
Pushing the Internet to the Edge
Master Thesis

Raphael Schnider

sraphael@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Romain Jacob
Andreas Biri

Prof. Dr. Lothar Thiele

February 10, 2020

mailto:Raphael Schnider<sraphael@student.ethz.ch>

Acknowledgements

I want to express my deepest gratitude towards Romain Jacob and Andreas Biri
who supported me during my master thesis with their in-depth knowledge about
technology and methodology and invested a lot of time to share it with me. Our
discussions enriched this thesis and made me constantly strive for improvements.
I also want to thank Prof. Dr. Lothar Thiele for the opportunity to write my
master thesis with the Computer Engineering group of ETH Zurich.
Further, I also want to thank the administrative staff of the TEC group for
assisting me with technical and administrative problems. This thesis would not
have been possible without the support of everyone mentioned here.

i

Abstract

In recent years the trend has been to connect any device to the internet to
remotely sense or actuate objects, a concept called “Internet of Things”. Fore-
casts predict billions of devices to be deployed and connected in the coming years.
To make such large scale deployments feasible, existing network infrastructure
has to be reused as much as possible. The IP protocol is essential for todays
internet and therefore must be supported by IoT devices to provide connectiv-
ity with traditional internet-capable devices. However applying the traditional
TCP/IP stack to those networks is a challenge because they must typically op-
erate with constrained resources. To achieve IP connectivity within low-power
wireless multi-hop networks (WSN), current industry standards rely on rout-
ing within the WSN. Such routing-based networks have been shown to perform
poorly in scenarios with mobile devices. An IoT network stack which supports
reliable webservice-like interactions between traditional internet-capable devices
and mobile IoT devices is needed.
Synchronous transmissions based on Glossy offer promising performance for mo-
bile scenarios: 1. up to 99.99 % reliability, 2. fast network floods, 3. great
mobility support because no topology-dependent state is present. This the-
sis proposes to leverage the mobility support of synchronous transmissions and
combine it with the flexibility of IP in an application-independent way. In this
document the design and implementation of a proof-of-concept of such a network
stack is presented. This stack shows a much improved mobility support com-
pared to RPL, the routing protocol used by most current IoT standards. These
results should motivate further research in synchronous transmissions for IoT
which will hopefully lead to a standardized general-purpose protocol.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 2

1.2 Application Scenario . 3

1.3 Goals . 3

1.4 Challenges . 4

1.5 Outline . 5

2 Background 6

2.1 Synchronous Transmissions . 6

2.2 CoAP . 7

2.3 6LoWPAN . 8

2.4 Related Work . 9

3 Design 10

3.1 Extending IP to the Edge . 10

3.2 Network Architecture . 11

3.2.1 Network Stack . 11

3.2.2 Network Components . 14

3.2.3 Modular Hardware . 16

3.3 Information Exchange . 17

3.3.1 Establishing Connectivity 17

3.3.2 Enable Interaction . 20

iii

Contents iv

4 Implementation 23

4.1 Constrained Node . 23

4.1.1 APP Board . 23

4.1.2 COM Board . 24

4.1.3 Bolt . 25

4.2 Edge Router . 25

4.2.1 Baseboard . 26

4.3 Directory Server . 26

4.4 User . 27

4.5 IP Tunnel . 27

5 Evaluation 28

5.1 Experiment Setup . 28

5.1.1 Topology . 28

5.1.2 Traffic . 28

5.2 Experiment Results . 32

5.3 Mobility Comparison to Industry Standards 36

5.4 Demonstration . 37

6 Conclusion 40

6.1 Findings . 40

6.2 Future Work . 41

7 Appendix 43

7.1 Online Resources . 43

Chapter 1

Introduction

Since the first exchange of emails in the early 1970s electronic message passing
has always been the focus of computer networks. The traditional TCP/IP stack
was developed in the 1980s with the goal to connect mainframe computers
through wired connections [1]. However in recent years the trend has been to
connect any device to the internet, a concept called the “Internet of Things”
(IoT). This offers the benefit of being able to remotely sense or control objects
using existing network infrastructure [2]. The “thing” in this context includes a
wide variety of devices and applications such as smart city, smart surveillance,
automated transportation, energy management, water distribution, environ-
mental monitoring and many more [3]. These devices are typically small in
size and constrained in their resources such as energy, memory and processing
power. They require a wireless connection to make large-scale deployments in
potentially remote, hard to access or mobile scenarios feasible.

A suitable network stack for those constrained devices aims at maximizing
the performance while still satisfying the constraints. Multiple performance
metrics such as power consumption, reliability, latency, stability, throughput
and more exist which are most often in conflict with each other. The metrics
which should be optimized depend on the application. As the traditional
TCP/IP stack was not designed with these requirements in mind, adapting it
to the IoT has a few challenges [1].

The essential layer of the protocol stack is the IP layer. It is the glue
that holds the internet together, providing end-to-end connectivity between
two arbitrary devices connected to the internet [4]. To provide translation
between traditional IP based networks and constrained wireless sensor networks
(WSN), early approaches for IoT stacks employed a gateway. These gateways
remove the IP layer before forwarding the data to the constrained node. Such
a translation can help to ease the burden on constrained devices. However
similar to the translation of human language, certain information is lost and
the network looses flexibility and does not support arbitrary IP packets but is

1

1. Introduction 2

instead speciallized to a certain application.

Standards for IoT network stacks developed in recent years rely on the “Rout-
ing Protocol for Low-Power and Lossy Networks” (RPL) [5] to deliver IPv6 pack-
ets within a multi-hop WSN. The “IPv6 over Low-Power Wireless Personal Area
Networks” (6LoWPAN) adaption layer [6] is used to bridge the gap of link layer
frames not supporting big enough messages for IPv6. However it has been shown
that RPL networks perform poor in scenarios with mobile nodes [7]. Routing
protocols must have some knowledge about the topology of the network which
will inherently lead to challenges with mobile nodes. The work presented in this
document explores the possibility of an IoT network stack that does not depend
on routing within the WSN.

