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Abstract

Medical doctors detect the presence of eye tumors with the help of Optical Coherence
Tomography (OCT) scans. With the recent advance of deep learning in the field of
computer vision it has become possible to automate the classification into healthy eyes
and eyes with tumors. However, deep learning generally needs large sets of manually
annotated ground truth data to learn from, which often forms a bottleneck.

On the one hand this thesis investigates whether a classifier’s performance can be in-
creased by augmenting the training data with data generated with generative models.
On the other hand we examine if it is possible to generate realistic OCT imagery with
generative models.

We trained classifiers on augmented training data sets and observed improvements in
the predictive performance at times. Besides, we showed that training only on gener-
ated imagery leads to classifiers that show a comparable predictive performance as when
only training on original data. We were also apt to generate OCT imagery displaying
tumors. Part of the generated images have been classified by an expert as realistic OCT
imagery.
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Chapter 1
Introduction

1.1. Motivation

On an Optical Coherence Tomography (OCT) scan of the retina, medical doctors can
detect the presence of tumors in the eyes. Still doctors need to carefully investigate the
OCT imagery to determine whether a patient has an eye tumor or not. This process of
analyzing and determining is very time-consuming. The manual inspection also causes
variations in the results when analyzed by different doctors. Currently, there is no so-
phisticated algorithm for automated tumor detection in OCT imagery. One of the goals
aimed by the company Supercomputing Systems (SCS) is to develop a deep learning
algorithm for automated tumor detection based on OCT imagery.

SCS previously implemented a Convolutional Neural Network (CNN) approach to tackle
this classification task. But the classification algorithm suffered from a lack of available
ground truth data.

The first approach to overcome the shortage of limited ground truth data was to aug-
ment the data set using a classical data augmentation method, namely geometric data
augmentation. Geometric data augmentation techniques apply various transformations
to the original image [11]. The transformed images are later added to the training data
set. These techniques include translation, rotation, mirroring of the original image and
many more. Unfortunately, these methods did not succeed in increasing the performance
of the classifier.

An alternative approach to increase the amount of ground truth data is to use gen-
erative models for data augmentation. The motivation behind this is that augmenting
the training data with realistic but synthetic data in this manner can significantly reduce
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1. Introduction

overfitting and thus improve not only the accuracy but also the generalization ability of
the underlying classification algorithm [12] [13].

1.2. Goals

To gain insight into whether synthetic ground truth data obtained from generative models
can improve machine learning-based tumor detection in OCT imagery we investigate two
separate problems:

1. Does classification performance improve in a benchmark setting (MNIST) when
augmenting training data with data from generative models?

2. Is it possible to generate realistic OCT imagery with generative models that can
deceive a medical doctor?

1.3. Approach

On one hand, we are examining whether augmenting a training data set with synthesized
images improve a classifier’s performance. To generate synthesized images for this proof
of concept Generative Adversarial Networks are used. Generative Adversarial Networks
are one of the most promising generative models for realistic image generation today
[14]. Because of the complexity of the OCT imagery, this thesis demonstrates the proof
of concept on the MNIST data set.

On the other hand, we are figuring out whether realistic OCT imagery can be gener-
ated by means of generative models. This paper chooses two models, namely Variational
Autoencoder (VAE) and Generative Adversarial Networks (GANs) to investigate this
question.

1.4. Outline

The second chapter of this thesis provides information about OCT imagery, the anatomy
of the eye and then presents some related previous results. Furthermore, the chapter
gives background knowledge regarding the chosen generative models. Chapter three
gives an overview of the experimental data that is used. In chapter four, we will present
the machine learning methods used for the results of this thesis. Moreover, chapter five
presents the results which are discussed in chapter six. The seventh chapter concludes
this report and mentions potential future work.
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Chapter 2
Theory

The following chapter presents the theoretical background which is needed to understand
this report. A brief introduction to OCT imagery and the anatomy of the eye is provided,
followed by an explanation of the two generative models used in this study, namely
Variational Autoencoder and Generative Adversarial Networks.

2.1. Eyes and OCT Imagery

Optical Coherence Tomography (OCT) is a two- or three-dimensional imaging technique,
which is used in several medical fields. OCT performs high-resolution imaging of the
internal microstructure in biological tissues [1]. Thus OCT is used in Ophthalmology
in order to obtain high-resolution images of the retina and to detect and diagnose eye
diseases at an early stage. OCT imagery is also applied in dermatology for the diagnosis
of skin cancer and other dermatological diseases [15].

2.1.1. Technology of OCT

In low-coherence interferometry, the light emerging from a light source is directed onto a
beam splitter. There it is divided into a reference beam and a measurement beam. The
reflected light from the sample is interfered with reflected light from the reference arm
(which has travelled a known distance) and detected with a photodetector at the output
of the interferometer [1] [16]. Three dimensional images are then generated from the
input of the photodetector. The underlying architecture of an interferometer is shown in
figure 2.1.

3



2. Theory

Figure 2.1.: Architecture of an interferometer. [1]

2.1.2. Anatomy of the Eye

Figure 2.2 shows the anatomy of the eye. In this thesis we investigate the retina, the
macula and the choroid, which are highlighted in figure 2.2 with a black box.

• The retina is responsible for converting the light which comes through the lens
into neural signals. The neural signals from photoreceptor cells are sent via the
optic nerve to the brain in order to create visual perception [17].

• The macula is part of the retina and makes high-acuity vision possible. Addition-
ally, the macula contains a high density of cones, which are photoreceptors with
high acuity [18].

• The choroid supplies the outer retina with oxygen and nutrients with the help of
its blood vessels. It is also responsible for 85% of the total blood flow in the eye
[19].

4



2. Theory

Figure 2.2.: The anatomy of the eye. The black box shows the area which is presented
in an OCT scan [2].

2.1.3. OCT images of the Eye

Figure 2.3 shows an OCT scan of the retina. For a better understanding we have included
the labeled image next to the OCT image. In this OCT scan the orange layer presents
the vitreous and the retina is indicated with the blue label. The choroid is shown with
the yellow label and the sclera is presented with the white label.

Figure 2.3.: OCT image of a healthy eye from the data set provided by Dr. Peter Maloca.

5



2. Theory

2.1.4. Eye Tumors

Eye tumors damage vision and may spread to the optic nerve, the brain and the rest of
the body. There are two types of primary tumors which may arise in the eye, namely
retinoblastoma and melanoma. Retinoblastoma is a cancer of the retina and arises in
children. Melanoma occurs mostly in adults and occurs from uncontrolled growth of cells
called melanocytes [20].

