
Frequency Spectrum Monitoring for
FlockLab
Semester Thesis

Florian Wernli

fwernli@ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Roman Trüb
Dr. Jan Beutel

Prof. Dr. Lothar Thiele

June 28, 2019

mailto:Florian Wernli<fwernli@ethz.ch>

Acknowledgements

I heartily thank my supervisor, Roman Trüb, doctorate at D-ITET, TIK, for
his encouragement, guidance and especially for always making time for extensive
weekly meetings.

i

Abstract

The Computer Engineering Group (TEC) operates the FlockLab testbed, for
developing and evaluating wireless sensor network protocols. With nodes dis-
tributed over the campus the sensors are exposed a real-world environment.
Currently, the system relies on GPIO and power tracing to evaluate the sys-
tem’s performance, thus being unable to spot interference caused by third-party
wireless devices. This project provides the foundations to extend the current
setup with the possibility to sense and characterize the radio frequency spec-
trum while the tests are running. Based on GNU Radio an application has been
developed to record the electromagnetic spectrum. The focus of the project was
to achieve measurements that are reproducible and comparable while reducing
the amount of produced data to a manageable size. The software works with
either an RTL-SDR or a USRP B210, the characteristic of both devices has been
analyzed and compared to the output of the Tektronix RSA306. Data reduction
is achieved by accumulating instantaneous spectra to larger blocks and only sav-
ing the averaged power spectrum, as well as the minimal and maximal observed
power per frequency bin of these blocks. Information loss due to the averaging
is partly compensated by annotating anomalies in the noise distribution and an
experimental indication of whether an FSK or a LoRa modulated signal was
recorded.

Keywords:
spectrum sensing, power spectral density, RTL-SDR, USRP

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 1

1.3 Related work . 2

1.4 About this Document . 3

2 Fundamentals of SDR and PSD 4

2.1 Software-defined Radio . 4

2.2 Power Spectral Density . 5

2.2.1 Windows . 5

2.2.2 Constant Overlap Add . 6

2.2.3 Normalization . 8

3 Device Characteristics 9

3.1 Timings . 9

3.1.1 Clock accuracy and stability 9

3.1.2 Frequency hopping . 12

3.2 Distortions . 13

3.2.1 USRP . 13

3.2.2 RTL-SDR . 14

3.3 Gain . 15

3.3.1 RTL-SDR . 16

iii

Contents iv

4 Implementation 18

4.1 gr-FlockLab . 19

4.1.1 AGC . 19

4.1.2 FFT . 20

4.1.3 Signal classification . 20

4.1.4 Stream Tags . 21

4.1.5 PWelch . 22

4.1.6 File Sink . 22

4.1.7 Debugging . 23

4.2 FlockLab PSD Viewer . 23

5 Results 24

6 Conclusions 26

7 Future Work 27

A Assignment 1

B Timetable 6

C Setup 8

C.0.1 Notebook . 8

C.0.2 Raspberry Pi . 8

C.1 Common . 9

D Usage 11

D.1 PSD Recorder . 11

D.2 PSD Viewer . 11

E Experiments 12

E.1 FFT performance RPI 3 . 12

E.2 Kalibrate USRP . 12

E.3 Kalibrate RTL-SDR . 14

Chapter 1

Introduction

1.1 Motivation

The development of wireless sensor networks requires a proper test environment.
For that reason, the Computer Engineering Group (TEC) operates the FlockLab
testbed [1] since 2012. The testbed reduces the effort of repeatedly deploying
test networks and improves the reproducibility of experiments.

Up to now, FlockLab does not provide a service for monitoring the radio
frequency spectrum. The additional information can be used as a further method
to verify the correct operation. Mostly the effect of the environment, such as
interference, has not been captured by the current setup.

The problem when recording the electromagnetic spectrum is the large
amount of data. This obvious solution of constantly sampling signals within
the bandwidth of interest, would create roughly 450 MiB per minute per MHz
bandwidth. Thus it is highly impractical for longer observations.

1.2 Goals

The goal of the project is to develop a system that is able to capture the radio
frequency spectrum with a frequency resolution of 10 kHz and a time resolution or
0.1 s. The data acquisition is performed by a software-defined radio (SDR), either
an RTL-SDR Blog v31 or a USRP B2102 can be used as hardware frontends. In
the following the devices will be called RTL-SDR and USRP respectively.

To counteract the loss introduced by the low frequency resolution and the
long averaging time, the samples are processed beforehand and possible signals
are annotated.

1https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
2https://www.ettus.com/all-products/UB210-KIT/

1

https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
https://www.ettus.com/all-products/UB210-KIT/

1. Introduction 2

The output should be comparable and reproducible, thus the characteristics
of the devices are analyzed and used. The difference to most SDR projects is
that decoding the signal is not a goal. Instead, the power levels of the noise and
signals in the environment are of interest.

1.3 Related work

The availability of cheap SDRs motivated the start of different projects observing
electromagnetic emissions. Most available software does not bother saving the
spectrum in any useful format but instead focuses on demodulating the signal
to either a byte or audio stream. Examples for such software are GQRX 3 or
SDR#4. There are also web-based receiver applications like OpenWebRX 5. They
usually allow exporting raw IQ data which can be viewed with inspectrum6 or
processed with Python or Matlab. However, the fast growth of data makes the
acquisition in raw format impractical.

The ElectroSense project [2] is similar to this project. Their goal is to monitor
the spectrum to analyze the usage of the electromagnetic spectrum. Everyone
can participate in the project. It is designed to use an RTL-SDR as receiver to
keep the costs low and attract volunteers. A major difference, however, is the
resolution at which they record the spectrum. They use the device to observe
bandwidths much larger than the devices bandwidth, thus they have to change
the centre-frequency. The tuning process of the RTL-SDR is slow, thus there
are not only unobserved segments, but also a considerable amount of unusable
samples during the retuning. Such a loss would not be acceptable for the use
with FlockLab.

Something similar to ElectroeSense was run by Microsoft under the name
Microsoft Spectrum Observatory7. Unfortunately, the project seems to be dis-
continued. A probable reason for the shutdown is the small number of partici-
pant, only a few US universities took part. The project used USRP devices thus
the setup cost of a receiver station was a few thousand dollars.

When it comes to spectrum sensing the paper of T. Yücek and Hüseyin Ar-
slan [3] provides a good overview of the problems and possible algorithms. A
more detailed description of such an algorithm is found in QuickSense [4]. They
propose a method for wideband multichannel sensing. For the classification of
signals in the SRD860 band by their communication standard, the work of M.
Kuba [5] is promising. He also contributed to a project that turned an Android

3gqrx.dk
4https://airspy.com/
5https://www.sdr.hu/openwebrx
6https://github.com/miek/inspectrum
7https://www.microsoft.com/en-us/research/event/spectrum-observatory-thinktank/

and http://observatory.microsoftspectrum.com/ (offline)

gqrx.dk
https://airspy.com/
https://github.com/miek/inspectrum
https://www.microsoft.com/en-us/research/event/spectrum-observatory-thinktank/
http://observatory.microsoftspectrum.com/

1. Introduction 3

tablet and an RTL-SDR into a tool for traffic monitoring with automatic com-
munication standard recognition [6]. With the data collected by the Spectrum
Observatory, M. Zheleva et al. created TxMiner[7] to identify transmitter using
a Rayleigh-Gaussian mixture model, that outperforms edge detection in both
occupancy and bandwidth estimation accuracy.

