
Distributed

 Computing

ConfSearch 2020
Bachelor’s Thesis

Lukas Schmid

luschmi@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Roland Schmid, Pankaj Khanchandani

Prof. Dr. Roger Wattenhofer

May 20, 2020

Acknowledgements

This paper came to life thanks to an idea of the Departement of Distributed Com-
puting at ETH Zurich and my desire to make ConfSearch more easily accessible
for both programmers and users. It was a long road of continuously improving
a project built from scratch. I had many design-decisions to make and am very
glad of the help Pankaj and Roland offered. Despite not being able to meet after
the first few weeks, they kept providing insights remotely.
Special thanks to friends and family that helped testing the website and always
had an open ear for my ideas.

i

Abstract

The goal of this paper is to improve the old website at confsearch.ethz.ch with
a new and improved version. This required a thorough analysis of the existing
website to determine what functionality was in place, how data and user input
has been handled and what could be improved upon in future versions. Espe-
cially since there was no documentation or any record of the person that initially
developed it.
As quoted from the task description, the goal is to help "detect and organize
conferences, as it presents deadlines and other relevant metadata conveniently".
A big focus here is on the automation. While we always will have to rely on the
users for some inputs, there are a lot of reliable websites providing information
about upcoming conferences and/or their deadlines. We will scrape some of the
most recognized ones to fill the ConfSearch database with the data provided by
them.
The project still has work to be done and many of the extensions from the task
description could further enhance the appeal to the user. I’m happy with my
work towards replicating the functionality of the old website and the transfer of
the core features into a newer environment.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related work . 1

2 Analysis of ConfSearch 3

2.1 Design . 3

2.2 Data handling . 4

2.3 User functionality . 5

3 Basics of the new website 7

3.1 Idea . 7

3.2 Software . 7

3.3 Django Configuration . 8

3.4 Data Storage . 8

3.5 Javascript libraries . 9

3.6 The current state . 10

4 Automated retrieval of conference data 11

4.1 Association for Computing Machinery 11

4.2 Guide2research . 12

4.3 IEEE . 13

4.4 Call For Papers Wiki . 14

4.5 CORE Conference Portal . 14

5 Design Decisions 17

5.1 Logical Separation . 17

iii

Contents iv

5.2 Visuals . 18

6 Handling user input 19

6.1 Editing conferences . 19

6.2 Creating conferences . 19

7 Discussion 20

7.1 The Gantt library . 20

8 Conclusion 22

Chapter 1

Introduction

The department of Distributed Computing has a website to display upcoming
conferences called ConfSearch. Being based on Java Server Pages with hardly
any documentation or visible structure, it was decided that it needs to be re-
built.
From the many available web-frameworks, python-based Django has been deemed
the most suitable one. Similar python frameworks like Flask or Bottle didn’t have
the depth required and weren’t as strong in both community support and pro-
jected longevity. A python framework was the preferred choice, as that is where
I have the most experience in.
This paper will provide documentation and aim to describe what reasoning lies
behind the decisions made in the design process. It will also provide an easier
entry-point for future changes.
With the aforementioned issues, nobody knows how the old website worked and
where it got the data from. That means that it was not possible to really main-
tain it. While the inner working of the old site weren’t fully mapped out, a basic
understanding of the processes behind it was achieved and worked into the de-
velopment of the new page. This paper will describe all the processes within and
introduce a more straight-forward version.

1.1 Related work

There have been websites not unlike ConfSearch, many of which we are pulling
data from.
One that stood out as a pretty complete one was from the "Laboratoire d’informatique
de l’École polytechnique"1 hosted by Miki (Nicolas) Hermann.
An Email enquiry then revealed that the website is managed by him personally.
He updates the website daily with information he gathered himself or that he
received by email from anyone that wants to submit a conference.
He listed the following reasons for the manual update:

1https://www.lix.polytechnique.fr/∼hermann/conf.html

1

1. Introduction 2

• There are many people on the web who would just add junk, just to have
pleasure from destroying my work

• I do not want predator conferences to be listed on my website

• I do not want other doubtful conferences listed there either

He further emphasized that the website only was supposed to enclose a very
narrow range of conferences that belong to his field of study.

