
Distributed

 Computing

Convenient Password Manager
Bachelor’s Thesis

Noé Heim

noheim@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Simon Tanner, Roland Schmid
Prof. Dr. Roger Wattenhofer

June 8, 2020

Acknowledgements

I would like to thank Simon Tanner and Roland Schmid, for always offering their
support, when I was faced with difficulties, and guiding me through my very
first scientific research project. Further, I would like to thank Prof. Dr. Roger
Wattenhofer for encouraging me with his enthusiasm for this project.

I’m grateful that I had the opportunity to work with and learn from so knowl-
edgeable people.

Lastly, I would like to thank my family and friends, who supported me and
motivated me as I approached the end of this thesis.

i

Abstract

Password managers are a useful aid for remembering and securely storing pass-
words. As it is crucial to provide adequate security given the sensitive data they
contain, many password managers offer two-factor and multi-factor authentica-
tion. However, most of them use a single database which can introduce security
risks. In this thesis, we attempt to extend PolyPass, a distributed password man-
ager, with Bluetooth communication. Our goal is to increase the reliability of the
password manager, as well as the ease of access to passwords. To achieve said
goal, the communication had to be restructured. The Bluetooth communication
is still problematic, since their messages are not reliably delivered, which renders
the password manager unusable when not connected to the internet.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 1

2 Related Work 2

2.1 Password managers with multiple-factor authentication 2

2.2 Bluetooth in past projects . 3

3 Background 4

3.1 Previous Project . 4

3.2 Bluetooth Communication . 5

3.2.1 General . 6

3.2.2 Android’s Implementation 6

3.2.3 Bluez and PyBluez . 7

3.3 Local Communication . 7

3.3.1 Chrome: Native Messaging Host 7

3.3.2 Android . 7

4 Implementation 9

4.1 Concept . 9

4.2 Bluetooth Communication . 11

4.2.1 Android Side . 11

4.2.2 PyBluez and Native Messaging 12

4.3 Overall Communication . 14

4.3.1 Interface for Bluetooth Module 14

iii

Contents iv

4.3.2 Acknowledgment Messages 15

4.3.3 Handling Incoming messages 15

4.3.4 Tracking Unacknowledged and Received Messages 15

5 Evaluation 16

5.1 Reliable communication over WebRTC 16

5.2 Bluetooth communication . 16

5.3 System integration . 17

6 Conclusion and Future Work 18

6.1 Conclusion . 18

6.2 Future work . 18

Bibliography 19

Chapter 1

Introduction

1.1 Motivation

With the amount of digital systems that affect virtually every aspect of our lives,
security is a key concern. To protect our data, there exists a multitude of possi-
bilities, many of them dealing with security by personal authentication, namely
via passwords.
Given the vast amount of passwords [1] that people have to deal with nowadays,
the organization of the different passwords needed can be difficult. To mitigate
this problem, password managers can serve as a helpful tool. They store pass-
words either locally, on a server or distributed over multiple devices. Once a
password is requested by a user he has to prove that he has the right to access
it. What this proof entails varies a lot. Some password managers require a mas-
ter password. Others require the interaction with multiple devices. This kind
of authentication is called multi-factor authentication. Since password managers
contain crucial data, they must be accessible both quickly and securely by its
respective user.

1.2 Goal

Thus, the objective of this work is to extend PolyPass, a distributed pass-
word manager that uses multi-factor authentication. PolyPass itself is built on
NoKey [2]. In contrast to other password managers, the need for a connection
to a server is avoided and the option of communicating over Bluetooth is added.
This way, we aim to make communication more reliable. The password manager
would still be usable, even if the server, which is used to communicate between
the devices, cannot be reached.

1

Chapter 2

Related Work

2.1 Password managers with multiple-factor authenti-
cation

There are many different password managers which use multi-factor authentica-
tion on the market, but the principle is always the same: A user has to provide
some form of proof that he has the right to access the passwords. As an example,
1Password1 uses external authentication software, either Authy2 or Microsoft Au-
thenticator3, to grant access to a user’s passwords. In additon to these methods of
authentication, RoboForm4 allows Google Authenticator5 to be used. These au-
thentication apps require additional interaction with a user’s smartphone. These
authenticator apps are a popular solution, since other password managers such as
Bitwarden, Keeper Security and LastPass offer the possibility to use two factor
authentication based on these authenticator apps. Two of these password man-
agers, 1Password and Roboform, were analyzed [3]: At the time, that paper was
written, these password managers were vulnerable to attacks on their database.
Using distributed password manager mitigates this problem due to the absence
of a database storing the passwords in a single place.