1.1 Motivation

The rising interest in IoT can be demonstrated by a Google Scholar search for
the keyword “IoT”: 5050 results from 2008, 12800 results from 2013 and 133000
results from 2018. An important factor is the constant improvement of hardware
which allows constrained devices to operate with more memory and processing
power which enables them to run more complex protocols, making the IoT a
reality.
Synchronous transmissions is a research area that emerged in recent years, trig-
gered by the development of Glossy [8] which inspired a multitude of synchronous
transmissions protocols [9]. They allow the delivery of messages between two
nodes in a wireless multi-hop network without the use of a routing protocol.
Evaluations have shown promising performance results of high reliability up to
99.99% as well as latencies approaching the theoretical lower bound [8]. The
main functional advantage over routing-based approaches based on RPL is the
support of mobile nodes. Mobility can be of significance for example in a factory
environment with sensors mounted to moving parts or wearable electronics which
stay connected even as the wearer moves. RPL was not designed with mobile
nodes in mind and evaluations have shown that the performance is degraded sev-
erly in mobile scenarios [7]. Several modifications of RPL have been proposed
specifically aimed at improving the mobile performance, such as Co-RPL [10]
and mRPL [11]. In contrast synchronous transmissions based protocols support
node mobility without any extra effort by nature of their design: messages are
flooded in the subnet and no topology-dependent state is present. It has been
shown that using LWB [12], a synchronous transmissions protocol, as a link layer
protocol a similar TCP throughput can be achieved for static and mobile sce-
narios [13].
The good performance of synchronous transmissions and the inherent support
for node mobility motivates the design of a proof-of-concept of an IPv6 capable

1. Introduction 3

network stack using synchronous transmissions on the link layer. This enables
direct interaction between a connected computer running a standardized network
stack and a constrained node in a WSN which can take advantage of the benefits
of synchronous transmissions.

1.2 Application Scenario

This document focuses on the following application scenario, which will influence
the design and implementation of the network stack as well as the test scenarios
used for the evaluation:

• Messages are exchanged primarily between a traditional, internet-capable
device such as a server and constrained nodes. The philosophy behind
this traffic pattern is to have minimalistic functionality on the constrained
nodes, which perform a sensing or actuating task upon request. The server
can then run arbitrarily complex computations to trigger actuations based
on responses to sensing requests. The basic sensing and actuating func-
tionalities of the constrained nodes are unlikely and infrequent to change,
and a new algorithm to change the logic of actuations based on sensing
only requires an update of the server software without the need to change
the software running on the constrained nodes.

• The constrained network is a low-power multi-hop network and messages
are only infrequently exchanged. Therefore the achievable throughput of
the constrained network is of less interest compared to the success rate and
delay of single messages within an otherwise silent network.

• Nodes are mobile only within the same constrained network.

• Packets are typically smaller than the maximum size of a wireless packet,
which is 127 byte for IEEE 802.15.4 [14]. However IP packets arriving at
the edge router can have a size of up to 1280 byte.

• Following the philosophy of having “dumb” nodes and centralized intelli-
gence, nodes do not perform any action on their own (after the connectivity
is established) but only react to received requests, typically by performing
an action and sending a response back.

1.3 Goals

The proof-of-concept presented in this thesis has the following goals:

• Design and implementation of a fully IPv6-capable networking stack which
uses synchronous transmissions inside a WSN.

1. Introduction 4

• The network does not have an application-specific gateway. The layered
architecture guarantees the independence of the network and application
layer.

• Mobility of nodes within the WSN must be supported.

• Demonstration how the user learns the IP address of the constrained node.

• Demonstration how metadata can be used to be able to exchange informa-
tion on the application layer.

• Port Contiki-NG [15] to the MSP432 and implement an edge router on a
Linux-based system.

• Demonstration of the IPv6 capability and connectivity of the constrained
nodes with the help of two examples:

– ICMPv6 ping requests

– CoAP [16] requests

• Comparison of the resulting mobility support to industry standards

1.4 Challenges

Network stack has two main challenges which have been studied before [1]:

• Packet size limitations: IPv6 requires each link to support a MTU of at
least 1280 byte. IEEE 802.15.4 [14] on the other hand supports a maximum
frame size of 127 byte. It is therefore necessary to have a layer between
these two protocols that supports fragmentation and reassembly in order
to be IPv6 compliant.

• Header overhead: The IPv6 header has a fixed-size length of 40 bytes.
Many of the header fields will only rarely deviate from a default value.
A mechanism to eliminate unnecessary information while still being IPv6
compliant is desirable to save energy on the constrained devices.

Organisation to establish connectivity and allow information exchange:

• Nodes need to have an IPv6 address which is routable from the server,

• The server needs to learn this address,

• Server and node must agree on how to interprete data in order to extract
information from it. This includes for example units: A request for a
temperature measurement with a response of “25” is not meaningful if the
unit is not known.

1. Introduction 5

Implementation:

• Synchronous transmissions have strict timing requirements and require ac-
curate synchronization between nodes. Therefore it must be guaranteed
that these requirements are met and that upper layer protocols or applica-
tion software do not delay the operation of the synchronous transmission
protocol.

• The entire network stack must fit into the the constrained memory of the
nodes

1.5 Outline

The rest of this document is structured in the following way: Chapter 2 presents
some background knowledge about synchronous transmissions, the CoAP pro-
tocol and the 6LoWPAN adaption layer. Chapter 3 explains the design and
chapter 4 the implementation of the proof-of-concept. An evaluation based on
practical experiments and theoretical analysis is presented in chapter 5 and the
document concludes with a summary of the main findings and an outlook on
future work in chapter 6.

Chapter 2

Background

The work presented in this document builds on previous work. The following
sections provide readers with background knowledge about synchronous trans-
missions, the CoAP protocol and the 6LoWPAN adaption layer which aims at
helping the reader to understand the rest of this document as well as some note-
able related work.

2.1 Synchronous Transmissions

Synchronous transmissions, also called concurrent transmissions, rely on the
capture effect [17] and constructive interference [18]. Glossy [8] was the first
wireless protocol to leverage constructive interference to flood a packet in the
entire network with a reliability above 99.99% and approaching the theoretical
lower latency bound, while at the same time providing implicit accurate time
synchronization across all nodes in the network [8]. The operation is as follows:
The flood is initiated by a designated node, called “Initiator”. The nodes which
receive a message all start transmitting it again immediately after a highly
deterministic software delay, until the message is flooded in the entire network.
This way the neighbors of a transmitting node all receive and relay the message
at the same time. This mechanism leverages constructive interference and
causes nodes to successfully receive the message with a high probability and
very low latency [8] (figure 2.1).
Glossy triggered the development of a multitude of different synchronous trans-
missions protocols which use Glossy as their basic communication primitive [9].
Those protocols are specialized for different scenarios and so far no standardized
general-purpose protocol has been developed.
Further benefits of synchronous transmissions protocols for wireless multi-hop
networks compared to traditional protocols are implicit support for node
mobility [13] because of no topology-dependent state as well as an efficient
broadcast with the same cost as a unicast. Because synchronous transmissions
essentially abstract the wireless multi-hop network as a single link instead of a

6

2. Background 7

Figure 2.1: Glossy floods a message in the entire network [8]

network of point-to-point links [9], no routing protocol is needed to deliver a
message over multiple wireless hops