Eye tumors can be detected on an OCT scan of the retina. The tumor is located in
the choroid. As it can be seen in figure 2.4 there are small choroid lesions visible. In the
OCT imagery, the surrounding of the tumor has a higher light intensity compared to the
blood vessels of the choroid. Thus, irregularities of the blood vessels in the choroid often
indicate the appearance of tumors.

Figure 2.4.: OCT image displaying a tumor. For a better understanding we have shown
the different labels of the compartments. The tumor is indicated with a
violet label, the vitreous with a orange label, the retina with a blue label,
the choroid with a yellow and the sclera with a white label. [3].

2.2. Related Work

2.2.1. Synthetic Data Augmentation using Generative Adversarial
Networks (GANs)

In [4] Frid-Adar et al. propose a training scheme in which they first enlarge the training
set using classical data augmentation and further augment the training set using syn-
thetic images generated by Generative Adversarial Networks (GANs). They apply the
proposed technique on 182 computed tomography (CT) images of liver lesions. For the
GAN the authors have followed the architecture proposed by Radford et al. in [21].

6



2. Theory

The results of their experiment are given in figure 2.5. Using no augmentation, the clas-
sifier achieved an accuracy of 57%. One can recognize that the performance improved
as the number of training examples increased. The classifier reaches a saturation at
about 78.6%. From this point, increasing the data set using classical data augmentation
techniques failed to improve classification accuracy. Since the saturation starts at 5000
samples per fold, they choose to augment the original data set with 5000 images per fold
generated using classical augmentation methods and 3000 synthesized images per fold
using GANs. The accuracy of the classifier improved from 78.6% with no synthesized
images to 85.7% with synthesized images.

The data set in this thesis is between one and two orders of magnitudes larger in size
than in [4].

Figure 2.5.: The accuracy of a classifier trained on the augmented data set with increas-
ing training set size. The red curve shows the classifiers accuracy using
classical data augmentation and the blue curve shows the classifiers accu-
racy using synthesized images. They augmented the initial data set with
5000 images per fold generated using classical augmentation methods and
3000 synthesized images per fold using GANs [4].

2.2.2. Realistic OCT images with GANs

To our knowledge there is only one application of GANs for the synthesis of OCT imagery
of the retina, namely [5]. The related work indicates the importance of understanding
the native probability distribution of OCT representation of retinal diseases. This may

7



2. Theory

lead to a more in depth understanding of particular diseases and their pathology. In [5]
the authors were able to generate realistic images depicting various retinal diseases such
as macular holes or cystoid macular edema. The authors have used a database of 500’000
images after augmentation. Some of their generated images are shown in figure 2.6.

In contrast to the related work we try to capture tumors in the choroid only. Since
the amount of OCT imagery displaying tumors is limited, we will develop a GAN which
needs fewer images to converge.

Figure 2.6.: AI generated images using a database of 500’000 images after augmentation
[5].

2.3. Artificial Neural Networks

Artificial Neural Networks are computational processing systems which are inspired by
the way a human brain operates. They are built by high numbers of computational
nodes, which are called artificial neurons [6]. Each neuron calculates its output using a
weight vector w = (w1, w2, ..., wn), input values (x1, x2, ..., xn) and an activation function
ϕ as follows:

f = ϕ
( n∑
i=1

wixi

)

8



2. Theory

The basic structure of an artificial neural network is shown in figure 2.7. During training,
a loss function quantifies the quality of an artificial neural network’s predictions by mea-
suring the difference between predicted and true values for an instance of the training
data. The weights of the neurons are optimized by minimizing the loss. In gradient-
based algorithms, backpropagation computes the gradient of the loss function and then
updates the weights of the neurons such that the loss is reduced.

Convolutional Neural Networks are a form of artificial neural networks. The main char-
acteristic of convolutional neural networks is that they are used in the field of digital
image processing in order to solve tasks such as image classification or image recogni-
tion. In [6], the basic architecture and common terms of a convolutional neural network
are described. Furthermore, [22] describes how convolutions are applied to digit classi-
fication. In [23], the authors discuss how deep learning methods, such as convolutional
neural networks, have pushed the limits of what is possible in the domain of digital image
processing.

Figure 2.7.: Simple feedforward neural network consisting of an input layer, a hidden
layer and an output layer. An artificial neural network is a set of artificial
neurons and their connections to each other. [6].

2.4. Generative Modeling

In machine learning, one can make a distinction between discriminative and generative
approaches. Generative models try to model the joint probability distribution of an
observable random variable X and a target variable Y , namely P (X = x, Y = y).
Unlike generative modeling, discriminative modeling studies the conditional probability
P (Y = y|X = x). In other words a discriminative approach attempts to estimate the
probability that an observation x of the random variable X belongs to a sample y of the
random variable Y .

9



2. Theory

Discriminative models make fewer assumptions about the distribution compared to gen-
erative models. For example, given a set of labeled pictures of dogs and cats, a discrim-
inative model tries to learn P (Y |X) from the training data and calculates at prediction
time for a new, unlabeled picture x the probability P (Y |X = x) and usually determines
the most likely class y to be the prediction. However, a generative model outputs a
generated picture along with a class label based on the joint probability distribution
P (X,Y ) which it learned during the training process. This joint probability distribution
generally contains implicit knowledge about the underlying data like that all cats have
whiskers [24].

„A generative model describes how a data set is generated in terms of a probabilistic
model. By sampling from this model, we are able to generate new data “[25]. That
means generative models are able to generate new instances which are similar to the
data samples the model has seen during training.

2.5. Variational Autoencoder

2.5.1. The Standard Autoencoder

An autoencoder network is a pair of two neural networks, namely an encoder and a de-
coder. These models try to learn a compressed representation c ∈ Rm of the input data
x ∈ Rn. The encoder network takes in the input x from an n−dimensional space and
maps it into a m−dimensional subspace. The subspace is often called latent space. This
means the latent space has a lower dimensionality than the input space. The output of
the encoder is called encoding or latent representation.
The goal of the decoder network is to reconstruct a representation from the latent rep-
resentation that is as close as possible to the original input of the encoder [7].

