
Institut für
Technische Informatik und
Kommunikationsnetze

FlockLab 2.0: Linux Platform
Semester Thesis

Dario Leuchtmann

ldario@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Jan Beutel
Roman Trüb

Prof. Dr. Lothar Thiele

June 24, 2019

mailto:Dario Leuchtmann<ldario@student.ethz.ch>

Acknowledgements

I thank to Prof. Dr. Thiele that he gave me the chance to do this semester thesis
at his institute. Furthermore I thank Dr. Jan Beutel who has inspired me to
do a semester thesis about FlockLab because of his course ”Low Power System
Design”. Last but not least I thank Roman Trüb who advised me during the
entire project.

i

Abstract

FlockLab [1] is a wireless sensor network (WSN) testbed for embedded systems
and is located on the campus of ETH Zurich. The nodes are time synchronized
in the backend which allows distributed and synchronized power measurement
and GPIO tracing and actuation. Since its launch in 2012 FlockLab has devel-
oped a high utilization by dozens of universities world wide for multiple research
papers. All this leads to the desire to further develop the FlockLab system.
The current hardware is several years old and has therefore neither free capa-
bilities left to install new services nor improve existing ones. To encounter this
problem the goal of this thesis is to port all the currently available services of the
FlockLab system to a new platform and add more accurate power measurement
capabilities.
With this thesis we are going to show that not only the power measurement and
GPIO tracing frequency can be improved but also enough free CPU capacity is
left to double the load from FlockLab services. To achieve this we have ported
the observer to a Beaglebone Green.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Naming Definitions . 3

2 Previous FlockLab 4

2.1 General . 4

2.1.1 System layer . 4

2.1.2 Observation layer . 4

2.1.3 Server . 5

2.2 Services . 5

2.3 Hardware . 6

2.4 Software . 6

2.5 Interface . 7

2.6 Serial ID . 8

2.7 Test Setup . 8

2.8 Target Programming . 8

3 Implementation of FlockLab 2.0 10

3.1 Observer Platform and OS . 10

3.2 Script Language . 11

3.3 Setup . 11

3.3.1 Setup Script . 11

3.4 Pin Mapping . 12

iii

Contents iv

3.5 FlockLab Services . 12

3.5.1 Serial Logging and Serial Forwarding 13

3.5.2 GPIO Tracing and GPIO Actuation 14

3.5.3 Power Profiling . 15

3.6 Target Interactions . 18

3.6.1 Serial ID . 18

3.6.2 Target Programming . 19

3.7 Changes on FlockLab Server . 19

4 Measurements 20

4.1 Measurement Setup . 20

4.2 Measurement Results . 21

4.2.1 Different Test Scripts . 21

4.2.2 Serial Messages at Different Rates 22

4.2.3 Serial Messages of Different Length 23

4.3 Conclusion . 23

5 Future Work 26

5.1 Debian 10 . 26

5.2 RocketLogger . 26

5.3 Processing of Power Profiling Files 26

5.4 BeagleLogic . 27

6 Conclusion 28

Bibliography 29

Appendices 31

A GitLab Directory Structure 32

B How To 34

C Time Schedule 36

D Original Project Assignment 38

Chapter 1

Introduction

1.1 Motivation

Since the launch of FlockLab in 2012 it has become more and more important.
From 2012 with in total 156 tests the usage increased to a total of 12570 tests
in 2018, which can be seen in Figure 1.1, and is currently used by 125 different
institutions all over the world [1]. This clearly shows the importance of a WSN
testbed such as FlockLab for research purposes. Not only the usage increased
but also the available technologies in the market changed dramatically. The
processing capabilities of low power wireless sensor nodes have increased over the
past few years in such a way that also the requirements for a testbed environment
have changed. While for example the Mica [2] platform from 2002 is only able
to handle a few kilo bytes of code newer platforms such as STM32L4 [3] uses a
powerful 80 MHz ARM Cortex M4 [4] SoC. The combination of a high usage of
FlockLab and new requirements to such testbeds directly leads to new desires
for FlockLab.
Unfortunately the current Gumstix [5] platform which is used for the FlockLab

observers uses an old Gumstix verdex pro XL6P chip which is not very powerful
compared to modern chips. When a test is running around 98 % of the CPU
capacity is used. For this reason it is neither possible to add new services to the
FlockLab testbed nor improve the existing ones, so there was the idea to build
a new version of FlockLab, the so called FlockLab 2.0.
The goal of a FlockLab 2.0 is to have a more accurate power measurement and
not only measuring the current but also the voltage. The power measurement
should also have finer grained data points regarding the frequency, as well as the
GPIO tracing should work with a high frequency of up to 10 MHz and another
requirement for the future is to have live Debugging. Furthermore, the testbed
should be added more nodes which cover indoor and outdor sites and should be
distributed across the city of Zurich.
The goal of this semester thesis is to port the previous FlockLab observer services
running on the Gumstix Platform to the more powerful Beaglebone Green [6]
platform running with Debian 9 [7]. Furthermore, the power profiling should

1

1. Introduction 2

Figure 1.1: The total number of users by year of the FlockLab test bed environ-
ment [1].

be made more accurate by using the RocketLogger [8] to perform the power
measurement.

1.2 Related Work

There are multiple wireless sensor network testbed environments available which
can be used for free for research purposes. In this section we are going to give a
glimpse of the available networks that are constructed in a similar way as Flock-
Lab. Therefore, we have picked three of the most widely used testbeds that have
been developed over the past 15 years.

• MoteLab [9] was a WSN testbed at Harvard University. When it started
in 2005 It consisted of 26 Mica2 motes and was enlarged over time to more
than 190 Tmote nodes spread over multiple floors.

• The Fit IoT-Lab [10] in France consists of over 1500 spread across six dif-
ferent sites with some of them mobile. Those mobile nodes allow tests with
moving devices which will be a part of future IoT devices. The collected
data consists of network related metrics such as throughput, delay, and
overhead.

• Indriya [11] is another highly used testbed at the Singapore University.
Currently they are developing Indriya2 consisting of 74 TelosB and 28
CC2650 nodes to allow heterogeneous network tests with different node

1. Introduction 3

types at the same time. Furthermore they want to increase the data col-
lection rate.