2.2 CoAP

Traditional web services rely on TCP as the transport layer protocol and HTTP
on the application layer. To enable a similar service for constrained nodes, the
“Constrained Application Protocol” (CoAP) [16] was designed as a specialized
web transfer protocol and is used in the proof-of-concept presented in this the-
sis. “CoAP provides a request/response interaction model between application
endpoints, supports built-in discovery of services and resources and includes key
concepts of the Web such as URIs and Internet media types. CoAP is designed to
easily interface with HTTP for integration with the Web while meeting special-
ized requirements such as multicast support, very low overhead, and simplicity
for constrained environments” [16]. The header structure of CoAP is shown
in figure 2.2. CoAP is usually used together with UDP on the transport layer
which is more suitable for constrained devices due to a compact header size and
stateless operation. The transport layer is therefore only used for multiplexing
between applications, using the port field of the header. Reliability can be pro-
vided on the application layer by CoAP if needed. It is also possible to use CoAP
together with DTLS [19] to provide security.
CoAP also relies on the Representational State Transfer (REST) [20] architec-
ture like HTTP and supports a stateless HTTP mapping. A CoAP client sends
requests to a CoAP server to retrieve or update a resource. A resource is “A
network data object or service that can be identified by a URI. Resources may
be available in multiple representations (e.g. multiple languages, data formats,
size, and resolutions) or vary in other ways.” [21]. The basic supported CoAP
methods are:

2. Background 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ver T TKL Code Message ID

Token (if any, TKL bytes)

}
0-8 bytes

Options (if any)

}
Variable size

Payload Marker Payload...

Figure 2.2: The CoAP packet structure. T field can be used to enable or disable
reliable delivery. Code field is used to indicate the type of request (GET, PUT,
POST, DELETE) or the response code. Message ID is used to detect duplicates
and order messages, Token to match request and response pair. The options
include the path of the resource [16].

• GET: request representation of a resource.

• PUT: update or create a resource with the representation enclosed in the
request.

• POST: request to process the representation enclosed in the request. It
usually creates or updates a resource.

• DELETE: delete a resource

New methods can be added in separate specifications. One noteable additional
method is OBSERVE which allows to retrieve a representation of a resource and
keep it updated over time [22].

2.3 6LoWPAN

6LoWPAN is a standardized adaption layer to enable the transmission of IPv6
packets over IEEE 802.15.4 networks [6]. In the OSI reference model [23] it
resides between the network and link layer (figure 3.2). This additional layer is
needed to bridge the gap between the IPv6 protocol which requires a mimimum
supported MTU of 1280 bytes while low-power wireless link layer protocols only
support smaller message sizes, for example 127 bytes for IEEE 802.15.4 [14]. The
main functionalities provided by 6LoWPAN are:

• Fragmentation of IPv6 packets into smaller link layer frames. A small
fragmentation header containing a tag ID and packet offset is added to
each fragment which allows reassembly into an IPv6 packet.

2. Background 9

• Compression of the IPv6 header and potentially also upper layer head-
ers. This is achieved by assigning default values to the header fields. Only
header fields with non-default values are included in the 6LoWPAN frag-
ment eliding the others.

2.4 Related Work

It has been argued that employing application layer gateways which act
application-specific to connect the IoT is not a suitable approach to connect
the envisioned billions of IoT devices because whenever a new device featuring a
new application is added to the IoT network, the gateway device and potentially
also the user application would have to be adapted. Instead a standardized
approach to connect these devices independent of their application is needed,
similar to how for traditional web services a single webbrower can connect to
any website [24]. Applying the TCP/IP architecture to the IoT provides some
challenges which have been studied before [1].
Currently IPv6 connectivity between traditional internet-capable devices and
IoT devices can be achieved in two ways:

• Using routing protocols inside the constrained wireless multi-hop network.
Current industry standards mostly rely on the RPL protocol [5]. Examples
for such standards are ZigBee IP [25] and OpenWSN [26].

• By restricting the topology to a star topology where every constrained
node is just a single hop away from the edge router, no routing protocol is
needed. Such a stack that uses IPv6 over Bluetooth Low Energy (BLE) is
BLEach [27].

However these two approaches do not provide a network stack supporting a
constrained wireless multi-hop network which supports node mobility. To achieve
this, network stacks using synchronous transmissions protocols on the link layer
and omiting the RPL protocol were proposed [13][28]. However these papers only
established IPv6 connectivity within the constrained network and the concept of
an edge router was presented but not implemented.

Chapter 3

Design

In this chapter the design of the proof-of-concept is presented. The goal of
this design is to establish an end-to-end IP connectivity between a user and a
constrained device. Therefore compatible network stacks and IP addresses are
needed. The constrained network and the public internet are connected through
an edge router. A directory server serves as rendez-vous point for user and
constrained node. Metadata should then be exchanged to enable a meaningful
interaction.
This chapter first explains why an IP gateway is not suitable. The following
sections explain the network architecture and the procedure to enable the
exchange of information between a user and constrained node.

3.1 Extending IP to the Edge

For successful communication between a user and a constrained node, they have
to be able to address each other and the internet has to be able to route those
addresses. The IP protocol is the standard which allows this. A solution for en-
abling communication between traditional devices which rely on the IP protocol
and a constrained node in a WSN is to not use the IP header inside the WSN.
This could save message overhead and complexity for the constrained node. The
edge router could remove the IP layer and map the IP addresses to short link
layer addresses (figure 3.1). ICMPv6 packets like ping could be translated and
interpreted on the application layer.
However this approach has drawbacks: Without the IP header the constrained
node cannot address an arbitrary host without a predefined mapping of a short
link layer address to an IP address on the edge router. Therefore the constrained
node could only respond to requests and would not be fully IP capable. It would
not be able to contact an arbitrary directory server as described in 3.3.1 without
preconfiguration on the edge router, making plug and play functionality impos-
sible. Also the available address space would be much smaller which can be a

10

3. Design 11

Figure 3.1: A gateway can connect two networks with incompatible network
stacks performing translation of messages

problem for Machine-to-Machine (M2M) communication with a lot of connected
devices.
Therefore an IP layer gateway as described above is not desirable. Instead the
IP connection should be extended to the constrained node including all header
information. However the header information can be compressed using lossless
techniques as defined by the 6LoWPAN [6] specification.

3.2 Network Architecture

3.2.1 Network Stack

The network stack has to enable end-to-end communication between a user and
constrained device. To achieve the compatability of the constrained network with
the public internet and modularity which allows to improve certain functionalities
independent of each other, a layered network stack is used.
The OSI model [23] is a conceptual model of a layered network architecture.
Comparing the OSI model to the network stack used in this thesis (figure 3.2)
assigns the following protocols to each layer:

• Physical: 802.15.4 physical [14] layer is used, an established low-power
wireless protocol. Its task is to physically modulate and demodulate the
transmitted data over one hop.