1.4 About this Document

This document starts with a short introduction to software-defined radios and a
reminder on how to read power spectral density plots. The next chapter presents
the device characteristics the resulting limitations and the recommended mode
of operation. This is followed by details on the implementation and the choice
of default parameters. The final chapter presents test results showing the limits
of comparability and reproducibility of the acquired data.

Chapter 2

Fundamentals of SDR and
PSD

2.1 Software-defined Radio

Software-defined radios (SDR) are radio communication systems, where certain
signal processing parts are performed digitally. The definition is rather loose
and is applied to a wide range of setups including everything from devices only
performing the decoding of baseband signal using a sound card connected to
computer up to devices where the radio frequency is sampled directly, reducing
the analog front-end to an amplifier, anti-aliasing filter and an ADC.

Figure 2.1: SDR Working principle

Most devices that are advertised as SDR work as depicted in Fig. 2.1. The
RF signal is filtered and amplified, the mixer stage consists of two mixers working
with a phase offset of 90◦ creating a quadrature signal. The in-phase and the
quadrature component are filtered sampled by two different ADCs. The cost of
using two ADCs is compensated by the advantages of the quadrature signal, twice
the bandwidth is covered compared to a single ADC with the same sampling rate.
Also, the IQ sample contains the phase of the signal.

The schematic representations of SDR often oversimplify the inner workings.

4

2. Fundamentals of SDR and PSD 5

Mixing the signal directly to the baseband brings the disadvantage that DC
voltages have to be handled properly. To circumvent this difficulty the signal is
sampled at an intermediate frequency and shifted to the baseband with a digital
down-converter.

2.2 Power Spectral Density

The most common method to estimate the power spectral density is the method
proposed by Peter D. Welch [8]. The method works by splitting the time signal
into segments which may overlap. For each segment, the squared magnitude of
the DFT is calculated and then the average over all these transformed segments
is taken. PSD estimates for wide-sense stationary processes are incorrect because
the segments are approximately uncorrelated and averaging reduces the variance.

Xk = F {xk[i]w[i]} (2.1)

P =
1

N ·M · fs ·GN

∑
k

|Xk|2 (2.2)

Equation (2.2) shows the implementation of Welch’s method as used by Mat-
lab, Octave and SciPy, where

• xk k-th segment
• w some window function
• N number of points used by the FFT
• M number of segments
• GN noise gain, mean square of the window
• fs sample rate

2.2.1 Windows

Choosing the right window for a proper readout requires a lot of specialized
knowledge. Main lobe width, side lobe suppression and scallop loss are important
window parameters which cannot be optimized at the same time. The choice
of the window depends on factors such as how close two signals at different
frequencies are, how large the amplitude difference of the signals are.

The Hann (sometimes Hanning) window is a popular choice. It provides
a good spectral resolution and some leakage reduction. In low SNR cases the
Blackman-Harris window with lower side lobes may bring better results. The
frequency response of some popular windows is visible in figure 2.2.

1http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/subsystems/gui/

Content/MeasSetup_ResBw_WindowTypes.htm

http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/subsystems/gui/Content/MeasSetup_ResBw_WindowTypes.htm
http://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/subsystems/gui/Content/MeasSetup_ResBw_WindowTypes.htm

2. Fundamentals of SDR and PSD 6

Figure 2.2: Window frequency response1

2.2.2 Constant Overlap Add

A major problem when working with short-time Fourier transfrom (STFT) is
the weighting of the time signal caused by the window function. Signals with
lengths comparable to the window length are suppressed by windowing and al-
most invisible in the spectral estimate.

The positive effects are easily shown by the following example:

fs = 1024 s−1 (2.3)

T = 2 s (2.4)

x(t) =

{
0, t <= 0.5, t > 1.5

sin(2π · 4t) · exp
(
− |t−1|2

0.252

)
0.5 < t <= 1.5

(2.5)

When calculating the PSD estimate using Welch’s method, non-overlapping
windows can have devastating effects. Figure 2.3 shows the signal before and
after applying the window function. The time signal after windowing without
overlap is much lower, therefore, the 25 dB difference in the frequency domain is
not surprising.

The appropriate amount of overlap depends on the window function. When
chosen incorrectly some points are either over-counted or under-counted, thus
the calculated spectral density heavily varies when the signal is shifted in time.
This is a common problem when working with the STFT, especially when a
perfect reconstruction is required.

2. Fundamentals of SDR and PSD 7

0.0 0.5 1.0 1.5 2.0
Time

0.5

0.0

0.5

1.0 Signal
Hann no overlap
Hann overlap 0.5

(a) Time

30 20 10 0 10 20 30
f [Hz]

60

40

20

0

dB

Hann overlap 0.5
Hann no overlap
Boxcar no overlap

(b) Spectrum

Figure 2.3: Advantages of overlapping windows

∑
l

w[n− LH]v[n− lH] = const., n ∈ {1, 2, ...N} (2.6)

Equation (2.6) is called OLA-constraint. For a given hop size H, if the product
of the analysis window w and the synthesis window v sum up to a constant,
perfect reconstruction is possible.

An important special case is the so-called Constant-OLA (COLA). In this
case v[n] = 1, n ∈ {1, 2, ...N}, thus the overlapping have to add to a constant.
The required overlap to fulfill the COLA-constraint depends on the window.
In the following table, some of the popular windows and the minimal required
overlap are listed [9]

Window Overlap Scallop Loss [dB]

Rectangular 0 3.92
Bartlett 1/2 -
Hann 1/2 -
Hamming 1/2 1.78
Blackman 2/3 -
Blackman-Harris 3/4 0.83
FlatTop 4/5 -

Table 2.1: Common windows with required overlap for COLA-constraint

Using overlapping windows is mostly beneficial when working with determin-
istic signals. When the measurement is supposed to adequately describe random
processes, non-overlapping windows should be preferred.[10]

2. Fundamentals of SDR and PSD 8

2.2.3 Normalization

When reading values from a PSD plot it is important to know what normalization
has been applied. The power spectral density calculated according to equation
(2.2) are normalized for reading noise values. That means that independent of
the number of points of the FFT and independent of the chosen window the
noise level stays the same.

Calculating the power of a signal can be done by using equation ((2.7)). This
is the preferred normalization for comparing deterministic signals. Windowing
not only causes a noise gain (NG) and a coherence gain (CG) but also a scallop
loss. Thus the displayed signal amplitude varies depending on its position inside
the frequency bin.

Psig = P [i] · NG · fs
CG2 ·N (2.7)

CG =
1

N

N−1∑
i=0

w[i] (2.8)

NG =
1

N

N−1∑
i=0

w[i]2 (2.9)

Chapter 3

Device Characteristics

The device characteristics of the USRP B210 and the RTL-SDR Blog v3 have
been explored near their supposed operating point in the SRD 860 band. In
order to receive comparable results, the bandwidth was limited to 2.4 MHz. The
reason is the RTL-SDR, which only works reliable up to this bandwidth. The
USRP supports up to 56 MS/s, although this is only achievable when connected
to a USB 3.0 port.

3.1 Timings

FlockLab provides highly time synchronized measurements, thus any extension
to the system should also be tested on its accuracy. The time synchronization
is not part of this project, yet proceeding with an ill-suited device would render
the project useless.