MoteLab was a very early WSN testbed that allowed, similar to FlockLab, to
program tests via a web interface. A main difference between MoteLab and
FlockLab is that in MoteLab the nodes were directly connected to the server
without an observer in between, which makes it harder to replace a target with
another one.
Whereas IoT-Lab focuses on the network capability by measuring metrics like
throughput, delay and overhead, FlockLab also measures the power consumption.
Indriya original software was derived from MoteLab and therefore had a lot of
limitations Indriya2 is designed to address these limitations. Similar to FlockLab
2.0 Indriya2 is designed to support multiple targets and support higher data
rates.
With the new hardware platform in FlockLab 2.0 it is possible to add new services
and therefore to meet the future trends.

1.3 Naming Definitions

We are going to use some terms in this thesis which are not commonly used in
this way. Therfore I introduce the naming definitions of this thesis to reduce the
confusion with all the different hardware and software components.

• previous FlockLab refers to the old FlockLab with observers running on
the Gumstix platform.

• FlockLab 2.0 refers to the new FlockLab with observers running on the
Beaglebone platform.

• Gumstix observer refers to the old observer used in the previous Flocklab.

• observer refers to a Beaglebone green running with Debian 9. The exact
task of the observer will be explained in a later chapter.

• RocketLogger [8] refers to a measuring device for voltages and currents.

• target refers to the devices under test that build the WSN.

Chapter 2

Previous FlockLab

2.1 General

FlockLab is a testbed for Wireless Sensor Networks (WSNs) at ETH Zurich
consisting of 27 nodes spread over one floor of the ETZ building. It is designed
as a 3-Tier-Architecture each of which has a different purpose. The three different
layers are:

• System layer

• Observation layer

• Server

These three layers are depicted in Figure 2.1 The communication between the
system layer and the observation layer is via a serial connection which is either
USB or UART and an additional I2C connection plus multiple GPIO pins.
For the communication between the observation layer and the server a TCP
connection is used where the observation layer initializes the connection and the
server listens and sends to it.

2.1.1 System layer

In the system layer are the actual nodes, the so called targets, that build the
WSN to perform the tests. The targets are the devices under test (DUT) and can
be individually programmed by the user. During the test the power consumption,
the GPIO input and output and the Serial input and output is measured and
traced. This data is then collected by the server.

2.1.2 Observation layer

The observation layer consists of more powerful nodes, which are called observers
and are based on the Gumstix platform. The observers perform the measure-

4

2. Previous FlockLab 5

Figure 2.1: The 3-Tier-Architecture of the previous FlockLab [1].

ments and handle the entire test setup. All the observers are time synchronized
such that the power measurement and GPIO actuation and tracing are compa-
rable between the nodes. This time synchronization is implemented with a NTP
Ethernet synchronization plus a Glossy [12] based wireless communication.
The results of the measurements and the serial output from the targets are both
stored locally and also forwarded via a TCP connection to the server during the
test. After the test the server collects all the test data and removes it from the
observers.

2.1.3 Server

The server is the interface between the testbed and the users. It is required to
store, schedule, and start all the tests, collect the data from the observers, and
provide the results to the users.

2.2 Services

To perform the tests, the previous FlockLab provides multiple services [13]:

• GPIO tracing and GPIO actuation (Max rate 10 MHz)

• Power profiling and voltage control (Max rate 28 kSamples/s)

• Serial communication via UART

2. Previous FlockLab 6

• target programming

These services are required to install, start and stop the tests and to read out
and measure the test results. The GPIO tracing and actuation allows to set and
get states of the DUTs for debugging purposes. The power profiling and voltage
control is used to measure the power consumption of the targets which is a key
feature of FlockLab. Serial communication is used to send the serial output from
the targets to the Gumstix observer witch supports the user to debug its tested
program. The target programming is required to reprogram the targets such
that the users can individually program the targets.

2.3 Hardware

Each observer runs on a Gumstix Linux platform which is installed on the so
called FlockBoard, a generic hardware interface between the observer and the
targets. The FlockBoard can host up to four different targets at the same time.
The key feature of the Gumstix computer are [5]:

• Gumstix verdex pro XL6P

• 600 MHz PXA270 processor

• 32 MB flash

• 128 MB RAM

• Attached 8GB microSD card for data storage

The key features of the FlockBoard are [1]:

• 4 generic hardware interface slots to attach any kind of wireless sensor node
with a simple adapter board

• RTC with battery backup (keep date and time over power cycles)

• Voltage and current measurements on-board

• DAQ Board for accurate tracing (FPGA based) and Glossy Sync [12]

2.4 Software

The observers run on an openembedded Linux [14] OS with kernel version 2.6.33.
For the scripts running on the observers is Python 2.7 [15] in use.

2. Previous FlockLab 7

Figure 2.2: The interface protocol between server and Gumstix observer.

2.5 Interface

In Figure 2.2 the interface between the server and the Gumstix observer is dis-
played. The entire test is orchestrated from the server. Whenever a test is
uploaded to the server via the webinterface the dispatcher analyses the XML on
the server and generates a test in its database. To prepare the test on the Gum-
stix observer the server runs a scheduler which uploads the test and executes
a start script on the Gumstix observer. During the test the fetcher collects all
the data from the Gumstix observer that is ready to be collected. At the end of
the test the fetcher collects all the remaining data and does a clean up on the
Gumstix observer. The server does interpret the gathered data and provide the
result files to the user.

2. Previous FlockLab 8

2.6 Serial ID

Each target has a unique serial id which is stored in the FlockLab database on
the server and is mapped to a specific type of target such as DPP or tmote.
The server does not only have to know the Gumstix observers that are available
but also which kind of targets are connected to those. Therefore the server
checks from time to time the serial ids of the targets connected to the Gumstix
observers. This is done via a W1 I2C connection. The request is simply done
with the following command:

tg serialid.py [--target=<int>] [--searchtime=<float>]

[--maxretries=<int>]

where the three arguments, target, searchtime, and maxretries, are optional and
are currently never used. The Python script which is called by running this com-
mand handles all the communication and can be found on the GitLab repository.

2.7 Test Setup

As it can be seen in Figure 2.3 the test is split up into three parts.

1. Test preparation: The image is programmed onto the target, takes 3 min-
utes for every test

2. Execution: The test is executed, duration depends on the test definition

3. Cleanup: The test data gets collected and the target is cleaned up, takes
3 minutes for every test

The communication between the server and the Gumstix observers is via TCP,
which is a protocol with non-fixed latency. It is therefore possible that some
Gumstix observers are communicating faster than others. This would cause
different test start times at the different targets. To circumvent that, the time
for the test preparation is fixed to 3 minutes, which is long enough to ensure
that all the targets are correctly programmed. At the actual test starting time
all Gumstix observers reset their target which ensures that all targets start at
the same time.