• Link: A synchronous transmissions protocol together with parts of the
IEEE 802.15.4 MAC [14] is used on the link layer. Its task is to deliver

3. Design 12

Figure 3.2: OSI reference model compared to the stack used for this thesis

data over one link by enforcing “Medium Access Control” (MAC) rules
in the form of a schedule. Important to note is that the synchronous
transmissions protocol abstracts the entire constrained subnet as a single
link and is therefore capable of delivering messages over multiple hops.
However there is no guarantee for successful reception, it is only a “best
effort” service. More details about synchronous transmissions are explained
in 2.1.

• Network: Two different protocols are used on the network layer:

– IPv6, together with routing protocols running on the network routers,
provides a “best effort” service of delivering messages between two
endpoints with potentially multiple links between them.

– 6LoWPAN [6] serves as an adaption layer between IPv6 and the syn-
chronous transmission protocol by providing fragmentation and re-
assembly of IPv6 packets which is necessary due to different MTU’s:
IPv6 requires a minimum MTU of 1280 byte while IEEE 802.15.4
[14], the physical layer that the synchronous transmission protocol
relies on, only supports a MTU of 127 byte. 6LoWPAN also provides
compression of IPv6 headers and potentially also upper layer headers.

• Transport: UDP is used as the transport layer protocol. It has a small

3. Design 13

overhead and provides multiplexing between different applications on the
same host by specifying source and destination ports.

• Session, Presentation, Application: All those layers are covered by the
CoAP protocol [16] which is essentially a “lightweight HTTP” protocol de-
signed for exchanging data between application endpoints in constrained
environments. It has a compact header size and can provide reliable mes-
sage delivery using a timeout and retransmission mechanism. It allows
the application to GET, PUT, POST, DELETE or OBSERVE resources
which are accesses using a “Uniform Resource Identifier” (URI) [29]. In
the context of low-power applications it is desirable to keep the namespace
flat and use short, not necessarily human-readable, resource names to keep
messages as short as possible. For more details about CoAP see 2.2.

A few protocols deserve discussion as to why they are used:

• IPv6 vs IPv4: The main reasons for choosing IPv6 over IPv4 are:

– IPv4 is outdated by the IPv6 specification and should not be used in
new deployments

– IPv4 addresses have a size of 32 bit which equals 232 ≈ 4.3 billion ad-
dresses which is not even one address per person living on the planet.
On the other hand IPv6 uses addresses with a size of 128 bits which
allows 2128 ≈ 3.4 × 1038 addresses.

• UDP vs TCP: TCP is the standard transport layer protocol for tradi-
tional webservices. However UDP is the better option for the IoT scenario
of this document, due to the following reasons [30]:

– The header size of TCP is at least 12 byte greater than the UDP
header. This could be mitigated by expanding the 6LoWPAN capa-
bilities to compress the TCP header.

– Lack of flexibility: TCP always provides reliable delivery with re-
transmissions, while UDP does not provide this service but it can be
guaranteed by CoAP on the application layer, depending on the appli-
cation requirements. Hence, it is better suited for different scenarios
where the system designer should have the flexibility to choose.

– A single request suffers from higher latency with TCP due to the
three-way handshake when the connection is established, while UDP
does not need to establish a connection first. This is especially im-
portant for the application scenario considered in this document and
described in 1.2 where it is stated that messages are only infrequently
exchanged.

3. Design 14

– TCP requires both endpoints to keep state about the connection which
is a concern for constrained devices. It can be argued that when
using UDP and CoAP with reliability enabled, the state observing
timeouts and performing retransmissions is moved to the application
layer. However only the CoAP client (the host which issues a request)
needs to keep this state and as described in the application scenario
in 1.2 the constrained nodes primarily function as CoAP servers and
not clients.

– TCP is a unicast protocol and does not support multicast in contrast
to UDP. One property of synchronous transmissions is that by flooding
all messages in the entire constrained subnet, it provides an efficient
broadcast mechanism with the same cost as a unicast. This advantage
can not be exploited when using TCP.

3.2.2 Network Components

Network components can be devided into constrained and non-constrained
devices with an overview in table 3.1. The edge router, directory server and
user device can be located anywhere on the planet as long as they are connected
to the public internet (figure 3.3). Those three non-constrained components
are logically separated but can be physically located on the same device. For
the proof-of-concept presented in this document the directory server and user
device are mapped to the same physical device.

Each constrained node has a unique identifier which is also known to the
user. This identifier should be statically assigned during manufacturing and
reported to the users that are authorized to perform interactions with the device.
The IPv6 address is not suitable as such an identifier because the first part of
the address is the network prefix which changes depending on the deployment
location and is therefore not static. The unique identifier chosen in this document
has a size of 64 bits and follows the EUI64 format [31].

3. Design 15

Component Constrained Task

Sensors and actuators Yes
Low-power sensing or actuating
based on user requests, referred to in
this document as constrained nodes

Edge Router No

Forwarding of packets between the
constrained subnet and the WAN.
Adds the 6LoWPAN layer to pack-
ets flowing into the constrained sub-
net and removes it for packets flow-
ing out.

User device No

Requests sensor measurements and
processes them with arbitrary pro-
tocols and potentially requests an
actuation as a result of the process-
ing.

Directory Server No

Acts as a rendez-vous point between
constrained nodes and a user and
can also supply the user with meta-
data. More details are given in
3.3.1.

Table 3.1: Network components are divided in constrained and non-constrained
devices

Figure 3.3: Topology of the network components

3. Design 16

Figure 3.4: Dual Processor Platform
with APP and COM board

Figure 3.5: Dual Processor Platform
with Baseboard and COM board

3.2.3 Modular Hardware

One of the challenges mentioned in 1.4 are the strict timining requirements of the
synchronous transmission protocol which must not be disturbed by the upper
layer protocols or application software in order to enable successful communica-
tion. This is hard to guarantee if all the software components are executed on a
single processing unit. A solution is the “Dual Processor Platform” (DPP) [32]
developed at ETH Zurich. It allows isolating different task sets onto dedicated
hardware. The DPP consists of two physically separated boards each featuring
its own low-power microcontroller, the APP and COM board. The COM board
includes a wireless radio and is typically used for wireless communication while
the APP board is used for application tasks like sensing or actuating. The boards
are interconnected using BOLT [33], a stateful processor interconnect that al-
lows decoupling of power, clock and time domains of the two processing elements
by allowing asynchronous message passing with formally verified bounds on the
execution time.
Further benefits of this architecture are:

• Modularity: Each component can be exchanged indepent of the other
one.

• Parallel development: Software for the components can be developed
independently.

• Independent power management: Each component can take indepen-
dent decisions on when to utilize low-power modes.