Figure 2.8.: Overview of an autoencoder [7]

The basic structure of an autoencoder is shown in figure 2.8. The objective of the
autoencoder is to minimize the difference between every input and every output, i.e. the
reconstruction error. Assuming the encoder function is denoted as c = gΘ(x) and the
decoder function is denoted as x′ = fθ(c) the reconstruction error of an autoenocder can
be formulated as stated in equation 2.1. The parameters of the encoder, namely Θ and

10



2. Theory

the parameters of the decoder, namely θ are usually learned concurrently during training
in order to minimize the reconstruction error [26]:

L(Θ, θ, x) =
1

N

N∑
i=1

(x(i) − fθ(gΘ(x(i))))2 (2.1)

Autoencoders are used in areas, where the interest lies in a dimensionality reduction
while still preserving the most important features.

The problem with standard autoencoders

In figure 2.9, one can see the clusters representing the different digits in the two-dimensionial
latent space for the MNIST dataset. This is sufficient in order to replicate images. How-
ever, with generative models, one wants to generate new samples by randomly sampling
from the latent space. If the latent space has discontinuities, meaning gaps between the
clusters and one samples from there, as indicated with „?“ in figure 2.9, the decoder may
generate an unrealistic output. The decoder does not know how to decode that region
of the latent space. During training, the decoder never receives encoded vectors coming
from that region of the latent space [7].

Figure 2.9.: Autoencoder on the MNIST dataset, visualizing the latent representation of
each digit from a 2D latent space. [7]
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2. Theory

2.5.2. The Variational Autoencoder

Figure 2.10.: Overview of a variational autoencoder [8]

Unlike vanilla autoencoders, Variational Autoencoders (VAE) are generative models. The
VAE tries to overcome the shortcoming of a continuous latent space. The encoder of the
VAE does not directly generate a latent vector of a data sample x. It rather provides a
mean vector µ(x) and deviation vector σ(x) of size m, whereby m is the dimension of the
latent space. Moreover, the latent representation z is sampled from the Gaussian distri-
bution parameterized by µ(x) and σ(x). Then the sampled encoding is passed onward
to the decoder. Otherwise, the decoder of the VAE works similar as the decoder of the
autoencoder.

For the same input, while the mean and standard deviation remain the same, the actual
encoding will vary due to this sampling procedure of the latent representation. As en-
codings are sampled randomly from the distribution, the decoder learns that not only a
single point in latent space refers to a sample of that class, but all nearby points refer to
the same class as well. The decoder is exposed to various encodings of the same input
during training. This property allows the decoder not just to know the decoding of single
specific points in latent space but also the decoding of latent points that slightly vary
[7].

Objective of VAE

What we ideally want is to maximize the probability of each x in the training set under
the entire generative process, according to equation 2.2:

p(x) =

∫
P (x|z)P (z) dz (2.2)
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2. Theory

„Provided powerful function approximators, we can simply learn a function which maps
our independent, normally-distributed z values to whatever latent variables might be
needed for the model, and then map those latent variables to x.“ [9] Thus we choose for
the prior P (z) = N (0, I), where I is the identity matrix.

To approximate p(x) we can sample a large number of z values (z(1), z(2), ..., z(n)) and
then compute

p(x) ≈ 1

n

∑
i

P (x|z(i)) (2.3)

Unfortunately, in high dimensional spaces the number of samples n has to be extremely
large in order to approximate p(x) accurately [9].

The idea behind the variational autoencoder is to sample values of z that are likely
to be produced by x. Thus, we need a conditional probability distribution P (z|x), which
takes a value of x and returns a distribution over z that are likely to have produced
x. Since the calculation of P (z|x) using Bayes rule involves P (x) we can not compute
P (z|x) directly. Thus, we try to approximate P (z|x) by another distribution Q(z|x)
which is defined in such a way that it has a tractable solution: Q(z|x) is considered to
be Gaussian distributed.

To achieve this approximation we can use the Kullback-Leibler (KL) divergence be-
tween the Q(z|x) and P (z|x). The KL divergence between two probability distributions
measures how much they diverge from each other. Minimizing the KL divergence means
optimizing the probability distribution parameters µ(x) and σ(x) to resemble that of the
target distribution [7] [27]:

DKL(Q(z|x)||P (z|x)) = Ez∼Q(z|x)

[
log Q(z|x)− log P (z|x)

]
(2.4)

After simplifying equation 2.4 using Bayes rule and moving P (x) out of the expectation,
since the expectation is over z, one receives equation 2.5.

log P (x)−DKL[Q(z|x)||P (z|x)] = Ez∼Q(z|x)[log P (x|z)]−DKL[Q(z|x)||P (z)] (2.5)

The left-hand side of the equation describes what we want to optimize, namely P (x) and
an error term which causes Q to produce z values that can reproduce x. The right-hand
side is the objective function of the variational autoencoder. The first term represents
the reconstruction’s likelihood and the second term ensures that the distribution Q is
similar to our prior P (z) [9].
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2. Theory

Image Generation

In order to generate new instances we can simply input values z ∼ N (0, I) into the
decoder. This works since the first few layers of the decoder will learn a function which
maps the independent normally-distributed z values to the latent variables needed to
construct x′. This x′ was likely to have created that particular z.

Reparametrizaton trick

The problem which occurs in the above architecture is that backpropagation is not pos-
sible. Note that we are sampling a latent vector from the mean and standard deviation
vector, as shown on the left-hand side of figure 2.11. Such a sampling procedure is not
differentiable and thus one cannot backpropagate through the nodes. The reparametriza-
tion trick tries to move the non-differentiable operation out of the network, as shown on
the right-hand side of figure 2.11. Now the gradients do not need to flow through the
random node since it has no learnable parameters. The feedforward behaviour of both
networks is the same but backpropagation can only be applied if the reparametrization
trick has been used.

Figure 2.11.: Reparametrization trick which is needed for the back propagation. Left
is without reparametrization trick, and right is with it. The distribution
N(0, I) is the prior P (z). [9]

Multivariate Gaussian distribution

There are several reasons why we choose a multivariate Gaussian distribution for the
latent space. First of all, we can apply the reparametrization trick here. Secondly, to
generate new images we can simply input values z ∼ N (0, I) into the decoder. Another
reason for choosing Gaussian distribution is to evaluate the KL-divergence analytically.
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2. Theory

2.6. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a generative framework recently proposed
by Ian Goodfellow and his co-authors in [28]. According to Yann Lecun, „Generative
Adversarial Networks is the most interesting idea in the last ten years in machine learn-
ing.“

Figure 2.12.: Overview of a Generative Adversarial Network [10]

In a GAN architecture we have a discriminator and a generator, as it is shown in
figure 2.12. They both are built as neural networks. The task of the generator is to
generate new images as close as possible to the training data. Whereas, the task of the
discriminator is to classify whether the received images come from the training data or
were generated. Furthermore, the goal of the generator is to fool the discriminator by
providing generated images and causing the discriminator to erroneously classify them
as genuine. The goal of the discriminator is to maximize the probability of assigning the
correct label to both training examples and samples generated by the generator [28].