2.8 Target Programming

The

target reprog

2. Previous FlockLab 9

Figure 2.3: The three parts of a test.

is, as the name already implies, used to perform the reprogramming of the tar-
gets. The following command is called from the server once during the test
preparation part and a second time at the end of the cleanup.

tg_rerprog.py --image=<path> --target=<string> [--port=<string>]

[--core=<int>] [--noreset]

At the end of the test the programmed image is a dummy image that does
nothing but blink the LED to ensure that the node does not interfere with a
later test. For this reprogramming the noreset flag is not set. The reset will be
pulled at the actual start time of the test as it is explained in the section Test
Setup.
During the test preparation the test image is programmed onto the target but
the test does not start yet. Therefore the noreset flag is set to keep the target
in the non-active mode. Each test has a start and a stop time which determine
the time window of the actual test. All selected targets but maximal one per
observer are reset at the beginning of the actual test to ensure that the program
does not start in advance.

Chapter 3

Implementation of FlockLab
2.0

We have explained in the previous chapter that the observer hardware for the
FlockLab has to be updated. The aim of this semester thesis is therefore to port
the services running on the Gumstix observers on an openembedded Linux to a
new platform. The goal is to have more free capacity on the new platform such
that it will be possible to upgrade the current services and add new services in
the future. In this chapter we are going to describe the new implementation and
the design decisions that have been made.

3.1 Observer Platform and OS

The decision of the new observer platform was made beforehand by the team
of Jan Beutel. They have chosen the Beaglebone Green [6] for the following
reasons.

1. There exists a cape for the Beaglebone Green to do very accurate and fine
grained power measurements, the so called RocketLogger [8]. Because this
power measurement is already implemented and perfectly fits the require-
ments of high precision and high frequency measurements the team has
decided to build up on this instead of developing a new system.

2. In the Debian image for the Beaglebone Green is the BeagleLogic tool
implemented which allows to do fine grained GPIO tracing of up to 100
MHz.

3. The Beaglebone platform is widely used and therefore there exist a huge
community which makes the development easier.

The Beaglebone platform supports multiple different Linux distributions. The
decision has fallen to use Debian because both RocketLogger and BeagleLogic

10

3. Implementation of FlockLab 2.0 11

is implemented on the Debian. For the final version the goal is to use Debian
10, but for this thesis we have used the latest stable version of Debian 9 because
there was no stable version of Debian 10 at the beginning of my thesis.

3.2 Script Language

On the observer are multiple Python scripts running to enable the FlockLab
services. On the previous FlockLab implementation is Python 2.7 used. The
latest Python 2 version is Python 2.7.17 which was published in March 2019. In
the middle of 2020 with Python 2.7.18 there will be the last Python 2 version
[15] and there will be no support for Python 2 any more after this release. Since
for the switch to a new platform all the scripts have to be looked at and slightly
modified we have decided to update them also to Python 3 instead of keeping
up an outdated version.
To configure the GPIO pins a Python library called Adafruit BBIO.GPIO is
used. This library still requires Python 2.7. For this reason the GPIO interac-
tions are still implemented in Python 2.7.

3.3 Setup

To setup an observer for FlockLab 2.0 there is a shell script which can be executed
in one single step and prepares a Beaglebone such that it fully works with the
FlockLab. For the following setup there are some prerequisites that have to be
met for the Beaglebone observer

• it runs Debian 9 (in the future Debian 10)

• it is reachable via SSH within the ETH network

• it accepts a public private key pair connection

• it allows to login with the root user via SSH

3.3.1 Setup Script

The shell script setup new beaglebone observer.sh as it can be seen in Figure
C.1 is located on the GitLab repository of FlockLab 2.0 in the observer folder.
The execution of this file takes a couple of minutes and afterwards the Beaglebone
is a perfectly working observer. The only thing that is left to do is to add the
database entries on the FlockLab server such that the FlockLab server recognizes
the observer. The exact instructions to use the setup script is described in
Appendix B

3. Implementation of FlockLab 2.0 12

Figure 3.1: The pins of the target - observer interface.

3.4 Pin Mapping

In Figure 3.1 the pins of the interface between the observer and the targets are
shown and in the Table B.1 the mapping to the Beaglebone observer is shown.
Whereas in the mapping between the observer and the target the UART and
I2C connections are fixed the GPIO pins can also be changed. The GPIO pins
on the observer have been chosen because these pins are by default usable for
GPIO connections without any further configuration. In the code the mapping
is done by a mapper function in the FlockLab.py library file.

3.5 FlockLab Services

FlockLab as a testbed environment provides multiple different services to perform
the tests. These services are crucial to get test results and therefore they build the
core of FlockLab. Currently there are 5 different types of services implemented
which are:

1. Serial logging

2. Serial forwarding

3. GPIO tracing

4. GPIO actuation

5. Power profiling

3. Implementation of FlockLab 2.0 13

Figure 3.2: Handling of serial output data from the targets.

3.5.1 Serial Logging and Serial Forwarding

Serial logging and serial forwarding are two different services that implementation
is combined together because they are closely related. Whereas the serial logging
logs all the messages from the target and the server the forwarding part transmits
all the messages from the target to the server. In Figure 3.2 the two services
are depicted. On the right hand side there is a UART or USB connection to the
target which allows to read the serial output from the targets as well as sending
back some data. The serial output from the target will be stored in two different
buffers, a serial buffer and a file buffer. Whereas the serial buffer has only one
input line and forwards all the data directly to the TCP connection with the
server, the file buffer has an additional second input line with all the data sent
by the server to the target. The file buffer then writes the combined data from
the server and the target to a file which will be sent to the server at the end of
a test such that the log contains RX and TX messages of UART.

This is basically still the same as it was in the pervious FlockLab. There are
some minor changes in the code regarding the compatibility of Python 3 and the
Debian OS running on the observer. Some functions like the voltage setting or
the target selection return a hard coded value because for this thesis the target is
directly connected to the observer without the FlockBoard in between. All those
functions are in the flocklab.py library file and are marked with a ”TODO”
and a brief comment.
To enable the UART serial connection a device tree overlay on the observer is
required which enables the pins to be used for UART. Debian 9 already comes
with the required overlay files which have to be enabled in the /boot/uEnv.txt

file. Therefore the following two lines have to be in the /boot/uEnv.txt file.