In this project, the COM board does not handle the entire network stack but
only the time critical part which is the synchronous transmission protocol (figure
3.6). This allows the COM board to participate in the synchronous transmissions
and asynchronously read 6LoWPAN fragments from BOLT to transmit and write
received fragments to BOLT.
For the edge router a similar architecture is used as for the constrained nodes: It

3. Design 17

Figure 3.6: Physical and link layer protocols mapped to COM board; network,
transport and application layer mapped to app board

features the same COM board but the APP board is replaced by a more powerful
board which also includes an Ethernet interface to provide the connectivity to
the WAN.

3.3 Information Exchange

Having compatible network stacks between user devices and constrained nodes
is only the first step to enable the exchange of information. The next steps
necessary are establishing connectivity between the devices and then adding
meaning to the exchanged data to extract information and enable interactions.
Those steps are described in the following sections.

3.3.1 Establishing Connectivity

For an IoT solution to be practical in real-world scenarios, the amount of config-
uration needed by humans has to be minimized and plug and play connectivity
is desirable [34]. With the prerequisite of compatible network stacks fulfilled,
the next steps for establishing connectivity between user device and constrained
nodes are:

• Local registration (figure 3.7): To be able to send messages within the
synchronous transmissions protocol a node needs an ID which is unique
within its subnet. The EUI64 [31] identifier of each node already satisfies
this condition but is not suitable because of its 64 bit size. Instead an ID as
short as possible to minimize the header size and therefore saving energy
but as long as needed to support the number of nodes within a subnet
should be used. A local ID of 16 bit size allows for 216 = 65536 different

3. Design 18

Figure 3.7: Local registration assigns nodes a local link layer ID which enables
them to communicate within the constrained subnet

Figure 3.8: Global registration assigns an IPv6 address to each node and reports
this address to a directory server

3. Design 19

Figure 3.9: User can query directory server to learn node IPv6 address

nodes per subnet which is unlikely to be exceeded. The assignment of this
local ID is performed by the edge router which receives a request from the
constrained node including its EUI64 identifier. The edge router maps it
to a local ID and sends it back to the node. However because the node
does not yet have a local ID it can not send a regular message, instead an
extra contention slot designated for local registration messages needs to be
included in the schedule of the synchronous transmissions protocol.

• Global registration (figure 3.8): To be able to send and receive IPv6
packets the nodes need a globally unique, routable IPv6 address. An IPv6
prefix is delegated to the edge router by its internet service provider which
the edge router then advertises periodically within its subnet. Ideally this
prefix has a size of at most 64 bit which allows the node to directly derive
its 128 bit IPv6 address by performing stateless address autoconfiguration
[35], essentially concatenating the prefix and the EUI64 with one bit in-
verted which results in a globally unique and routable address. However if
the subnet prefix has a size of N > 64 bit, the EUI64 must be hashed to
an identifier of size 128−N bit and its uniqueness within the subnet needs
to be verified by performing a “Duplicate Address Detection” (DAD). If
the derived identifier is unique within the subnet, then the IPv6 address
resulting from concatenating the prefix and the identifier is globally unique
and routable because the prefix is globally unique. Finally after having as-
signed itself a public IPv6 address the node needs to advertise this address
to a directory server for users to be able to learn the nodes address. This

3. Design 20

Figure 3.10: Thing Description describes interfaces and static metadata

directory server is located somewhere in the cloud and hosts a database
with key-value pairs of EUI64-IPv6 address and allows nodes to add entries
to the database and users to read the database.

• Connect (figure 3.9): After the node has added its IPv6 address to the
directory server database, the user can query the directory server to learn
the address of the node and is then able to exchange messages with it.

The assumption made for this scheme is that every node has a unique identifier
in the EUI64 [31] format which is assigned during manufacturing and the user
knowns the identifier of the node with which they want to connect.

3.3.2 Enable Interaction

Meaningful application layer interaction between a user and a constrained
node is only possible if they can make sense of each others messages. Us-
ing a “Thing Description” (TD) [36] provides a standardized way of describ-
ing a devices interface and its metadata. An excerpt of such a TD for a
constrained node which features a temperature sensor could look like this:

3. Design 21

Figure 3.11: Additional location-dependent metadata is needed to add meaning
to data

1 "properties ": {

2 "temperature ": {

3 "title": "Temperature"

4 "type": "int",

5 "minimum ": -40,

6 "maximum ": 125,

7 "unit": "om:degree_Celsius",

8 "forms": [{

9 "href": "coaps :// mynode.example.com/

temp",

10 "cov:methodName" : "GET"

11 }]

12 }

13 }

In this example we can see that a temperature can be requested from the
device by performing a CoAP GET request. The returned value is an integer
in the range from -40 to 125 and its unit is degree Celsius. There are two
possibilities how this TD could be delivered to the user:

• It can be exposed as a separate CoAP resource by the constrained node
which can then be requested by the user (figure 3.10).

• It can be delivered to the directory server upon registration of the con-
strained node and the user can request if from there to take load off the
constrained node. However this creates a challenge of potential inconsis-

3. Design 22

tency if the interface of the constrained node changes due to a software
update.

But to interprete and act upon received data, typically more metadata is
needed which depends on the location where the constrained node is placed
(figure 3.11). This metadata is usually not known at the time of manufacturing
and therefore can not be included in the TD delivered by the constrained node.
The person that installs the constrained nodes, for example a handyman, has to
add the location-dependent metadata to a database which is accessible to the
user. This database could be located on the directory server or the edge router,
but the details of this procedure are out of scope.

Chapter 4

Implementation

This chapter presents the implementation of each of the network components:
Constrained nodes, edge router, directory server and user device. The source
code will be made publicly accessible and instructions on how to access it are
given in chapter 7. The hardware of the constrained nodes and the edge router
was developed at ETH Zurich [37].

4.1 Constrained Node

The constrained nodes are realized on the DPP [32] hardware consisting of an
APP and a COM board which are interconnected through BOLT [33] (figure
3.4).

4.1.1 APP Board

The APP board is responsible for part of the network stack, the 6LoWPAN layer
and above (figure 3.6), as well as the application. The main implementation task
is to port Contiki-NG [15] to the MSP432 microcontroller. Contiki-NG is chosen
because it was developed specifically for low-power communication on embedded
devices and supports the IPV6, 6LoWPAN, UDP and CoAP standards which
are all the network protocols needed on the APP board. Porting included the
implementation of timers, clock and interrupts and drivers for UART, GPIO,
SPI and high level interfaces for sensors and LEDs.
Because the link and physical layer of the network stack are not mapped to
the APP boards, those layers are replaced with custom implementations in the
Contiki-NG stack:

• Radio layer: The essential part of the radio layer is the BOLT driver
which is used to write data to BOLT if a transmission is requested by the
upper layers, and forwards data received from BOLT to the upper layers.