There exists a set of specifications called FIDO26. These specfications are the
foundation for standard web APIs, which can be used for two-factor authenti-
cation. YubiKey7 is one example which implements passwordless authentication
based on FIDO2.

1https://1password.com/
2https://authy.com/
3https://docs.microsoft.com/en-us/azure/active-directory/user-help/user-help-auth-app-

download-install
4https://www.roboform.com/
5https://support.google.com/accounts/answer/1066447?co=GENIE.Platform%3DAndroid&hl=en
6https://fidoalliance.org/fido2/
7https://www.yubico.com/

2

2. Related Work 3

2.2 Bluetooth in past projects

Additionally, there also exists research aiming to understand the Bluetooth ar-
chitecture of Android by designing a Bluetooth chat [4]. It describes the design
of the connection management, how devices communicate and explains the Blue-
tooth architecture of Android.

Related research [5] discusses about a project which used Bluetooth devices
to lock and unlock a home door for disabled people. In that project, a user’s
Smartphone is used to establish a connection to an Arduino controller board
which then can be controlled remotely.

Chapter 3

Background

The goal of this work is to expand the existing password manager PolyPass [6]
into a more reliable, but equally convenient password manager. We attempt this
by adding communication over Bluetooth to the already present communication
via WebRTC. This chapter provides necessary background information for this
project.
We start by explaining the concept of “PolyPass”. This follows a general overview
of Bluetooth Communication and the characteristics of the Bluetooth Protocol
RFCOMM and GATT, including the libraries we used, i.e. PyBluez and An-
droid’s Bluetooth API. This will be followed by an explanation of Chrome’s
Native Messaging Host and Androids Message Handlers.

3.1 Previous Project

This thesis is building on PolyPass, a password manager using multi-factor au-
thentication. Passwords can be accessed only after the user has interacted with
at least two devices. This means the user has to have at least two devices with
PolyPass installed. This need for multiple devices resulted in the application
being developed as a browser extension and Android app, to give the users more
freedom in the type of devices they can use. Passwords are stored in a distributed
fashion, by using Shamir’s Secret Sharing [7]. This way passwords can be split
up into different shares. A subset of k shares, dependent on the security level of
the password, can be used to generate the original password. But to get enough
of these shares, messages containing them have to be exchanged. The messages
are exchanged using WebRTC [8]. It an open-source communication protocol
providing peer-to-peer communication, which can be accessed by APIs. These
APIs are available on many browsers. This means there is a server running,
which is responsible for the connection setup, between two devices. To be able to
establish a WebRTC connection with the right device, PolyPass uses IDs. They
have the same format as uuids (we will refer to them as uuids from now on) used
by Bluetooth service advertisements, which will prove to be useful later on. The

4

3. Background 5

Figure 3.1: Concept of Communication: PolyPass

device initiating the connection requests the connection parameters of the other
device. If the other device accepts the connection, the devices can communicate
directly with each other. This allows the possibility to detect whether the devices
are in the same local network or not.
When communicating with another instance, the concept for the communica-
tion can be simplified to the depiction in Figure 3.1. The WebRTC Module, as
illustrated in Figure 3.1, is responsible for the communication between devices
over WebRTC. It waits for messages coming from the Elm part of the applica-
tion (which we will refer to as core application). Then it sends these messages
to the correct remote device, if possible. If that is not possible it stores only
the latest message, to resend it later, which results in not all messages being
delivered. Further more, the module waits for incoming messages from remote
devices and once received passes them back to the core application. There the
message is then processed. The application was mostly written in Elm1, as well
as JavaScript2. Elm is a functional programming language, which compiles to
JavaScript. Additionally, to be able to run the compiled Elm on Android and use
some of Android’s background services, some parts had to be written in Kotlin3.