As shown in figure 2.12, the input for the generator is a random noise vector. This
random noise vector is either uniform or Gaussian distributed. The generator takes this
random noise and transforms it into an image, which is then given to the discriminator,
whereas the discriminator is trained using the training set. Moreover, the training set
contains real images. Additionaly, the discriminator tries to classify whether the image
seen is real or fake.

The discriminator is trained the same way as a binary image classifier. Goodfellow
mentioned that GANs use the power of discriminative models and their benefits to get
a good generative model. Furthermore, the discriminator is trained with the backprop-
agation algorithm. In the case of images generated by the generator, the gradients are
further backpropagated through the generator. In this manner, the generator may learn
how to generate new images which look more realistic to the discriminator.
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2. Theory

Objective of GANs

The discriminator D and generator G are trained simultaneously. D(x) represents the
probability that sample x comes from the distribution of the training data rather than
the distribution of the generated images. The input of the generator is the random
noise vector z ∼ pz, whereby pz is a prior on input noise variables. Furthermore, the
discriminator wants to maximize D(x) over the training data and the generator wants
to maximize D(G(z)) over the random noise variables. This is equivalent to maximizing
the logarithm of D(x) over the training data and minimizing the logarithm of log (1 −
D(G(z))) over the random noise variables. The discriminator and the generator play the
following minimax game with value function V (D,G) [28]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.6)

Nevertheless, often one does not use equation 2.6 to train a GAN. Early in learning, the
generated images will be roughly random and thus the discriminator can reject these
samples with high confidence. In this case, log(1 − D(G(z))) saturates. But we can
train G to maximize log D(G(z)). Then the objective function provides much stronger
gradients early in training [28].

The generator implicitly defines a probability distribution pg as the distribution of the
samples generated. It has been proven in [28] that for a fixed generator the optimal
discriminator is:

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(2.7)

and for a fixed discriminator the optimal generator for the GAN objective becomes

pg = pdata (2.8)
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Chapter 3
Data

In this chapter we present the data used for the experiments done in this thesis. We give
a short overview of the training and test sets used for the neural networks.

3.1. Proof of Concept

The proof of concept was done using the MNIST data set. The MNIST data set is a
collection of handwritten digits with a training set of 60’000 images and a test set of
10’000 images. The digits have been size-normalized and centered in a fixed-size image
of 28× 28 [29].

3.1.1. Experiment data

For the experiments a training subset and a test subset of the original MNIST data set
were created. The subsets were obtained by randomly choosing the desired amount of
distinct images from the original training and test set, respectively. We have done the
experiment using different amounts of images. Hereby, we have chosen intentionally the
same amount of distinct images for each digit. The different training subsets had 15, 30,
50, 100, 250, 500 and 1000 images per digit. The test subset used in all experiments had
a size of 500 images per digit.
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3. Data

3.2. Generative Models

For training the generative models we had used the OCT imagery provided by Dr. Pe-
ter Maloca, Group Leader Ophthalmic Imaging at Institute of Molecular and Clinical
Ophthalmology Basel (IOB). The OCT imagery had already been classified by SCS into
Emmetropia, Hyperopia, Myopia and Tumor images. Emmetropia is the normal refrac-
tive condition of the eye, in which vision is sharp and thus no corrective lenses are needed.
Hyperopia, also known as farsightedness is the state of vision in which close objects ap-
pear blurry. Myopia, also known as nearsightedness is the state of vision where distant
objects appear blurry.

3.2.1. Variational Autoencoder

Experiment data

In order to train the variational autoencoder OCT scans of emmetropic eyes are used.
We take OCT scans of the left eye of 20 random patients. Each OCT scan provides 256
images. Randomly 15 OCT scans are taken as the training set and 5 OCT scans for
testing. In other words the training set consists of 3840 images and the test set of 1280
images.

OCT images of emmetropic eyes are chosen because compared to the other classes (Hy-
peropia, Myopia and Tumor images) the images of emmetropic eyes have a more similar
and simpler structure. Thus, it is probably easier for the model to capture the desired
distribution.

3.2.2. Generative Adversarial Networks

Experiment data

For training the generative adversarial network we first use a training set containing the
training and test set used for the variational autoencoder. In other words, the training
set for the GAN contains 5120 OCT images of emmetropic eyes. For training a GAN no
test set is required. After optimizing the model to work on OCT imagery of emmetropic
eyes we train a second model on OCT imagery displaying tumors. Hereby, the training
set contains totally 1730 OCT images, which were obtained from left eyes as well as from
right eyes of the patients.
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Chapter 4
Methods

This chapter aims to provide a clear and complete explanation of the experimental steps
undertaken in this thesis. First, we explain the experimental environment followed by the
methods which were used for the proof of concept. Secondly we provide an explanation
of the design techniques applied to the generative models.

4.1. Experiment environment

All models developed in this thesis were trained and evaluated on a NVIDIA Titan X
graphics card, which was provided by Supercomputing Systems. The implementation
was done using Python. Keras was used as the framework for the neural networks
implemented in this thesis. TensorFlow was chosen to serve as the backend engine of
Keras.

4.2. Proof of concept

As mentioned in section 1.1, the motivation for this thesis is to improve the performance
of an automated tumor detection algorithm by augmenting the training data. In order
to achieve this, we have to examine whether the augmentation of a training set with
synthesized images generated by means of generative models leads to an improvement of
the classifier. Investigating this hypothesis on the OCT imagery would exceed the scope
of this thesis. Thus, we decided to provide a proof of concept on the MNIST data set.
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4. Methods

4.2.1. Procedure

First, a subset of the MNIST data set is chosen in order to train the GAN. Subsequently,
the subset is augmented with the generated images using the GAN. At this point, we
have two data sets. One data set containing only the original images and a second data
set containing the original images and the generated images. Afterwards, we train a CNN
for MNIST digit classification on both of these data sets.