• enable uboot cape universal=1

3. Implementation of FlockLab 2.0 14

• uboot overlay addr1=/lib/firmware/BB-UART2-00A0.dtbo

The first line is to enable all kinds of overlays and the second one is a specific
overlay to enable UART2 on the pins P9 21 (TXD) and P9 22 (RXD) on the
Beaglebone. I have chosen UART2 because the pins for UART1 are by default
already used. The BB-UART2-00A0.dtbo file does not only enable UART for the
pins P9 21 and P9 22 but also maps it to the virtual console /dev/ttyO2 where
the data now can be written to and read from.
A complete uEnv.txt file including all the other changes I am going to describe
below can be found in the GitLab repository for FlockLab 2.0 in the directory
/observer/config/.

3.5.2 GPIO Tracing and GPIO Actuation

For the FlockLab 2.0, a totally new GPIO tracing and actuation will be imple-
mented to enable finer grained tracing and actuation which is a demand in future
WSNs because of more powerful low power devices. This new GPIO tracing is
targeted to be based on the BeagleLogic [16] project. This decision has been
made because of the following three points.

1. It enables a tracing of the pins with frequencies of up to 100 MHz, witch
is 10 times more than the minimal defined requirements for FlockLab 2.0.

2. The tracing will be done with the PRU unit and therefore almost no proces-
sor capacity is required for the tracing witch leads to a lot of free capacity
on the CPU.

3. The BeagleLogic suite is implemented by default into the Debian image for
the Beaglebone green since the Kernel version 3.8 and therefore there is no
setup required.

4. With one simple command (sigrok-cli -d beaglelogic:logic channels=8

-c samplerate=10M --samples 10M -o capture.sr) up to 8 pins (P8 39

to P8 46) can be continuously captured

Although those points are very promising there is one big drawback. The Kernel
version we have chosen for this project at the beginning of the thesis is version
4.14. Unfortunately, the BeagleLogic tool does currently not run on this Kernel
version and therefore we decided to postpone the GPIO tracing implementation
with the BeagleLogic tool.
For the sake of completeness we have implemented a simple GPIO tracing based
on the Adafruit.GPIO library. This implementation does not support high fre-
quency tracing and is running on the CPU and furthermore it requires Python
2.7. The tracing is started together with the power profiling from the flock-
lab scheduler.py script.

3. Implementation of FlockLab 2.0 15

Figure 3.3: The recommended measurement setup for a single target.

3.5.3 Power Profiling

As described before in the previous FlockLab the power profiling does only mea-
sure the current but not the voltage. The voltage is estimated by using the supply
voltage set by the observer as a constant value. Although this is theoretically
true there will always be some small deviations to the set supply voltage. These
deviations introduce errors to the power measurement which can be avoided by
measuring not only the current but also the voltage.
In the new FlockLab 2.0 the power profiling is implemented in a completely new
way with a much higher profiling frequency and also an additional profiling of
the voltage. Both newly introduced features allow to measure with a higher
accuracy and therefore it provides a high benefit to bring FlockLab to the next
level.
The new power profiling is done with the external RocketLogger [8], which is a
cape for the Beaglebone Green. At the moment an additional second Beagle-
bone is required to do the measurement. This is because the RocketLogger only
works on Debian 7 but for FlockLab 2.0 Debian 9 (in the future Debian 10) is
required, due to PTP time synchronization support. In the future, the goal is to
implement the RocketLogger cape direrctly into the observer such that there is
no additional hardware required any more. To do this the RocketLogger has to
be updated which is out of the scope of this semester thesis and remains to be
done in the future.
To start the external power profiling additional helper functions located in the

FlockLab.py library, which we are going to explain later in this section, are re-
quired. In the future this will become even easier when the RocketLogger cape
will be on the same Beaglebone and these helper functions can simply be re-
placed with a single start and stop command.
In Figure 3.3 the measurement setup is depicted. This is the setup as it is recom-

3. Implementation of FlockLab 2.0 16

Figure 3.4: The measurement settings of the RocketLogger.

mended on the RocketLogger wiki [8] when there is only one target which power
consumption has to be measured. The RocketLogger is connected in series for
the current measurement and in parallel for the voltage measurement. The tar-
get is the device under test which performs the FlockLab tests. Currently the
observer itself acts as a supply but in the future this will be the FlockBoard.
In Figure 3.4 the settings currently used for the power measurement is depicted.
As it can be seen the sampling frequency is currently set to 1 kHz but it is
possible to raise it up to 64 kHz. For the file format the binary file is chosen
because it allows a better performance regarding the file size and data transfer.
This settings can also be set via CLI commands, either as pre-settings or in
form of arguments at the beginning of each measurement. The Interpretation
of the binary data is not implemented so far and to be done on the sever where
enough capacity is available. Furthermore there already exists a Python library
to do this which is also part of the RocketLogger project. It remains to add
this parsing to the server such that the results provided to the users are human
readable.

Helper Functions

As I have mentioned above, for the power profiling there are three helper func-
tions required to perform the measurement on the external RocketLogger.

1. start pwr measurement()

2. stop pwr measurement()

3. collect pwr measuremen data(test id)

The communication between the observer Beaglebone and the RocketLoggerr is
done via a text file located on the observer Beaglebone. The start function simply
writes ”start” into this file which is located at /home/debian/FlockLab/pwr measurement.txt.

3. Implementation of FlockLab 2.0 17

Figure 3.5: Code of the helper function start pwr measurement().

Figure 3.6: Code of the helper function stop pwr measurement().

The corresponding code is depicted in Figure 3.5. The stop function is almost
the same except for the code word which is ”stop” as it can be seen in Figure
3.6.

The third helper function, collect pwr measuremen data(test id), is depicted
in Figure 3.7 and is called right after the stop function. It concatenates all the
measurement files together to one big file renames it, adds a time stamp, and
copies it into the directory where the server expects the file. It can also be called
during a running test such that the data is sent in chunks to the observer. The
fetcher running on the server does also collect the data during a running test
which reduces the required data collection time at the end of a test.

Python Script on RocketLogger

On the RocketLogger runs a Python script all the time and looks on the observer
whether there has been written start or stop into the specified file or not and

Figure 3.7: Code of the helper function collect pwr measuremen data(test id).