3.2 Bluetooth Communication

In order to introduce a a Bluetooth connection method, we looked at different
possibilities of Bluetooth protocols. In order to introduce a Bluetooth connection

1https://elm-lang.org/
2https://www.javascript.com/
3https://developer.android.com/kotlin

3. Background 6

method, background on the Bluetooth stack is needed. This section starts with
an overview of the Bluetooth stack, followed by a more in-depth description of
the Android’s API and Bluez 4, the official Bluetooth stack for Linux.

3.2.1 General

Bluetooth is a wireless technology to communicate between devices in close range.
The Bluetooth stack consists of several layers [9]. This work is mainly operat-
ing on the higher layers. The higher layers include of L2CAP (logical link and
adaptation protocol) and HCI control. The latter offering an interface to the
user, to manipulate the Link manager. L2CAP can be seen as the link layer for
Bluetooth. L2CAP is followed by the Data layer which provides an interface to
SDP (service discovery protocol) and RFCOMM. SDP is used to discover the ser-
vices the host machine provides, and these services can be used to then connect
to RFCOMM, which is the basis for point-to-point links. These higher layers
are usually implemented in software. RFCOMM is a protocol for reliable data
transfer, by configuring the underlying protocol, L2CAP, accordingly. Reliable
data transfer here means guarantee, that all data is delivered in order, without
any duplicate data arriving. On top of all that is the application layer.
For Bluetooth Low Energy, the protocol stack is mostly the same up to and includ-
ing the L2CAP layer. Instead of the data layer now follow two seperate parts:
the SMP (Security Management Protocol) and the Attribute Protocol (ATT).
ATT forms the base for GATT (Generic Attribute Profile). [10] We focused on
two of these protocols, namely GATT and RFCOMM. GATT (Generic Attribute
Protocol) is a protocol where devices can be in two different roles: peripheral
and central mode. When a device is in the peripheral mode, connection to only
a single central device can be made at a time, whereas a device in central mode
can connect to multiple devices. According to the specification (5p. 283 "6.4.1
Attribute Protocol") can be be in central and peripheral mode at the same time.
This possibility is not equally well supported for the different operating systems
though. GATT, similar to TCP, offers reliable read and write operations. But,
these operations limit the the amount of data that can be sent [11].

3.2.2 Android’s Implementation

Android’s Bluetooth API offers three different types of connections between de-
vices: GATT, RFCOMM and L2CAP. The functions are fairly well documented,
with several examples online, which are mainly for Android-to-Android commu-
nication. Android provides insecure RFCOMM connections allowing to avoid
pairing. These connections are encrypted, but suffer from possible man-in-the-

4http://www.bluez.org/
5https://www.bluetooth.com/specifications/bluetooth-core-specification/

3. Background 7

middle attack, due to unauthenticated link keys. To setup a connection SDP
lookup is used6.

3.2.3 Bluez and PyBluez

Bluez, the official Linux stack, provides several modules, which include CLI util-
ities to test and configure Bluetooth devices. We used these tools to gather
information and test ideas on the Linux side. Additionally it is also the basis
for Bluetooth libraries, such as PyBluez, a Python module. PyBluez offers the
possibility to access the machine’s Bluetooth resources, while being easier under-
standable than the tools offered by Bluez. It also provides the possibility to use
RFCOMM and L2CAP, as well as experimental support for GATT.

3.3 Local Communication

Since the Bluetooth functionality cannot be accessed directly by JavaScript, sep-
arate Bluetooth services had to be implemented. The Bluetooth services are
running in parallel to the core application. Therefore, the ability to communi-
cate between these services and the core application is important. Since Android
and the Chrome extensions on Linux have different implementations of these
Bluetooth services two different approaches are required to implement the local
communication.

3.3.1 Chrome: Native Messaging Host

Chrome offers an API for extensions, called Native Messaging Host, to commu-
nicate with other applications running on the host machine. On the extension
side it uses a port object to receive and send data in the form of JSON objects.
On the host application side data is received over the standard input stream
and sent over the standard output stream. But in order for this communication
to work, the host application has to be registered in the chrome configuration
by adding a manifest file to the configuration folder [12]. Other browsers offer
similar APIs for local communication, which makes porting this functionality to
other browsers easier.

