs.microsoft.com/en-us/previous-versions/commerce-server/
ee823878(v=cs.20)

6https://docs.corda.net/design/threat-model/corda-threat-model.html
7https://docs.microsoft.com/en-us/previous-versions/commerce-server/

ee823878(v=cs.20)

https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.corda.net/design/threat-model/corda-threat-model.html
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)

3. Models 9

for storing the participants’ identities, could lead to unauthorized addition or
removal of network participants.

Repudiation. There are no threats if standard security measures are in place.
More specifically, as Corda’s transactions require digital signatures, an attacker
is identifiable and any malicious action may be traced to its origin.

Information disclosure. An adversary may try to learn more information about
the transaction than it should. Due to the assumed secure communication be-
tween network participants, the only attack strategy left to the adversary is to
pose as a validating notary or “enter” a long transaction chain in order to observe
the historic transaction data during the transaction resolution process. Further-
more, an adversary may gain access to the network participant’s local storage
and read the data. However, if standard security measures are in place, i.e., a
secure authentication mechanism, gaining access to a network participant’s local
storage does not pose a threat.

Denial of service. An attacker may send a high volume of invalid transactions
to a specific node. As Corda disseminates information on need-to-know basis,
other network participants are not affected by such an attack. An adversary
participating in a flow may fail to respond to an honest participant, who may
suffer financial losses. Furthermore, an adversarial party may repeatedly and
on purpose fail to verify the transaction, which prohibits the transaction to be
placed on the ledger. This attack does not pose a threat as long as the maximum
number f of such adversaries in the network does not reach n

3 , i.e., as long as
f < n

3 .

Elevation of privilege. An adversary may execute malicious code on another
network participant. This attack involves sending malicious transaction data,
which a network participant executes while validating the smart contract code.

Passive Adversary. We consider a passive adversary which may read the data
stored on the ledger and the data in transit. As transaction data may contain
sensitive information, an access to this data would violate the transaction’s con-
fidentiality. Due to the utilization of secure communication channels, which pro-
vide confidentiality, integrity, and authenticity, a passive adversary does not pose
a communication threat. However, a passive adversary poses an information dis-
closure process threat, i.e., it may read out more information than it should. In
what follows, we elaborate on this process threat.

Transaction resolution information disclosure. A passive adversary can obtain
all the transaction data associated with a long transaction chain even if it has
not taken part in any transactions in that chain, except the last one. The passive

3. Models 10

adversary gets access to all the transaction data, as it is, according to Corda’s
transaction protocol, required to perform the transaction verification of each
transaction in the transaction chain. This time-consuming transaction resolution
process may leak sensitive data that the adversary should not have an access
to, as it has not participated in any of these transactions. This threat does not
contradict the definition of a passive adversary, because the adversary simply
follows the given transaction protocol. On the other hand, a validating notary
would remove the need for the transaction resolution, i.e., it would prevent a pas-
sive adversary from gaining an access to other participants’ sensitive data. But,
a validating notary itself would gain access to all the data from all the transac-
tions, hence, considering a passive adversary posing as a notary, results again in
violation of transaction privacy.

In this thesis, we address the information disclosure threat, for both passive and
active adversary, in a novel way by providing privacy-preserving transactions.

Chapter 4

Problem Statement

We aim to offer a system that satisfies Kerckhoff’s principle of cryptography [30],
which states that a system should be secure under the assumption that every-
thing, but the private key material, is known to the public. Therefore, our system
should allow any network participant to act as a notary service by placing enough
public information in the transactions to attest to their validity, yet without re-
vealing any sensitive information. In the following, we present the functionality
and security requirements our solution should guarantee.

4.1 Functionality

Operations. Each secure operation should either attest to the validity of the
claim made on a data or be used in a computation of a new value. Such computa-
tion must be validated by the other parties in a zero-knowledge fashion leveraging
either homomorphism of the underlying encryption scheme or validation of ZKPs.
We require a sufficient operation coverage for expressiveness of industrial smart
contracts.

Notary Service. The parties representing the cluster of notaries should not
be any external trusted third parties or belong only to a part of the permissioned
network peers. Therefore, anyone willing to participate as a notary may be
granted to do so without violating the confidentiality requirement, which we will
define later in this section. If multiple parties are participating in a notary service,
a consensus protocol must exist. We differentiate between crash-tolerant and
fault-tolerant protocols currently supported in Corda’s enterprise version. Given
that malicious entities are expected in the system, a Practical Byzantine Fault
Tolerance algorithm [31] may be considered. On the other hand, if our system
should be only crash-tolerant, a computationally faster consensus protocol , such
as Raft [32], is applicable.

11

4. Problem Statement 12

Work Flow. The transaction initiator is the entity generating the proof asso-
ciated with the state’s smart contract. Issuance transaction involves the crypto-
graphic material generation, where the private key is destroyed or kept securely
off-line. Transfer transactions do not require re-generation of the cryptographic
material, but rather operate under the public keys generated in the issuance trans-
action. Each entity in the system may validate proofs utilizing the encrypted data
and ZKPs attesting to the transaction’s validity.

Storage. Each party may locally store only the transactions in which it partici-
pates. In case of a long transaction chain, we want to avoid storage of a significant
amount of information that a party should not have access to and may not wish
to store.

Scalability. Peers should not perform transaction resolution, but rather lever-
age the notary’s signature attesting to the validity of a transaction chain.

Availability. Transaction resolution time is the main indicator of the computa-
tional performance. Resolution time is defined as the time needed for successful
transaction completion, which includes building, signing, validating, and placing
the transaction on the ledger. System availability should not be violated by the
imposed computational overhead for the privacy-preserving smart contracts. An
acceptable upper bound depends on the smart contract’s complexity, i.e., is use
case specific. Furthermore, we assume eventual consistency, i.e., every created
and valid transaction will be eventually placed on the ledger.

4.2 Security

Transaction Confidentiality. We identify confidential transactions as the
main non-functional requirement of the system. The parties participating in
a transaction should be the only ones with access to the raw underlying data,
whereas encrypted data is provided for the other network participants. The vali-
dating parties should be able to perform data-agnostic, yet complete transaction
validation.

Transaction Integrity. The transacting on- and off-ledger data should not be
malleable and violate the integrity constraint. Such a violation would result in
the inability to validate transactions.

Authenticity. The underlying communication must be realized using secure
channels over TLS 1.3 with gRPC framework to ensure mutual authentication,

4. Problem Statement 13

data confidentiality, and integrity.

Transaction Correctness. Each validated transaction should be accompa-
nied with the corresponding ZKP attesting to its validity. Furthermore, any
invalid ZKP generation must fail in the verification phase. Each validating party
performs exactly the same verification and its output is deterministic.

Transaction Atomicity. A transaction should be placed on the ledger of all
or none of the involved transaction participants. Therefore, no partial execution
is allowed.

Non-repudiation of ZKP Generation. The participant that generated the
ZKP is uniquely identified and its identity can not be disputed.

Non-contributory Key Agreement. We require an initial cryptographic key
material generation, associated only with the issuance transaction, to be per-
formed by the transaction initiator. We assume a non-contributory key agree-
ment, which means that only the transaction initiator contributes to the key
generation. In case of a computationally weaker entity, this may result in sub-
optimal pseudo-randomness used in the key generation.

Chapter 5

Methods

5.1 Overview

Figure 5.1: System level overview of components and flows.

We present a system, which when augmented to a DLT, enables peers within
the DLT to perform privacy-preserving function validation. Our system pro-
vides privacy-preserving set of operations to implement service level agreements
(SLA) and transforms the data on which peers transact to secured and private
representation. Hence, the output of our system is a privacy-preserving con-
tract and encrypted transaction data that can be posted on a distributed ledger.
SLAs define the general terms and conditions governing a certain process between
two or more participants. Generally, such participants need to perform actions
(represented as transactions), which are only accepted if they satisfy SLA rules.
For example, company A needs to perform maintenance action on a transformer
owned by party B on a weekly basis and when wind speed is less than a cer-

14

5. Methods 15

tain threshold certain actions shall be performed. Transaction data as well as
SLA data is visible to party A and party B, however, it should not be visible
to any other parties that are delegated to perform only transaction validation.
The privacy-preserving digital contract and encrypted transaction data enable
any party on the distributed ledger to validate transactions, i.e., check if each
of the encoded terms and conditions in the digital SLA truly holds for a given
transaction, without revealing anything about the data used in the digital SLA
and the transaction data. Privacy-preserving smart contract leverages additive
homomorphic property of Paillier’s encryption scheme, Fujisaki-Okamoto com-
mitment scheme and numerous ZKPs which we define in the upcoming §5.3.2.
We recall that our system is augmented to a DLT in order to provide higher
security and privacy of data and contracts. In what follows, we list the set of
components that make up our system.

1. Secure data creator. Creates a secure instance x̃ of the raw data input x
by encoding, encrypting and generating the commitment to the data. The
secret values used for the encryption and commitment, i.e., rx and sx are
contained in x̃.

2. DLT data. Holds encrypted data open to the public, which is used for proof
verification and homomorphic operations.

3. Secure bucket. Contains the secure instance x̃, which includes secret values
rx, sx and the mantissa mx. As the encoding base b and exponent ex are
publicly available, secure buckets provide an on-demand access to actual
plaintext data when necessary, e.g., for auditing purposes.

4. ZKP generator. Generates the serializable ProofSet that can be used in
the verification process. This proof is represented as a HashMap, where
the privacy-preserving function is the key and the proof attesting to the
function’s validity is the value.

5. ZKP verifier. Uses the proof generated by the ZKP generator to attest to
the validity of the claimed function execution on a specific input. The ver-
ification leverages homomorphic properties of Paillier’s encryption scheme
and goes through a step-by-step agnostic verification process of the sup-
ported operations which are presented in §5.3.2.

Figure 5.1 depicts the flow between our system’s components, given a network
consisting of transacting parties A and B and a validating party C. The main dif-
ference between the entities is as follows. Party A is the transaction initiator,
hence performs the ZKP generation attesting to a validity of a transaction with
the party B. Party B may verify the transaction’s validity by running the ZKP
verification, but may as well request the secure bucket which opens the data for
auditing purposes. Party C is a validating party which may only attest to the

5. Methods 16

transaction’s validity in a zero-knowledge fashion and may not gain access to the
raw data.
In the following points, we present the interaction between the system’s compo-
nents based on Figure 5.1:

• In the first step party A, the initiator of some transaction over some data,
feeds that data x to the local secure data creator component provided by
our system.

• Upon the reception of such input, the secure data creator component gen-
erates a private secure representation x̃. This private secure representation
consists of two main parts:

– The public block: This includes encrypted data and public keys. The
public block is written to the distributed ledger.

– The private block: This includes information that makes it possible to
break the cryptographic schemes. It has access to the plaintext data
and the secret random numbers rx, sx. The private block is contained
in a secure bucket component, which may be transferred over a secure
channel.

• As a next step, party A feeds the public and private part to the local ZKP
generator. The output of the ZKP generator is a serializable ProofSet con-
taining the needed proof material that enables parties to check if submitted
transactions are valid from the SLA’s perspective without knowing the data
values within the transaction being validated. The ProofSet is signed by
the proof originator, thus providing authenticity and replay attack resilience
over TLS communication.