Chapter 2

Analysis of ConfSearch

This chapter introduces the old ConfSearch page and the technology defining it.
The design will be discussed, as well as how data was processed. I’ll further
describe the functionality of the old site and it’s datastructures.

2.1 Design

Figure 2.1: confsearch.ethz.ch as of 10.5.2020

As seen in the image above, the homepage is held quite simple, including
mainly a search bar and the different scientific fields by which one can filter.

Figure 2.2 illustrates the main part of website, where the conferences are
shown. Each colored part indicates some time constraints concerning the confer-
ence. Therefore every line between two bars represents a relevant date.
The dates indicated are in the following order:
Abstract registration, submission, notification, final version, conference start,
conference end
This represents all the steps that usually need to be done going from the interest

3

2. Analysis of ConfSearch 4

Figure 2.2: subset of conferences as of 10.5.2020

in a conference to have a paper presented there. The conferences that are more
transparent don’t have dates defined for this year and are therefore represented
by a shadow of last year’s data.
The acronym on the left is a link that leads to a more detailed page, where past
conferences can be seen and where the conference can be edited by anyone. An
example of such a page is shown in Figure 2.3.
The only fields that can’t be edited are the Top Keywords and the Rating.

Figure 2.3: conference details as of 10.5.2020

2.2 Data handling

The database has proven quite extensive, even if some some tables were hardly
used or seem to have been there for debugging purposes.
The database in figure 2.4 represents the website https://dblp.org/ from which
data has been pulled and saved into a local database at some point. There was

2. Analysis of ConfSearch 5

no indication of the table being updated in any of the files found in the websites
folder.
The database in figure 2.5 shows where the conference data from the website
is stored. Any edits via the website’s interface are written here and anything
displayed is read from here. The ConfSearch module in the website gets it’s
data from this database, while the supporting modules DBLPAutomation and
DBLPParser read data from local files into the database.
The main file here is MyDBLPBhtParser.java which parses the data provided
from
DataFiles
DBLP
dblp.xml which seems itself to be replaced manually if at all. The same folder also
contains static files for LibraRank, RogerRank, CiteseerRank and ExtNHRank
which are all displayed on each conferences detailpage.
The module DBLPConferencegraph provides a minimum spanning tree over all
conferences, connecting those that are closest based on common keywords. There
also seems to be a GraphVisualizer which isn’t connected to the website.

2.3 User functionality

As discussed with the project supervisors who themselves are regular users of the
confsearch website, the most important aspect of the site is the gantt chart. It lets
users quickly identify the upcoming deadlines and the location of the conference,
to help with deciding whether the conference fits the paper they want to release.

2. Analysis of ConfSearch 6

Figure 2.4: dblp database

Figure 2.5: confcal database

Chapter 3

Basics of the new website

This chapter describes the idea behind the new website, the tools used and the
basis future features are built upon.

3.1 Idea

The rework should make it even easier to decide on a venue to publish on. Due
to the age of the old site, newer technology should be used, while still keeping
the sleek design principle and retaining the user base. With Django as the new
framework, the possibility of keeping the old frontend was considered. While
that would have provided some benefits, the effort that would have had to go
into creating an interface between the two different system largely outweighed
them. Various data sources that have been deemed reliable will provide data
towards the website to both stay up-to-date and to encourage users to complete
partial entries.
The user experience will also be improved in collaboration with two regular
users, the supervisors Roland Schmid and Pankaj Khanchandani. Further po-
tential improvements include recommendation methods, smart completion and
user-assisted webscraping.

3.2 Software

While the development VM ran on Ubuntu 18.04, the Django application should
be compatible with any system that can run Python 3.x and a compatible website
hosting service.
The new website will be running on Django 3.0, the latest stable version with
guaranteed long-term support.
Django is a python framework for websites, that is intuitive to code in, modular
and clearly states where which part of the website is located. Being based on
python, a very well-known and easy to read language, the code should be easy
to understand for anyone working on this website in the future.

