
Network Visualisation
for the Routing Project
Lina Gehri, Áedán Christie and Marco Di Nardo

As a part of the Communication Networks course, students configure their own
mini Internet and have to solve challenges regarding spanning trees, OSPF, BGP
and more. While solving these challenges, many problems may arise due to mis-
configuration. Due to configuration tools on network devices providing only a
limited view of the network, locating and debugging large scale problems can be
extremely hard. Visualising the network can help to address this issue, as
visualisations allow both to gain a better understanding of the network as a
whole, and to find the root of complex problems involving multiple devices.
However, creating a visualisation system poses its own problems such as
balancing an up-to-date view of the network, while not overloading the network
infrastructure by collecting data.
In this group project, we created a visualisation system for the Communication
Networks mini Internet. Using smart caching and asynchronous communication
between front- and backend, we can efficiently visualise a broad range of
network aspects, from BGP advertisement propagation to spanning tree link
states. Furthermore, our set up offers a React-based web interface to
interactively explore the visualisations and in the future, can easily allow fine-
grained access control.

Overview

Project overview

The project is essentially split up into two parts, a
frontend and backend. The frontend is a single-
page web application realised in React.js and
visualises information retrieved from the backend
using RPC calls. The backend is responsible for
gathering information from the mini-internet,
analysing it and providing the WebSocket interface
for the frontend.

The backend application runs inside a containerised setup which was built using
Docker similar to how the docker containers bootstrapped by the mini-internet
generator work.

Backend

Backend Architecture

Basic architecture
The backend abstracts the existing infrastructure into a logical models with
representations of the routers, switches, hosts and links present. We group those
devices into topologies to represent the different levels of the Communication
Networks model in an intuitive way.

Each device is wrapped by a class with corresponding methods. Furthermore, we
implemented classes for network links in order to provide a natural interface for
gathering link information. We used an indirection we called ports such that

devices and links need not be inherently aware of one another and need not know
specific implementation details about one another.

The class and its descendants are used to represent the hierarchical
structure of the Mini-Internet. Each topology contains a NetworkX graph as a
backbone for its data model. NetworkX is a Python package for the creation,
manipulation, and study of the structure, dynamics, and functions of complex
networks. The graph’s nodes correspond to the docker devices in the Mini-
Internet (Routers, Hosts, Switches) and the graph’s links hold pointers to our
custom objects. All of the functionality we provide to work with and
manipulate links is executed on these link objects not on the NetworkX edge.

Data collection
The most difficult part of the backend was to find a way to retrieve information
from the virtualised networking devices in an efficient and non-blocking way. We
achieved this by introducing the Python classes and to
abstract the connection from the actual devices. Thus, we were able to separate
our data model from the specifics of how the devices work and how data is
collected from them.

and can call e.g

 to use the interface offered by .
 are, however, unaware of the specifics of how commands are executed.

The can add new devices to the network and keeps track of all
the devices in the Docker namespace. We used the Docker SDK for Python in
order to execute commands via an HTTPS request through docker’s internal
Linux socket (located in) and return the output. The
container needs elevated privileges within the Docker system for this to work
properly.

, and all inherit from a common class and each
hold a reference to their

Alternatively, one could connect up the virtual networking devices using e.g.
SSH, SNMP or syslog and collect the data that way. A protocol like SSH is would
be more versatile and would provide more in-depth access to configuration and
runtime information about network devices. Unfortunately, using a direct SSH
access seemed rather time-consuming given it blocks the code execution during
the call and has to set up a new socket for each command. Using Docker SDK
was the most straight forward method which we then used for the rest of our
project.

Web server
A web server based on the Tornado python framework responds to requests from
the frontend and manages the cache connections to the virtual containers. The
server manages the WebSocket connections and relays RPC requests that come
in through the socket from the frontend to the correct object in our virtual model
and serves up the response to the client.

In order t
 and used

asgiref’s decorator for functions that are inherently blocking.
Consequently, the slow and blocking I/O calls to the virtualised networking
devices don’t block the entire application.

o profit from Tornado’s asynchronicity and to allow for many frontend
requests in parallel we also made our backend functions asynchronous

Caching

Cache architecture

In order to reduce load on the containers and especially on the Open vSwitch
switching fabric, which is implemented using Linux sockets and namespaces,
we implemented a simple but effective caching mechanism on our interfacing
class . We focused on the virtualised routers as they receive the most
traffic and contain most of the information we were interested in. However
following a similar scheme, one could implement caches for virtual hosts and
switches.

The data is cached in a python dictionary that maps the commands to their last
known output. When a cache miss occurs, the command is executed on the
device and added to the list of cached commands which resides inside the virtual
device. As for cache update strategies, polling is commonly only opted for as a
last resort, as it introduces unnecessary traffic and latency for updates. A much
better alternative is to use an event-based system with which the event source is
able to directly send updates. We chose an architecture based on syslog as this is
widespread and the virtualised routing software already provided support for it.