3.3.2 Android

In general, Android applications are composed of so called Services and Activi-
ties. Services are long running tasks, which can be separated from the GUI and
Activities are foreground tasks mostly requiring the interaction of the user. There

6https://developer.android.com/reference/android/bluetooth/BluetoothDevice#createInsecureRfcommSocketToServiceRecord(java.util.UUID)

3. Background 8

are several types of services, but bound services [13] are relevant for implement-
ing local communication, as they offer an interface for components to interact
with them. This interaction entails sending requests and receiving results for the
requests. To communicate from a service to the component which created it,
messengers can be passed to the service. Messengers are references to handlers
in another component, which then can be used to send messages to it and the
receiving component will handle the received message.

Chapter 4

Implementation

The base for this thesis is laid by the Password Manager “PolyPass”, which relies
on a server to establish the WebRTC connection. But what happens if the server
cannot be reached? We try to offer a solution for this problem by integrating
Bluetooth communication. Therefore, it was necessary to redesign the commu-
nication part of “PolyPass”. The goal is to create a transparent communication
module. This desired transparency leads to separating the communication from
the core application.
In this chapter we will explain thoroughly how we planned to achieve the decou-
pling of the communication and core application in terms of software design.

4.1 Concept

Since our goal was to add another communication channel, namely Bluetooth, we
had to redesign how communication is handled. First we needed to know how to
communicate over Bluetooth. This meant testing various protocols and figure out
their limitations. On an abstract level we needed, additionally to the WebRTC
communication, to be able to send and receive messages over Bluetooth and some
way to manage the Bluetooth connectable devices. Sending the same messages
over Bluetooth and WebRTC would result in requesting the same user interac-
tions multiple times. To avoid this, we needed to introduce a communication
handler (Figure 4.1), which manages the communication. It has to keep track of
received and sent messages. Additionally, it needs to send the new messages and
re-send the ones which could not be transmitted. Managing messages should be
done by keeping two queues, one for the messages, which still have to be sent,
and one for the received messages. To realize that, we decided to define two mes-
sage types, acknowledgement messages and standard messages (abbreviated by
Std-messages). The Std-messages contain the messages, which are sent from the
core application to the Communication Handler, as payload. Additionally they
include the uuid of the target device, a message type, a sequence number and
the sending device’s uuid. The sequence number is used to identify the messages,
which allows acknowledging a specific message. The acknowledgement messages

9

4. Implementation 10

Figure 4.1: Concept of Communication: Convenient Password Manager

are used to control which messages have to be resent, by signaling to the sender
that a message has arrived.

To interfere as little as possible with the Elm-code, it was decided to use en-
capsulation (similar to networking protocols). The structure of the two messages,
including how encapsulation is accomplished, is further illustrated in Figure 4.2.

Since we wanted to keep the control on which messages have to be resent for
both channels, we decided to not have receive- and sendqueues implemented per
communication channel, but rather one step before that, in the “Communication

Figure 4.2: Concept of Communication: Encapsulating Messages and Acknowl-
edgments

4. Implementation 11

Handler”. Even though this causes more messages being passed locally, this
allowed us to decide which messages should be sent over which channel and saves
messages being sent unnecessarily often. As an example, assume there are two
devices, A and B. A tries to send a message over Bluetooth and WebRTC to B,
but B is only reachable over WebRTC. In the design chosen, A attempts to send
the message over both channels. As soon as the message reaches B, B sends an
acknowledgement back to A. This in turn means A does not need to resend the
message over any channel and can just continue with sending other messages.
Assume now the sending queue would be implemented in the Bluetooth and
WebRTC modules directly. The initial message would be sent over WebRTC and
Bluetooth, and its acknowledgment would reach the WebRTC module. Unless we
had additional local communication between the modules, A’s Bluetooth module
would try to resend the initial message indefinitely, which would use additional
resources, especially for scanning Bluetooth devices, which consumes a lot of
power.
Due to the just described scenario and the assumption that most of the time at
least one mobile device is involved, saving power was more an important factor in
the design choice. Therefore, keeping track of the messages in the communication
handler was logical. By not implementing a queue on both, the WebRTC- and
Bluetooth-module, additional communication between the two can be avoided,
which would make makes the design easier to understand and less error-prone.