3.1.1 Clock accuracy and stability

The clock accuracy has been measured with a tool called kalibrate. It uses the
GSM FCCH signal as reference.

The RTL-SDR Blog v3 is a improved version of a DVB-T receiver with a clock
error of less than 2 ppm and less than 1 ppm temperature drift. The available
device shows an error of 287 Hz after directly plugging it in. Once it is heated
up the error increases to 295 Hz. These are errors of 0.306 ppm and 0.314 ppm
respectively for the GSM channel 26 at 940.2 MHz. The output can be found in
appendix E.3.

The frequency error has been confirmed in a 24 h long observation. The test
was conducted with a sample rate of 2.4 MHz, after every 2.4 million samples the
system time of the Linux host system was printed to a file. The plot in Fig. 3.1
shows the timestamp minus the starting time minus the number of seconds that

9

3. Device Characteristics 10

were supposed to have passed, i.e. the number of samples divided by the sample
rate.

Figure 3.1: RTL-SDR: Difference between counted samples and the system time

In Fig. 3.1 it is clearly visible, that the reported error not only affects the
tuning frequency, but also the sampling frequency. It also shows that the error is
linearly growing with the number of samples, thus the error between two samples
is constant. Aligning the sample based timestamps with the FlockLab timestamp
is therefore trivial once the offset of one sample has been determined. The slope
is −0.538 ms per 2.4 mega-samples.

The USRP B210 is equipped with the optionally available GPS-disciplined,
temperature-controlled oscillator. Its frequency accuracy is 75 ppb and when
GPS locked its pulse per second (PPS) aligned to UTC with ±50 ns accuracy.
The tool for the USRP had to be patched, such that the GPS adjusted clock
was used (see appendix E.2). It started with an error of 11 Hz and later a
difference of only 5 Hz was reported by the software. The same 24 hour setup
was conducted with the USRP, as expected the slope is less steep than the one
of the RTL-SDR. Also, Fig. 3.2 shows a much smaller variance, a possible reason
are smaller buffer sizes in the USB driver. The fluctuations at the beginning
are most likely caused by either adjusting the GPS-disciplined oscillator, or by
synchronizing the system time with the local timeserver. Even though the GPS
antenna was directly at the window there were two sections (orange bars) where
the GPS receiver was not fully locked to the satellites.

GPS

The USRP has a board mounted GPS-disciplined, temperature-controlled oscil-
lator. In unlocked condition the crystal oscillates with frequency accuracy of 75

3. Device Characteristics 11

Figure 3.2: USRP: Difference between counted samples and the system time

ppm at 10 MHz. Once it is locked to enough GPS satellites it promises a 1 PPS
accuracy of ±50 ns to UTC.

The increased accuracy, and the possibility to have an exact starting time
are certainly in favor of the module, however the integration of the GPS module
in the standard firmware is implemented rather poorly. The FPGA seems to be
unable to interpret any of GPS string. The official way to set the device time to
the GPS time is to retrieve the GPSDO time in the application and writing it
back to the device. [11]

All communication with the module happens with the get mboard sensor()
function which takes following strings table 3.1

gps time Returns the epoch time in seconds
gps locked Lock status (for some unknown reason differs from LED lock indicator)
gps gprmc NMEA Recommended minimum specific GPS/Transit data
gps gpgga NMEA GPS Fix Data
gps servo Summary of GPS status

Table 3.1: GPS commands

Apart from the gps time command the gps servo command appears to be
the most useful. Strangely the only documentation is a response in the Ettus
mailing list [12], hence the interpretation of the 9 space separated values is listed
below:

• date
• PPS count
• fine DAC
• UTC offset in nano seconds

3. Device Characteristics 12

• Freq. error estimate in Hertz
• Nr. of visible satellites
• Nr. of triacked satellites
• Locked State

0 OCXO heat-up
1 Holdover (no lock)
2 Locking (training)
5 Holdover, oscillator still PLL’ed (GPS lost for less than 100s)
6 Fully locked

• Health state (bit mask)
1<<2 phase offset to UTC > 0.25µs
1<<3 run time < 5 min
1<<4 in holdover for > 1 min
1<<5 freq. estimate implausible
1<<8 ADEV at 100 s > 100 ns (drift > 1 ppb)

The USRP adds a rx time tag to the first received sample, setting the time-
and clock-source to ’gpsdo’ is not sufficient.

Waiting for the device to achieve a full lock when freshly powered on is very
time consuming. The GPSDO module has no memory, after every start the
time is reset to January 2006. With the antenna placed directly at the window
and 7 to 9 visible satellites, it takes roughly between one and two minutes to
synchronize the time. This seems to be sufficient for the gps lock command
to return true, although the lock state indicates that the internal model is still
being trained. The time to achieve a full lock under these conditions is close to
ten minutes.

3.1.2 Frequency hopping

One limiting factor of the RTL-SDR is the small bandwidth. To extend the
bandwidth with a single device, certain projects change the center frequency in
short intervals, thus only observing parts of the spectrum for a given time. Some
receivers were designed to support fast switching of the tuning frequency, and
have a tune and lock time of less than one millisecond.[13]

The RTL-SDR has a large time lag when the changes concern tuner settings.
According to D.Pfammatter et al. [14], retuning the dongle to a new center
frequency takes 55 ms. Own measurements have shown that the tuning between
two frequencies that are only 2 MHz apart is achieved 10 ms faster. For over
35 ms after sending the command the samples show no change, the changing and
locking to the new frequency takes less then 10 ms. Fig. 3.3 shows the tuning
process when changing the frequency from 866 MHz to 868 Mhz. A continuous
source at 867 MHz was used to make the change visible.

The USRP supports a much broader bandwidth, thus its frequency tuning

3. Device Characteristics 13

Figure 3.3: Retuning of the RTL-SDR. Waterfall diagram with time on x-axis.

capabilities were not investigated. However, times listed in [13] show that the
B210 series with a retune time of 3 ms was not designed for fast hopping.

3.2 Distortions

Ideally the recorded spectrum would be completely flat. However, anti-aliasing
filter and internally generated noise distort the spectrum. The frequency re-
sponse of the USRP and the RTL-SDR have been measured using a BG7TBL
noise source (version 2016-03-06).

3.2.1 USRP

The USRP has two stages of tuning. The RF front-end mixes the signal from
the radio frequency down to an intermediate frequency, using the local oscillator
(LO). The IF signal is sampled and converted to the baseband. The frequency
shift is performed in DSP on the FPGA.

In Fig. 3.4 the benefits of using a LO frequency outside the observed band-
width are clearly visible. With the LO set to the center frequency the USRP
operates in the same manner as a direct conversion receiver. The hump at this
frequency is typical for these kind of receivers. The result is an overall flatter
passband.

Offset tuning depends on the sampling frequency of the ADC, if the offset is
larger than half the sample rate it wraps around. The USRP B210 used in this
project can sample with up to 61.44,MS/s, thus there are enough possibilities to
place the LO frequency outside of the 2.4 MHz observed bandwidth. [15]

3. Device Characteristics 14

Figure 3.4: The frequency response of the USRP with and without LO offset

3.2.2 RTL-SDR

The frequency response of the RTL-SDR shows more fluctuation.

Figure 3.5: The frequency response of the RTL-SDR

Fig. 3.5 shows that in the passband a non symmetric ripple of almost 1 dB is
to be expected. The passband at which the signal is attenuated less than 1 dB
is only 1.86 MHz, whereas the USRP has 2.1 Mhz at the same sample frequency.