More specifically, we used rsyslog with its omprog module which allowed us to
“integrate arbitrary external programs into rsyslog’s logging”
(https://www.rsyslog.com/doc/v8-stable/configuration/modules/omprog.html?
highlight=omprog). In our case omprog and a set of custom filter rules trigger a
python script that executes the list of registered commands and forwards all the
output to our visualisation container. The cache is then updated within the
corresponding 's caching dictionary.

Furthermore, some defaults did not provide sufficient logging levels, e.g. OSPF
weight changes were not logged by default. Hence, we automatically configure
the option when setting up the cache which leads to a more
conclusive log of students’ configuration changes. This feature requires more
testing in the future as it is possible that certain state changes or BGP updates
are still not being logged appropriately. Unfortunately, FRRouting does not
document this feature in much detail which makes debugging rather difficult.

Network analysis
Aside from our virtual model, which describes the topology of our network,
different types of analysis may be performed on it. In order to provide future
users and developers with an example as to how this may be achieved we
implemented a class that provides a testing framework for BGP
business relationships which are one of the central topics of Laurent Vanbever’s
Communication Networks lecture. The framework provides two methods

 and to test for customer-provider and
peer-peer BGP relationships based on rules discussed in the aforementioned
lecture.

Problems and difficulties
IXP docker container issues
Because of some bugs in the mini-internet we had a lot of trouble with every
function that involved objects as their did not work properly
anymore after the upgrade from FRR 6.0.2 to FRR 7.1. Given those constraints, we
put workarounds in place to guarantee functionality with IXP router containers.
Such workarounds might need to be added or adapted for any future
improvements and additional functionality in order for the IXP routers to
correctly function within our project’s framework.

Ongoing changes to the Mini-Internet
Due to requests for changes from our side and ongoing development of the Mini-
Internet project a lot of changes to the environment were made during the time

we built our framework on top of the infrastructure. As a result we had to rewrite
functions or even whole classes and wait to have improvements implemented, so
we could also program new functions.

Frontend

The frontend consists of a single-page React.js application which aims to show
visualisations and provide ready access to information from the logical model as
well as traversing it. React.js has many advantages relevant for complex frontend
applications, such as centralised state management and predictable lifecycle
methods for components. The application features two sections: a visualisation
section and a control section. Using common user interactions the logical model
may be navigated through, dynamically updating the visualisation section's view
with more information from the backend.

Visualisation section
This main section - - hosts a visual
representation of the current view, rendered using Cytoscape.js. Currently, only a
single level of the logical model may be viewed at any given moment. The
visualisation is be programmed to reflect the visual layout that student know
from Laurent Vanbever’s Communication Networks lecture. Even though the
Cytoscape.js library provides methods to traverse and manipulate the graph -
much like NetworkX on our backend does - on our frontend we purposefully used
only functionality relevant to displaying or animating information on screen.

the main column within the application

Control section
This section - - provides a space in
which all user controlled actions as well as further information is placed. When
nodes and edges are clicked in the visualisation section this view updates
automatically to show relevant actions and information. At the time of writing
there are three different types of visualisation that we provide the building blocks
for: graph animations, tabular data, lists.

the sidebar column within the application

Graph animations
This type of visualisation animates parts of the graph within the visualisation
section in order to highlight propagations or paths within the graph. We provide
two examples for this type: virtual traceroutes and IP prefix propagation. The
virtual traceroute uses routing information to infer the effective route taken
across the L3 topology. This is then animated on the frontend by visually
highlighting nodes and edges sequentially. The IP prefix propagation is launched
on the top-level view and shows how a given IP prefix propagates the
autonomous systems again visualised by means of staggered animation.

Tabular data
When a lot of data is to be displayed, a table is often the most appropriate visual
structure to display that data. We implemented a full screen overlay on top of the
visualisation section which opens when needed and displays a large tabular view.
An example of where we implemented this is the IP prefix propagation on an
edge between two autonomous systems. An action is launched on that edge
which then displays the overlay with the set of IP prefixes which are carried on
that edge for each direction.

Lists
This type mainly aims at displaying data dynamically and at providing ready
access to information about nodes and edges of the mental model. We used this
type to show common information such as interfaces, link properties and states.

Improvements and extensions
Selective Cache Update
Whenever something is logged all cached commands are executed also the ones
which do not have to do anything with the change. One could do it in a more fine
grained way digging into “what exactly is logged at what time and which
information depends on it”.

Authentication
It is possible to implement token-based authentication. The best place to do so is
in the where the function in the backend is called. One could
have a list for each token with which functions a person with this token is
allowed to execute in the backend.

Bidirectional Updates
Right now, when something in the cache changes the frontend is not notified of
this change. One could automatically update the visualisation in the frontend
without having to refresh the page.

Pandas
We use regex to parse all configuration files and output. To use pandas would be
a bit more readable than regex.

Cache for Switches
Right now the cache is only implemented for routers. The analysis of the L2
network would profit from a cache for switches.