4.2.2. Implementation

GAN for MNIST

The architecture of the GAN trained on the subset of the training set is shown in figure 4.1
and in figure 4.2. Each convolution layer in the discriminator uses a stride of two, 4× 4
kernel size and padding is set to same, which causes the image size to be halved after
every convolution. After every convolution layer, we apply Batch Normalization and
LeakyReLU activation. The single node in the output layer uses sigmoid activation since
the discriminator needs to output probabilities.

Figure 4.1.: Architecture of the discriminator used for training the GAN on the MNIST
data set. The input is an image with one channel and 28× 28 pixels in size.
The output is a binary classification.

The first hidden layer of the generator needs enough neurons for multiple activation
maps of the output image. This thesis has chosen to have 128 activation maps with a
size of 7 × 7. This leads to a total number of 7 · 7 · 128 = 6272 neurons. In order to
upsample the low-resolution image we use transposed convolution layers with a stride
of two, 4 × 4 kernel size and padding is set to same. Again, Batch Normalization and
LeakyReLu are used after the transposed convolution layers, except for the last one. In
the last convolution layer, we do not use Batch Normalization and the used activation
function is tanh which squashes the output values to the open interval [−1, 1].
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4. Methods

Figure 4.2.: Architecture of the generator used for training the GAN on the MNIST data
set. The input of the generator is a 100 element vector drawn iid from a
standard normal distribution. The output is a grayscale image of 28 × 28
pixel.

CNN for MNIST

After generating synthesized handwritten digits we augment the original training subset
used for training the GAN with the generated images. Now one can compare a classifier’s
performance between the data set containing original images only and on the augmented
data set. In order to have a more robust prediction performance comparison the classi-
fier is trained and tested for each training set five times and performance measures are
averaged.

For image classification, we use the CNN shown in figure 4.3. In order to downsam-
ple the image we use MaxPooling layers with a stride of two, kernel size of 4 × 4 and
padding is set to same. The activation function used for each layer except for the last
one is relu. For the output layer we use softmax activation.

Figure 4.3.: Architecture of the CNN used for image classification. The input is an image
with one channel and a size of 28 × 28 pixels. The output is the predicted
digit.
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4.3. Generative Models

In order two answer the question of whether one can generate realistic OCT imagery
using generative models, we choose to investigate on two models, namely Variational
Autoencoder (VAE) and Generative Adversarial Network (GAN).

4.3.1. Procedure

We train both generative models using the OCT imagery in order to generate new realistic
images.

4.3.2. Implementation

Variational Autoencoder

The architecture of the encoder is shown in figure 4.4 and of the decoder in figure 4.5.
Each convolution layer of the encoder uses relu activation, a kernel size of 3 × 3 and
padding = same. For the purpose of downsampling the image, we use MaxPooling layers
with a stride and a kernel size of two.

Figure 4.4.: Architecture of the VAE encoder. The input is a grayscale image x with one
channel and a size of 256× 256 pixels. The outputs are two vectors, namely
µ(x) and σ(x).

As explained in 2.5.2, the variational autoencoder uses the vectors µ(x), σ(x) and ε ∼
N (0, I8) in order to sample a latent representation z of the input image x. This latent
representation is the input for the decoder of the variational autoencoder. We have chosen
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for the first convolution layer of the decoder to have 32 channels of the low-resolution
image with a spatial dimension of 32 × 32. This causes the first hidden layer of the
network to have 32 · 32 · 32 = 32768 neurons. For upsampling, we are using transposed
convolution layers with a stride of two, a kernel size of 3 × 3 and zero padding. Again,
the activation function used in the convolution layers is relu.

Figure 4.5.: Architecture of the VAE decoder. The input is the latent representation of
an input image x sampled from the vectors µ(x) and σ(x). The output of
the decoder is the reconstructed representation of the original image.

In [30] the authors propose a new framework named β - VAE for learning a disentangled
latent representation of an image. The framework β - VAE qualitatively outperforms
VAE for disentangled factor learning. This can be achieved by forcing the components
of the latent representation z to be independent. To encourage independence we weight
the KL-divergence term in the objective function of the VAE with a factor β, as shown
in equation 4.1:

L = Ez∼Q(z|x)[log P (x|z)]− βDKL[Q(z|x)||P (z)] (4.1)

In this thesis we have used a value of 5 · 10−4 for β.

Generative Adversarial Networks

For the sake of training a GAN on the OCT imagery the architectures shown in fig-
ures 4.6 and 4.7 are used. Once more each convolution layer in the discriminator uses
a stride of two, which causes the image size to be halved. Every convolution layer is
followed by a Batch Normalization and LeakyRelu activation. The main differences of
the discriminator used for the OCT imagery (figure 4.6) and the discriminator used for
the MNIST data set (figure 4.1) are on the one hand the number of convolution layers
and their number of filters and on the other hand the additional techniques used in order
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to improve the stability of the network.

MinibatchDiscrimination is a recently suggested technique to improve the training for
GANs, which was proposed in [31]. One of the common difficulty when training GANs is
mode collapse. As a result of mode collapse the generator creates only a limited diversity
of samples. MinibatchDiscrimination tries to overcome mode collapse by computing the
similarity of an image with images in the same batch. If the generator is outputting
similar images the discriminator can detect a mode collapse using the similarity score
and prevent a mode collapse by penalizing the generator.

Another technique proposed in [31] to improve the GAN is one-sided label smooth-
ing. One-sided label smoothing replaces the 0 and 1 labels in the GAN architecture
with smoothed values, like 0.9 or 0.1. It has been shown that this technique reduces the
vulnerability of neural networks to adversarial examples [32]. This technique is called
one-sided because only the positive labels are smoothed to 0.9, leaving negative labels
set to 0, since smoothing negative labels barely cause an improvement.

In [33] Chintala proposes to use noisy labels to improve generalization and stability
of the trained neural network. To achieve noisy labels we flip the labels of the real and
fake images with a certain probability.

Figure 4.6.: Architecture of the discriminator used for training the GAN. The input is an
image with one channel and 256× 256 pixels in size. The output is a binary
classification.

For the first convolution layer of the generator we have chosen to have 512 low-resolution
channels with a spatial dimension of 4 × 4. Thus, the first hidden layer of the network
needs to have 4 · 4 · 512 = 8192 neurons. We use eight transposed convolution layers
with a stride of two in order to upsample the image to a size of 256× 256. The last two
transposed convolution layers do not use any strides, leaving the image size unchanged.
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Batch Normalization and LeakyReLu is used after each transposed convolution layer,
except for the last one. In the last convolution layer no Batch Normalization is used and
the used activation function is tanh.