3. Device Characteristics 15

3.3 Gain

The gain of the devices has been measured and compared with the output of
the spectrum analyzer Tektronix RSA306. The CW mode of the DPP2 Lora
board was used as source the output power was −9 dBm and additional 70 dB
attenuation in form of a 30 dB and a 40 dB in-line SMA attenuator were added.

Figure 3.6: Tek Signal-Vu -9 dBm source with additional 70 dB attenuation

Fig. 3.6 shows that the output power and attenuation is pretty accurate. The
peak power was −79.18 dBm.

Figure 3.7: RTL-SDR and USRP set to 0 dB gain, -9 dBm source with additional
70 dB attenuation

The spectra recorded with the two SDR devices in Fig. 3.7 show that the
RTL-SDR has a gain of 11.75 dB and the USRP has one of −5.93 dB. It also

3. Device Characteristics 16

shows that the signal to noise ratio is about 13 dB larger for the USRP, the
higher internal sampling rate, 61.44 MS/s versus 28.8 MS/s, and the higher ADC
resolution, 12 bit versus 8 bit are a huge advantage.

3.3.1 RTL-SDR

The name RTL-SDR describes all devices that use a Realtek RTL2832 DVB-T
IC. When used as an SDR, its task is to sample the RF signal at an intermediate
frequency, down-convert it and send the IQ samples over USB. The gain settings
and the mixing of the signal is performed by a tuner. The two most common
tuners are the Elonics E4000 (often called E4k) and the Rafael Micro R820T.
Former is well documented, yet the RTL-SDR Blog v.3 dongle uses latter. Possi-
ble reasons are a tuning gap at between 1.1 and 1.4 GHz, or the fact that the E4k
mixes the signal to a zero IF frequency, i.e. directly to the baseband making it
more susceptible to IQ balance problems. The lack of documentation limited the
usefulness of the tuner until someone figured out how to disable the automatic
gain control. [16] As of today, some documentation has been leaked, though the
manufacturer does not specify the gain and filter characteristics [17].

In the currently used drivers the VGA gain is fixed and only the LNA and the
mixer gain are used. This choice of the VGA gain can be justified by interpreting
Fig. 3.8. All gains have 16 gain steps (4 bit). Both lines have been plotted with
a LNA and a mixer gain of 0x9. With a low VGA gain and without signal or

Figure 3.8: Signal at 866.5 MHz, “birdies” across the spectrum for VGA 0x7

only weak signals the quantization introduces spikes in the spectrum. The VGA
gain is the last gain step, thus all the noise generated in the previous stages
is amplified as well. In this case the amplified noise helps to suppress these
phantom signals often referred to as birdies. The VGA gain of 0x8 as chosen
by the author of the library, is a compromise between amplitude of phantom

3. Device Characteristics 17

signals and overall noise. Additionally, setting the VGA gain to about half the
maximum, makes it more likely that the linearity of the amplifier is better, this
reduces the likelihood of intermodulation.

The algorithm to choose the LNA and Mixer gain, however, is rather primi-
tive. Steve Markgraf measured the amplitude of a sine wave generator for every
given setting. The algorithm now increases the LNA and mixer gain step by step
taking turns until the gain is at least as high as demanded. On first glance this
is a perfectly reasonable method, however there are some details that have been
overlooked. Firstly, the number of possible gains is extremely limited. Secondly,
the mixer gain is not monotonically increasing, the highest configuration value
has a lower gain than its predecessor.

For the project a new gain algorithm has been written which uses a look-
up table. Additional reachable gain values have been introduced and it was
ensured that the gain does not decrease when the its value is increased. The
algorithm also works with the VGA gain fixed to 0x8. The source-code of the
updated version is on GitHub1. If at some point someone needs to control the
gains independently, there is a minor patch for gr-osmosdr allowing to control
the gains directly from GNU Radio2.

1https://github.com/0pq76r/rtl-sdr
2https://github.com/0pq76r/gr-osmosdr

https://github.com/0pq76r/rtl-sdr
https://github.com/0pq76r/gr-osmosdr

Chapter 4

Implementation

The goal is to record activities in the radio frequency spectrum with a frequency
resolution of about 10 kHz and aggregated in time to blocks of then to hundreds
of milliseconds. At high data rates multiple different senders can be active in
the same time block, thus, some processing steps are necessary before the data
is reduced.

The implementation is base on GNU Radio 3.71. The abstraction of the driver
interface makes it easy to switch between the two SDR devices. It provides
a lot of DSP blocks and can be extended with additional out-of-tree modules
written in C++ or Python. It allocates and manages the sample buffers and the
graphical companion application allows connecting the DSP block in a drag and
drop fashion, similar to Matlab’s Simulink.

The Python script generated by the GNU Radio Companion (GRC) is
wrapped by another script making it easier to run the app with non-default
parameters on headless setups. Its usage is described in the appendix D.1.

SDR
IQ-Source

FFT

AGC

Peak
detection

Welch
File
sink

Figure 4.1: System overview

The processing pipeline is depicted in Fig. 4.1. The SDR delivers

1https://www.gnuradio.org/

18

https://www.gnuradio.org/

4. Implementation 19

4.1 gr-FlockLab

The GNU Radio library includes gr modtool, a script that manages the creation
of new modules and blocks. The gr-FlockLab module contains new blocks ex-
tending the capabilities of GNU Radio with the required tools necessary for this
project.

4.1.1 AGC

Setting the gain is a major problem, it should be as high as possible without
causing the signal to clip. The hardware AGC does not tell the instantaneous
gain, thus it is disabled. The AGC calculates the power over some samples and
calculates the gain, such that a pure sine wave with equivalent power would
return an peak-to-peak amplitude of one.

A major problem of this implementation is the huge dead-time. For the RTL-
SDR from processing until the gain was adjusted and the new samples traversed
through all the buffers a time delay of 0.25 s is necessary.

There are three proposed usages of the AGC:

• Unknown signal strengths, strongest signal should not clip:
The AGC only sets the gain when the difference to the calculated ideal gain
is above a certain threshold. The thresholds for increasing and decreasing
can be set independently. In this scenario setting the increase threshold to
a very high gain (e.g. larger than half of the maximal gain), the decrease
threshold to a few dB (e.g. 3 dB) and starting with maximum gain is
recommended. The gain will be reduced as soon as signals starts to clip.
The drawback is that one single strong pulse can reduce the gain for the
whole duration of the experiment.
• Signals longer than dead-time:

The AGC thresholds should never be too low because during the dead-time
the gain could take arbitrary values. Five to ten dB threshold should pro-
vide a good trade-off between dynamic range and number of fluctuations.
• Strong signals immediately followed by short weak signals:

In some cases, disabling the AGC can improve the observed spectrum. The
clipping of the long signal causes phantom signals to pop up and the power
estimate is too low. On the plus side the weak signals will be visible once
the strong one has stopped.

MSG Variable is a variable that accepts a message and sets its value ac-
cordingly. GNU Radio introduced messages as a more efficient way to change
parameters while the application is running. Not all blocks support this inter-
face, they still rely on the Python callback calls. In order to use the value it has

4. Implementation 20

to be wrapped in a msg variable(var name) function call. The AGC cannot
set the gain variable directly thus this workaround was implemented.