7

3. Basics of the new website 8

Both the framework and the language used provide extensive documentation
and a lively community, with python being the 3rd most used tag on stackover-
flow.com and Django being on rank 30 as of 18.05.2020. HTML, javascript and
CSS ranking in-between the two.
With a focus on data aquisition, python provided libraries such as requests for
HTTPRequests and the external package beautifulsoup4 to parse HTML data.

3.3 Django Configuration

The new website lives in a django-project called confsearch. That relevant files in
this folder are settings.py and urls.py, the other two files are relevant for running
and deployment of the server at a later date.
The settings file contains the sites, which are allowed to host the website. Here
we have both the IP-Address and the domain name, as well as the names for local
access. Furthermore there’s a list of plugins called INSTALLED_APPS which
contains the default Django modules with the addition of our modules landing-
page and manageconf, as well as the module background_task, which manages the
recurring tasks. The second list called MIDDLEWARE lists a number of default
security measures that prevent various cyberattacks. The DATABASES list has
the credentials for our default and only local postgres database. For security
reasons, that database is not accessible from anywhere but localhost.
The urls file contains the information about where certain urls need to be redi-
rected to. It furthermore contains the scheduled task, how often it should be
recurring and the specific interval in which it gets called.
The project has two modules called landingpage and manageconf each in their
respective folder. The former defines the website, while the latter holds the mod-
els and the option to extend into more detailed managing and smart proposals.
The views file in the landingpage folder contains the views that are linked by in
the urls file, those views always return a rendered template file, which usually is
an HTML from the static folder.
The dataGathering folder is independent of the Django installation. It contains
python modules that the recurring update uses.

3.4 Data Storage

The models currently present in manageconf are the conference, tag and author
objects. While tag and author are not fully integrated into the front-end, the
conference object holds all the fields necessary for the users information.

The database connection is in the config file as mentioned above, currently
running PostgreSQL 10.12. The pg_hba.conf file specifies that only local connec-
tions are allowed to decrease the risk of outside entities gaining unwanted access

3. Basics of the new website 9

Figure 3.1: Conference model

title characters full name
acronym characters abbreviation
authors ManyToMany authors of all the papers
rank characters the rating by the CORE portal
tags ManyToMany fields of research

address characters physical location
link characters webpage

abstractHandinDate date date for abstract submission
submissionDate date date for paper submission

startDate date date of the start
endDate date date of the end

isExtracted boolean Whether it was scraped
lastUpdated date date of last change for this entry

to the database. Commands with user input still need to be sanitized, as the
website backend does have ownership of the confsearchdb database. The user is
called luschmi and has no other privileges over other local databases.

3.5 Javascript libraries

The fuzzyset1 library was used to calculate the levenshtein distance between two
strings to sort by similarity to the searchterm.

The JSGantt2 library provided a basic gantt chart to build upon. Major
modifications had to be made to this module to modify the look and behaviour
according to our goals.
Among many different gantt chart libraries, this one had the most similarity with
the idea we wanted to achieve and a documentation that promised a high degree
of customizability.

1https://glench.github.io/fuzzyset.js/
2https://jsganttimproved.github.io/jsgantt-improved/

3. Basics of the new website 10

The jQuery3 library allowd for more dynamic changes to the document and
its functions.

3.6 The current state

The website currently lives on a virtual machine hosted on ee-tik-vm012.ethz.ch
and is being run as a development server. That means it is only reachable by lo-
calhost or SSH tunnels into the virtual machine, as it is neither secure nor stable
in that state.
To be made available to external users, it needs to be installed on a webserver
with a supported deployment platform. One of those can be found in the Django
documentation4.