23

4. Implementation 24

Reception of data can be done either in poll or interrupt mode and this
mode can be chosen by the upper layers.

• MAC layer: A MAC called simplemac is implemented which does not
enforce any MAC rules since that is handled by the synchronous trans-
missions on the COM board. Simplemac adds a link layer address and
sequence number to filter out packets not addressed for the constrained
node and detect duplicate link layer frames. If the radio layer fails to write
to BOLT because the queue is full, simplemac reports a collision during
transmission back to the upper layer. This indicates that a transmission
should be tried again at a later time when the queue is not full anymore.

As an example application a sensor and actuator are implemented:

• Temperature sensor: temperature values can be read from a SHT30
sensor [38] and are exposed as a CoAP resource which can be accessed by
a GET request. Additionally a client can also OBSERVE the temperature
value. This means a client will be notified when the temperature rises
above a certain threshold value.

• Cooling actuator: Another CoAP resource exposed is a cooling actuator.
A client can request the cooling to be turned on or off by issuing PUT
requests. The actuator is mapped to a LED present on the APP board:
The LED is on when the node received a request to turn the cooling on,
and vice versa.

It was not possible to obtain public IP addresses for the constrained nodes.
Therefore a local, not publicly routable network prefix is assigned to the nodes
statically during compile time and the node forms its IPv6 address using stateless
address autoconfiguration [35] but no DAD is performed. This creates a challenge
for the user connecting to the constrained node as its IPv6 address is not globally
routable. It is overcome by the use of an IP tunnel which is explained in 4.5.
The limited available RAM on the APP board also proved to be a challenge.
A sufficient amount of buffers on all layers of the network stack could not be
provided. Therefore the required minimum MTU of 1280 byte for the IPv6
standard can not be fulfilled. The node can handle IPv6 packets of a size up to
≈800 byte.

4.1.2 COM Board

The code running on the COM board is based on an example provided by Baloo
[39]. Baloo [39] is a design framework that allows easy development of a custom
synchronous transmissions protocol. A synchronous transmissions protocol with
a round-based static schedule is used (figure 4.1). The interval between consec-
utive rounds is 1 s. The list of nodes is statically defined and each node gets a

4. Implementation 25

Figure 4.1: The synchronous transmission protocol used is round based with
round-robin assignment of communication slots

slot assigned during which it is allowed to transmit its data. The COM board
reads 6LoWPAN fragments from the BOLT interface before its assigned data
slot starts, during the time period where no communication happens. If data
was received from BOLT then the node transmits it in its communication slot.
After each communication slot the COM board writes the received 6LoWPAN
fragments to the BOLT interface. No filtering based on destination address is
performed since the COM board is not aware of the upper layer protocols and
does not reassemble the 6LoWPAN fragments into IPv6 packets. This allows
the COM board to operate independent of the protocols used on the APP board
and simply provides the service of flooding a 6LoWPAN fragment in the entire
subnet. Nodes which are not intended recipients of an IPv6 packet can then drop
it on the APP board.
The implementation is lacking the local registration process described in 3.3.1.
Instead fixed IDs and a static schedule are assigned during compile time.

4.1.3 Bolt

The software running on the BOLT microcontroller is a binary provided by a
publicly accessible repository [40].

4.2 Edge Router

The edge router device is also implemented on a dual processor platform [37].
However in contrast to the constrained nodes the APP board is exchanged for
a more powerful Baseboard which is not considered a constrained device and
includes an Ethernet interface (figure 3.5). The edge router also features a COM
board which is connected to the Baseboard through the BOLT interconnect.
The implementation of the COM board and BOLT are identical as presented
in 4.1. The COM board placed on the edge router is typically configured to be
the host node of the synchronous transmissions protocol, however this is not a
requirement.

4. Implementation 26

4.2.1 Baseboard

The baseboard runs a Linux-based operating system (OS) and features a Colibri
iMX7 [41] processing unit. The operation for packets flowing in both direction
is as follows:

• Traffic from constrained node to user: 6LoWPAN fragments are re-
ceived from the BOLT interface. The 6LoWPAN layer handles the reassem-
bly of 6LoWPAN fragments into header-compressed IPv6 packets and then
decompresses the IPv6 header. Because of the use of local IPv6 addresses
on the constrained nodes, the IPv6 packet is wrapped with another IP
header as described in 4.5. The resulting packet is then sent to the user
through the Ethernet interface with is implemented by the Linux OS.

• Traffic from user to constrained node: Packets arrive at the baseboard
through the Ethernet interface. The Ethernet and IP tunnel headers are
removed and the IPv6 packet extracted. The 6LoWPAN layer is added to
the packet and then forwarded to the BOLT interface for transmission into
the WSN.

The BOLT interface and packet manipulation was implemented in Python
relying on the Scapy [42] packet manipulation library. Due to a software bug
in this library the edge router is not able to perform 6LoWPAN fragmentation
and header compression correctly. Therefore only unfragmented packets can be
successfully delivered to the constrained nodes. It is however able to reassemble
6LoWPAN fragments and decompress the IPv6 header. The issue has been
addressed on the Gitter forum [43].

4.3 Directory Server

The directory server is implemented in Python and hosts a simple database
containing key:value pairs, where the key is the EUI64 identifier of a constrained
node and the value is the corresponding IPv6 address. The database is accessible
through a CoAP interface. Constrained nodes add their EUI64 and IPv6 address
to the database using PUT or POST requests and users can read the database
using GET requests as described in 3.3.1. The CoAP interface is implemented
using the CoAPthon [44] library.
The hardware used is a Lenovo ThinkPad T450s [45] with an Ubuntu 18.04 OS
and connected to the internet through Ethernet. The laptop receives a public,
globally routable IPv4 and IPv6 address from the network.

4. Implementation 27

Figure 4.2: IP tunnel from user to edge router: user adds an additional IP layer
addressed to the edge router which is removed before forwarding

4.4 User

The user can use the Linux command line interface (CLI) to issue ICMPv6 ping
requests and simple CoAP requests using the CoAPthon [44] example client. A
more complex CoAP-based interaction between user and constrained node as
presented in 5.4 is implemented in Python using the CoAPthon library.
The hardware used is a Lenovo ThinkPad T450s [45] with an Ubuntu 18.04 OS
and connected to the internet through Ethernet. The laptop receives a public,
globally routable IPv4 and IPv6 address from the network.