Figure 4.7.: Architecture of the generator used for training the GAN.The input of the
generator is a 100 element vector of elements draw iid from a standard normal
distribution. The output is a grayscale image of 256× 256 pixel.
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Chapter 5
Results

In this chapter we present the results obtained by using the data mentioned in chapter
3 and applying the methods explained in chapter 4.

5.1. Proof of concept

As described in section 4.2, first a subset of the MNIST data set is chosen in order to
train the GAN. Afterwards we augment the training subset with the images generated
using the GAN. As a result we are able to train the classifier for the handwritten digits
on two data sets, namely the original training subset and the augmented data set.

The first column of table 5.1 shows how many images per digit the original training
subset contains. This original training subset is used for training the GAN. The second
column provides the number of images per digit generated using the GAN. The classifier
is then trained on the original training subset and on the augmented training set.

For the columns three to five the accuracy is the mean accuracy after training and testing
the model for five times.

The third column presents the classifier’s performance on the original training subset and
the fourth column states the classifier’s performance on the augmented data set. The
fifth column reveals the classifier’s performance when trained only on generated images
and tested on original images. The last column is the performance gain respectively the
performance loss through augmenting the training subset with generated imagery.

26



5. Results

Training
size
per digit

generated
images
per digit

accuracy w/o
augmentation

accuracy with
augmentation

accuracy on
only generated
images

gain

15 250 77.44 75.332 66.5 -2.108
30 500 83.74 82.4 69.108 -1.34
50 500 88.536 89.156 83.276 0.62
100 2000 92.164 92.78 89.368 0.616
250 2000 95.16 95.396 83.98 0.236
250 4000 95.336 95.396 92.92 0.06
500 2000 96.876 96.76 93.564 -0.116
500 5000 96.728 96.736 94.624 0.008
1000 4000 97.776 97.7 94.76 -0.076

Table 5.1.: Results obtained from training the classifier on different training sets.

In figure 5.1 the classifier’s predictive performance by means of cross-entropy loss and
accuracy is shown. The classifier has been trained and tested five times. In blue, the
classifier’s learning process on the augmented training set is presented. In orange, we
display the classifier’s performance on a test set, which is a subset of the original test set
of the MNIST data set.
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Figure 5.1.: The classifiers performance on the test subset (orange) and the classifiers
learning process on the augmented training set (blue) are shown. The original
training subset contains 100 images per digit and 2000 images per digit are
generated with the GAN. The x-axis describes in both plots the number of
epochs the classifier was trained. The y-axis represents in the first plot the
loss and in the second plot the accuracy.

In figure 5.2 the boxplots of the classifier’s performance on three different training sets is
provided. Each boxplot presents the accuracy resulting from the 5 trainings done on that
particular training set. The leftmost boxplot shows the result of training the classifier on
100 original images per digit. In the middle boxplot the result of training the classifier
on 100 original and 2000 generated images per digit is provided. The rightmost boxplot
presents the result of the classifier when trained on 2000 generated images per digit.
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5. Results

Figure 5.2.: Boxplots showing the accuracy of three different training sets. On each
training set the classifier has been trained 5 times, which is represented by
each boxplot.

5.2. Generative Models

For generating realistic OCT imagery we trained the models using the architecture ex-
plained in chapter 4.

5.2.1. Variational Autoencoder

Figure 5.3 shows three OCT images of an emmetropic eye, generated using a variational
autoencoder. We trained the model for 300 epochs and had a validation loss of 0.4547.
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5. Results

Figure 5.3.: OCT images of emmetropic eye generated using VAE.

5.2.2. Generative Adversarial Networks

Figure 5.4 shows OCT images of an emmetropic eye, generated using a generative adver-
sarial network.

Figure 5.4.: OCT images of emmetropic eye generated using GAN

Figure 5.5 summarizes the predictive performance of the generative adversarial network
by means of loss and accuracy. The model was trained on 5120 OCT images of em-
metropic eyes. The GAN was trained for around 386 Epochs with a batch size of 16
which results in 117800 single training steps.
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5. Results

Figure 5.5.: GANs predictive performance performance by means of loss and accuracy
on OCT imagery of emmetropic eyes. The x-axis shows in both plots the
number of single training steps and the y-axis present in the first plot the
loss and in the second plot the accuracy.

Figure 5.6 shows OCT images of an eye tumor generated using a generative adversarial
network. The surrounding of the tumor shows a high light intensity. One can also detect
a vanishing shadow beneath the tumor in the OCT images.

Figure 5.6.: OCT images displaying eye tumor generated using GAN

Figure 5.7 summarizes the performance of the generative adversarial network trained on
1730 OCT images displaying tumors. The GAN was trained for 300 epochs with a batch
size of 16, which results in 54000 steps.
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5. Results

Figure 5.7.: GANs performance on OCT imagery displaying tumors. The GAN was
trained for 54000 steps. The x-axis shows in both plots the number of single
training steps and the y-axis present in the first plot the loss and in the
second plot the accuracy.
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Chapter 6
Discussion

In this chapter, we analyse the results presented in chapter 5. In particular, we discuss
possible causes for the results received.

6.1. Proof of Concept

6.1.1. Augmenting training set with generated imagery

By augmenting the training set with synthesized images using generative models our
goal was to increase the amount of representations and to ultimately improve a classifiers
performance. The motivation was that generative models may learn the distribution in
an other manner than a discriminative classifier and thus may provide more information
about the data. As it can be observed in table 5.1 the approach led to a relatively modest
improvement of the classifier in most of the cases. One possible explanation for having
only such a marginal improvement may be that we did not try to overcome imbalanced
data. In particular, when dealing with imbalanced data there are majority classes and
minority classes. Then one tries to oversample the minority classes. In our setting we
had the same amount of images for every class and tried to augment the training set
with generated images for every class. In other words, every class was a minority class
in our setting.
In [34] Tanaka and Aranha came to a similar conclusion to ours. They have reported a
marginal increase in the performance of the classifier although dealing with imbalanced
data sets. Since, the increase is known to be minimal augmenting the data set with
synthesized images generated with generative models might not be sufficient in order to
improve the classifier by significant amounts.
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6.1.2. Training on generated images only

As presented in figure 5.2 training a classifier on generated images only, results in a similar
predictive performance as when training the classifier on the original data set. Since, it
is possible that training data contains sensitive information which could be misused it
can be desirable to train an algorithm on realistic synthetic data. As shown in this
thesis training on generated images only, is possible at the cost of a relative small loss of
accuracy of the classifier. The ability of providing such comparable performance is also an
indicator for the success of learning. In particular, this ensures that our generative model
was apt to learn the underlying distribution and sample from the learnt distribution.
In [34] training on generated images only even outperformed the classifier’s performance
compared to training on the original data set.