3. Implementation of FlockLab 2.0 18

accordingly to this signal starts or stops the power measurement. Furthermore
it also checks from time to time if there are complete measurement files and if so
copies them to the observer. This is done during the entire measurement such
that in the end of a test not all the data has to be transferred at once which
could take a lot of time but only the last part has to be transferred.
This solution introduces a lot of overhead for such a simple task as just start
and stop a measurement but unfortunately it can not be done in a simpler way
because of two reasons.

1. The RocketLoggerr cape blocks all the GPIO pins of the Beaglebone be-
neath it and therefore a simple single GPIO connection with 1 for running
a test and 0 for stopping it can not easily be realized.

2. The command to start and stop the measurement responds with a blocking
response that requires further inputs which introduces multiple hacks to
circumvent this via a SSH connection.

For those two reasons we have decided to implement it in the way described
above. The only drawback of the current solution is the overhead but because
the RocketLogger will be included into the observer in a final version of FlockLab
2.0 it seemed to be the cleanest way because the required adaptions that have
to be made are kept small.

3.6 Target Interactions

In the previous sections the interaction between the server and the observer and
the services running on the observer are described. In this section we are going
to explain the interactions between the observer and the target such that a test
image can be installed on the target and the test can be executed. To enable this
multiple script files on the observer are required which are called by the server.

3.6.1 Serial ID

The Serial ID request in FlockLab 2.0 is basically still the same as it was in the
previous FlockLab except for some minor changes of the location where the W1
interface can be controlled in Debian 9 compared to openembedded Linux. This
pin used for the W1 connection is the P8 11 pin on the observer. To enable it a
device tree overlay is required.

Required Device Tree Overlays

To enable the W1 I2C interface a device tree overlay is required because the pin
is by default only a simple GPIO pin without a serial bus. The required file,

3. Implementation of FlockLab 2.0 19

BB-W1-P8.11-00A0.dtbo, is copied with the setup file to the /lib/firmware

directory. To generate this .dtbo file a human readable .dts file is required
which can also be found in the GitLab repository under /observer/DTO/BB-W1-P8.11.dts
and figures as a template for future I2C connections if there are required addi-
tional ones or the current one should be used with a different pin. To generate
the .dtbo file the following steps have to be done:

1. clone the repository from https://github.com/beagleboard/bb.org-overlays.git

2. put the .dts file into the ./src/arm directory

3. execute the make file

3.6.2 Target Programming

The logic of the target reprogramming is still the same as it was in the previous
FlockLab. Only the communication port for UART and the GPIO communi-
cation had to be updated. As described in Subsection Serial logging and Serial
Forwarding and Subsection GPIO tracing and GPIO actuation we have used
the /dev/ttyO2 port for UART and use the Adafruit.GPIO Python library for
GPIO.

3.7 Changes on FlockLab Server

To keep it simple it was targeted to reuse the interface between the server and the
observer the same. In FlockLab 2.0 interface itself as it is depicted in Figure 2.2
is still the same, but the gathered data structure has changed because of changes
of the power profiling and the GPIO tracing. As mentioned in Chapter Previous
FlockLab this interpretation is done on the server side in flocklab fetcher.py.
We have added the two worker functions for the power profiling and GPIO tracing
which now simply copy all the results together to one file and provide this to the
user. It remains to the future to define the data format and to implement this
into those two worker functions.

Chapter 4

Measurements

One of the reasons to replace the Gumstix observers of the previous FlockLab
was that this platform is outdated and almost no free CPU capacity was left.
Therefore a further development was not possible any more. For the observers
in FlockLab 2.0 the goal is to have around 50 % free capacity left.

4.1 Measurement Setup

To perform the measurement additional tools are required. We have used the
iostat Linux tool to do the CPU load measurement. This tool has a slight in-
fluence on the test results, because it will also require some CPU capacity. The
top tool shows that its influence on the CPU load is between 1 and 5 percent.
We therefore consider 5 percent inaccuracy as an upper bound for the error in
our measurements.
During the measurements we have realized that the TCP connection from the
external RocketLogger generates a huge load of up to 60 percent. This is because
the RocketLogger constantly checks whether the power profiling has to start or
stop. In the final FlockLab 2.0 the RocketLogger will be integrated into the ob-
server and therefore this load will no longer exist. We have therefore performed
the measurements with the power tracing turned off. A future integration of the
RocketLogger into the observer is expected not to affect the CPU load signifi-
cantly, because the RocketLogger uses the PRUs instead of the CPU to do the
power tracing. According to a measurement with top on the RocketLogger its
CPU is idle for 97 to 99 percent and the power measurement does require 0.3 to
1.0 percent of the CPU during a running test.
In the final FlockLab 2.0 neither the GPIO tracing nor the power profiling will
have a large influence on the CPU load. We have therefore performed three
different type of tests that affect the setup time, the clean up time and the CPU
load during a test.

20

4. Measurements 21

Test Duration [min] Saved Time [%]

1 28.6
5 18.2
10 12.5
60 3.03

Table 4.1: Examples of different test durations and the corresponding saved time
in percent if the test setup and cleanup time can be reduced from 3 to 2 minutes
each.

• We have used different test scripts for the targets which affects the target
programming time

• We have sent serial messages via the TCP socket at different rates

• We have sent serial messages via the TCP socket of different length

4.2 Measurement Results

4.2.1 Different Test Scripts

The goal of this measurement is to find an upper bound of the setup and cleanup
time of the test. We have therefore used small (flocklab-hello-world dpp.xml)
and a large (lwb-test.xml) installation script that takes longer for the setup.
In FlockLab different targets can be used which also have different programming
times. To find the upper bound we have done the measurement with the DPP
target which has three cores and therefore take up to three times longer since
the cores have to be programmed sequentially.
We have performed in total 43 different test runs with the flocklab-hello-world dpp.xml

script. In this tests the setup time varied between 62 and 68 seconds with an
average of 64.4 seconds and a variance of 2.09. In the five test runs with the
lwb-test.xml script the test preparation time was up to 80 seconds.
In the previous FlockLab the setup time is fixed to 3 minutes. The results from
our measurements show that it is possible to reduce this to maximum 2 minutes.
The cleanup time did not vary at all between the different test scripts. It took
the server constantly 72 seconds to fetch all the data from the observer and then
an additional second to finish the test and prepare the data for the user.
During the setup and cleanup times FlockLab is busy without running a test. In
Table 4.1 we have four examples how much the reduction from 3 to 2 minutes of
both, the setup and cleanup time, can affect the total test time in percent. One
can see that with FlockLab 2.0 up to 30 percent more tests could be performed
compared to the previous FlockLab.