4.5 IP Tunnel

If globally routable IPv6 addresses are not available for the constrained nodes as
it is in this work, a direct IPv6 connection between user and constrained node
can still be achieved by using an IP tunnel. When the user sends an IPv6 packet
to a constrained node, an additional IP layer is added. This additional IP layer
has the edge router address as destination which is a globally routable address.
The tunnel can use either IPv4 or IPv6 but for practical reasons an IPv6-in-IPv4
tunnel is used in this work. The edge router then removes this additional IP layer
before forwarding the packet into the WSN (figure 4.2).
The use of an IP tunnel does not affect the functionality and the implementa-
tion can easily be adapted in case globally routable addresses are available. The
mapping of a node ID to global edge router IP to which a tunnel should be es-
tablished could also be stored on the directory server and could work completely
dynamic as well. However in this work the tunnel was configured statically.

Chapter 5

Evaluation

Several experiments are conducted to evaluate the performance and functionality
of the implemented solution. The setup and results of those experiments are
presented in this chapter.

5.1 Experiment Setup

An overview of the conducted experiments is presented in table 5.1. The goal
of the experiments is to demonstrate the functionality of CoAP, ping and frag-
mentation. Also the impact of node mobility and scaling shall be analyzed us-
ing the performance parameters of success rate and delay. The functionality of
connection establishment and metadata exchange are demonstrated in 5.4. The
following subsections explain the topology and traffic pattern of the experiments.

5.1.1 Topology

The experiments 1, 2 and 3 (figures 5.1,5.2,5.3) are performed with the use of
FlockLab [46] nodes which only serve as forwarders in the synchronous trans-
missions protocol to form a multi-hop network. For those experiments the user
device and edge router are both directly connected via Ethernet.
The experiments 4, 5 and 6 use a topology of only a single constrained node
which is placed in communication range of the edge router. For experiment 4,
user device and edge router are both connected to the ETH network. Experiment
6 uses again a direct Ethernet connection between user device and edge router.
For experiment 5, both connection types are used.

5.1.2 Traffic

CoAP requests in the experiments use a timeout of 15 s after which the sample is
considered not successful. CoAP requests use a maximum of two retransmissions

28

5. Evaluation 29

Exp. Description Goal

1

User issues a sequence of CoAP re-
quests on the temperature of a con-
strained node which is placed in
a static location several hops away
from the edge router. The user de-
vice has a direct Ethernet connec-
tion to the edge router.

CoAP func-
tionality,
reference
measurement

2

User issues a sequence of CoAP re-
quests on the temperature of a con-
strained node which is moving in-
side the network. The user device
has a direct Ethernet connection to
the edge router.

Comparison to
static case

3

User issues a sequence of CoAP re-
quests on the temperature of a con-
strained node which is placed in
a static location several hops away
from the edge router. Four nodes
are removed from the WSN com-
pared to experiment 1. The user
device has a direct Ethernet connec-
tion to the edge router.

Comparison to
full topology

4

User issues a sequence of CoAP
requests on the temperature of a
constrained node which is placed
in single-hop distance of the edge
router. User and edge router are
connected to the internet

Compatability
with public
internet

5

User issues a sequence of ICMPv6
ping requests to a constrained node
which is placed in single-hop dis-
tance of the edge router. Both
a direct Ethernet connection be-
tween user and edge and connection
through the internet are tested.

Ping function-
ality

6

User issues a sequence of CoAP
requests discovering the resources
of a constrained node (response
requires fragmentation) which is
placed in single-hop distance of the
edge router. The user device has
a direct Ethernet connection to the
edge router.

Fragmentation
functionality

Table 5.1: 6 experiments are performed to evaluate performance and functional-
ity

5. Evaluation 30

Figure 5.1: Static multi-hop topology

Figure 5.2: Mobile multi-hop topology. The mobile node moves with a velocity
of approximately 1-2 m/s

5. Evaluation 31

Figure 5.3: Static multi-hop topology with some nodes removed

Figure 5.4: Interval between each request is randomly generated

5. Evaluation 32

Exp. 1 Try 3 Tries

Static 97.2% 100%

Mobile 83.3% 98.6%

Static scale-down 100% 100%

Table 5.2: Success rate of CoAP requests for experiments 1 (static), 2 (mobile)
and 3 (static scale-down) for a single try and with retransmissions

after the inital request is sent. Ping requests dont use retransmissions. To offer
independence of the samples, consecutive requests shall only be sent after the
network is silent again. A minimum of 20 s between requests delivers sufficient
confidence to guarantee this.
For a single test run a sequence of 9 requests is used. The interval between
two consecutive requests is randomly generated with uniform distribution in
the interval [20 s, 30 s] with a resolution of 0.1 s (figure 5.4). 8 such sequences
Y1, ..., Y8 are generated and stored.
Experiments 1, 2 and 3 are repeated 8 times, one run for each random sequence
generated. This provides 72 samples of success and delay for those experiments.
The experiments 4, 5 and 6 are only performed once using the random sequence
Y1 which provides 9 samples of success and delay for each experiment.

5.2 Experiment Results

The hypothesis is that by using synchronous transmissions, the success rate and
delay is not significantly impacted by node mobility. However the success rate
in the mobile experiment is worse than for the static case (table 5.2). The ex-
planation for this observation is that in the mobile experiment the node changes
from locations of good connectivity to locations with bad connectivity. There-
fore packets losses occur more often than for the static node placed in a location
with good connectivity. The topology with four nodes removed performed best
with a success rate of 100% even without retransmissions. This illustrates that
for synchronous transmissions, a higher node density does not necessarily lead
to increased reliability as was also shown by others [47].
If the success rate after retransmissions is considered, the mobile scenario could
also almost achieve full reliability on application layer with only 1 request not be-
ing successful. For RPL based communication, a lot more retransmissions would
be needed to reach a similar success rate for a mobile scenario if the success rate
of a single message is below 20% (figure 5.10).
From the distribution of the response time of successful requests the retrans-
missions are clearly visible (figures 5.5,5.6,5.7): the majority of the requests is
centered around 2 s which are the requests that succeeded in the first try. Re-
transmissions are visible around 4 s and 8 s.

5. Evaluation 33

Figure 5.5: Response time distribution experiment 1

Figure 5.6: Response time distribution experiment 2

5. Evaluation 34

Figure 5.7: Response time distribution experiment 3

To compare the response times of the static and mobile scenario, only the re-
sponse times from requests which succeeded in the first try are considered. This
provides a fair comparison as requests issued when the mobile node was in a lo-
cation of bad connectivity are not considered. The empirical median and average
response times from the experiments are calculated as well as upper bounds for
the 50th,75th and 90th percentile. The calculations of these upper bounds are
following the guidelines of the TriScale [48] framework and use a confidence of
at least 95%. The values of theses upper bounds as well as the empirical median
and average values show a difference of less then 2% and the mobile scenario
does not have strictly worse metrics (table 5.3 and figure 5.8). We can therefore
conclude with high confidence that the response time distribution of a single
successful CoAP request is identical in the static and mobile scenario.
The results of experiments 4, 5 and 6 (table 5.4) demonstrate that the system is
also capable to handle ping requests and packet fragmentation. Communication
is also possible if the edge router and user device are connected to the internet
instead of a direct Ethernet connection between them. Fragmentation takes sig-
nificantly longer because only one fragment can be transmitted per round of the
synchronous transmissions protocol.
The delay measurement has to be viewed with care as it highly depends on the
synchronous transmissions protocol used and the configured round time which
is 1 s in the experiments.