4.1.2 FFT

There are different libraries with highly platform optimized algorithms available.
The most famous is the FFTW library. It is freely available under GPL, however
a license can be bought which allows closed source linking.

On the laptop, a ThinkPad with a 7th Generation Intel i7 Processors, the size
is not limited by the computation power but rather by the amount of samples
required compared to the symbol time.

The computation power of the Raspberry Pi is much lower thus it is necessary
to limit the size to powers of two. The Raspberry Pi 3 has Cortex-A53 ARM
cores which can be used in 32-bit or 64-bit mode. There are some distributions
that make use of the 64-bit architecture, in experiments with single precision
transformations no significant gain was measurable. The first version of the
Raspberry Pi had a single core CPU without NEON (SIMD) instructions in
order to compute FFT efficiently the GPU was used. From experiments with
the library on the Raspberry Pi one can conclude that for single transformations
the overhead from copying the data and setting up the GPU is too large. For
sizes up to 213 the FFTW3 library from the Raspbian repository outperforms
the GPU implementation by a factor of roughly 1.8. The difference is even larger
for transformations with fewer points. Details are in appendix E.1.

The default parameters for the FFT block are a size of 2048 and a Hann
window with 0.5 overlap. The Hann window has been chosen because it has
fewer leakage than the boxcar window, and it reaches the COLA-constraint al-
ready at 50% overlap. At first the number of bins of the FFT had been chosen
higher, however, each bin requires a sample. At high data rates, the symbol or
sweep times were lower than the time required to gather the required amount
of samples. Thus, instead of the characteristic chirp, numerous narrow spikes
appeared in the spectrum. An example is visible in Fig. 4.2.

Vector Shift is a block with the same task as fftshift in other DSP libraries.
It shifts the zero-frequency component to the center. As the name suggest this
is a more general implementation allowing an arbitrary shift.

4.1.3 Signal classification

Unfortunately there was not enough time to implement a working signal classi-
fication.

4. Implementation 21

Figure 4.2: The LoRa signal on the right performs multiple sweeps in one FFT
segment

Peak Tag was created to tag bins that exceed a certain threshold. The effi-
ciency of the block is too poor, even on the laptop samples are dropped.

4.1.4 Stream Tags

Parallel to the sample buffer GNU Radio manages a second buffer where addi-
tional data can be passed with the sample. It is less efficient thus only a fraction
of the samples should be tagged.

Saturation Tag this block adds a tag when the signal is above or below a
given thresholds. Its intended use is to tag samples where the ADC is driven to
its limit. When the signal is clipped the power estimate is wrong.

Time Tag this block adds the system time to each sample that is a multiple
of the sample rate, i.e. every second a new tag is added. If the source is a USRP
then every 10 seconds the response of gps servo is added as tag

Variable Tag is a general purpose block that can be used to monitor one or
multiple run-time variables. The GRC automatically registers the callback on all
the variable setters. Once the callback is triggered, the next processed sample is
tagged with the new value. In this project this method is used to track the gain
variable.

4. Implementation 22

4.1.5 PWelch

The name is somewhat misleading as it expects Fourier transformed vectors at
its input. The vectors are processed in groups of the same size. The block has
four outputs which return the average of the group, the element wise maximal
and minimal value observed in the group, and the element wise variance. The
values are normalized, such that the output is equivalent to Matlabs pwelch

function.

Vector subsample is a block just inserted before the PWelch block. Its task
is to reduce the vector size from the internal processing length to the requested
output length. In its current state it can only divide the length by a factor of
two. The reduction is based on averaging.

4.1.6 File Sink

The file sink for FlockLab is optimized to store the output of the PWelch block.
The block can have multiple vector inputs with the same vector size. The file
starts with a text segment, where the user can place arbitrary messages for doc-
umentation purposes. Immediately thereafter is a line in CSV format containing
following information:

• Device: Either ’usrp b210’, ’rtl sdr’, or ’other’. the viewer (??) uses this
information to subtract the intrinsic device gain.
• Type: The stream data type. This project only uses ’float32’ as type.
• Vector size.
• Sample rate.
• Hop size: The overlap of the FFT expressed as number of samples between

two transforms.
• Decimation: Usually the group size/avg length of the PWelch block.
• Center frequency.
• Number of ports.
• Window noise gain.
• Window coherence gain.
• Gain tag: name of the gain tag.
• Other tag names: Every tag name is a CSV element. Only tags listed here

will be recorded by the files sink.

The header ends with a newline and the data block begins. The data is binary
and of the type as described in the header and as long as a vector. This binary
blob is followed by a CSV string starting with the port number, followed by an
element for each tag defined in the header, starting with the gain tag. The tag
value is always a string, if the tag is not assigned to the vector, the field is an
empty string.

4. Implementation 23

4.1.7 Debugging

For debugging the project contains a special pseudo variable GDB. Instead of a
variable initialization the code generated by the GRC causes the process to print
the process id and to pause, such that a debugger can connect.

4.2 FlockLab PSD Viewer

The PSD Viewer is a Python script that interprets and displays the files created
by the gr-FlockLab File Sink (Sec. 4.1.6). The GUI is created with TkInter and
the Matplotlib is used for creating the plots. Fig. 4.3 shows a screenshot of the
viewer. The plots share the same x-axis and the y-axis of the upper plot controls
the color gradient of the waterfall diagram. In the upper plot the instantaneous
spectrum with all available variations are displayed, i.e. if the maximum output
of the Welch block was not saved to the file it is simply ignored.

To improve the performance, the waterfall diagram only contains the immedi-
ately required data for the visualization. The file parser caches a limited number
of samples, and the offsets at which a data entry is found. Latter is necessary
since the unknown content of the stream tags can have arbitrary lengths.

Figure 4.3: PSD Viewer

Chapter 5

Results

Collecting and visualizing the power spectrum, works with both devices. The
direct comparison of the RTL-SDR and the USRP in Fig. 5.1 confirm the limi-
tations described in chapter 3.

Figure 5.1: RTL-SDR left and USRP on the right

Fig. 5.1 was created by placing the two SDRs close together and recording
the signal of a FlockLab DPP2 LoRa module on its −9 dBm setting, with a 50 Ω
SMA load connected instead of an antenna. That fact that the frequency plots
show almost the same amplitude is pure coincidence. Both devices operate at
their maximal gain, which has not been subtracted. After normalizing the gain,
a difference of 12 dB would be visible. The explanation of the difference is most
likely found in the different antennas and the slightly different positions.

Fig. 5.2 shows the same transmit sequence recorded at two different times.
The peaks in the plot show a difference of 2.5 dB, Differences of 2 − 3 dB were
observed in most blocks where signals with a length longer than the time block
wee captured. For short signals, e.g. the pulse at the center frequency immedi-
ately before the FSK transmission start, it is possible that it lies in a different
time block, thus causing differences of more than 5 dB.

24

5. Results 25

Figure 5.2: RTL-SDR repeated sequence

Chapter 6

Conclusions

The USRP clearly shows a better performance, the SNR is 5 to 10 dB higher
and the delay when changing the gain is much lower. However the RTL-SDR
works surprisingly well, if the reduced SNR still meets the requirements of the
application, which I think it does. then the much lower price of the RLT-SDR
speaks certainly in its favor.

26

Chapter 7

Future Work

Signal classification: Unfortunately there was not enough time to do a proper
signal identification implementation. Some experiments with the GNU Radio gr-
lora packet have been performed, although the module instructions have been
followed and different spreading factors and bandwidths have been tested, no
successful decoding was possible.