4. Measurements 22

Waiting Time [ms] f [Hz] Avg Test Load [%] Avg Total Load [%]

- 0 9.31 13.35
1000 0.97 8.34 35.93
100 9.74 8.76 35.58
80 11.82 15.43 36.34
70 13.61 19.72 37.17
60 15.76 21.15 37.37
50 18.91 18.41 36.93
40 22.83 24.30 37.65
30 29.52 27.56 38.11
20 41.57 27.52 37.60
15 57.46 39.44 39.87
10 87.01 53.51 41.10
5 162.61 78.53 44.17
0 881.40 95.70 46.17

Table 4.2: CPU load measurements with different serial message rates and there
corresponding results.

4.2.2 Serial Messages at Different Rates

In Table 4.2 the different measurement setups and their respective results are
listed. The size of the message is 4 characters.

• The waiting time is the time between sending consecutive messages.

• The frequency describes the actual average frequency at which messages
were sent based on the timestamps from the log file.

• The avg test load is the average load of the observers CPU between test
start and test stop.

• The avg total load is the average load during the entire test including the
setup and cleanup.

At a message rate of up to 10 messages per second there is no influence on the
CPU load. Afterwards it slowly starts to kick in. At a rate of around 20 messages
per second the CPU load is doubled up to roughly 20 percent. At a rate of almost
90 messages per second the 50 percent mark is reached.
These tests show that it is possible to send data with a rate of up to 90 messages
per second while the CPU load is still around 50 percent.

4. Measurements 23

Waiting Time [ms] f [Hz] Avg Test Load [%] Avg Total Load [%]

140 6.93 12.28 36.16
120 8.03 14.44 36.25
100 9.74 16.39 36.46
80 11.77 19.14 37.15
60 15.72 19.94 36.85
40 22.48 22.34 37.27
20 43.52 29.28 38.09
10 88.75 54.45 41.10
5 43.52 29.28 38.09

Table 4.3: CPU load measurements with different serial message rates and a
message size of 100.

4.2.3 Serial Messages of Different Length

For this test setup we have sent at a message with a length of 100 characters
at different frequencies. This is 25 times longer than the message size in the
previous test series. As expected the CPU load is more affected. It starts to kick
at a frequency around 7 Hz instead of 10 Hz. But even these long messages can
be transmitted at high frequencies. In fact the higher the frequency the closer
are the results of the CPU load between the two message sizes. The full list of
results can be seen in Table 4.3.

4.3 Conclusion

The test setup and cleanup time can be reduced to each 2 minutes such that
the test time can be reduced by almost 30 percent. This allows to perform
an significantly increased number of tests with FlockLab 2.0 compared to the
previous FlockLab.
The serial logging can handle up to 90 messages per second and the CPU load
is still below 50 percent during the test which allows to add more services to
FlockLab 2.0.

4. Measurements 24

Figure 4.1: The CPU usage measures vs. the test duration measured with the
iostat tool by user, by system and in total.

Figure 4.2: The CPU usage measures vs. the frequency of serial messages with
4 characters per message.

4. Measurements 25

Figure 4.3: Comparison between the CPU usage measures vs. the frequency of
serial messages with 4 characters and 100 characters per message.

Chapter 5

Future Work

The observer developed within this thesis is running on a Beaglebone green with
Debian 9 and using an external RocketLogger for the power measurement and
a coarse grained GPIO tracing. In the end the OS should be Debian 10, it is
targeted to integrate the external RocketLogger in the observer and do the GPIO
tracing BeagleLogic.

5.1 Debian 10

The first stable version of Debian 10 will probably be available in 2019 [7] but a
fixed release date is not set yet. So the update from Debian 9 to Debian 10 can
be done soon and it should not be a lot of work since there will not be major
differences between those two versions.

5.2 RocketLogger

The RocketLogger was written for Debian 7, the last Debian version that used
the SysVinit system [17] to start the essential boot processes. With Debian 8 the
systemd daemon [18] was introduced. This causes major changes in the Kernel
and it takes a great effort to port applications to the newer Debian versions.
This will definitely be the heaviest part for the further development to make the
RocketLogger ready for Debian 10.

5.3 Processing of Power Profiling Files

The files from the RocketLogger are not processed yet. On the server side these
files have to be processed in a way that allows the user to read and interpret

26

5. Future Work 27

them. The code to do this is part of the RocketLogger project and publicly
available 1.

5.4 BeagleLogic

Since BeagleLogic is already integrated in the image of the Beaglebone Debian
the switch to use it instead of the currently used coarse grained GPIO tracing
will not take that big of an effort. The only drawback is that it does not run
on the newest stable Kernel version and therefore this development depends on
external developments.

1https://gitlab.ethz.ch/tec/public/rocketlogger/

Chapter 6

Conclusion

The goal of this thesis was to port the services running on the Gumstix platform
to a new observer based on the Beaglebone Green. Furthermore the power
measurement has to be done with the RocketLogger to enable high frequency
power profiling.
With this thesis we have developed this new observer and shown that it possible
to use the Beaglebone Green as an observer by adapting and writing all the
therefore required code and a simple setup script that prepares a Beaglebone.
Furthermore, we have shown that there is still a lot of free capacity available to
add new services or further improve existing ones. Additionally the setup and
cleanup time can be reduced by at least one third such that in FlockLab 2.0 up
to 30 percent more tests can take place.

28

Bibliography

[1] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling
of Wireless Embedded Systems,” in Proceedings of the 12th International
Conference on Information Processing in Sensor Networks, ser. IPSN
’13. New York, NY, USA: ACM, 2013, pp. 153–166. [Online]. Available:
http://doi.acm.org/10.1145/2461381.2461402

[2] J. L. Hill and D. E. Culler, “Mica: a wireless platform for deeply embedded
networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, Nov 2002.

[3] STM32L4 Series, 2019. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32l4-series.html

[4] Cortex-M4 Technical Reference Manual, 2010. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/
DDI0439B cortex m4 r0p0 trm.pdf

[5] Verdex Pro Series, 2019. [Online]. Available: https://www.gumstix.com/
support/hardware/verdex-pro/

[6] SeeedStudio BeagleBone Green, 2019. [Online]. Available: https:
//beagleboard.org/green/

[7] Debian Releases, 2019. [Online]. Available: https://www.debian.org/
releases/

[8] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele, “Mea-
surement and validation of energy harvesting iot devices,” in Proceedings
of the 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2017), Lausanne, Switzerland, Mar 2017.