Because the scraping of the websites happens in parallel, two separate pro-
cesses need to be started for the full functionality.
python3 manage.py runserver 0.0.0.0:8000
python3 manage.py process_tasks

The process_tasks command comes from an external library called Django
Background Tasks5 that allows to run commands in predefined intervals.

3https://jquery.com/
4https://docs.djangoproject.com/en/2.1/howto/deployment/
5https://django-background-tasks.readthedocs.io/

Chapter 4

Automated retrieval of
conference data

This chapter describes the methods used to retrieve conference data from various
websites. All the methods take no arguments and return a tuple containing the
title of the conference, it’s acronym, the CORE-rank1, the latest submissiondate
for the paper, the startdate and enddate of the conference, both the place and
the country where it happens and finally the link to the conferences homepage.

4.1 Association for Computing Machinery

As is obvious from Figures 4.12 and 4.23 both websites are built very similarily,
which also let’s the first part of the two scraping functions look pretty similar.
Both websites HTML content is requested via the python requests package. Two
parameters have been identified to be relevant.

startDate0 is a date in the format YYYYMMDD and identifies the month
that will be displayed.
view0 defines the format of the page which can either be day, week or month. To
lessen the amount of requests required, we’ll leave it at month.
eventType0 is CallsToPapers for the submissions page and Conferences for the
conference-events page.

Using beautifulsoup to get a queryable object, one can easily isolate all li
tags with the "day" class. This leaves us with a list of pure day classes and some
"day other-month" classes at both ends that indicate the previous and the next
month.
We get the submission date from either counting through the pure day classes

1http://www.core.edu.au/conference-portal
2https://www.acm.org/conferences/upcoming-submission-deadlines?startDate0=20200520&eventType0=CallsForPapers
3https://www.acm.org/conferences/conference-events?startDate0=20200520&eventType0=Conferences

11

4. Automated retrieval of conference data 12

Figure 4.1: ACM’s submission page

or reading the number in the field, we can then extract all events by looking for
links as a tags within the li objects we found. Those links directly point to the
individual conference sites, which we can read directly from the href attribute.
Furthermore we can split the title attribute at the ":" to get both the acronym
and the conference title.

For the conference website we need to add a post-processing step, that de-
tects consecutive days with the same conference, so they can be merged into one
database entry.

4.2 Guide2research

This page4 has an even stronger partition into list elements, but does feature
more condensed data which we need to separate.
To get all the rows we can iterate over all the beautifulsoup objects that admit
to the type div and the class ”grey myshad” which is the specific coloring of the
list elements. We do have to start from the second element though, as the first
one contains the headings.
Using a RegEx-Search we can identify the title and split it into the acronym and

4http://www.guide2research.com/conferences/page-1

4. Automated retrieval of conference data 13

Figure 4.2: ACM’s conference page

the conference-name. For the submissiondate on the right, the datetime.strptime
function "%a %d %b %Y" can translate weekday, date, month and year into a
date object, which we then write to the database. Using another RegEx-Search,
we split the conference startdate, enddate and city into three elements, parsing
the dates with the same formula as above. Another RegEx search then results in
the country and therefore the final field from this page.
Since this website has had malformed dates before, we make some sanity checks
to verify they have the correct order and the conference has a reasonable length.

4.3 IEEE

While IEEE’s Computational Intelligence Society5 doesn’t provide submission
dates for their papers, they still had a lot of information about conferences and
the links to the webpages. Even though for the current extent of the website,
this data isn’t that useful, it can still be completed by findings of other websites
or user input.
The list consists of div elements with the class conf-full-item, which allows for
easy extraction. Each row is formatted as "Conference (Acronym)" with it’s
location in a div element and the dates in a span element. The dates are in the
Unix Epoch6 format and therefore require a different parsing function.