4.2 Bluetooth Communication

Before we can communicate over Bluetooth, we first need to establish the con-
nection. A connection involves a client and a server and is initiated by the client.
To accomplish a successful connection setup, we decided to use the uuids used
by the core application (as described in Section 3.1) to advertise a Bluetooth
service. This advertisement informs scanning devices, what service is offered by
the this service, which means if the uuid we want to connect to is present on
this device. Since this functionality is needed for Linux as well as Android, it
is advertised using the platform specific advertising functions. When the local
Bluetooth device is listening on the RFCOMM channels, we can simply connect
to them which will give us sockets on both sides, client and server, providing the
possibility to send data to each other. Once the data is sent, we can close the
socket and wait for new messages to send.

4.2.1 Android Side

Since Android provides good documentation, writing the Bluetooth communi-
cation for Android was fairly straight forward. Because we want the Bluetooth
module running in the background, we decided to implement it using Android

4. Implementation 12

Services. The service we implemented is started and bound, because we want it
to be running, even if the main application temporarily disconnects from the ser-
vice. But since we also want to interact with the service from the main activity,
we additionally bind the service (as described in Section 3.3.2). This enables us
to reference the service instance and call its member functions, which we want to
use for communication from the activity to the service. To communicate from the
service to the activity we use a “Messenger”, which allows us to send the received
messages back to the main activity.
The implemented service for the managing the Bluetooth communication, in ad-
dition to offering the communication interface for the main activity, also sets
up a controller managing the Bluetooth server instances. It also creates a Blue-
tooth client thread, when a message from the main activity should be sent using
Bluetooth. We will now go into the servers and clients more in-depth.

The controller and Bluetooth server

The controller for Bluetooth server is responsible for listening for incoming con-
nection requests. Further more, once a client wants to connect to this device,
the controller accepts the connection and creates a Bluetooth server thread. This
newly created server reads the data, which was transmitted by the remote client,
from the input stream. Then it passes the message back to the Bluetooth service,
which sends the received data back to the main activity. Additionally, the Blue-
tooth server creates a global mapping from the remote client’s uuid to the actual
remote device. As a result, this avoids the need to scan for Bluetooth devices,
when a message is sent out to this uuid again. After reading all the data received,
the Bluetooth server closes the open streams of the socket and the socket itself.

Bluetooth client

As stated before, a Bluetooth client thread is created once the Bluetooth service is
told to send a message. When creating it, we pass the message and target device
to it and we start the client’s sending function. Once started, the Bluetooth
client will try create an RFCOMM socket to the service, which is specified by
the uuid. If it can connect to the other end, it writes the message to the output
stream of the RFCOMM socket and closes the RFCOMM socket after closing the
associated streams. Once the streams are closed, the thread terminates.

4.2.2 PyBluez and Native Messaging

When we implemented the Bluetooth-module for Linux using PyBluez, we fol-
lowed a similar pattern to the implementation in Android. We have a connection
manager in place, which initializes the Bluetooth-server and Client. But first, to

4. Implementation 13

Figure 4.3: Concept of Communication: Convenient Password Manager

run it in combination with the extension, we needed to add some communication
from the Bluetooth-module to the extension. Using Chrome’s Native Messag-
ing Host API, setting this communication up was simplified immensely. On the
extension side we just need to connect to this Native Messaging Host, using its
name. This in turn will execute a script defined in a manifest and start the
Bluetooth-module. Then we can start communication in both directions, from
the extension to the Bluetooth module and vice versa, using the Native Messag-
ing Host API.
On the PyBluez side to send data we write to the standard output stream. To
receive data we need to read from the standard input stream. Following a similar
design as with the Bluetooth service, we created a connection manager which
handles the creation and termination of the client and server threads at the be-
ginning and end.

Client

Once the client is created it waits for a message from the extension containing
the device’s specific uuid, which will be passed to the server thread. Once this
message is received, we continue to wait for messages from the extension. On
receiving a message from the extension, the destination uuid is extracted and we
check, if our uuid-to-MAC-addresses map contains the uuid. If it does contain
the destination uuid, we continue directly with connecting to the MAC-address
and sending the message. If the destination uuid is not present in the previously
mentioned map, we start scanning for devices. For all the devices, for which

4. Implementation 14

we receive a scan result, we lookup the services advertised by the device. As
soon as we find a service with a uuid matching the one we are looking for, we
return a “Peer” object, which holds the data needed to create a connection to
the remote device. After finding the correct “Peer” object, we use the built-in
socket functions to connect to the remote device, send the data and close the just
created socket. After that, the client returns to waiting for messages from the
extension and repeats this process.