• Finally, as opposed to transacting parties, validating parties (e.g., party C
in Figure 5.1) have access only to the public ledger data and may validate
transactions upon the receipt of a ProofSet by feeding it to the local ZKP
verifier component.

Our system supports validating various algebraic operations in a privacy-
preserving manner, i.e., without revealing any information about the operands.
Below is a an overview of the supported operations. More detail about how this
operations are realized is given in §5.3.2.

• Range proof. Used to prove that a number lies in a certain interval without
revealing the number itself.

• Addition, Subtraction, Multiplication, Division. Prove that the computa-
tion has been performed correctly without revealing any of the operands
including the result.

5. Methods 17

• Set inclusion. Proves that a value, which is either a number or a string, is
contained in a set of values without revealing the value or the set of values.

• Comparisons. Enable comparisons of two values without revealing the
operands or their ciphertext order.

The underlying communication between the network participants represented
in Figure 5.1 is over TLS using gRPC. Therefore, transferring secure buckets
and proof sets is assured to be confidential and authentic, while preserving the
integrity. We may impose additional digital signatures on the proof sets and
secure buckets to provide a non-repudiation property and combat the possibility
of replay attacks. In such a scenario, a party would reject a proof in which the
proof generator is not the same party as the one that transferred the proof.

5.2 Notation

We adapt the notation from Zether [22] to define the ZKPs as follows:

st : (a, b, c, ...︸ ︷︷ ︸
public

;x, y, z, ...︸ ︷︷ ︸
private

) : Op(a, b, c, ..., x, y, z, ...)︸ ︷︷ ︸
objective

(5.1)

Equation 5.1 states that given the public knowledge a, b, c known to all verify-
ing parties, the proof generator party uses its private knowledge x, y, z to generate
a proof p such that objective function Op holds if p attests to the statement’s
st validity. Such statement st may be verified by evaluating p without the pri-
vate knowledge. In the following we would like to introduce the notation used
throughout this report.

• x : raw numerical/string value with encoding x = mxb
ex , where:

– mx : the mantissa of x.

– b : the encoding base.

– ex : the encoding exponent.

• Cx : Paillier encryption of mx.

• rx : the randomness in Cx.

• Commx : Fujisaki-Okamoto commitment to mx.

• sx : the security parameter in Commx.

• x̃ : the secure data creator. (Figure 5.1) instance of x.

• pkst : Paillier’s public key associated with the statement st.

5. Methods 18

5.3 Implementation

5.3.1 Background and Tools

In order to support a wide range of privacy-preserving operations defined in
the upcoming §5.3.2, we utilize an encryption and a commitment scheme. The
strength of our approach lies in the flexibility of choice for the encryption and
commitment scheme. The following table summarizes all supported operations
and tools used to implement them. The Numbers are considered to be real
numbers.

Supported privacy-preserving operations.

Supported operands Cryptosystem
Addition, Subtraction Numbers Paillier
Multiplication, Division
Interval (Range) Numbers Fujisaki-Okamoto
Set Inclusion Numbers, Strings Paillier
Comparisons Numbers, Strings Paillier,

Fujisaki-Okamoto

Encryption Scheme. We utilize Paillier’s partially homomorphic probabilistic
encryption scheme [16]. Let g be an element of Z∗n2 , randomness rx ∈ Z∗n and
value x ∈ Zn, then Paillier’s encryption of x, Cx, is defined as:

Cx = gxrnx mod n2 (5.2)

The encryption scheme has to satisfy the property of additive homomorphism,
which states that an addition of plaintexts corresponds to a multiplication of
their respective ciphertexts. More formally, given a decryption function D, the
property of additive homomorphism is defined as:

∀x, y ∈ Rn,∃Cx, Cy ∈ Rn2 : D(CxCy mod n2) = x+ y mod n (5.3)

Furthermore, the encryption scheme should be non-deterministic, i.e., mul-
tiple ciphertexts may encrypt the same plaintext. As rx is chosen randomly for
each encryption of value x, Paillier’s additive homomorphic encryption satisfies
non-deterministic property.

Commitment Scheme. A commitment scheme may have either a computa-
tionally or unconditionally binding and/or hiding property. Given a computa-
tionally unbounded adversary, a computationally binding/hiding property may
be broken, whereas the unconditional one remains secure. The hiding property

5. Methods 19

states that a given commitment may be equally likely committing to any given
plaintext, whereas the binding property states that a commitment may be opened
in only one way. Opening a commitment reveals the secret material used for its
creation. We pose the requirement of unconditionally binding and computation-
ally hiding property on the encryption and commitment scheme. The main reason
behind the choice of the commitment scheme is its applicability to the efficient
Boudot’s range proofs [33], which we incorporate in our ZKPs defined later in
this chapter. Boudot’s range proofs [33] utilize the Fujisaki-Okamoto commit-
ment scheme to provide an efficient way of verifying that an integer lies within a
specific interval. Let g, h be elements of Z∗n, security parameter sx ∈ Z∗n, x ∈ Zn,
then Fujisaki-Okamoto commitment to value x, Commx, is defined as:

Commx = gxhsx mod n (5.4)

Zero-Knowledge Proof - ZKP. We are utilizing zero-knowledge proof [34]
of knowledge. ZKP provides a way for a participant, called prover, to prove to
another participant, called verifier, that the prover knows certain information
without revealing this information. More specifically, a ZKP should satisfy the
following properties1:

• Completeness.: The verifier always accepts a valid ZKP.

• Soundness. The verifier always rejects an invalid ZKP.

• Zero-Knowledge. The only knowledge a ZKP reveals is that it is correct.

We differentiate between interactive and non-interactive ZKPs. In an inter-
active ZKP, a protocol between the prover and the verifier consists of multiple
interaction rounds. The verifier poses a challenge to the prover, such that upon
prover’s response, the verifier is assured of prover’s secret knowledge. In order to
obtain a non-interactive ZKP, we apply Fiat-Shamir [35] heuristic. However, as
Fiat-Shamir heuristic utilizes hash functions, our supported operations are con-
sidered secure under a random oracle model (ROM), i.e., we assume the existence
of an ideal hash function.

Mechanism. Due to the randomization property of Paillier’s encryption scheme,
we may operate under the same public key encrypting the values and leveraging
the randomness rx as a secret key known only to the one that encrypted the
value. In fact, as proven in Paillier’s original paper (Lemma 3 [16]), any pair of a
value x and randomness rx mapped to the Paillier’s encryption is bijective. Due
to the randomization and the bijection property of Paillier’s encryption scheme,
we use it as a commitment. We elaborate further about this in what follows.

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032740/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032740/

5. Methods 20

Lemma 5.1. Paillier’s encryption scheme offers an unconditionally binding and
computationally hiding property.

Proof. In order to prove the unconditionally binding property, we refer to Lemma
3 from Paillier’s original paper [16], which proves the bijection between the plain-
text and ciphertext. We recall that the encryption function takes a tuple (x, rx)
from the plaintext space and generates a ciphertext Cx = gxrnx mod n2. Accord-
ing to the aforementioned Lemma 3 [16], ciphertext Cx is uniquely determined
by the tuple (x, rx), hence the unconditionally binding property holds.
In order to prove the computationally hiding property, we refer to the underlying
semantic security assumption of Paillier’s encryption scheme, which is based on
the Decisional Composite Residuosity Assumption (DCRA) [16]. According to
Conjecture 2 [16], DCRA [16] is intractable, i.e., it is considered to be a computa-
tionally hard problem. Considering a computationally unbounded adversary, the
hiding property may be broken, hence a relaxation in form of a computationally
hiding property under DCRA holds.

According to Lemma 5.1, we may utilize Paillier’s encryption scheme as a
commitment, where a commitment is defined as the encryption Cx. Opening
a commitment involves exposing the tuple (x, rx). Furthermore, as we want to
keep the raw data x hidden, i.e., hide the underlying tuple (x, rx), and allow
verifiable computation on the encrypted value Cx, we utilize ZKP of knowledge
of randomness rx, explained in detail in §5.3.2. Using Paillier’s encryption scheme
as a commitment allows us to omit the private keys needed for the decryption as
revealing the secret randomness and the original encoded plaintext value replaces
the decryption. As generating ZKP does not require decryption of the underlying
values, they may operate without the private keys. The needed knowledge for
ZKP generation is the secret randomness rx, which we transmit in a secure fashion
using the concept of secure buckets, explained in §5.1.

Floating-point numbers. Supporting signed floating-point values may leak
additional information about the operands in questions in case the exponents
are large positive numbers. In the following, we elaborate about the security
vulnerability in detail. As we encode numbers using publicly known base and
exponent, while keeping the mantissas private, the knowledge of the base and
the exponent may infer additional information of the underlying raw value. Due
to the fact that mantissas are natural numbers, the knowledge of the exponent
and the base may provide a lower bound on the underlying raw value. This is
considered a security vulnerability. As we operate under a malleable encryption
scheme, we provide enforcement of low maximum exponent values, which reduce
the gained additional information on the lower bound of the raw values, hence
providing more security.

5. Methods 21

Libraries. We have adapted an implemented Paillier library [36] to fit our
purposes, more specifically the flow used for the encryption and serialization of
the values. Some of the adaptations we have performed include an encryption
with a known randomness as well as an encryption with the stored randomness, as
we are leveraging Paillier’s encryption scheme in form of a commitment scheme.
Paillier’s encryption scheme is used for the privacy-preserving basic arithmetic
operations, set inclusions and comparisons. Furthermore, we are building upon
range proofs [33] implemented in ING’s library [37] that we adapted for proofs
serialization. We extend the library’s functionality by providing range proofs on
both negative as well as floating point numbers. Range proofs are used both in
privacy-preserving comparisons and interval operations.

5.3.2 Supported Operations

In the following, we present a detailed overview of the supported operations.

Ciphertext Equality

We have implemented a ciphertext equality ZKP that builds on the protocol
for proving the knowledge of the n-th power [38]. This ZKP verifies that two
ciphertexts, Cx and Cy, hide the same value. More formally, we are proving the
following statement:

ProofEqcipher : {(Cx, Cy, g, n, u, b, ex, ey, pkst;x, y,mx,my, v, rx, ry) :

Cx = gmxrnx mod n2 ∧ Cy = gmyrny mod n2 ∧mx = my

∧ u = Cx(Cy)
−1 = gmx−my(rxr

−1
y)n = (rxr

−1
y)n = vn mod n2} (5.5)

As our privacy-preserving operations operate with floating-point numbers,
the real values x and y are encoded. As a result, base, b, and exponents, ex and
ey, are public, whereas the mantissas, mx and my, are private and encrypted.
We prove that two ciphertexts Cx and Cy encrypt the same value by proving the
knowledge of randomness v = rx(ry)

−1, i.e., the quotient of the randomness from
the ciphertexts involved in the computation.

Proof of correctness. In order to prove the correctness of ciphertext equality
operation, we rely on Lemma 5.1, the additive homomorphism of the underlying
encryption scheme, and Lemma 3 [38].