6.2. Generative Models

6.2.1. Variational Autoencoder

As it can be seen in figure 5.3 the OCT image generated with the Variational Autoencoder
is blurry. Bluriness is a common issue for Variational Autoencoders. Goodfellow et al.
state in [35] that the causes of this phenomenon is not known yet. One possibility is that
the bluriness is caused by minimizing the KL-divergence in equation 2.5. As described
in [35] the KL-divergence is asymmetric. The version of the approximation used for the
Variational Autoencoder will assign a high probability to points that occur in the training
set but it may also assign a high probability to other points. These other points may
include blurry images [35].

6.2.2. Generative Adversarial Networks

With the help of Generative Adversarial Networks it was possible to synthesize realistic
OCT imagery, in particular OCT images displaying eye tumors as shown in figure 5.6.
The generated OCT imagery has been presented to an expert, namely Dr. Peter Maloca
Group Leader Ophthalmic Imaging IOB. His expertise was used to quantify the quality
of the generated imagery. From the exposed 25 generated images the expert classified
16 images as realistic OCT images displaying tumors. Nevertheless, on all 25 generated
images one can identify the four compartments (vitreous, retina, choroid and sclera).
The expert mentioned that these could be OCT images which were generated by an
older Imaging System due to the low local resolution and a size of 256×256 pixels of the
images. An other imperfection is that an Optical Coherence Tomography Imaging System
would generate an OCT scan which is axially stretched for better readability whereby
the generated OCT imagery using Generative Adversarial Networks are square-shaped.

34



6. Discussion

Nevertheless, regarding the goodness of the generated imagery the GAN outperformed
the VAE by far.
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Chapter 7
Conclusion and Future Work

In this chapter we first conclude our findings and then provide some prospective points
for the future work of this research.

7.1. Conclusion

In this thesis we come to the conclusion that augmenting a training set with generated
images by means of generative models leads to a marginal increase in the performance
of a classifier in most of the cases. Thus, increasing the amount of OCT ground truth
data by means of generative models alone might not be sufficient enough to increase a
classifiers performance.

In this work we have identified that the images generated using Variational Autoen-
coder are blurry. This is even the case for emmetropic eyes where the model had enough
training data. We have also proven that Generative Adversarial Networks are sufficiently
advanced to generate OCT imagery displaying tumors which have been classified by an
expert as realistic. Although the GAN had a training set containing only 1730 OCT
images displaying tumors it is able to generate realistic OCT imagery with eye tumors.
Thus, we suggest the use of Generative Adversarial Networks for synthetic image gener-
ation since it outperformed the Variational Autoencoder by far.

7.2. Future Work

Since, in this thesis the impact of augmenting a training set was analyzed on the MNIST
data set a possible first future step might be to examine the effect of augmenting the
training set consisting of OCT imagery. Furthermore, one may use the OCT images
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generated in this work for this purpose.

As described in 2.2.1 one can increase a classifiers performance and overcome the imbal-
ance of data by using a combination of classical augmentation techniques and generative
models. This may lead to a new hypothesis which can be investigated in the field of OCT
imagery.
An other possibility to overcome the lack of ground truth data would be to use an other
augmentation technique such as SMOTE [36]. This kind of techniques have already been
proven to lead to the desired result [34]. Moreover, Tanaka and Aranha state that the
GAN did not perform better than augmentation techniques such as SMOTE or ADASYN
for imbalanced data.

37



Appendix A
Declaration of Originality

38



Bibliography

[1] J. Fujimoto and W. Drexler, Introduction to Optical Coherence Tomography.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–45. [Online]. Available:
https://doi.org/10.1007/978-3-540-77550-8_1

[2] L. Segre, “Eye anatomy: A closer look at the parts of the eye,” 2019, [Online;
accessed 11-December-2019]. [Online]. Available: https://www.allaboutvision.com/
resources/anatomy.htm

[3] P. Friedli, “Extend machine- and deep learning into 3d volumetric analysis of medical
image data,” Semester Thesis, ETH Zürich, 6 2019.

[4] M. A. J. G. H. G. Maayan Frid-Adar, Eyal Klang, “Synthetic data augmentation
using gan for improved liver lesion classification,” 2018. [Online]. Available:
https://arxiv.org/pdf/1801.02385.pdf

[5] M. M. S. Stephen G. Odaibo, M.D., “Generative adversarial networks
synthesize realistic oct images of the retina,” 2019. [Online]. Available:
https://arxiv.org/pdf/1902.06676.pdf

[6] R. N. Keiron O’Shea, “An introduction to convolutional neural networks,” 2015.
[Online]. Available: https://arxiv.org/pdf/1511.08458.pdf

[7] I. Shafkat, “Intuitively understanding variational autoencoders,” 2018, [Online;
accessed 14-October-2019]. [Online]. Available: https://towardsdatascience.com/
intuitively-understanding-variational-autoencoders-1bfe67eb5daf

[8] K. Frans, “Variational autoencoders explained,” 2016, [Online; accessed 15-October-
2019]. [Online]. Available: http://kvfrans.com/variational-autoencoders-explained/

[9] C. Doersch, “Tutorial on variational autoencoders,” 2016. [Online]. Available:
https://arxiv.org/pdf/1606.05908.pdf

40

https://doi.org/10.1007/978-3-540-77550-8_1
https://www.allaboutvision.com/resources/anatomy.htm
https://www.allaboutvision.com/resources/anatomy.htm
https://arxiv.org/pdf/1801.02385.pdf
https://arxiv.org/pdf/1902.06676.pdf
https://arxiv.org/pdf/1511.08458.pdf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
http://kvfrans.com/variational-autoencoders-explained/
https://arxiv.org/pdf/1606.05908.pdf


Bibliography

[10] T. Silva, “An intuitive introduction to generative ad-
versarial networks (gans),” 2018, [Online; accessed 23-
October-2019]. [Online]. Available: https://www.freecodecamp.org/news/
an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

[11] H. Kumar, “Data augmentation techniques,” [Online; accessed 8-December-2019].
[Online]. Available: https://iq.opengenus.org/data-augmentation/

[12] “Data augmentation using generative adversarial networks (cyclegan) to improve
generalizability in ct segmentation tasks.”