Server

After the server is started, it waits for the uuid, which it will receive from the
client. Once the uuid has been received, it is used, on the server thread to
advertise a service. After that the server will wait for remote-clients, which want
to connect to it. Once it receives a connection request, the server will accept
the connection and return a socket. The server will read the data sent by the
client from this socket. After reading all the data successfully the server closes
the client socket. It then sends the received data to the extension, using stdout
stream and correct formatting. After that the server returns to waiting on clients
which want to connect to it and repeat this process.

4.3 Overall Communication

When we implemented the Communication Handler, there were a few things
which had to be done. First an interface for the Bluetooth module had to be
provided. Additionally sending the acknowledgement messages had to be imple-
mented. Then incoming messages, depending on the type of message, needed to
be handled appropriately. Finally, keeping track of the sent and received mes-
sages had to be set up. We will look at these four steps more in-depth in the
following subsections.

4.3.1 Interface for Bluetooth Module

For the Bluetooth modules to be of any use, we needed to provide an interface
for the Bluetooth modules. Since we are using webviews in Android, this was
an easy task on the android side. We just needed to create a function, which
is dedicated for the use on Android devices only. This function can be called
from the Kotlin code directly. Additionally a function provided by the Android
app is needed. This function can then be called from the JavaScript code and
is executed in the Android app itself. With that providing the interface for the
Android side was done.
For the applications running on a Linux machine, the process was similar but not
exactly the same. Instead of functions which can be directly called, the Native

4. Implementation 15

Messaging Host API provides a port in the extension. Data can be sent to and
received from a native messaging host via this port. On the other hand, the
native messaging host can use the standard input and output streams to send
and receive messages.

4.3.2 Acknowledgment Messages

Every time a standard message is received by the communication handler an
acknowledgement message is sent back. Acknowledgment messages are formatted
as described by the acknowledgment message in Figure 4.2. After generating
the message, we send it back to the other device over Bluetooth and WebRTC,
without adding it to the messages we keep track of.

4.3.3 Handling Incoming messages

Regardless where the app is running, we then handle the message received by
processing it. First, is determined, if it was an actual message from another
device. In that case we check the type of the message. For standard messages
we proceed by first sending the acknowledgement message, then continue with
checking, if the message was already received. If it was was already received we do
nothing further. For message not yet received, we send the payload, as defined in
Figure 4.2, to the core application. If the message received is an acknowledgement
package, we update the queue of unacknowledged messages and return. How the
updating is actually done will be described in a following section.

4.3.4 Tracking Unacknowledged and Received Messages

The communication handler uses two Maps. One is used to associate remote
device uuids with their queues of unacknowledged messages. The other maps
remote device uuids to queues of sequence numbers. Additionally it offers func-
tions to manipulate these queues, allowing to add unacknowledged messages and
remove acknowledged ones, including the respective sequence numbers.
Received messages are tracked by saving all the sequence numbers of received
standard messages. This is a necessary step to determine which messages still
have to be passed on to the core application. Otherwise the received messages
could trigger the same interaction, with the same effect, twice.

Chapter 5

Evaluation

5.1 Reliable communication over WebRTC

As a result of implementing the communication handler, messages which have
not been delivered are stored in a queue of unacknowledged messages within
the communication handler. This achieves a more reliable communication over
WebRTC, because compared to the original PolyPass, only the last undelivered
message was resent. Now though, all messages to a target uuid which could not
be delivered are being resent every time a new message is sent to that uuid.