Given two ciphertexts, Cx and Cy, that claim to encrypt the same value, i.e.,
x = y, the additive homomorphic property of the underlying encryption scheme
ensures that the following holds:

∀x, y ∈ Rn,∃Cx, Cy ∈ Rn2 : x = y ⇐⇒ CxC
−1
y = gx−y(rxr

−1
y)n = (rxr

−1
y)n

(5.6)

5. Methods 22

What remains is for the prover to provide a ZKP that attests to the knowledge
of rxr−1y without revealing rx, ry, and rxry. The protocol in [38] provides such
a proof, however it does so for the interactive case where parties communicate,
namely the verifier challenges the prover. In order to minimize the computational
and communication overhead needed, our approach relies on a non-interactive
version of the protocol in [38]. Our non-interactive version is realized using
the Fiat-Shamir heuristic [35]. Applying this heuristic to any secure protocol
ensures that the security of this protocol remains intact assuming a random oracle
model [35].

Addition and Subtraction

Due to the additive homomorphic property of our encryption scheme, we may
provide a proof of valid computation by leveraging the multiplication and division
of two ciphertexts resulting in an encryption of zero value. More formally, privacy-
preserving addition of values x and y is defined by the following statement:

ProofAdd : {(Cx, Cy, Cz, b, ex, ey, ez, pks;x, y, z,mx,my,mz, rx, ry, rz) :

Cx = gmxrnx mod n2 ∧ Cy = gmyrny mod n2 ∧ Cz = gmzrnz mod n2

∧ CxCy = gmx+my(rxry)
n mod n2 = gmzr′z

n
mod n2

∧ CxCyCz
−1 = ((r′z)rz

−1)n mod n2 ∧ x+ y = z mod n} (5.7)

Prior to multiplying the ciphertexts, we perform an encoding and encryption
step. As a result, we obtain ciphertexts Cx, Cy, and Cz, where the mantissas
mx, my, and mz are encrypted. Subtraction is based on the additive inverse of
the encoded, i.e., encrypted number. Division is using modular multiplicative
inverse of Paillier randomness, which is required to verify the ciphertext equality.
We support addition and subtraction on signed and floating-point numbers. As
Paillier’s encryption scheme satisfies the property of additive homomorphism, the
following holds:

∀a, g, r, n ∈ Rn :

k∏
i=1

Cai = g
∑k

i=1 ai(

k∏
i=1

ri)
n mod n2 = gsarnsa mod n2 = Csa

(5.8)

The above equation states that proving k correct plaintext additions cor-
responds to proving k correct ciphertext multiplications, where the proof itself
consists of proving the knowledge of rsa , where sa represents the plaintext sum
and rsa the product of the plaintexts’ randomness. In order to complete the
proof, the proof generator’s commited encryption to value C ′sa , has to be veri-
fied. We utilize division of C ′sa by the verifier’s computed ciphertext Csa and the
ProofEqcipher to provide a proof of ciphertext equality. As this proof operates on

5. Methods 23

a single secret knowledge rsa , it leads to a constant addition/subtraction ZKP
generation/verification time and proof size.

Proof of correctness. In order to prove the correctness of the addition and
subtraction operation, we utilize the additive homomorphism of the underlying
encryption scheme and the proof of ciphertext equality, which has been proven
correct in §5.3.2. We want to prove the following statement:

Given Cx, Cy, Cz ∈ Rn2 , ∃x, y, z ∈ Rn, such that (5.9)

Cx = gmxrnx mod n2, Cy = gmyrny mod n2, Cz = gmzrnz mod n2 :

x+ y mod n = CxCy mod n2 = Cz

Values rx and ry are rescaled by the prover under the following conditions:{
rx = rb

ex−ey

x mod n if ex > ey

ry = rb
ey−ex

y mod n otherwise

In order to prove Equation 5.9, the prover generates a ciphertext equality
proof that attests to the validity of the addition operation. In order to do so, the
prover performs a homomorphic addition on ciphertexts Cx and Cy and generates
a proof that the result of this operation is equal to the ciphertext Cz, i.e.:

Given Cx, Cy, Cz ∈ Rn2 ,∃C ′z ∈ Rn2 , such that CxCy = C ′z mod n2 : (5.10)

CzC
′
z
−1 = gz−z(rzr

′
z
−1)n = (rzr

′
z
−1)n

Equation 5.10 has been proven in §5.3.2 to attest that Cz and C ′z encrypt
the same value, which concludes the proof for the addition operation.

The subtraction operation utilizes the additive and multiplicative inverse
properties shown below:

∀x, y, z ∈ Rn,∃Cx, Cy, Cz ∈ Rn2 : x− y = z mod n ⇐⇒ CxC
−1
y = Cz mod n2

(5.11)

Equation 5.11 is analogous to Equation 5.9 and hence the proof follows as for the
addition operation.

Multiplication and Division

Our aim is to hide both of the operands for multiplication and/or division op-
eration and to provide a proof attesting to the computation’s validity. As Pail-
lier’s encryption scheme supports homomorphic multiplication only if one of the
operands is in plaintext, we decided to implement a ZKP, where both of the
operands remain encrypted, together with the computation result. Concretely,

5. Methods 24

given three ciphertexts Cx, Cy, and Cz we would like to prove that the relation-
ship between their respective plaintexts x, y, and z is xy = z mod n. As we are
operating with floating-point numbers, the first step is to encode the values x,
y, and z. Upon encoding step, the mantissas mx, my and mz should be rescaled
to a common publicly known exponent and their encryptions, Cx, Cy, and Cz,
generated. We adapt the protocol based on the previous work by Damgard and
Jurik [38], where we are proving the following statement:

ProofMul : {(Cx, Cy, Cz, b, ex, ey, ez, pks;x, y, z,mx,my,mz, rx, ry, rz) :

Cx = gmxrnx mod n2 ∧ Cy = gmyrny mod n2 ∧ Cz = gmzrnz mod n2

∧ xy = z mod n} (5.12)

To support division, the proof generator has two choices at its disposal. Either
the generator encrypts the inverse of the multiplicand, which makes it a dividend
or the equation is rearranged to a multiplication, hence there is no need to encrypt
an additional number representing the inverse. The generator rearranges the
equation by the order of inputs to the ZKP generator. The verifier verifies in
the exact same order. Encrypting an inverse of a number may be the way to go
in case the number is constantly used as a dividend, whereas in a more dynamic
environment encrypting an additional number, which in addition needs to be
proven to represent an inverse of the original one, poses a significant effort and
hence rearranging the equation is the proposed way to go.

Multiplication with multiple operands involves intermediate results which
may need to be verifed. In contrast, the addition operation relies on the en-
cryption scheme’s additive homomorphic property, where the final value contains
the accumulation of intermediate computation steps needed for verification (as
shown in §5.3.2). In case the intermediate results of a multiplication operation
are needed, a linear increase in the number of operands in both time and space
is imposed. Such scenario may be observed in case the operands are being used
in other statements and cannot be accumulated into a one-time operation.

Proof of correctness. The result of multiplication on floating-point numbers,
in the plaintext is the following:

∀x, y, z ∈ Rn : z = xy = mxb
exmyb

ey = (mxmy)b
ex+ey mod n (5.13)

In order to prove the correctness of multiplication and division operation, we
refer to Lemma 5 [38]. We adapt the multiplication protocol of [38] by applying
Fiat-Shamir heuristic [35] in order to obtain a non-interactive protocol. There-
fore, the non-interactive version of the protocol remains secure under a random
oracle model [35]. To prove equation 5.13, we need to prove

∀x, y, z ∈ Rn such that z = xy : mz = mxmy mod n ∧ bez = bex+ey mod n
(5.14)

5. Methods 25

Lemma 5 [38] proves the multiplication of mantissas, i.e., mz = mxmy mod n.
What remains to prove is the correctness of the exponent part of the encoding,
i.e.:

∀b, ex, ey, ez ∈ Rn : bexbey = bez mod n (5.15)

Proving the Equation 5.15 does not involve ZKPs: all information (i.e., bex ,
bey , and bez) is public knowledge and can be verified by anyone. We now prove
that having this information as public does not affect the security of our mecha-
nism. We do so by reducing the problem to the factorization problem, which has
been proven hard under specific assumptions.

A factorization problem is defined as follows:

Given c ∈ R,∃a, b ∈ R : ab = c, (5.16)

where x and y values are unknown.

The security of our protocol relies on the hardness of the following problem:

Given bex , bey , bez ∈ R, ∃y, z ∈ R : mxmyb
exbey = mzb

ez , (5.17)

But mxmyb
exbey = mzb

ez ⇐⇒ mxmy
1

mz
=

bez

bexbey
, (5.18)

Hence we reduce our problem to the factorization problem. We conclude that
our protocol is considered secure under the assumptions for which factorization
is assumed to be a hard problem.

The division operation follows the analogous protocol, where the following
holds:

∀x, y, z ∈ Rn : z = xy−1 = mxb
ex(myb

ey)−1 = (mxm
−1
y)bex−ey mod n (5.19)

Range Proofs

We provide range proofs on mantissas of the encoding and support signed Big-
Integer, Long interval boundaries. In case an interval boundary is a negative
number, its encoding results in a larger mantissa than the encoding of its addi-
tive inverse, hence a modulus subtraction from the mantissa is done prior to the
proof creation. In addition, our range proofs include a proof of equality between
the underlying encryption and commitment scheme discussed in §5.3.2. More
specifically, in order to prove that value x is contained in an interval [lx, ux], we
prove the following statement:

ProofRange : {(Cx, Commx, g1, g2, h, n, lx, ux, b, ex;x,mx, rx, sx) :

Cx = gmx
1 rnx mod n2 ∧ Commx = gmx

2 hsx mod n ∧ x ∈ [lx, ux]} (5.20)

5. Methods 26

The intervals boundaries lx and ux are encoded and rescaled, such that their
exponents, eu and ez are equal to ex, i.e., the exponent of x. An example usage
scenario may be the following. A party would like to hide his/her age, yet be
able to prove to a third party that the encrypted age lies within publicly known
interval.

Proof of correctness. We want to prove that the following statement holds:

Given Cx ∈ Rn2 , Commx, lx, ux ∈ Rn : mx ∈ [lx, ux] ∧ (5.21)

Cx = gmx
1 rnx mod n2, Commx = gmx

2 hsx mod n

The prover rescales publicly known interval boundaries lx, ux as follows:

lx =

{
lb

ex

x if elx > ex

lx otherwise

ux =

{
ub

ex

x if eux > ex

ux otherwise

In order to prove Equation 5.21, we first prove the following statement:

Given Cx ∈ Rn2 , Commx, lx, ux ∈ Rn : mx ∈ [lx, ux] (5.22)

For the proof of Equation 5.22, we refer to Boudot’s range proof with toler-
ance [33].

In order to complete the proof of Equation 5.21, we need to prove the state-
ment below, which says that the Fujisaki-Okamoto commitment (Commx) hides
the same value, mx, as the underlying Paillier encryption (Cx).