PSD Viewer: The Matplotlib does not provide the necessary optimizations
for smooth scrolling through the waterfall diagram. Also, many features are still
missing, for example the tags are only printed to the command line. Using the
mouse to scroll is not only slow but also the scale of the other plot changes.

AGC: The current implementation is very primitive and has a very high delay.
Moving the AGC implementation into the driver could reduce the delay.

Driver improvements: This concerns especially the librtlsdr. The tuner com-
municates over i2c, even though it allows sequential writing of its registers the
driver addresses them individually.

Time synchronisation: Before the integration of the system into FlockLab
can proceed a proper time synchronization, as well as compensations for the
clock error in long term measurements are required.

27

Bibliography

[1] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. Flocklab: A testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. pages 153–165. IEEE.
ISBN 978-1-4503-1959-1. doi: 10.1145/2461381.2461402.

[2] Sreeraj Rajendran, Roberto Calvo-Palomino, Markus Fuchs, Bertold Van
den Bergh, Hector Cordobes, Domenico Giustiniano, Sofie Pollin, and Vin-
cent Lenders. Electrosense: Open and big spectrum data. 56:210–217. ISSN
0163-6804. doi: 10.1109/MCOM.2017.1700200.

[3] Tevfik Yucek and Huseyin Arslan. A survey of spectrum sensing algorithms
for cognitive radio applications. 11:116–130. ISSN 1553-877X. doi: 10.1109/
SURV.2009.090109.

[4] Sungro Yoon, Li Erran Li, Soung Chang Liew, Romit Roy Choudhury, In-
jong Rhee, and Kun Tan. Quicksense: Fast and energy-efficient channel
sensing for dynamic spectrum access networks. pages 2247–2255. IEEE.
ISBN 978-1-4673-5946-7. doi: 10.1109/INFCOM.2013.6567028.

[5] Matthias Kuba. Automatische Klassifikation von Kommunikationsstandard-
sim europäischen 868 MHz Short Range Device-Band. PhD thesis, Univer-
sität Erlangen-Nürnberg, 2012.

[6] Jens Saalmüller, Matthias Kuba, and Andreas Oeder. A user-friendly
android-based tool for 868 mhz rf traffic- and spectrum-analysis. volume em-
bedded wolrd 2015. Fraunhofer Institute for Integrated Circuits IIS Nurem-
berg, 2015.

[7] Mariya Zheleva, Ranveer Chandra, Aakanksha Chowdhery, Ashish Kapoor,
and Paul Garnett. Txminer: Identifying transmitters in real-world spectrum
measurements. pages 94–105. IEEE. ISBN 978-1-4799-7452-8. doi: 10.1109/
DySPAN.2015.7343893.

[8] P. Welch. The use of fast fourier transform for the estimation of power spec-
tra: A method based on time averaging over short, modified periodograms.
15:70–73. ISSN 0018-9278. doi: 10.1109/TAU.1967.1161901.

[9] Hristo Zhivomirov. On the development of stft-analysis and istft-synthesis
routines and their practical implementation. TEM Journal, 8(1):56–64,
February 2019. ISSN 2217-8309.

28

BIBLIOGRAPHY 29

[10] Hanspeter Schmid. How to use the fft and matlab’s pwelch function for signal
and noise simulations and measurements. Technical report, ime Institute of
Microelectronics, August 2012.

[11] Ettus Research. Usrp hardware driver and usrp manual: Device synchro-
nisation. https://files.ettus.com/manual/page_sync.html, . [Online;
Version: 3.15.0.0-13-gb89f76bd4; accessed 27-June-2019].

[12] Marcus Müller. [USRP-users] gps servo sensor. http://lists.ettus.

com/pipermail/usrp-users_lists.ettus.com/2016-December/051048.

html, December 2016. [Online; accessed 27-June-2019].

[13] Richard Bell. Maximum supported hopping rate measurements using the
universal software radio peripheral software defined radio. In Proceedings of
the GNU Radio Conference, volume 1, 2016.

[14] Damian Pfammatter, Domenico Giustiniano, and Vincent Lenders. A
software-defined sensor architecture for large-scale wideband spectrum mon-
itoring. In Proceedings of the 14th International Conference on Information
Processing in Sensor Networks, IPSN ’15, pages 71–82, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3475-4. doi: 10.1145/2737095.2737119.
URL http://doi.acm.org/10.1145/2737095.2737119.

[15] Ettus Research. Usrp hardware driver and usrp manual: General application
notes. https://files.ettus.com/manual/page_general.html, . [Online;
Version: 3.15.0.0-13-gb89f76bd4; accessed 27-June-2019].

[16] ’superkuh’. Rtl-sdr and gnu radio with realtek rtl2832u [elonics
e4000/raphael micro r820t] software defined radio receivers. http://www.

superkuh.com/rtlsdr.html, June 2018. [Online; accessed 27-June-2019].

[17] R820T High Performance Low Power Advanced Digital TV Silicon Tuner
Datasheet. Rafael Micro, November 2011.

https://files.ettus.com/manual/page_sync.html
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/2016-December/051048.html
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/2016-December/051048.html
http://lists.ettus.com/pipermail/usrp-users_lists.ettus.com/2016-December/051048.html
http://doi.acm.org/10.1145/2737095.2737119
https://files.ettus.com/manual/page_general.html
http://www.superkuh.com/rtlsdr.html
http://www.superkuh.com/rtlsdr.html

Appendix A

Assignment

1

 Institut für
 Technische Informatik und
Kommunikationsnetze

Semester Thesis at the
Department of Information Technology and

Electrical Engineering

for

Florian Wernli

Frequency Spectrum Monitoring for FlockLab

Advisors: Jan Beutel
Roman Trüb
Reto Da Forno

Professor: Prof. Dr. Lothar Thiele

Handout Date: 11. 03. 2019
Official Start Date: 22. 03. 2019
Due Date: 28. 06. 2019

Initial Presentation (tentative): 04.04.2019
Final Presentation (tentative): TBD

1 Project Description

Since 2012, the Computer Engineering Group (TEC) operates the FlockLab testbed [4]
for developing and evaluating wireless sensor network protocols. A testbed helps to
reduce the effort of repeatedly deploying test networks when developing protocols for
wireless sensor networks. Furthermore, such a testbed improves the reproducibility
of experiments and allows to share infrastructure.

The FlockLab testbed features different services such as GPIO and power tracing
and GPIO actuation. Up to now it does however not provide a service for monitoring
the frequency spectrum. This can provide additional information whic is important
to verify the correct operation of the wireless communication protocol under test as
well as to understand the environment (e.g. interference) during the tests.

The idea of this project is to use a software-defined radio (SDR), e.g. an rtl-sdr
dongle or an USRP, to sense and characterize the spectrum while tests are running
on the FlockLab testbed. Recording the frequency spectrum with an SDR generates
a lot of data. The challenges are to process/aggregate the recorded data in order to
obtain interesting metrics and to synchronize the timestamps of the collected data
with the traces of the other FlockLab services. The aggregation could among other
methods include the classification or even decoding of the sensed transmissions (e.g.
with gr-lora [3]).

2 Project Tasks

• Formulate a time schedule and milestones for the project. Discuss and approve
this time schedule with your supervisors.

• Perform a literature review to get an overview of related work (including [5,
6, 1]).