5https://cis.ieee.org/conferences/conference-calendar
6Number of seconds since 00:00:00 UTC on 1 January 1970

4. Automated retrieval of conference data 14

Figure 4.3: Guide2Research’s conference page

4.4 Call For Papers Wiki

The HTML elements on this page7 are nearly indistinguishable, so I had to use
some form of reliable index. Our assumption here is that there will always be 5
conference links in the Popular CFPs, so the sixth conference link can be used
to identify the table relevant to our query.
After getting the grand-grand-parent of that element, the rows have to be parsed
pairwise, as each differently shaded row consists of two HTML-rows. The first
yields both the acronym and the name of the conference, the second one provides
start date, end date and the location.

4.5 CORE Conference Portal

This page8 provides the rankings displayed on the new website. While all the
other pages had a limit on how far into the future we’d parse them, this page
gets read fully every time. The page indicators at the bottom serve as indicator
how many pages we’ll have to loop through.
Iterating through all table rows except the header proves easy, as the website
is very minimalistic, the rows of interest are the acronym used to match to the
conferences already in our database and the rank. The rank is checked against it’s

7http://www.wikicfp.com/cfp/
8http://portal.core.edu.au/conf-ranks/?search=by=all

4. Automated retrieval of conference data 15

Figure 4.4: IEEE’s conference page

Figure 4.5: WikiCFP’s conference page

length, as there are four kinds of unranked conferences, including Australasian,
Unranked, National and Regional.
This function returns the acronym and the rank of the conference.

4. Automated retrieval of conference data 16

Figure 4.6: CORE’s conference page

Chapter 5

Design Decisions

This chapter will talk about the higher-level decisions made during developement.

5.1 Logical Separation

To increase modularity of the code, every step from the conference data to the
display on the webpage has it’s own space.
In the folder called dataGathering, the conferences are read from their respective
sites and coerced into the required datatypes and one global format, which will
later allow us to iterate over all the generators in one loop. If some type of data
is not provided from a specific source, the values will be returned as None, while
still maintaining the agreed upon format.

Figure 5.1: Scraped conference data

G2R ACM IEEE WikiCFP CORE
title x x x x

acronym x x x x x
rating x

submissionDate x x x
startDate x x x x
endDate x x x x

location details x x x
country x x x
link x x x x

The data then gets processed by the urls.py file in the main confsearch folder.
This is the place where all the routing happens. It’s an interface to the outside
world that defines where HTTP GET requests for the page go and where the

17

5. Design Decisions 18

data gathered from external websites goes.
It’s folder contains all the configuration for the website in the settings.py file.

All parts concerning the actual website are located in the landingpage folder.
The admin and models file import the models from the manageconf folder, where
the model definitions are located.
The views.py file defines all direct interactions between our webpage and the
database. It also renders the webpage by replacing all Django level variables
and code with the specified data. Since there is only one page, there is only one
template in the templates folder, which defines the HTML and Javascript needed
to display the data given by it’s view.

5.2 Visuals

The visuals were consciously kept simple without colorful CSS frameworks. The
display focus is on Desktop PCs, no testing was done on smartphones.
For the table and Gantt chart within, the JSGantt1 open source library was used.
It was heavily modified during development to adhere to our vision of the website.
Only the rows crucial for making decisions about the conference were kept with
some additional data displaying once the users hovers or clicks the conference.
These were the location and rank, along with the acronym and timeline.
The acronym links to the webpage of the conference to allow the users to verify
the dates and quickly submit their paper. In case that no link was found, the
users will be redirected to google, automatically searching for the conference in
the current year.
The look of the gantt bar was adjusted to mimic that of the original confsearch
site.

1https://jsganttimproved.github.io/jsgantt-improved/

Chapter 6

Handling user input

Since the automated data collection will likely not catch every information there
is about a conference, the website allows for users to complete existing entries
with additional data.

6.1 Editing conferences

Each entry has a "Edit" button, that is accessible to any user on the website.
The assumption is that people using the website will be willing to contribute to
it, so the community can improve the amount of information available. If that
functionality gets abused, a login system should be introduced to restrict access
to verified users that can be held accountable for their edits.
Editing a conference will directly write the data to the database and notify the
user that the operation was successful. Due to the current status of the gantt
table, the website needs to be reloaded to display the changed data.
Once a conference has been edited, it will not get updated by the scripts anymore.
Any conferences in their original form which get found with new data will get
overwritten.