Given Cx ∈ Rn2 , Commx ∈ Rn : Cx = gmx
1 rnx mod n2, Commx = gmx

2 hsx mod n
(5.23)

In order to prove Equation 5.23, we refer to the proof ProofEqPF
, specified

in §5.3.2. Therefore, the completeness of the range proof protocol depends on
the correctness of the Paillier and Fujisaki-Okamoto Equality protocol in §5.3.2.

Paillier and Fujisaki-Okamoto Equality

As the implemented range proofs, presented in §5.3.2, work with Fujisaki-Okamoto
commitment scheme and our ZKPs work with a randomized partially homomor-
phic scheme, chosen to be Paillier, we need to provide a ZKP stating that the
Fujisaki-Okamoto commitment and Paillier encryption both hide the same value.
In order to do so, we adapt the prior work [39], which is in essence an adapted

5. Methods 27

non-interactive sigma protocol. Concretely, we are proving the following state-
ment:

ProofEqPF
: {(Cx, Commx, g1, g2, h, n, b, ex;x,mx, rx, sx) :

Cx = gmx
1 rnx mod n2 ∧ Commx = gmx

2 hsx mod n} (5.24)

ProofEqPF
binds the encryption and the commitment scheme.

Proof of correctness. We want to prove the following statement:

Given Cx ∈ Rn2 , Commx ∈ Rn : Cx = gmx
1 rnx mod n2, Commx = gmx

2 hsx mod n
(5.25)

In our implementation of Paillier and Fujisaki-Okamoto Equality protocol,
we adapt the non-interactive ZKP of equality protocol [39]. As our system does
not operate using Pedersen commitment scheme [11], our adaptation of the pro-
tocol involves utilizing only the Paillier and Fujisaki-Okamoto Equality, thus
removing the Pedersen commitment scheme from the proof. In order to prove
Equation 5.25, we refer to the original protocol idea and its correctness proof [40].

The protocol is considered secure under random oracle model as Fiat-Shamir
heuristic [35] is applied.

Set Inclusion

We have implemented Paillier’s ZKP of set membership [41] and extended its
usage to work with all numerals and strings values using an additional encoding
step transforming the strings into their respective ASCII values serving as input
to Paillier’s encryption scheme. In addition, due to the fact that the proof size
and both generation and verification time grow linearly with the number of set
elements, we propose a slight adaptation. The proposed idea utilizes the concept
of k-anonymity [42], where we prove the set inclusion for the subset of the original
set M , i.e., for k < |M |. As such, we pose a trade-off between the computational
effort and data privacy, or in that regard, anonymity. The implementation of the
set inclusion proof is additionally used for comparison between different proof
embedding techniques in §7.2.3. Formally, set inclusion is proving the following
statement:

ProofIncl : {(Cm, g, n, u;M,m, r) : Cm = gmrn mod n2

∧ u =
Cm

gmi
mod n2 ∧M = {m1,m2, ...,m|M |} ∧m ∈M} (5.26)

Values u are accessible to the verifier, whereasM remains hidden. An example
usage scenario may be a security audit. Party A, uniquely identified by a string

5. Methods 28

value UUIDA, may wish to prove to a third party that he/she is on a list of
allowed participants without disclosing UUIDA or other participants’ identities.

Proof of correctness. We want to prove the following statement:

Given u,Cm ∈ Rn2 , such that u =
Cm

gmi
, Cm = gmrn mod n2, (5.27)

M = {m1,m2, ...,m|M |} : m ∈M}

In order to support floating-point numbers and string values, we perform an
initial encoding step. In case of string values, given a set of strings S, we perform
the following encoding step utilizing the ASCII bijective mapping:

∀s ∈ S, v ∈ N : s 7→ v (5.28)

In case of floating-point numbers, we perform the standard encoding into a
private mantissa and publicly known base and exponent. The encoding step is
performed on both the set values M and the value m, for which we claim that
m ∈M holds.

In order to prove Equation 5.27, we refer to the underlying set inclusion
proof [41]. As we implement a non-interactive protocol, security under a random
oracle model is assumed. Furthermore, the set inclusion proof reveals the values
ui = Cm/gmi mod n2 to the verifier, thus hiding the underlying values mi.

By Lemma 5.1, where we prove the computationally hiding property of the
encryption scheme, the values of set M remain hidden to the verifier. Namely,
the values of mi and m are not revealed by exposing ui to the verifier. Upon
proof verification, the verifier may only attest that a certain value m is in the
set M without learning its position in M or the value m itself.

As the time to perform set inclusion operation grows linearly with the set
size, we extend the protocol by utilizing the concept of k-anonymity [42]. We
prove the set inclusion for the subset of the original set M , i.e., for k < |M |.
Computational time of the set inclusion operation decreases proportionally to
the decrease in value k. On the other hand, value k dictates the size of the
anonymity set, hence poses a security vulnerability in case of low value k.

Ciphertext Comparisons

Comparisons on ciphertexts are of crucial importance in smart contracts valida-
tion. In order to compare two numbers in their corresponding ciphertext space,
we propose, to the best of our knowledge, a novel four-stage protocol 1 involving:

• Encoding, encryption and commitment to a number z acting as a summand
while leveraging encryption scheme’s additive homomorphic property.

5. Methods 29

• ZKP of equality upon summation with z.

• ZKP of equality of Paillier encryption of z and Fujisaki-Okamoto commit-
ment to z.

• Positivity proof of z.

The proposed ZK comparison proof is utilizing the fact that we may switch
between encoding scales of the ciphertext by rescaling it as shown in Protocol 1.
It does not require an access to the underlying encoded values, but rather to the
publicly known encoding base and exponent. This property allows us to generate
proofs ahead of time mimicking the results that will be needed for the verifier to
validate a proof.

Protocol 1 Secure Ciphertext Comparison

Inputs. Let op ∈ {>,<} denote the comparison operator. Proof generator holds
input x̃, ỹ, whereas proof verifier holds Cx, Cy encrypted under pks.

Goal. Generate and validate the proof such that:

ProofCompcipher : {(Cx, Cy, b, ex, ey, pks;x, y,mx,my, rx, ry) :

Cx = gmxrnx mod n2 ∧ Cy = gmyrny mod n2 ∧ x op y} (5.29)

The protocol:

1. Proof generation.

(a) ∃z ∈ Rn, such that:

mz =

{
(mx −my) mod n if op is >

(my −mx) mod n if op is <

i. Let rca = rc{x,y,z} . Rescale rca , such that:

rca =

rb

ea

ca mod n if ez > 0{
rb

ex−ey

x mod n if ex > ey

rb
ey−ex

y mod n otherwise
otherwise

ii. Calculate v as:

v =

{
rx(ryrz)

−1 mod n if op is >

rxrzr
−1
y mod n if op is <

(b) Generate secure number z̃ with the raw encoded value mz, scaled
exponent ez ≥ 0 and state’s public key pks.

5. Methods 30

(c) Generate ciphertext equality proof ProofEqcipher attesting that v is
the randomness used in the encryption C0 of zero. C0 is the result of
homomorphic subtraction of two ciphertexts Cx, Cy performed by the
verifier and prepared ahead of time by the generator.

(d) Generate a commitment to mz denoted by Commz. The commitment
is used to generate a positivity proof Proofz>0. Let lz = 0 denoted
the lower and uz = n denoted the upper interval bound. Encode lz
and uz under the same context as z. Prepare the range proof interval
I by scaling as follows:

lz =

{
lb

ez

z if elz > ez

lz otherwise

uz =

{
ub

ez

z if euz > ez

uz otherwise

(e) Generate the equality proof ProofEqPF
of Paillier encryption and

Fujisaki-Okamoto commitment hiding the same underlying value.

(f) Generated proofSet← {Cz, Commz, P roofz>0, P roofEqcipher ,
P roofEqPF

, I}.

2. Proof verification.

(a) Verify ProofEqPF
, i.e., prove that Paillier encryption and Fujisaki-

Okamoto commitment hide the same value.

(b) Verify Proofz>0, i.e., Cz encrypts a positive value.

(c) Let ς denote the result of verifier’s homomorphic addition as follows:

ς =

{
(Cy + Cz) mod n2 if op is >

(Cx + Cz) mod n2 if op is <

Let u denote the result of verifier’s homomorphic subtraction as fol-
lows:

u =

{
(Cx − ς) mod n2 if op is >

(ς − Cy) mod n2 if op is <

(d) Verify ProofEqcipher , i.e., u is an encryption of zero value with ran-
domness v unknown to the proof verifier, but proven to be known by
the proof generator.

We compare our approach to order-preserving encryption (OPE). In the fol-
lowing points we present our analysis:

5. Methods 31

• OPE is a deterministic encryption scheme, hence is not secure under indis-
tinguishability against chosen-plaintext attack (IND-CPA)2, as an encryp-
tion of a specific value always results in the same ciphertext. Our approach
utilizes a randomized encryption scheme, hence is IND-CPA secure.

• OPE preserves the order of plaintexts in ciphertext space, which leaks rel-
ative distance between plaintexts. Such a property may be exploited to
approximate the plaintext. In addition, due to OPE’s determinism, addi-
tional information relative to the frequency of plaintexts can be leaked. As
we do not pose any order on ciphertexts, and our encryption scheme is ran-
domized, our approach cannot be exploited to approximate the plaintexts’
position.

• Existing OPE poses a security vulnerability due to its determinism. An
onion-layer encryption scheme has been proposed in order to tackle this
vulnerability [14]. This scheme encapsulates value x in encryption layers,
where the innermost encryption layer corresponds to OPE encryption used
for comparison and the outermost layer to a randomized encryption, such as
Advanced Encryption Standard (AES), without any functionality. Onion-
layer encryption involves distributing AES’s symmetric keys for stripping
an onion layer prior to using OPE and requires an excessive key generation
and management.

• Our results have shown that the proposed ciphertext comparison proof
is approximately 2 times faster than OPE in addition to offering higher
security.

Proof of correctness. We want to prove the following statement:

Given op ∈ {>,<}, Cx, Cy ∈ Rn2 , such that Cx = gmxrnx mod n2, (5.30)

Cy = gmyrny mod n2 : x op y}

We recall that the verifier is given access to the values Cx, Cy, Cz, and
Commz, where z = mzb

ez is defined as follows.

∃z ∈ Rn, such that : mz =

{
(mx −my) mod n if op is >

(my −mx) mod n if op is <
(5.31)

We generate the encryption Cz by using the randomness below:

rz = rb
z

z mod n if ez > 0 (5.32)

2https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf

https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf

5. Methods 32

We assume for the rest that we want to prove that x < y (similar logic can
be applied to x > y). Given the encryption Cz, we prove as a first step that
x+ z = y is used in the following statement:

Given Cx, Cy, Cz ∈ Rn2 , ∃x, y, z ∈ Rn, such that (5.33)

Cx = gmxrnx mod n2, Cy = gmyrny mod n2, Cz = gmzrnz mod n2 :

x+ z mod n = CxCz mod n2 = Cy

Furthermore, as described in our protocol the verifier holds the proofs Proofz>0,
ProofEqcipher , ProofEqPF

. Proofz>0 attests to the claim that the underlying
value z is a strictly positive number, whereas ProofEqPF

provides the proof that
the encryption and commitment scheme hide the same value z. Additionally,
as the verifier performs the homomorphic addition operation on values Cx and
Cy, proof ProofEqcipher attest to fact that the result of verifier’s computation is
indeed the correct one.