• Familiarize yourself with the SDR hardware and software tools [2].

• Compare the advantages/disadvantages of different SDR hardware (cheap rtl-
sdr vs. USRP) and decide which one is used in the rest of the thesis.

• With a single transmitting device, collect frequency power spectrum traces,
log them as csv and visualize them.

• Investigate the feasibility of logging multiple frequency channels at the same
time.

• Investigate packet classification / decoding possibilities, e.g. using [2, 3], or
investigate the time synchronization between the logged spectrum data and
other data logged on the FlockLab observers.

• Evaluate the performance of the proposed system by logging the environment
while running a FlockLab test with a known behavior.

• Document your project with a written report. As a guideline, your
documentation should be as thorough to allow a follow-up project to build
upon your work, understand your design decisions taken as well as recreate
the experimental results.

1

3 Project Organization

Deliverables

• Time schedule (at the end of first 2 weeks)

• Initial Presentation (3 min)

• Final Presentation (15 min)

• Code of implementation including documentation

• Written report which includes: Introduction, Analysis of related work,
Documentation of decisions, Evaluation, Description and HowTo guide of the
developed software.

Offers

• The supervisors offer the student the opportunity to do a rehearsal of the
initial and the final presentation. The supervisors offer to give feedback how
to improve the presentations.

• The supervisors offer to proof-read a draft of the final report. The draft is not
required to be complete. The draft should be handed in no later than 1 week
before the deadline of the thesis.

General Requirements

• The project progress shall be regularly monitored using the time schedule.
Unforeseen problems may require adjustments to the planned schedule.
Discuss such issues openly and timely with your supervisor.

• Use the work environment and IT infrastructure provided with care. The
general rules of ETH Zurich (BOT) apply. In case of problems, contact your
supervisor.

• Discuss your work progress regularly with your supervisor. In addition to such
meetings, a short weekly status email to your supervisors is required containing
your current progress, problems encountered and next steps.

Handing In

• Hand in a single PDF file of your project report. In addition, hand in the
signed declaration of originality on paper.

• Clean up your digital data in a clear and documented structure using the
provided GitLab repository. In the end, all digital data should be contained
in the student’s GitLab repository for the thesis. This includes: developed
software, measurements, presentations, final report, etc. An exception is

2

large amounts of measurement data which is stored separately (ask your
supervisors!).

References

[1] ElectroSense. https://electrosense.org/.

[2] GNU Radio Companion. https://wiki.gnuradio.org/index.php/

GNURadioCompanion.

[3] gr-lora. https://github.com/rpp0/gr-lora.

[4] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. In Proceedings of the 12th International Conference
on Information Processing in Sensor Networks, IPSN ’13, pages 153–166, New
York, NY, USA, 2013. ACM.

[5] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng. Towards commoditized
real-time spectrum monitoring. In Proceedings of the 1st ACM workshop on Hot
topics in wireless, pages 25–30. ACM, 2014.

[6] D. Pfammatter, D. Giustiniano, and V. Lenders. A software-defined sensor
architecture for large-scale wideband spectrum monitoring. In Proceedings of the
14th International Conference on Information Processing in Sensor Networks,
IPSN ’15, pages 71–82, New York, NY, USA, 2015. ACM.

3

Appendix B

Timetable

6

B. Timetable 7

March April May June

2225 1 8 152229 6 132027 3 10172428

Project Start
timetable

initial presentation

literature review

Tool Evaluation
hardware

library

Primitive Logger
save PSD in CSV

PSD/CSV viewer

performance evaluation

Detection and Classification
energy detector

detection aware viewer

Multiple channels
/Cyclostationarity-Based Sensing

label LoRa subchannels

label FSK subchannels

performance evaluation

Waveform based Sensing
FSK

LoRa

performance evaluation

Documentation
Primitive Logger

Energy Detector

Multi-Channel Logger

Waveform Sensing

Project End
Documentation

Code/Repo cleaning

Appendix C

Setup

C.0.1 Notebook

Tested on 4.15.0-46-generic #49 16.04.1-Ubuntu

USRP B210 : instructions https://kb.ettus.com/Building_and_

Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)

_on_Linux.

Use mkdeb.sh script from tools to create a deb-packet. The package manager
override files that are not part of a packet without warning. Building gr-zeromq
test may fail when compiling the GNU Radio, this can be ignored.

C.0.2 Raspberry Pi

Tested on raspberrypi 4.14.98-v7+

USRP B210 : Allow the installation of packets for the next release version
(buster).

$ cat <<EOF > /etc/apt/preferences.d/stretch.pref

Package: *

Pin: release n=stretch

Pin-Priority: 990

Software Version

UHD v3.13.1.0
gr v3.7.13.4
libqwt-dev v6.1.2-5

Table C.1: Software and version

8

https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

C. Setup 9

Software Version

UHD v3.13.1
gr v3.7.13.4
libqwt-dev v6.1.2-5

Table C.2: Software and version

EOF

$ cat <<EOF > /etc/apt/preferences.d/buster.pref

Package: *

Pin: release n=buster

Pin-Priority: 750

EOF

$ echo deb http://mirrordirector.raspbian.org/raspbian/ stretch

main contrib non-free rpi >

/etc/apt/sources.list.d/stretch.list

↪→

↪→

$ echo deb http://mirrordirector.raspbian.org/raspbian/ buster

main contrib non-free rpi >

/etc/apt/sources.list.d/buster.list

↪→

↪→

$ sudo apt-get install uhd-host libuhd-dev -t buster

$ sudo apt-get install gnuradio -t buster

$ uhd_images_downloader # download firmware

$ sudo uhd_find_devices # send firmware to the device

RTL-SDR The gr-osmosdr packet with the RTL-SDR source for GNU Radio
on swig:

sudo apt install swig cmake -t buster

C.1 Common

Edit the file /etc/ld.so.conf, insert /lib/ /usr/lib/ at the top to prefer those
paths. Ubuntu/Raspbian may installs ancient library versions into /usr/lib/..-
linux-gnu/

RTL-SDR Install git and cmake and libusb1.0-dev :

sudo apt install git

sudo apt install cmake

sudo apt install libusb-1.0-0-dev

C. Setup 10

Install librtlsdr driver:

git clone https://github.com/0pq76r/rtl-sdr.git

~/mkdeb.sh rtl-sdr -DINSTALL_UDEV_RULES=ON

sudo dpkg -i rtl-sdr/build/rtl-sdr-0.6.0-2-gf68bb2f.deb

sudo ldconfig

Fix issue with udev rules by blacklisting driver/kernel module: Create file
‘/etc/modprobe.d/rtl-sdr.conf‘ with the following content:

blacklist dvb_usb_rtl28xxu

blacklist rtl2832

blacklist rtl2830

git clone git.osmocom.org/gr-osmosdr # latest stable (commit

4d83c6067)↪→

~/mkdeb.sh gr-osmosdr -DENABLE_UHD=ON

To build kalibrate these build tools are required:

sudo apt install autoconf automake libtool

Appendix D

Usage

D.1 PSD Recorder

Run

./flocklab_headless_recorder --help

for a list of all available options.

D.2 PSD Viewer

Run ./simple viewer.py [file] if no file is provided as argument a file open
dialog shows up.