5.2 Bluetooth communication

In the Bluetooth module, implemented for Linux using PyBluez, scanning for
Android devices works. The service with the device specific uuid gets adver-
tised correctly from Android devices. On Android though, finding services which
should be advertised by PyBluez does not work, but it is unclear if Android
cannot find services with custom uuids or if PyBluez does not advertise services
correctly. Since the Bluetooth module on Linux can find Android devices and
send messages to it, this issue is partially avoided. The receiving device can cre-
ate a mapping from device specific uuids to the sending device. This mapping
is created using the information provided by the connection and its associated
MAC address. Once a message is sent from a Linux device to an Android device,
these two can communicate by using the mapping from uuids to devices to send
messages. Depending on the cause for the issue of scanning for Linux devices on
Android, the issue might persist, when two Linux devices or two Android devices
try to communicate with each other over Bluetooth. During this thesis, it was
not possible to investigate this issue further.
Additionally when there are messages from two devices sent at roughly the same
time, so that the period of one device sending and receiving overlap, the error
“connection reset by peer” occurs. This error occurs so often, because after every
new message, which is supposed to be sent, we try to resend unacknowledged
messages via Bluetooth and WebRTC. Furthermore the Bluetooth module can-

16

5. Evaluation 17

not process and send the messages, which it receives fast enough. This leads to
congestion of messages, which are supposed to be sent. This leads to so much
traffic over Bluetooth, that acknowledgement messages can no longer be received,
causing a continuously growing queue of unacknowledged messages. This issue
renders the application unusable, when there is no internet connection available.
Once the application can reconnect though, all the messages which could not be
delivered, will be resent over WebRTC.
As part of this thesis the cause of this error could not be investigated any further.
Further more, periodic re-sending of unacknowledged messages could not be im-
plemented due to time restrictions.

5.3 System integration

The communication over WebRTC works flawlessly. Messages get resent, if they
could not be delivered. If Bluetooth messages arrive, they are handled correctly
as well. These findings together imply that, if the Bluetooth communication was
reliable and fast enough the goal of adding Bluetooth as communication method
would be achieved.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis PolyPass was extended by adding Bluetooth communication. We
chose RFCOMM as transport protocol allowing us to send and receive data in the
form of messages. To implement this, we used PyBluez and Android’s Bluetooth
API. To implement this feature a communication handler was needed. It manages
the sending and receiving of messages. Additionally, it tracks which messages
have not yet been unacknowledged. Further more, it is responsible for only
passing messages to the core application, which were not already received.
The time it took to find a suitable method for communicating over Bluetooth was
underestimated. This resulted in too little time to fix the problem of Bluetooth
messages not arriving, when there are too many messages to be sent. As a result,
the password manager is not reliable enough to be used.
Another unsolved problem is, that the Android app still relies on the server.
The core application is not delivered with the app itself. It is loaded as a web
app, which has to be retrieved from the server responsible for the WebRTC
communication setup. This issue could be solved by loading it from local storage.

6.2 Future work

To make this application usable, the problem of messages not arriving quickly
enough should be fixed. Additionally, finding a solution for the advertised Blue-
tooth services not being discovered is needed to make the application usable.
Furthermore, the application’s security could be increased, by protecting against
man-in-the-middle attacks on the Bluetooth communication.

18

Bibliography

[1] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Crano,
“Why people (don’t) use password managers effectively.” Santa Clara,
CA, USA: USENIX Symposium on Usable Privacy and Security
(SOUPS), 2019. [Online]. Available: https://www.archive.ece.cmu.edu/
~lbauer/papers/2019/soups2019-pwd-mgrs.pdf

[2] F. Zinggeler, “Nokey - a distributed password manager,” 2018. [Online].
Available: https://pub.tik.ee.ethz.ch/students/2017-HS/MA-2017-24.pdf

[3] P. Gasti and K. B. Rasmussen, “On the security of password manager
database formats,” in Foresti S., Yung M., Martinelli F. (eds) Computer
Security – ESORICS 2012. ESORICS 2012. Lecture Notes in Computer Sci-
ence, vol. 7459. Berlin, Heidelberg: Springer, 2012.

[4] W. Pan, F. Luo, and L. Xu, “Research and design of
chatting room system based on android bluetooth,” in 2012
2nd International Conference on Consumer Electronics, Com-
munications and Networks (CECNet), 2012. [Online]. Available:
http://pgembeddedsystems.com/securelogin/upload/project/IEEE/1/
pg2012-2013e141/32%20Research%20and%20design%20of%20chatting%
20room%20system%20based%20on%20Android%20Bluetooth.pdf

[5] M. E. Safi and E. I. Abbas, “Android-based home door locks application
via bluetooth for disabled people,” in Proceedings of the International
Conference on control System Computing and Engineering Penang IEEE,
November 2014, pp. 191–195. [Online]. Available: http://eprints.uthm.edu.
my/id/eprint/6567/1/Android-based_Home_Door_Locks.pdf

[6] N. Studach, “Polypass - a convenient password manager,” 2019. [Online].
Available: https://pub.tik.ee.ethz.ch/students/2019-FS/MA-2019-04.pdf

[7] A. Shamir, “How to share a secret,” in Communications of the ACM, vol. 22,
no. 11, 1979, pp. 612–613.