We now prove that the verifier may only attest to the following claims:

• There exists a number z, encrypted and given as Cz, such that:

– CxCz mod n2 = Cy.

– Cz is an encryption of a strictly positive number.

– Cz is encrypting the same value z hidden under the Fujisaki-Okamoto
commitment used for the positivity proof.

• Cx and Cy encrypt x and y such that x < y.

In order to prove Equation 5.30, we proceed as follows.

Equation 5.33 holds directly as a result of the proof provided by the ciphertext
equality (Equation 5.9).

Furthemore, we have to prove that the commitment Commz hides a strictly
positive value z. More formally, we are proving the following statement:

Given Cz ∈ Rn2 , Commz, lz, uz ∈ Rn : mz ∈ [lz, uz], (5.34)

where the lower interval bound lz = 0 and the upper interval bound uz = n are
rescaled as follows:

lz =

{
lb

ez

z if elz > ez

lz otherwise

uz =

{
ub

ez

z if euz > ez

uz otherwise

The Equation 5.34 holds by the proof provided for Equation 5.22.

5. Methods 33

In the final step, we have to provide a proof that the encryption Cz, used
for the homomorphic addition and the ciphertext equality proof, and the com-
mitment Commz, used for proving the positivity of value z, both hide the same
value z. More formally, we want to prove that the following statement holds:

Given Cz ∈ Rn2 , Commz ∈ Rn : Cz = gmz
1 rnz mod n2, Commz = gmz

2 hsz mod n
(5.35)

The Equation 5.35 holds by the proof provided for Equation 5.25, thus con-
cludes the proof of correctness for secure ciphertext comparison.

As we apply Fiat-Shamir heuristic [35] to provide a non-interactive protocol,
our protocol is secure under a random oracle model.

Ciphertext-Plaintext Comparisons

As it would defy the purpose of the privacy-preserving computation, an equality
proof on ciphertext-plaintext tuple is not supported. Instead, the aforementioned
concept of secure buckets (§5.1) for, e.g., audit proof reveals the underlying values
without an access to the private key material. The main aim of the protocol is
to create a valid encoding of the interval boundaries and transform a comparison
with a plaintext into a range proof. We are proving the following statement:

ProofCompplain : {(Cx, y, b, ex, pks;x,mx, rx) : Cx = gmxrnx mod n2

∧ x op y} (5.36)

Transforming a comparison to a range proof is performed by an addition, in
case of greater than operation, and subtraction, in case of less than operation, of
a known positive number to the known value y resulting in the lower and higher
interval bound, respectively. This steps involves the encoding procedure as in
the ciphertext comparison proof. Upon proof generation, the proof set consists
of the following elements:

proofSet← {Cx, Commx, y, Proofx>y, P roofEqPF
, I}

Proof of correctness. We want to prove the following statement:

Given op ∈ {>,<}, Cx ∈ Rn2 , y ∈ Rn such that Cx = gmxrnx mod n2 : x op y}
(5.37)

We recall that the verifier is given access to the values Cx, Commx, and y.
Furthermore, the verifier holds the proofs Proofx>y and ProofEqPF

. Proofx>y

attests to the claim that the underlying value x is strictly greater than the value
y, whereas ProofEqPF

provides the proof that the encryption and commitment
scheme hide the same value x.

We prove that the verifier may only attest to the following claim:

5. Methods 34

• Cx is an encryption of a value x, for which holds that xopy.

In order to prove Equation 5.37, we proceed as follows.

In the first step, we obtain a value y′ defined as:

∃y′ ∈ Rn, ε > 0 such that : y′ =

{
(y + ε) mod n if op is >

(y − ε) mod n if op is <
(5.38)

The value y′ is used as an interval boundary, from which the proof proceeds
as specified in §5.3.2, i.e., we prove the following statement:

Given Cx ∈ Rn2 , Commx, lx, ux ∈ Rn :

{
mx ∈ [my′ , ux] if op is >

mx ∈ [lx,my′] if op is <,
(5.39)

where ux is the highest possible and lx the lowest possible value of mx. Equa-
tion 5.39 holds by the proof provided for Equation 5.21. Furthemore, the proof
provided by Equation 5.25, which proves that Cx and Commx hide the same value
x, concludes the correctness proof for secure ciphertext-plaintext comparison.

Note. As described in our protocol, the verifier knows that encrypted value Cx

encrypts a value which is less or greater than a publicly known plaintext value
y. In addition, the value hidden by Cx and Commx is proven to be the same
by validating ProofEqPF

. The strength of this approach lies in the fact that it
does not reveal order on all ciphertexts, as we are operating under a randomized
probabilistic scheme. On the other hand, this operation has to be used cautiously
not to reveal too much information. If we perform a plaintext comparison on
ciphertext Cx, such that we state that the value x should be greater than one
and less than three, then we have revealed x. As such, the plaintext comparison
should be primarily used with at least one open-ended interval, i.e., it should
only state that the value is either greater or less than a plaintext value. It is
proof generator’s task to decide if ciphertext comparison may be more suitable
for a specific scenario. An example where we can use the ciphertext-plaintext
comparison could be an agreement where we need to prove that a violation, which
we would like to hide, has happened after the publicly known date of signing the
agreement.

5.4 Integration in Corda

Figure 5.2 depicts embedding privacy-preserving smart contracts in Corda3. Party
A generates a ZKP while building the transaction which involves consuming an
old reference state and creating a new state. Each state contains a ZKP attesting

3https://docs.corda.net/api-flows.html

https://docs.corda.net/api-flows.html

5. Methods 35

to the validity of its creation. There are two approaches we consider for embed-
ding the ZKP within the state. We discuss these approaches in detail in §7.2.3
and §7.2.3. Together with the ZKP, a state contains the publicly available ledger
data, which corresponds to the encrypted transaction data, e.g., data collected
from different sensors. In addition, ledger data contains the public key material
used for data encoding and encryption. The contract associated with the state is
a collection of privacy-preserving ZKP verification operations which correspond
to the ZKP generation functions that led to the ZKPs created by the transaction
initiator.

As we may see in Figure 5.2, and as explained in §3.1, Corda’s transaction
life-cycle starts by building, signing, and verifying a transaction. The proposed
concept of validating notaries, as explained in §3.1, now comes into play. As
we gather counter-party’s signature, the counter-party may or may not verify
the transaction. In case the party does not verify the transaction, the notary is
verifying the transaction and providing a signature which attests to the transac-
tion’s validity. This is the case of validating notary. In case the notary does not
validate, the counter-party will run the privacy-preserving smart contract verifi-
cation. This might require performing time-consuming transaction dependency
resolution in case the counter-party has not been involved in previous transac-
tions involving the consumed state in current transaction. As Corda’s verification
logic is decoupled from the business logic used to generate the smart contracts,
a claim that smart contract’s function privacy can be preserved, in addition to
the data itself, is valid. Furthermore, the aforementioned concept of secure buck-
ets (§5.1) is implemented utilizing Corda’s flow over gRPC to send the binding
randomness and raw data material to the counter-party.

5. Methods 36

Figure 5.2: Privacy-preserving smart contracts integration in Corda
.

Chapter 6

Security Analysis

Our system mitigates the information disclosure process threat, for both active
and passive adversary, specified in §3.2, by enabling privacy-preserving smart
contracts. However, embedding our system within Corda increases the overall
system’s complexity, thus increasing the attack surface. In this section we would
like to address the assumed attacker model, investigate possible attacks, and
provide attack mitigation strategies. As specified in §3.2, we assume a computa-
tionally bounded adversary, who may be passive or active.

Active Adversary We have decided to investigate possible attacks with re-
spect to the security triad consisting of confidentiality, integrity, and availability.
Concretely, we have identified an active adversary, who may be a network par-
ticipant, to pose the following threats.

Private key disclosure. Collusion with another network participant who has not
destroyed the private key material and an adversary not destroying the private
key material represent the most severe vulnerability an active adversary may ex-
ploit. This exploit breaks the transaction chain confidentiality if the attackers
can get a hold of all the transactions associated with the key material. The
problem is that the private key can be used to circumvent the protection layer.
A malicious participant may have anticipated that storing the private key and
using it as leverage at a later point in time might be beneficial. A mitigation
strategy requires our privacy-preserving system not to return or provide access to
the private keys upon key material generation. Instead, only public key material
may be presented to the issuance transaction initiator.

Insufficiently specific smart contracts. Insufficient smart contract verification
logic coverage offers an ability to cheat. More specifically, generating gibberish
values which pass verification process may succeed if the smart contract logic
is not sufficiently restrictive. Contract specification must cover possible corner
cases and limit the possibility of an exploit. In case the contract was not specific
enough, the mitigation of this vulnerability is the secure bucket concept, which

37

6. Security Analysis 38

is introduced and explained in §5.1. Each transaction counter-party is provided
with the off-chain secure bucket, which attests to the data validity without pri-
vate keys.

System stalling. Performing invalid verification or generating bogus ZKPs may
harm the system’s availability and cause it to stall. We require the aforemen-
tioned fault-tolerant consensus protocol to be in place in case Byzantine entities
are expected in the system. Invalid verification may only cause a problem if the
upper bound imposed on the number of allowed Byzantine entities in the system
is violated. Due to the non-repudiation requirement, in case of bogus ZKP gen-
eration, the participant may be identified.

Ciphertext malleability. An active man-in-the-middle (MITM) attack while trans-
ferring secure buckets and transactions may harm both the transaction confiden-
tiality and, if modified, the transaction integrity. Due to ciphertext malleability
of the underlying encryption scheme, which is defined in §5.3.1, an adversary
may alter the encrypted data potentially resulting in an encryption of different
plaintext. In addition, public key modification would prevent the generation or
validation of a ZKP, and it would break the confidentiality as the attacker would
hold the private key. Such an attack requires breaking the underlying com-
munication relying on TLS 1.3, which is considered unfeasible for the assumed
computationally bounded adversary.

A ZKP replay attack. A ZKP replay attack may not be performed as the party
verifying the proof verifies that the party that generated the proof is the same as
its current transaction counter-party.

Denial of service on the validating notary. As the validating notary needs access
to all the transactions, it has to sign the issuance transaction as well. Therefore,
a malicious party may perform numerous self-issuance transactions with time-
consuming ZKP verification justified by the fact that it may improve its UTXO
model’s parallelism. More concretely, the more states a party has, the more con-
current transactions it may perform compared to the account model. A possible
mitigation may include rate limiting and verification timeouts for self-issuance
transactions.

Passive Adversary A passive adversary, who may be a network participant,
may only read the data stored on the ledger and the data in transit, but does not
perform any modifications or other actions. As communication relies on secure
channel, a passive adversary is not able to read the transaction data between the
parties. On the other hand, as we allow all the network participants to perform
transaction validation, all the transaction data is made available to every network
participants. In §3.2 we referred to this threat as information disclosure process

6. Security Analysis 39

threat. This threat is mitigated, because transactions contained on the ledger are
either encrypted or do not reveal any sensitive information. As discussed in §5.1,
the only plaintext transaction data consists of public keys, encoding constants
and ZKPs.