6.2 Creating conferences

The website currently doesn’t allow the creation of new conferences. If any notice-
able conferences are missing, they can be created via the admin page, requiring
a admin issued account.
Having all the biggest sites as data sources, we assume that all reputable confer-
ences already exist and only need to be edited.

19

Chapter 7

Discussion

The goal was to create a website that improved upon the old one in terms of
technology, presentation and data acquisition. Django introduced a more recent,
more readable framework and language. It also allowed to strictly separate the
different layers of application, so we have clear interfaces and every part can be
changed independently of everything else.
The removal of the individual pages for each conference made the experience
more predictable, but also reduced the amount of information gained. This was
necessary to improve the efficiency of the users search.
Tags and the ability to search by field has temporarily been removed, but should
be re-introduced if the need arises in the future.

7.1 The Gantt library

The javascript library JSGantt used in the website was responsible for both the
table with the acronym, the location and the rating of the conference, as well as
the Gantt chart in the right-hand side of the table. It worked in such a way, that
the left and right table were disconnected and only seemed connected through
the same CSS formatting that keeps both sides aligned.
This caused various issues late in the project when trying to sort the table. Those
issues were solved in two different ways. The default sorting was shifted to the
Django view module that delivered the data. Since the data was already retrieved
sorted, the table would be sorted too once created. For local sorting recreating
the gantt object is more efficient than sorting both sides individually while trying
to ensure they line up. For future changes one might consider further changing
the JSGantt library to create a globally consistent ID for both the tables and the
edit functionality, so that only the HTML elements can be reordered to improve
on the performance.
Another issue here is, that the library only allows one bar per task, so the dis-
played conferences are actually multiple tasks grouped up on one line. The group-
ing works by having them after each other in the list of tasks while the later tasks

20

7. Discussion 21

reference the parent by its ID. For the sorting to work on that level, all children
have to be removed, the parents get sorted and subsequently the children of each
parent get added back. This could be improved in speed by adding the same
data to all children and using a stable sorting algorithm.
The data being handled this way also is a reason for the data not instantly being
updated upon editing a conference. It would either have to update the javascript
list entry and all its children or check which row is highlighted and translate the
changes into changes there and a redrawing of the gantt bar on the right side.

With many features of the library unused and a plethora of changes made, it
should be considered that writing a new library from scratch or finding one that
fits this usecase better may improve future results.

Chapter 8

Conclusion

While the main goals have been achieved, there still remains some room for im-
provements within the website. The design is more modern and presents the data
without the extra steps required in the old version.

With the various websites providing data, there is no doubt that over time
new corner cases will appear and require some sort of user intervention. With
the possibility that every user can identify such issues and correct them, there
is a lot of potential for a clean and complete database. While manually adding
conferences is the exception now, some of the websites providing data might shut
down. That should not impede the data collection, but may lead to some con-
ferences going missing. With the structure built, newly appearing sites are easy
to add and can be seamlessly integrated into the existing dataflow.

This automation shows that a lot of data can be gathered without requiring
user interaction and only requires minimal interaction to stay up-to-date for an
arbitrarily long time.

22

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related work

	2 Analysis of ConfSearch
	2.1 Design
	2.2 Data handling
	2.3 User functionality

	3 Basics of the new website
	3.1 Idea
	3.2 Software
	3.3 Django Configuration
	3.4 Data Storage
	3.5 Javascript libraries
	3.6 The current state

	4 Automated retrieval of conference data
	4.1 Association for Computing Machinery
	4.2 Guide2research
	4.3 IEEE
	4.4 Call For Papers Wiki
	4.5 CORE Conference Portal

	5 Design Decisions
	5.1 Logical Separation
	5.2 Visuals

	6 Handling user input
	6.1 Editing conferences
	6.2 Creating conferences

	7 Discussion
	7.1 The Gantt library

	8 Conclusion