[8] “Webrtc 1.0: Real-time communication between browsers,” 2019 [Acessed
June 6, 2020]. [Online]. Available: https://www.w3.org/TR/2019/
CR-webrtc-20191213/

[9] P. Bhagwat, “Bluetooth: Technology for short-range wireless apps,”
2001. [Online]. Available: http://home.engineering.iastate.edu/~morris/
543/paper/bluetooth.pdf

19

https://www.archive.ece.cmu.edu/~lbauer/papers/2019/soups2019-pwd-mgrs.pdf
https://www.archive.ece.cmu.edu/~lbauer/papers/2019/soups2019-pwd-mgrs.pdf
https://pub.tik.ee.ethz.ch/students/2017-HS/MA-2017-24.pdf
http://pgembeddedsystems.com/securelogin/upload/project/IEEE/1/pg2012-2013e141/32%20Research%20and%20design%20of%20chatting%20room%20system%20based%20on%20Android%20Bluetooth.pdf
http://pgembeddedsystems.com/securelogin/upload/project/IEEE/1/pg2012-2013e141/32%20Research%20and%20design%20of%20chatting%20room%20system%20based%20on%20Android%20Bluetooth.pdf
http://pgembeddedsystems.com/securelogin/upload/project/IEEE/1/pg2012-2013e141/32%20Research%20and%20design%20of%20chatting%20room%20system%20based%20on%20Android%20Bluetooth.pdf
http://eprints.uthm.edu.my/id/eprint/6567/1/Android-based_Home_Door_Locks.pdf
http://eprints.uthm.edu.my/id/eprint/6567/1/Android-based_Home_Door_Locks.pdf
https://pub.tik.ee.ethz.ch/students/2019-FS/MA-2019-04.pdf
https://www.w3.org/TR/2019/CR-webrtc-20191213/
https://www.w3.org/TR/2019/CR-webrtc-20191213/
http://home.engineering.iastate.edu/~morris/543/paper/bluetooth.pdf
http://home.engineering.iastate.edu/~morris/543/paper/bluetooth.pdf

Bibliography 20

[10] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth
low energy: An emerging low-power wireless technology,” 2012. [Online].
Available: https://www.mdpi.com/1424-8220/12/9/11734/pdf

[11] “Bluetooth core specification: Version 5.2.” Bluetooth
SIG. [Online]. Available: https://www.bluetooth.com/specifications/
bluetooth-core-specification/

[12] Chrome, “Native messaging.” [Online]. Available: https://developer.chrome.
com/extensions/nativeMessaging

[13] Google, “Bound services overview,” 2019 [Acessed June 6, 2020].
[Online]. Available: https://developer.android.com/guide/components/
bound-services

https://www.mdpi.com/1424-8220/12/9/11734/pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://developer.chrome.com/extensions/nativeMessaging
https://developer.chrome.com/extensions/nativeMessaging
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal

	2 Related Work
	2.1 Password managers with multiple-factor authentication
	2.2 Bluetooth in past projects

	3 Background
	3.1 Previous Project
	3.2 Bluetooth Communication
	3.2.1 General
	3.2.2 Android’s Implementation
	3.2.3 Bluez and PyBluez

	3.3 Local Communication
	3.3.1 Chrome: Native Messaging Host
	3.3.2 Android

	4 Implementation
	4.1 Concept
	4.2 Bluetooth Communication
	4.2.1 Android Side
	4.2.2 PyBluez and Native Messaging

	4.3 Overall Communication
	4.3.1 Interface for Bluetooth Module
	4.3.2 Acknowledgment Messages
	4.3.3 Handling Incoming messages
	4.3.4 Tracking Unacknowledged and Received Messages

	5 Evaluation
	5.1 Reliable communication over WebRTC
	5.2 Bluetooth communication
	5.3 System integration

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work

	Bibliography