[13] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learn-
ing in image classification problem,” in 2018 International Interdisciplinary PhD
Workshop (IIPhDW), 2018, pp. 117–122.

[14] “Systematic analysis of image generation using gans.”

[15] T. M. P. E. A. Mette Mogensen, Lars Thrane and G. B. E. Hemec, “Oct imaging of
skin cancerand other dermatological diseases,” Journal of BIOPHOTONICS, 2009.
[Online]. Available: https://doi.org/10.1002/jbio.200910020

[16] S. A. B. James G Fujimoto, Costas Pitris and M. E. Brezinski, “Optical
coherence tomography: An emerging technology for biomedical imaging and
optical biopsy,” 2000, [Online; accessed 10-December-2019]. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1531864/#FN1

[17] Healthline, “Retina,” 2015, [Online; accessed 11-December-2019]. [Online]. Available:
https://www.healthline.com/human-body-maps/retina#1

[18] Wikipedia, “Macula of retina,” 2019, [Online; accessed 11-December-2019]. [Online].
Available: https://en.wikipedia.org/wiki/Macula_of_retina

[19] “Anatomy and regulation of the optic nerve blood flow.”

[20] W. E. Institute, “Eye tumors,” [Online; accessed 11-December-2019]. [Online].
Available: https://www.hopkinsmedicine.org/wilmer/conditions/tumors.html

[21] S. C. Alec Radford, Luke Metz, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” 2016. [Online]. Available:
https://arxiv.org/pdf/1902.06676.pdf

[22] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied to
house numbers digit classification,” in Proceedings of the 21st International Confer-
ence on Pattern Recognition (ICPR2012), 2012, pp. 3288–3291.

[23] A. C. S. H. G. V. H. L. K. D. R. J. W. Niall O’ Mahony, Sean Campbell,
“Deep learning vs. traditional computer vision,” 2019. [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/1910/1910.13796.pdf

41

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://iq.opengenus.org/data-augmentation/
https://doi.org/10.1002/jbio.200910020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1531864/#FN1
https://www.healthline.com/human-body-maps/retina#1
https://en.wikipedia.org/wiki/Macula_of_retina
https://www.hopkinsmedicine.org/wilmer/conditions/tumors.html
https://arxiv.org/pdf/1902.06676.pdf
https://arxiv.org/ftp/arxiv/papers/1910/1910.13796.pdf


Bibliography

[24] “Discriminative model,” 2019, [Online; accessed 17-December-2019]. [Online].
Available: https://en.wikipedia.org/wiki/Discriminative_model

[25] D. Foster, Generative Deep Learning. O’Reilly Media, Inc., 2019, chapter 1.

[26] A. M‘Charrak, “Deep learning for natural language processing (nlp) using variational
autoencoders (vae),” Master Thesis, ETH Zürich, 10 2018.

[27] A. Kumar. Deep learning 22: (4) variational autoencoder : Derivation of the loss
function. [Online]. Available: https://www.youtube.com/watch?v=Hlr3CYfRMf0

[28] M. M. B. X. D. W.-F. S. O. A. C. Y. B. Ian J. Goodfellow, Jean
Pouget-Abadie, “Generative adversarial nets,” 2014. [Online]. Available: https:
//arxiv.org/pdf/1406.2661.pdf

[29] C. J. B. Yann LeCun, Corinna Cortes, “The mnist database.” [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[30] A. P. C. B. X. G. M. B.-S. M. A. L. Irina Higgins, Loic Matthey, “β−vae: Learning
basic visual concepts with a constrained variational framework,” 2017.

[31] W. Z. V. C. A. R. X. C. Tim Salimans, Ian Goodfellow, “Improved techniques for
training gans,” 2016. [Online]. Available: https://arxiv.org/pdf/1606.03498.pdf

[32] D. T. Tamir Hazan, George Papandreou, “Adversarial perturbations of deep neural
networks,” in Perturbations, Optimization, and Statistics. MIT Press, 2017, pp.
311–342.

[33] S. Chintala, “How to train a gan?” 2016, [Online; accessed 30-December-2019].
[Online]. Available: https://www.youtube.com/watch?v=X1mUN6dD8uE

[34] C. A. Fabio Henrique Kiyoiti dos Santos Tanaka, “Data augmentation using gans,”
2019. [Online]. Available: https://arxiv.org/pdf/1904.09135.pdf

[35] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning. MIT press, 2016, chapter 3
and Chapter 20.

[36] L. O. H. W. P. K. Nitesh V. Chawla, Kevin W. Bowyer, “Smote: Synthetic minority
over-sampling technique,” in Journal of Artificial Intelligence Research. Morgan
Kaufmann, 2002, pp. 321–357.

[37] A. C. Y. Bengio and P. Vincent, “Representation learning: A review and new per-
spectives,” 2014.

42

https://en.wikipedia.org/wiki/Discriminative_model
https://www.youtube.com/watch?v=Hlr3CYfRMf0
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/pdf/1606.03498.pdf
https://www.youtube.com/watch?v=X1mUN6dD8uE
https://arxiv.org/pdf/1904.09135.pdf

	List of Acronyms
	Introduction
	Motivation
	Goals
	Approach
	Outline

	Theory
	Eyes and OCT Imagery
	Technology of OCT
	Anatomy of the Eye
	OCT images of the Eye
	Eye Tumors

	Related Work
	Synthetic Data Augmentation using Generative Adversarial Networks (GANs)
	Realistic OCT images with GANs

	Artificial Neural Networks
	Generative Modeling
	Variational Autoencoder
	The Standard Autoencoder
	The Variational Autoencoder

	Generative Adversarial Networks

	Data
	Proof of Concept
	Experiment data

	Generative Models
	Variational Autoencoder
	Generative Adversarial Networks


	Methods
	Experiment environment
	Proof of concept
	Procedure
	Implementation

	Generative Models
	Procedure
	Implementation


	Results
	Proof of concept
	Generative Models
	Variational Autoencoder
	Generative Adversarial Networks


	Discussion
	Proof of Concept
	Augmenting training set with generated imagery
	Training on generated images only

	Generative Models
	Variational Autoencoder
	Generative Adversarial Networks


	Conclusion and Future Work
	Conclusion
	Future Work

	Declaration of Originality