[9] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: a wireless sensor
network testbed,” in IPSN 2005. Fourth International Symposium on Infor-
mation Processing in Sensor Networks, 2005., April 2005, pp. 483–488.

[10] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noël, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne, “Fit
iot-lab: A large scale open experimental iot testbed,” 12 2015.

29

http://doi.acm.org/10.1145/2461381.2461402
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://www.gumstix.com/support/hardware/verdex-pro/
https://www.gumstix.com/support/hardware/verdex-pro/
https://beagleboard.org/green/
https://beagleboard.org/green/
https://www.debian.org/releases/
https://www.debian.org/releases/

Bibliography 30

[11] P. Appavoo, E. K. William, M. C. Chan, and M. Mohammad, “Indriya2: A
heterogeneous wireless sensor network (wsn) testbed,” in Testbeds and Re-
search Infrastructures for the Development of Networks and Communities,
H. Gao, Y. Yin, X. Yang, and H. Miao, Eds. Cham: Springer International
Publishing, 2019, pp. 3–19.

[12] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” 05 2011, pp. 73 – 84.

[13] FlockLab Services Specification, 2019. [Online]. Available: https:
//gitlab.ethz.ch/tec/public/flocklab/wikis/Spec/Specifications

[14] Welcome to OpenEmbeddedn, 2017. [Online]. Available: http://www.
openembedded.org/wiki/Main Page

[15] PEP 373 – Python 2.7 Release Schedule, 2019. [Online]. Available:
https://www.python.org/dev/peps/pep-0373/

[16] Welcome to BeagleLogic!, 2019. [Online]. Available: https://beaglelogic.
readthedocs.io/en/latest/

[17] System V style init programs - Summary, 2018. [Online]. Available:
http://savannah.nongnu.org/projects/sysvinit

[18] systemd System and Service Manager, 2019. [Online]. Available: https:
//freedesktop.org/wiki/Software/systemd/

https://gitlab.ethz.ch/tec/public/flocklab/wikis/Spec/Specifications
https://gitlab.ethz.ch/tec/public/flocklab/wikis/Spec/Specifications
http://www.openembedded.org/wiki/Main_Page
http://www.openembedded.org/wiki/Main_Page
https://www.python.org/dev/peps/pep-0373/
https://beaglelogic.readthedocs.io/en/latest/
https://beaglelogic.readthedocs.io/en/latest/
http://savannah.nongnu.org/projects/sysvinit
https://freedesktop.org/wiki/Software/systemd/
https://freedesktop.org/wiki/Software/systemd/

Appendices

31

Appendix A

GitLab Directory Structure

In Apendix A the GitLab repository as a directory tree is listed. All the files we
have presented in this thesis are listed here. The structure is still the same as it
was in the previous FlockLab. The two additional folders /workspace/observer/DTO
and /workspace/observer/config have been placed accordingly to the already
existing structure.

32

A. GitLab Directory Structure 33

Figure A.1: The directory tree of the GitLab repository.

Appendix B

How To

The following steps have to be done to do the setup:

1. Download the observer folder from git lab to the local computer

2. Prepare in the .ssh folder a key file called FlockLab dev

3. Set the variables ”DATAPATH” and ”KEYFILE” at the beginning of the
script file accordingly to your needs

4. execute the shell script with ”sh setup new beaglebone observer.sh <host-
name>” where <host-name>is the host name of the Beaglebone running
Debian 9 that has to be set up

34

B. How To 35

target Name observer Name observer Pin

RXD UATR2 TXD P9 21
TXD UART2 RXD P9 22
GND GROUND P9 1
GND GROUND P9 2
VCC 3.3 3V3 P9 3
GPS GPIO 60 P9 12
GND GROUND P8 2
nRST GPIO 69 P8 9
SERIALID GPIO P8 11
PROG GPIO 88 P8 28
INT1 GPIO 78 P8 37
INT2 GPIO 79 P8 38
RTS GPIO 76 P8 39
CTS GPIO 77 P8 40
LED3 GPIO 74 P8 41
POWER 3 3 GPIO 75 P8 42
INTERFACE 3 3 GPIO 72 P8 43
INTERFACE GPIO 73 P8 44
SIG1 GPIO 70 P8 45
SIG2 GPIO 71 P8 46

Table B.1: Pin mapping between observer and the target.

Appendix C

Time Schedule

36

C. Time Schedule 37

Figure C.1: The Time Schedule of this Semester Thesis.

Appendix D

Original Project Assignment

38

 Institut für
 Technische Informatik und
Kommunikationsnetze

Semester Thesis at the
Department of Information Technology and

Electrical Engineering

for

Dario Leuchtmann

FlockLab 2.0: Linux Platform

Advisors: Jan Beutel
Roman Trüb
Reto Da Forno
Tonio Gsell

Professor: Prof. Dr. Lothar Thiele

Handout Date: 11. 03. 2019
Official Start Date: 18. 03. 2019
Due Date: 24. 06. 2019

Initial Presentation (tentative): 04. 04. 2019
Final Presentation (tentative): TBD

1 Project Description

Observer

NTP/PTP
Time Sync

Power/GPIOs/UART

RocketLogger
J-Link

Debugger
Target

RocketLogger
Cape

Beaglebone
FlockLab

Server
PPS GPS

RocketLogger

RocketLogger
Cape

Beaglebone

Figure 1: FlockLab 2.0 Architecture.

Since 2012, the Computer Engineering Group (TEC) operates the Flock-
Lab testbed [1] for developing and evaluating wireless sensor network protocols.
A testbed helps to reduce the effort of repeatedly deploying test networks when
developing protocols for wireless sensor networks. Furthermore, such a testbed
improves the reproducibility of experiments and allows to share infrastructure.

Currently, we are in the process of extending the existing short baseline distances
in FlockLab by adding additional nodes on rooftop locations and with significantly
larger spacing. The existing implementation of FlockLab is based on hardware
components which are no longer in production and consists of a few patches which
makes replication of the existing design impractical. Furthermore, there are new
trends from industry, such as extended debugging and measurement capabilities, for
which there is only limited support by the existing FlockLab platform.