In conclusion, integrating our system in Corda has mitigated the information
disclosure threat associated with both passive and active adversary by encrypt-
ing all the ledger data. We faced two main challenges towards transaction con-
fidentiality. The first challenge was to allow participants to perform complete
transaction verification, while keeping the data encrypted. This challenge was
tackled using ZKPs and homomorphic encryption. The other challenge was to
provide transaction auditability, i.e., conducting a transaction audit without re-
vealing the private key used for data encryption. This challenge has been solved
using the secure buckets, as presented in §5.

Chapter 7

Performance Evaluation

7.1 Experiment Setup

The experimented results are obtained on a 3.20GHz Intel(R) Core(TM) i5-4570
cluster machine with four CPUs. In the following we elaborate on the experiment
setup between the two kinds of experiments we conduct.

Standalone System Performance. An experiment measuring standalone sys-
tem performance involves the following:

• Setup. Key material generation.

• Operation.

– Secure data type creation. Involves the following stages:

∗ Data encoding
∗ Data encryption
∗ Commitment
∗ Homomorphic operation

– ZKP generation.

• Verification. Verifies the operation by ZKP verification and homomorphic
operations.

System’s Performance in Corda. The experiments are run on the setup
mock network within Corda. Such a network consists of the network participants
identified by their certificates issued by the Doorman CA1 and the notary ser-
vice consisting of either the network participants or acting as a separate entity.
Figure 5.2 presents all network participants and flow logic we consider in perfor-
mance evaluation of privacy-preserving operations. We consider two transacting

1https://docs.corda.net/permissioning.html

40

https://docs.corda.net/permissioning.html

7. Performance Evaluation 41

participants, party A and party B, as well as the notary, party C, which is a
separate entity.

We consider two different scenarios regarding the notary service. In what
follows, we present and elaborate on these scenarios.

• Validating notary. In case of a validating notary, transaction verification
is performed by the notary and not by the transaction counter-party, i.e.,
party B in Figure 5.2.

• Non-validating notary. In case of a non-validating notary, the counter-
party, party B, performs transaction verification by executing the smart
contract. Therefore, the notary is not validating the transaction.

An experiment within Corda utilizes transactions between parties and in-
volves the complete life cycle of a transaction, which includes the following stages:

• Generation. Transaction creation and, in case of privacy-preserving opera-
tions, ZKP generation.

• Verification. Smart contract execution, which, in case of privacy-preserving
operations, performs ZKP verification.

• Signature. Signing the transaction.

• Counter-party signature collection. In case of a non-validating notary, it
involves transaction verification by the counter-party, i.e., party B in Fig-
ure 5.2.

• Finality flow. Includes transaction notarisation and, in case of a validating
notary, transaction verification.

In order to achieve statistical significance, we have decided to repeat each
experiment a hundred times. Therefore, in the upcoming figures each data point
corresponds to an average and standard deviation across hundred experiment
runs. As the results have shown negligible variance across experiment runs, we
have decided to exclude the warm-up and cool-down phase, hence reporting the
results across all hundred runs.

We are interested in the performance comparison of plain and secure opera-
tions in both the standalone system and the system embedded in Corda.

7.2 Results

The experimental results are divided into the following sections:

7. Performance Evaluation 42

• Standalone system performance

• System’s performance in Corda

• Realistic industrial use case scenarios

We are interested in comparison between plain, unsecured operations and their
respective secure counterparts provided by our system. The comparison is based
on the computation time as well as storage requirements. Corda’s underlying
communication involves transaction serialization, therefore as we increase the
transaction size, the serialization process becomes more apparent in terms of
computation time.

7.2.1 Standalone System Performance

Prior to running the experiments, we expect to observe significant slow-down for
the secure operation due to computationally involved ZKPs. As certain privacy-
preserving operations, such as, e.g., a ciphertext comparison, utilize other ZKPs,
we expect that all the utilized proofs, in a ciphertext comparison, have a lower
computation time as well as smaller proof size. We expect the equality of cipher-
texts, addition, subtraction, multiplication and division to be the least expen-
sive operations, whereas plaintext and ciphertext comparison including the set
membership and range proofs are expected to be the most expensive ones. As
computation time and proof size of set membership operation linearly depends
on the size of the set in question, we decide to fix the set size to one hundred
elements for the reported performance.

The results in Figure 7.1 show that floating- point numbers (denoted by prefix
FP in Figure 7.1) have an impact on computational effort. The explanation is
that rescaling of both the mantissa and secure randomness of the encrypted
floating-point number prior to ZKP generation involves costly exponentiation,
as shown in Protocol 1. It is important to notice that secure operations are
tens of thousands times slower than their non-private counterparts. Even with
a considerable slow-down in a standalone comparison, our aim is to achieve a
reasonable slow-down (in the order of one magnitude) within a DLT embedding
our system. The rationale behind the idea is that a careful embedding will not
result in such a considerable slow-down. The setup phase is performed only once
in the issuance transaction and it suffers from non-negligible variance. The reason
is the generation of Paillier public and private key pairs which involve generation
of random probable safe primes p and q requiring a probabilistic testing. In order
to tackle the variance exhibited during the setup phase, we report an average
time needed for the key material generation across all operations. The upside
to the variance in the setup time is the fact that the setup is not a reoccurring
event, as generated public keys may be used for numerous proof generations
and verifications. Proof sizes depicted in Figure 7.2 support our expectations in

7. Performance Evaluation 43

Figure 7.1: Bottleneck analysis for standalone system’s performance ordered by
increasing computation time.

terms of operator grouping and their order. Computation time (Figure 7.1) and
proof size (Figure 7.2) results exhibit the expected behaviour in case of proofs
which consist of other proofs, such as, e.g., plaintext and ciphertext comparisons.
The largest and most computationally expensive privacy-preserving operation
is the ciphertext comparison with a size of approximately 12kB. The results of
unsecured operations have been omitted from Figure 7.1 as they are hardly visible
due to their much lower computation time. Therefore, we report these results
in Appendix Table A.1. The average time in Table A.1 is the time needed for
a complete privacy-preserving operation. The slow-down factor in Table A.1
is calculated as quotient of computation time for privacy-preserving operation
(excluding the time needed for the setup phase) and the computation time for
its plaintext counterpart operation.

7.2.2 System’s Performance in Corda

Due to the significant overhead posed by Corda’s transaction life cycle, we expect
the slow-down in performance of the privacy-preserving computation as opposed
to the plain computation to be significantly less than in the standalone system
comparison. In each of the transaction stages we expect to observe an increase
in computation time for the secure operations as each stage either contains an
overhead of proof creation or verification. As we propose the concept of validat-
ing notary and hence omit the need for the transacting counter-party to resolve
the transaction chain, we expect to observe a computation time decrease in the
counter-party signature collection stage. The rationale is that the cumulative cost

7. Performance Evaluation 44

Figure 7.2: Sizes of individual proofs for the supported operations.

of plain computations performed while resolving a long transaction chain for the
non-validating notary reaches a point where a privacy-preserving computation
for a single transaction is less expensive. In addition to the cost effectiveness, the
main contribution of the privacy-preserving computation is the achieved confiden-
tiality which offers higher validation scalability, where more parties may validate
transactions without revealing any information.

Figure 7.3 presents a bottleneck analysis of all privacy-preserving operations
implemented in Corda for issuance and transfer transactions together with the
respective unsecured operations. In order to provide a fair comparison, as we are
proposing the usage of validating notary with privacy-preserving computation,
all the plaintext operations are also run using the validating notary. In addition,
we have omitted any counter-parties in the transactions, as we look into their
performance later on in the realistic industrial use case scenarios. As the finality
flow involves the transaction verification, we observe that the finality flow time
includes the verification time in every operation. Issuance transactions do not
involve transaction validation and do not hold any proofs as they may be created
at any point in time and kept local. Therefore, the transaction generation time,
which involves the effort of initial key material creation is the main bottleneck.

7. Performance Evaluation 45

Figure 7.3: Bottleneck analysis after integrating our system in Corda.

It is important to mention that the generation of the key material suffers from
non-negligible variance as the public modulus is obtained via multiplication of
two secret, secure random probable prime numbers. The same variance around
the key material generation has been observed in the standalone system perfor-
mance. Due to the fact that public keys are associated with the state(s) in the
transactions, the transfer transaction does not involve re-creation of the key ma-
terial, but rather propagates the public part of the key material generated in the
issuance transaction. Therefore, we observe a decrease in the generation time for
the transfer transaction.

In the upcoming §7.2.3, we reflect on the performance of the system integrated
in Corda on realistic use case scenarios, where we combine presented privacy-
preserving operations in order to build smart contracts.

7.2.3 Realistic Industrial Use Cases

We are interested in comparison between validating notary with secure, privacy-
preserving computation and the non-validating notary with plaintext computa-
tion. Thus, we compare the performance using our system with Corda’s notion
of confidentiality leveraging need-to-know communication basis under two suit-
able models - validating and non-validating notaries. We investigate different
proof embedding strategies and highlight their strengths and weaknesses based
on a specific use case. Specific for the industrial service setting, our system of-
fers a privacy-preserving immutable maintenance log. The investigated industrial
setting does not involve fungible assets, but rather data containers that should

7. Performance Evaluation 46

satisfy certain contract requirements. In case of fungible assets and need of audit
proofs, the transacting party may use our system’s secure buckets. The secure
buckets are as well applied to the case where prior input data is needed for proof
generation.

General Use Case Description

Each use case contains four main entity groups:

• Internet Service Provider (ISP)

• ISP Proxy

• Contractor

• Customer

The ISP is responsible for providing the agreed Internet access to the customer
specified by the Service Level Agreement (SLA). Each ISP may delegate certain
tasks to an external collaborator, i.e., contractor. Once the SLA has been signed
by the customer, ISP sends an ISP Proxy device, which is set up by the customer
on-premise. The ISP Proxy device is responsible for data gathering, event-based
transaction initialization and, in case of privacy-preserving operations, proof gen-
eration. More specifically, ISP proxy is an access point connected to the router
running OpenWRT 2, where a packet sniffer such as tcpdump3 is installed.

Corrective maintenance

The first use case presents a scenario of interaction between the ISP, represented
by the ISP Proxy, and the customer. The data logged on the ledger represents
SLA violations and corresponding corrections. More concretely, in case of an
agreement violation, a violation state should be issued in a transaction noti-
fying all the involved participants about it. Furthemore, there should be an
immutable log of the corresponding violation resolution. Such an application
provides the non-repudiation property and may be used to automatically track
the participants’ SLA compliance. ISP would like to have the agreement with
the contractor validated. Such agreement may include the maximum response
time, i.e., the time between violation and correction state issuance. In addition,
our use case includes a scenario where a customer rents the apartment to a party
which wishes to continue the SLA under the same terms and conditions as the
previous customer. Such a scenario spares significant effort on both the customer
and the ISP side as it, e.g., does not require a new ISP Proxy device. We are

2https://openwrt.org/
3https://www.tcpdump.org/

https://openwrt.org/
https://www.tcpdump.org/

7. Performance Evaluation 47

investigating two different models operating under different levels of confidential-
ity. In one model we have a non-validating notary without privacy-preserving
computation and a validating notary with privacy-preserving computation in the
other model. More formally, smart contract logic may be summarized as follows.
Let bsti denote the boolean representing the validity of a statement sti. Smart

contract SC is defined as a union of statements sti, i.e., SC =
n⋃

i=1
sti. Let ui

represent the upload and di the download speed measured at state i. Let usla and
dsla represent the minimum upload and download speed, respectively, as defined
by SLA’s terms and conditions. In addition, let ti represent the timestamp at
which the state measurement has occurred, i.e., has been placed in a transaction
and let δ be the maximum allowed response time in case of a violation, defined
in the agreement between the ISP and the contractor.