11

Appendix E

Experiments

E.1 FFT performance RPI 3

Source: https://github.com/0pq76r/gpu_fftw

FFT size 8192:

1 GPU FFTW 0.554983 times faster (1176.04 ffts/sec, 850.314

usec/fft, fftw3: 2119.05 ffts/sec)↪→

FFT size 1024:

1 GPU FFTW 0.328558 times faster (12653.5 ffts/sec, 79.0298

usec/fft, fftw3: 38512 ffts/sec↪→

E.2 Kalibrate USRP

1 Device: USRP B210 with GPSDO w/o GPS lock

2 Tool: https://github.com/ttsou/kalibrate.git (ac0ace8)

3

4 Modifications:

5 ===

6 diff --git a/src/usrp_source.cc b/src/usrp_source.cc

7 index 4cb6a27..1800e04 100644

8 --- a/src/usrp_source.cc

9 +++ b/src/usrp_source.cc

10 @@ -166,6 +166,7 @@ int usrp_source::open(char *subdev) {

11

12 m_dev->set_rx_rate(m_desired_sample_rate);

13 m_sample_rate = m_dev->get_rx_rate();

14 + m_dev->set_clock_source("gpsdo");

15

12

https://github.com/0pq76r/gpu_fftw

E. Experiments 13

16 if (m_external_ref)

17 m_dev->set_clock_source("external");

18

19

20 ===

21 COLD Directly after start:

22 ===

23

24 user@pc-10745$./src/kal -c 26 -g 40

25 [INFO] [UHD] linux; GNU C++ version 5.4.0 20160609; Boost_105800;

UHD_3.13.1.HEAD-0-gbbce3e45↪→

26 [INFO] [B200] Detected Device: B210

27 [INFO] [B200] Operating over USB 3.

28 [INFO] [B200] Detecting internal GPSDO....

29 [INFO] [GPS] Found an internal GPSDO: GPSTCXO , Firmware Rev

0.929a↪→

30 [INFO] [B200] Initialize CODEC control...

31 [INFO] [B200] Initialize Radio control...

32 [INFO] [B200] Performing register loopback test...

33 [INFO] [B200] Register loopback test passed

34 [INFO] [B200] Performing register loopback test...

35 [INFO] [B200] Register loopback test passed

36 [INFO] [B200] Setting master clock rate selection to 'automatic'.

37 [INFO] [B200] Asking for clock rate 16.000000 MHz...

38 [INFO] [B200] Actually got clock rate 16.000000 MHz.

39 [INFO] [MULTI_USRP] Setting master clock rate selection to

'manual'.↪→

40 [INFO] [B200] Asking for clock rate 52.000000 MHz...

41 [INFO] [B200] Actually got clock rate 52.000000 MHz.

42 kal: Calculating clock frequency offset.

43 Using GSM-900 channel 26 (940.2MHz)

44 average [min, max] (range, stddev)

45 + 11Hz [-28, 53] (82, 21.810984)

46 overruns: 0

47 not found: 12

48

49 ===

50 HOT some minutes after start:

51 ===

52

53 user@pc-10745$./src/kal -c 26 -g 40

54

55 [INFO] [UHD] linux; GNU C++ version 5.4.0 20160609; Boost_105800;

UHD_3.13.1.HEAD-0-gbbce3e45↪→

E. Experiments 14

56 [INFO] [B200] Detected Device: B210

57 [INFO] [B200] Operating over USB 3.

58 [INFO] [B200] Detecting internal GPSDO....

59 [INFO] [GPS] Found an internal GPSDO: GPSTCXO , Firmware Rev

0.929a↪→

60 [INFO] [B200] Initialize CODEC control...

61 [INFO] [B200] Initialize Radio control...

62 [INFO] [B200] Performing register loopback test...

63 [INFO] [B200] Register loopback test passed

64 [INFO] [B200] Performing register loopback test...

65 [INFO] [B200] Register loopback test passed

66 [INFO] [B200] Setting master clock rate selection to 'automatic'.

67 [INFO] [B200] Asking for clock rate 16.000000 MHz...

68 [INFO] [B200] Actually got clock rate 16.000000 MHz.

69 [INFO] [MULTI_USRP] Setting master clock rate selection to

'manual'.↪→

70 [INFO] [B200] Asking for clock rate 52.000000 MHz...

71 [INFO] [B200] Actually got clock rate 52.000000 MHz.

72 kal: Calculating clock frequency offset.

73 Using GSM-900 channel 26 (940.2MHz)

74 average [min, max] (range, stddev)

75 + 5Hz [-25, 42] (67, 18.135695)

76 overruns: 0

77 not found: 10

E.3 Kalibrate RTL-SDR

1 Device: RTL-SDR v.3

2 Tool: https://github.com/steve-m/kalibrate-rtl (aae11c8)

3

4 ===

5 COLD Directly after start:

6 ===

7

8 sdr@raspberrypi:~ $ kal -g20 -c 26

9 Found 1 device(s):

10 0: Generic RTL2832U OEM

11

12 Using device 0: Generic RTL2832U OEM

13 Found Rafael Micro R820T tuner

14 Exact sample rate is: 270833.002142 Hz

15 [R82XX] PLL not locked!

E. Experiments 15

16 Setting gain: 20.0 dB

17 kal: Calculating clock frequency offset.

18 Using GSM-900 channel 26 (940.2MHz)

19 average [min, max] (range, stddev)

20 - 287Hz [-321, -244] (76, 18.524521)

21 overruns: 0

22 not found: 41

23 average absolute error: 0.306 ppm

24

25 ===

26 HOT some minutes after start:

27 ===

28 sdr@raspberrypi:~ $ kal -g20 -c 26

29 Found 1 device(s):

30 0: Generic RTL2832U OEM

31

32 Using device 0: Generic RTL2832U OEM

33 Found Rafael Micro R820T tuner

34 Exact sample rate is: 270833.002142 Hz

35 [R82XX] PLL not locked!

36 Setting gain: 20.0 dB

37 kal: Calculating clock frequency offset.

38 Using GSM-900 channel 26 (940.2MHz)

39 average [min, max] (range, stddev)

40 - 295Hz [-349, -246] (102, 25.232929)

41 overruns: 0

42 not found: 102

43 average absolute error: 0.314 ppm

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Related work
	1.4 About this Document

	2 Fundamentals of SDR and PSD
	2.1 Software-defined Radio
	2.2 Power Spectral Density
	2.2.1 Windows
	2.2.2 Constant Overlap Add
	2.2.3 Normalization

	3 Device Characteristics
	3.1 Timings
	3.1.1 Clock accuracy and stability
	3.1.2 Frequency hopping

	3.2 Distortions
	3.2.1 USRP
	3.2.2 RTL-SDR

	3.3 Gain
	3.3.1 RTL-SDR

	4 Implementation
	4.1 gr-FlockLab
	4.1.1 AGC
	4.1.2 FFT
	4.1.3 Signal classification
	4.1.4 Stream Tags
	4.1.5 PWelch
	4.1.6 File Sink
	4.1.7 Debugging

	4.2 FlockLab PSD Viewer

	5 Results
	6 Conclusions
	7 Future Work
	A Assignment
	B Timetable
	C Setup
	C.0.1 Notebook
	C.0.2 Raspberry Pi

	C.1 Common

	D Usage
	D.1 PSD Recorder
	D.2 PSD Viewer

	E Experiments
	E.1 FFT performance RPI 3
	E.2 Kalibrate USRP
	E.3 Kalibrate RTL-SDR