Therefore, we target to implement the next generation of the FlockLab testbed,
FlockLab 2.0, by replacing the existing FlockLab observer platform with a new one
(see Figure 1). Among other improvements, we plan to incorporate a Linux platform
with more performance, more precise power tracing based on the RocketLogger [2],
as well as state-of-the-art debugging support.

The overall project is divided into the following four subprojects:

WP1: Linux Platform

The main focus of this subproject is the replacement of the Linux platform. The goal
is to reuse the BeagleBone Linux platform from the RocketLogger [2]. The Linux
Platform needs to implement and support all services of the existing FlockLab and to

1

interface with the existing FlockLab backend server. The services consist of starting
and stopping tests, programming of the targets, generating GPIO events, collection
and buffering of trace data (GPIO and power), UART interaction logging, forwarding
of serial communication data streams, and transferring the collected data to the
FlockLab server. An optional part is updating the PRU related implementation of
the RocketLogger to work with the Debian 9 release upgrade (required by the PTP
time sychronization of WP3).

WP2: Target Interconnection/Debugging

The goal of the second subproject is defining the connection of the targets, devices
under test (DUTs), to the Linux observer platform. Different aspects of the
interconnection shall be investigated: Power delivery to the target, options for
programming the targets, serial communication over UART, and the debugging with
the J-Link debugger. The different opportunities of the various debugging features
(RTT, VCOM, Flash breakpoints, monitor mode debugging) shall be investigated.
An optional task is to explore the simultaneous debugging of targets on multiple
observers.

WP3: Time Synchronization of Observers

Since the testbed is a system of distributed observers which are used to develop and
debug a network wide wireless protocol, the time synchronization of the obtained
measurement data is very important. The FlockLab 2.0 is supposed to support
large baseline distances which makes the use of the existing custom synchronization
based on short-range communication infeasible. The goal of this subproject is to
investigate two alternative time synchronization options which have the potential
to provide sub-microsecond accuracy: A GPS based Pulse-per-second (PPS) signal
and the Precision Time Protocol (PTP) over Ethernet. Interesting questions are,
how the two solutions can be integrated with the Linux platform and what accuracy
they can provide in the given setup.

WP4: Hardware Design

This fourth subproject takes care of defining the interfaces between the observer and
the target nodes in collaboration of WP2. Furthermore the options of placement /
interconnection of the various components/units is explored. An important aspect
is the proper isolation of the target from the debugger in order to achieve precise
power measurements. The calibration of the modified RocketLogger unit is part of
this subproject, too.

This semester thesis will mainly focus on WP1.

2

2 Project Tasks

WP1 Linux Platform

• Formulate a time schedule and milestones for the project. Discuss and approve
this time schedule with your supervisors.

• Get familiar with the observer implementation and interfaces of the existing
FlockLab platform.

• Get familiar with the RocketLogger platform.

• Generate a list of all necessary components which need to be supported by the
new Linux platform in order for the Linux platform to work as a FlockLab
observer which can run tests.

• Implement and test the observer.

• Collect characteristic values of the implementation (e.g. remaining CPU load
of the Linux platform while running a test, time required for setting up /
stopping a test, etc.)

• Document your project with a written report. As a guideline, your
documentation should be as thorough to allow a follow-up project to build
upon your work, understand your design decisions taken as well as recreate
the experimental results.

3 Project Organization

Deliverables

• Time schedule (at the end of first 2 weeks)

• Initial Presentation (3 min)

• Final Presentation (15 min)

• Code of implementation including documentation

• Written report which includes: Introduction, Analysis of related work,
Documentation of decisions, Evaluation, Description and HowTo guide of the
developed software.

Offers

• The supervisors offer the student the opportunity to do a rehearsal of the
initial and the final presentation. The supervisors offer to give feedback how
to improve the presentations.

3

• The supervisors offer to proof-read a draft of the final report. The draft is not
required to be complete. The draft should be handed in no later than 1 week
before the deadline of the thesis.

General Requirements

• The project progress shall be regularly monitored using the time schedule.
Unforeseen problems may require adjustments to the planned schedule.
Discuss such issues openly and timely with your supervisor.

• Use the work environment and IT infrastructure provided with care. The
general rules of ETH Zurich (BOT) apply. In case of problems, contact your
supervisor.

• Discuss your work progress regularly with your supervisor. In addition to such
meetings, a short weekly status email to your supervisors is required containing
your current progress, problems encountered and next steps.

Handing In

• Hand in a single PDF file of your project report. In addition, hand in the
signed declaration of originality on paper.

• Clean up your digital data in a clear and documented structure using the
provided GitLab repository. In the end, all digital data should be contained
in the student’s GitLab repository for the thesis. This includes: developed
software, measurements, presentations, final report, etc. An exception is
large amounts of measurement data which is stored separately (ask your
supervisors!).

References

[1] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. In Proceedings of the 12th International Conference
on Information Processing in Sensor Networks, IPSN ’13, pages 153–166, New
York, NY, USA, 2013. ACM.

[2] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele.
Measurement and validation of energy harvesting iot devices. In Proceedings of
the 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE
2017), Lausanne, Switzerland, Mar 2017.

4

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Naming Definitions

	2 Previous FlockLab
	2.1 General
	2.1.1 System layer
	2.1.2 Observation layer
	2.1.3 Server

	2.2 Services
	2.3 Hardware
	2.4 Software
	2.5 Interface
	2.6 Serial ID
	2.7 Test Setup
	2.8 Target Programming

	3 Implementation of FlockLab 2.0
	3.1 Observer Platform and OS
	3.2 Script Language
	3.3 Setup
	3.3.1 Setup Script

	3.4 Pin Mapping
	3.5 FlockLab Services
	3.5.1 Serial Logging and Serial Forwarding
	3.5.2 GPIO Tracing and GPIO Actuation
	3.5.3 Power Profiling

	3.6 Target Interactions
	3.6.1 Serial ID
	3.6.2 Target Programming

	3.7 Changes on FlockLab Server

	4 Measurements
	4.1 Measurement Setup
	4.2 Measurement Results
	4.2.1 Different Test Scripts
	4.2.2 Serial Messages at Different Rates
	4.2.3 Serial Messages of Different Length

	4.3 Conclusion

	5 Future Work
	5.1 Debian 10
	5.2 RocketLogger
	5.3 Processing of Power Profiling Files
	5.4 BeagleLogic

	6 Conclusion
	Bibliography
	Appendices
	A GitLab Directory Structure
	B How To
	C Time Schedule
	D Original Project Assignment