• Verify that the maintenance correction was performed in time:

bst1 =

{
(ti+1 − ti) ≤ δ if (ui < usla ∨ di < dsla)

True otherwise
(7.1)

• Verify that the order of states holds, i.e., a violation state must be followed
by a correction state and vice versa:

bst2 =

{
(ui ≥ usla ∧ di ≥ dsla) if (ui+1 < usla ∨ di+1 < dsla)

(ui < usla ∨ di < dsla) otherwise
(7.2)

Such a smart contract makes use of the various ZKPs described in §5.3.2.

Figure 7.4 compares the performance of privacy-preserving and plain smart
contracts for a validating and non-validating notary. We measure the perfor-
mance with regard to two aspects - confidentiality and computational effort.

The performance metric for the computational effort is the transaction reso-
lution time as a function of chain length. At approximately 160 transactions in
the chain we reach the point from which it is beneficial for the system to operate
with a privacy-preserving validating notary. The reason for such a behaviour
can be seen in Figure 7.5. In case of a non-validating notary, as a customer’s
corrective maintenance chain grows, changing the customer operating under the
same SLA agreement requires a long transaction resolution process as depicted
in the counter-party signature collection stage. This stage involves validating the
entire history of previous customer transactions and hence violates the notion
of confidentiality. Up until the point of customer change, Corda’s need-to-know
communication for the non-validating has kept the transactions private to the
participants. This raises the question of who the notary is. Given privacy-
preserving validating notaries, such question may be answered by letting each
system participant contribute to the validation process without learning any sen-
sitive information. Introducing a trusted third party or an entity belonging only

7. Performance Evaluation 48

Figure 7.4: Corda’s dependency resolution time for validating and non-validating
notaries with and without privacy.

to some participants as a notary service requires trust enforcement. In an in-
dustrial setting, a certain computational overhead can be accepted, in trade-off
for confidentiality. Our results show that there is a long-term computational ef-
fort pay off for using privacy-preserving validating notaries. The computational
performance comparison of a standalone transaction with a known transaction
history shows that privacy-preserving smart contracts cause a slow-down by a
factor of 16. On the other hand, the transaction size with privacy-preserving
contracts increases by approximately a factor of 10, resulting in 80kB. As a re-
sult, in each transaction life-cycle stage, the privacy-preserving mode takes more
time than the plain one. A closer look into Figure 7.5 and Figure 7.3 lets us
draw the following conclusions. Our smart contract consists of five ciphertext
comparisons including homomorphic addition. Each ciphertext comparison takes
approximately 200 ms to verify in Corda (Figure 7.3), therefore the expected
verification time matches the approximately observed 1000 ms (Figure 7.3). As
expected, the finality stage takes at least as much as the verification time in case
of a validating notary as the notary performs the validation itself. The additional
overhead contains the communication between involved parties and transaction
storage. The concept of non-validating notary with privacy has shown to suffer
from high transaction resolution time in case of a long transaction chain and
is therefore omitted from the Figure 7.4. Nevertheless, in case an asset does
not change hands, the notary service is computationally limited and privacy is
crucial, a non-validating privacy-preserving notary would be a feasible solution.

7. Performance Evaluation 49

Figure 7.5: Bottleneck analysis for dependency resolution for validating and non-
validating notaries with and without privacy.

URL blacklisting

Our next use case depicts a browsing scenario, where each visit to a blacklisted
URL site triggers a transaction. Such a transaction chain represents an im-
mutable blacklisted browsing log which may be used for various applications.
Such applications may include agnostic firewall analysis or tracing the cause
leading to an identity theft. We enforce the set of blacklisted URLs to remain
private to the ISP and ISP proxy, whereas all the system participants may attest
to the fact whether certain blacklisted site is contained in the set. Our aim is to
investigate performance of state and reference proof embedding strategies.

Let S represent the set of blacklisted sites and si the visited site, then the
plain smart contract is defined as:

bst1 =

{
True if si ∈ S
False otherwise

(7.3)

As we would like to hide both the visited URLs and the original set of black-
listed URLs, our approach utilizes our system’s k-anonymity set inclusion opera-
tion. We analyse performance as a function of proof size, due to aforementioned

7. Performance Evaluation 50

Figure 7.6: Performance for proof embedding strategies with increasing verifica-
tion time.

7. Performance Evaluation 51

linear increase in time and size with respect to the set size. Figure 7.6 presents
two different proof embedding strategies, where we compare the transaction res-
olution time and storage requirements of both approaches.

Figure 7.7: Bottleneck analysis for proof embedding strategies with increasing
verification time.

State proof embedding State proof embedding places the ProofSet gener-
ated by the transaction initiator in the state itself, which is encapsulated in the
transaction. Therefore, transaction size grows proportionally to the proof size
(Figure 7.6). We expect to observe high overhead in the initial stage where the
transaction is being serialized into a WireTransaction as well as in the stages
where the transaction is being sent across the wire, i.e., in the counter-party and
finality stage. Furthermore, the contract complexity increases proportionally to
the proof size, hence resulting in higher generation and verification time (Fig-
ure 7.7). As transaction participants in a UTXO model store the unspent states
in their vault, state proof embedding leads to a significant storage increase ulti-
mately resulting in data explosion. As consumed and created states carry proofs,
transfer transaction size stx is:

stx = 2sp + sbtx,

7. Performance Evaluation 52

where sp corresponds to the contract specific proof size and sbtx to the base trans-
action size, which includes signatures and the anonymous participants’ identities.

Attachment proof embedding Our aim is to leverage an off-chain ProofSet
embedding by placing a SecureHash (SHA-256) reference in the state pointing
to the ProofSet attachment. This approach keeps the transaction size constant
regardless of the proof size or contract complexity (Figure 7.6). The attachments
are stored on an external storage and are sent over gRPC on-demand to the
participating transaction parties.

Figure 7.8: Wire transaction creation time for large proof embedding strategies.

Contrary to our expectations, Figure 7.6 shows that state proof embedding
outperforms the reference in terms of the resolution time. On the other hand, the
transaction size is showing the expected behaviour. Further analysis of Corda’s
transaction life-cycle offers valuable insights. Figure 7.8 demonstrates the time
needed to transform a transaction from the transaction builder to a WireTransac-
tion. Attachment proof embedding suffers from relatively high variance, but does
not correlate with the transaction size (i.e., the proof size). The reason for such
behaviour is the fact that the attachment is turned into a ClassLoader instance
during the initial stage. In our experiment setup, this time-consuming task has
to be performed only once prior to WireTransaction creation. The proof state
embedding approach in Figure 7.6 reveals the expected proportional increase in
time with respect to the transaction size as the serialization takes place. Given
this knowledge, we further investigate at which transaction size may an attach-
ment proof embedding be the favorable option. In order to do so, we increase

7. Performance Evaluation 53

the proof size further, reaching the limits of plausible smart contract complexity.
As we are interested in the effect of the transaction size on the performance, the
verification time is set to a constant. It depicts a scenario where the proof size
increases faster than the underlying verification consuming the proofs.

Figure 7.9: Performance for large proof embedding strategies with constant ver-
ification time.

Figure 7.9 supports our hypothesis that the attachment proof embedding is
beneficial for large transaction sizes, i.e., proof sizes.

Further bottleneck analysis depicted in Figure 7.10 shows the initially ex-
pected behaviour, where the stages involving multi-party communication and
serialization suffer from the overhead introduced by a large transaction size. As
Figure 7.2 demonstrated, in order to reach a proof size of approximately 300kB,
at least 25 privacy-preserving ciphertext comparisons should be contained in the
smart contract, which may be reasonable to expect. In conclusion, regardless of
the slight differences in the resolution time performance, the benefits of a constant
transaction size are of crucial importance and hence, reference proof embedding
is a favorable long-term option.

7. Performance Evaluation 54

Figure 7.10: Bottleneck analysis for large proof embedding strategies with con-
stant verification time.

Chapter 8

Summary

This thesis investigated current distributed ledger technologies and their appli-
cability to industrial service applications. In that regard, we have identified
confidentiality as the main shortcoming. As a result, we proposed a solution in
form of a system that enables writing privacy-preserving smart contracts.

The proposed system consists of wide range of operations on both numbers
and textual data which may be verified in a privacy-preserving manner. Such
operations include, to the best of our knowledge, a novel approach towards se-
cure comparisons in which neither the order nor the ciphertext’s frequency is
revealed. The method underlying our approach combines partially homomor-
phic encryption schemes and zero-knowledge proofs. The extensive evaluation of
our system’s performance has shown that supporting floating-point numbers as
well as textual data introduces an additional encoding overhead to the privacy-
preserving operations. Our system operates without private keys and utilizes the
non-determinism of the encryption scheme. Therefore, the re-generation of key
material is not required during a life-cycle in which the public key material is
being used.

Beyond the design and implementation of the system itself, this thesis showed
how to integrate that system into Corda, a permissioned DLT. This integration
included performance optimizations to expand Corda’s concept of validating no-
taries. We remove the need for validation by peers and delegate this job to the
notaries themselves. This delegation results in significant reduction in trans-
action resolution time for highly liquid assets in a long transaction chain. We
also evaluated our system’s performance. The results have shown that adding a
privacy-preserving layer to the transactions does not result in an impractical com-
putational slow-down and as such may be applicable for industrial applications.
Furthermore, we investigate different proof embedding approaches and show that
embedding a ZKP reference in a transaction results in a constant transaction size
and does not have a significant impact on computational performance.

In conclusion, integration of our system into Corda mitigated the information
disclosure threat by providing privacy-preserving transactions.

55

8. Summary 56

Future Work. In following, we highlight the most interesting future system
improvements.

Anonymity. The currently supported public key randomization may be
replaced by a more robust ring signature scheme [10]. Network participants would
form a group of entities, where each participant holds its own public/private key
pair. This key pair may be used to generate a ring signature over a certain
transaction. A signature from a specific party would not trace back to its original
identity, but would prove it belongs to a specific group of entities.

Single Commitment Scheme. As the current approach operates with an
encryption and a commitment scheme to support a wide range of operations, we
require an additional ZKP stating that both schemes hide the same value. As
range proofs operate with commitment schemes and we do not utilize private
keys from the encryption scheme, a future improvement may include operating
under a single commitment scheme while supporting the same range of operations.
The challenge is to provide the ZKPs for all the basic arithmetic operations and
set inclusion utilizing only a commitment scheme as opposed to the encryption
scheme. Moreover, the underlying ZKPs may be further optimised in their size
resulting in lower serialization overhead when being transferred.

Bibliography

[1] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation,
Stanford University, 2009, crypto.stanford.edu/craig.

[2] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the
AES Circuit,” in Advances in Cryptology – CRYPTO 2012, R. Safavi-Naini
and R. Canetti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 850–867.

[3] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-Preserving
Symmetric Encryption,” in Advances in Cryptology - EUROCRYPT 2009,
A. Joux, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
224–241.

[4] C. Cachin and M. Vukolic, “Blockchain Consensus Protocols in
the Wild,” CoRR, vol. abs/1707.01873, 2017. [Online]. Available:
http://arxiv.org/abs/1707.01873

[5] M. Hearn, “Corda: A Distributed Ledger,” Online, available from: https:
//www.corda.net/content/corda-technical-whitepaper.pdf [July 2019].

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” CoRR, vol. abs/1801.10228, 2018. [Online]. Available:
http://arxiv.org/abs/1801.10228

[7] N. Kannengiesser, S. Lins, T. Dehling, and A. Sunyaev, “What Does Not Fit
Can be Made to Fit! Trade-Offs in Distributed Ledger Technology Designs,”
01 2019.

[8] “Survey of Confidentiality and Privacy Preserving Technologies for
Blockchains,” Online, available from: https://www.r3.com/wp-content/
uploads/2018/04/Survey_Confidentiality_Privacy_R3.pdf [July 2019].

[9] N. T. Courtois. and R. Mercer., “Stealth Address and Key Management
Techniques in Blockchain Systems,” in Proceedings of the 3rd Interna-
tional Conference on Information Systems Security and Privacy - Volume
1: ICISSP,, INSTICC. SciTePress, 2017, pp. 559–566.

57

crypto.stanford.edu/craig
http://arxiv.org/abs/1707.01873
https://www.corda.net/content/corda-technical-whitepaper.pdf
https://www.corda.net/content/corda-technical-whitepaper.pdf
http://arxiv.org/abs/1801.10228
https://www.r3.com/wp-content/uploads/2018/04/Survey_Confidentiality_Privacy_R3.pdf
https://www.r3.com/wp-content/uploads/2018/04/Survey_Confidentiality_Privacy_R3.pdf

Bibliography 58

[10] R. L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,” in Ad-
vances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 552–565.

[11] T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifi-
able Secret Sharing,” in Advances in Cryptology — CRYPTO ’91, J. Feigen-
baum, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–
140.

[12] S. Meiklejohn, “Top Ten Obstacles along Distributed Ledgers Path to Adop-
tion,” IEEE Security Privacy, vol. 16, no. 4, pp. 13–19, July 2018.

[13] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller,
P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer, “On Scaling
Decentralized Blockchains (A Position Paper),” 02 2016.

[14] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Processing,” in
Proceedings of the 23rd ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 85–100. [Online].
Available: http://doi.acm.org/10.1145/2043556.2043566

[15] M. Hauck, S. Savvides, P. Eugster, M. Mezini, and G. Salvaneschi,
“SecureScala: Scala Embedding of Secure Computations,” in Proceedings
of the 2016 7th ACM SIGPLAN Symposium on Scala, ser. SCALA
2016. New York, NY, USA: ACM, 2016, pp. 75–84. [Online]. Available:
http://doi.acm.org/10.1145/2998392.2998403

[16] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes,” in Advances in Cryptology - EUROCRYPT 1999, Interna-
tional Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, April 1999.

[17] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms,” in Advances in Cryptology, G. R. Blakley and
D. Chaum, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985,
pp. 10–18.

[18] “Advanced Encryption Standard: Federal Inf. Process. Stds.” Online,
available from: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.
pdf [September 2019].

[19] E. A. da Silva, “Practical use of Partially Homomorphic Cryptography,”
Master’s thesis, Instituto Superior Tecnico, Faculdade de Direito, Escola
Naval, Portugal, 2016.

http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2998392.2998403
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Bibliography 59

[20] J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC, 2007.

[21] E. Ben-sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized Anonymous Payments from Bitcoin,”
pp. 459–474, 05 2014.

[22] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards Privacy
in a Smart Contract World,” Cryptology ePrint Archive, Report 2019/191,
February 2019, https://eprint.iacr.org/2019/191.

[23] D. Zhang, A. Su, F. Xu, and J. Chen, “ARPA Whitepaper,” CoRR, vol.
abs/1812.05820, 2018. [Online]. Available: http://arxiv.org/abs/1812.05820

[24] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in Proceedings 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 1353–1370. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/kalodner

[25] D. C. Sánchez, “Raziel: Private and Verifiable Smart Contracts on
Blockchains,” Cryptology ePrint Archive, Report 2017/878, 2017, https:
//eprint.iacr.org/2017/878.

[26] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized Com-
putation Platform with Guaranteed Privacy,” CoRR, vol. abs/1506.03471,
2015. [Online]. Available: http://arxiv.org/abs/1506.03471

[27] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
Blockchain Model of Cryptography and Privacy-Preserving Smart Con-
tracts,” in 2016 IEEE Symposium on Security and Privacy (SP), May 2016,
pp. 839–858.

[28] N. Narula, W. Vasquez, and M. Virza, “zkLedger: Privacy-Preserving
Auditing for Distributed Ledgers,” in Proceedings 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 65–80. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/narula

[29] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe:
Enabling Decentralized Private Computation,” Cryptology ePrint Archive,
Report 2018/962, 2018, https://eprint.iacr.org/2018/962.

[30] A. Kerckhoffs, “La Cryptographie Militaire ,” 1883.

[31] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings
of the 3rd Symposium on Operating Systems Design and Implementation, ser.

https://eprint.iacr.org/2019/191
http://arxiv.org/abs/1812.05820
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2017/878
http://arxiv.org/abs/1506.03471
https://www.usenix.org/conference/nsdi18/presentation/narula
https://eprint.iacr.org/2018/962

Bibliography 60

OSDI ’99. Berkeley, CA, USA: USENIX Association, 1999, pp. 173–186.
[Online]. Available: http://dl.acm.org/citation.cfm?id=296806.296824

[32] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus
Algorithm,” 2014.

[33] F. Boudot, “Efficient Proofs that a Commited Number Lies in an Interval,” in
Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 2000.

[34] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of
Interactive Proof Systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
Feb. 1989. [Online]. Available: http://dx.doi.org/10.1137/0218012

[35] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems,” in Proceedings on Advances
in cryptology—CRYPTO ’86. London, UK, UK: Springer-Verlag, 1987,
pp. 186–194. [Online]. Available: http://dl.acm.org/citation.cfm?id=36664.
36676

[36] “A Java Library for Paillier Partially Homomorphic Encryption,” Online,
available from: https://github.com/n1analytics/javallier/tree/master/src/
main/java/com/n1analytics/paillier [July 2019].

[37] “ING Zero-Knowledge Range Proofs,” Online, available from:
https://github.com/ing-bank/zkproofs/tree/master/examples/java/zkrp/
src/main/java/com/ing/blockchain/zk/ [July 2019].

[38] I. Damgård, M. Jurik, and J. Nielsen, “A Generalization of Paillier’s Public-
Key System with Applications to Electronic Voting,” International Journal
of Information Security, vol. 9, pp. 371–385, 04 2003.

[39] H. Duan et al., “Aggregating Crowd Wisdom via Blockchain: A Private,
Correct and Robust Realization,” in IEEE International Conference on Per-
vasive Computing and Communications, Kyoto, Japan, March 2019.

[40] J. Camenisch and V. Shoup, “Practical Verifiable Encryption and Decryp-
tion of Discrete Logarithms,” in Advances in Cryptology - CRYPTO 2003,
D. Boneh, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
126–144.

[41] T. F. Dahlin, “Paillier Zero-Knowledge Proof,” The Daylighting Society,
Tech. Rep., December 2016.

[42] P. Samarati and L. Sweeney, “Protecting Privacy when Disclosing
Information: k-Anonymity and its Enforcement through Generalization
and Suppression,” in Technical Report SRI-CSL-98-04. Computer

http://dl.acm.org/citation.cfm?id=296806.296824
http://dx.doi.org/10.1137/0218012
http://dl.acm.org/citation.cfm?id=36664.36676
http://dl.acm.org/citation.cfm?id=36664.36676
https://github.com/n1analytics/javallier/tree/master/src/main/java/com/n1analytics/paillier
https://github.com/n1analytics/javallier/tree/master/src/main/java/com/n1analytics/paillier
https://github.com/ing-bank/zkproofs/tree/master/examples/java/zkrp/src/main/java/com/ing/blockchain/zk/
https://github.com/ing-bank/zkproofs/tree/master/examples/java/zkrp/src/main/java/com/ing/blockchain/zk/

Bibliography 61

Science Laboratory, SRI International, 1998. [Online]. Available: http:
//www.csl.sri.com/papers/sritr-98-04/

http://www.csl.sri.com/papers/sritr-98-04/
http://www.csl.sri.com/papers/sritr-98-04/

Appendix A

Standalone System Performance

Operation Average time (ms) Slow-down
Ciphertext-Ciphertext Equality 22.45± 0.08 70903.06
FP Ciphertext-Ciphertext Equality 52.63± 0.38 105513.99
String Ciphertext-Ciphertext Equality 41.67± 0.22 70308.63
Subtraction 23.11± 0.26 8722.06
FP Subtraction 68.06± 0.34 24280.23
Addition 23.51± 0.15 9683.39
FP Addition 68.57± 0.95 28726.68
Paillier Fujisaki-Okamoto Equality 41.8± 0.16 -∗

FP Paillier Fujisaki-Okamoto Equality 57.39± 0.56 -
Division 55.53± 0.07 25962.15
FP Division 100.94± 0.4 34040.75
Multiplication 55.85± 0.41 22020.65
FP Multiplication 101.24± 0.44 28234.02
Set Membership 115.17± 0.33 89178.87
FP Set Membership 130.92± 0.82 40311.22
FP RangeProof 143.06± 0.69 120596.31
Range Proof 127.55± 0.49 122943.88
String Set Membership 141.38± 4.89 6437.24
Ciphertext-Plaintext Comparison 168.25± 0.32 581892.44
FP Ciphertext-Plaintext Comparison 183.29± 0.82 394490.42
Ciphertext-Ciphertext Comparison 205.87± 0.38 689203.85
FP Ciphertext-Ciphertext Comparison 238.15± 1.28 646940.64

Table A.1: Standalone system performance results with comparison to unsecured
operations.

∗No unsecured operation.

A-1

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	3 Models
	3.1 System Model
	3.2 Threat Model

	4 Problem Statement
	4.1 Functionality
	4.2 Security

	5 Methods
	5.1 Overview
	5.2 Notation
	5.3 Implementation
	5.3.1 Background and Tools
	5.3.2 Supported Operations

	5.4 Integration in Corda

	6 Security Analysis
	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Results
	7.2.1 Standalone System Performance
	7.2.2 System's Performance in Corda
	7.2.3 Realistic Industrial Use Cases

	8 Summary
	Bibliography
	A Standalone System Performance