5. Evaluation 35

Median [s] Average [s]

Static 1.983 2.021

Mobile 2.013 2.03

Difference 1.51 0.45

Table 5.3: Response time empirical values of requests which succeeded in the
first transmission

Figure 5.8: Upper bounds for the 50th, 75th and 90th percentiles of the response
time of requests which succeeded in the first transmission

Experiment Success Rate
Median Response Time
Upper Bound [s]

CoAP request, internet
connection (Exp. 4)

100% 2.243

Ping, direct connection
(Exp. 5)

100% 2.321

Ping, internet connec-
tion (Exp. 5)

100% 2.397

CoAP fragmentation (3
fragments), direct con-
nection (Exp. 6)

100% 4.385

Table 5.4: Success rate and response times of experiments 4, 5 and 6

5. Evaluation 36

5.3 Mobility Comparison to Industry Standards

Current industry standards like ZigBee IP [25] and OpenWSN [26] rely on the
RPL protocol. A comparison between the success rate from this work without
retransmissions (table 5.2) and simulations of RPL performance (figures 5.9 and
5.10) under different mobility models [7] indicate a much improved mobility
support for the stack presented in this document. The reliability of the network
stack presented here drops to 83.3% whereas for RPL it drops to below 20% for
most mobility models. It is important to keep in mind that the results from this
work measured the success rate of a request/response pair where a packet can be
lost in both directions, whereas the RPL evaluation only considers the success
rate for packet delivery in one direction.

Figure 5.9: Packet Delivery Ratio with RPL protocol in a static scenario [7]

5. Evaluation 37

Figure 5.11: Remote monitoring and control of fridge temperature

Figure 5.10: Packet Delivery Ratio with RPL protocol in different mobility mod-
els [7]

5.4 Demonstration

The functionality of the network stack and the network devices is demonstrated
using an example scenario. Two constrained nodes A and B are used together
with the edge router and a laptopt which serves as the user device as well as
the directory server (figure 5.12). Nodes A and B register their IP address at
the directory server using CoAP POST requests as described in 3.3.1. The user
can then extract the list of IP addresses using a CoAP GET request. The user
can then test the node connectivities using ICMPv6 ping requests. The available
CoAP resources can be discovered and metadata can be exchanged by requesting
the TD. It can be seen that node A offers a temperature sensor and node B offers

5. Evaluation 38

Figure 5.12: The demonstration topology

a cooling actuator which shall be used for the example application.
The IP addresses of the two nodes serve as inputs for the example user applica-
tion. A CoAP OBSERVE request on the temperature of node A is then issued.
This causes the user to be notified when the temperature on node A rises above
30 degree Ceclsius. When this happens, the application sends a CoAP POST
request to node B to actuate the cooling, which is simulated by the activation of
an LED on node B (figure 5.13). This example scenario could reflect the remote
monitoring and control of an appartment cooling (figure 5.11).

5. Evaluation 39

Figure 5.13: A blow-dryer triggers the temperature rise

Chapter 6

Conclusion

The need for an IoT networking stack which can handle node mobility and en-
able webservice-like interactions in a standardized, application-independent way
is motivated in chapter 1. A background about the key technologies synchronous
transmissions, 6LoWPAN and CoAP together with related work is presented in
chapter 2. Using these technologies, a design for a proof-of-concept is constructed
in chapter 3. The design lays out the needed network components and their pro-
tocol stacks as well as the steps to enable application layer interactions between
a user and a constrained node. The implementation of each network component
is elaborated in chapter 4. Chapter 5 evaluates the system performance in terms
of success rate and delay of CoAP and ICMPv6 ping requests. A comparison to
RPL based communication shows that the network stack proposed in this thesis
has a significantly lower packet loss rate in the presence of node mobility. By
using a maximum of two retransmissions on the application layer a reliability of
98.6% in a mobile scenario and 100% in a static scenario is achieved.
The following subsections analyze wheter the thesis goals are met and what work
still has to be done to transform this proof-of-concept to an IoT networking stan-
dard.

6.1 Findings

The proof-of-concept presented in this thesis demonstrates that IP-based
application layer interactions between traditional internet-capable devices and
constrained nodes is feasible. By using synchronous transmissions on the
link layer, messages can be delivered with high reliability in scenarios with
mobile nodes, significantly higher than communication based on RPL which is
used in current industry standards. The use of the CoAP protocol provides
a webservice-like interface. This makes it convenient for programmers which
are used to the HTTP protocol to develop IoT applications. However it needs
to be considered that response times will typically be much bigger than what
programmers are used to from traditional webservices. For the implementation

40

6. Conclusion 41

used in this thesis the response time for a CoAP request is at least 1.5 s compared
to a few tens of miliseconds for traditional HTTP webservices. Therefore bigger
timeout values need to be used for IoT communication to not overwhelm the
WSN, especially since the transport layer protocol used in this thesis is UDP
which does not offer flow and congestion control.

The evaluation presented in this thesis shows that 100% reliability can be
achieved on the application layer for static scenarios for both CoAP and ping
requests. This proves that the system is functional. Because the edge router
implementation does not operate above the IP layer, we argue that any other
transport or application layer protocol can be successfully delivered without
the need to change the edge router implementation. This proves that the edge
router is an application-independent gateway. However the system is not fully
IPv6 capable in its current state due to implementation limitations: The edge
router can not fragment IPv6 packets into smaller link layer frames but it can
reassemble them. This is due to an implementation bug in the underlying
library. The constrained nodes can only send and receive IPv6 packets up to
a size of ≈800 byte due to limited memory available for buffers. Therefore the
MTU of 1280 byte for the IPv6 standard is not supported. These limitations
come only from implementation details and can be solved by code improvements.

The proof-of-concept also demonstrates how application layer interactions
between a user and constrained node are enabled with minimal manual configu-
ration. This is achieved by adherence to standards, shared knowledge about the
EUI64 identifier of the constrained node and the address of the directory server
and the exchange of metadata using Thing Descriptions.

6.2 Future Work

To enable the transformation of the network stack presented in this thesis to an
IoT networking standard, the following future work is needed:

• Code improvements to support the MTU of 1280 byte required by the IPv6
specification and to optimize the system performance. Also the registration
process to automate IP and link layer address assignment needs to be
implemented for plug-and-play functionality.

• Synchronous transmissions need thorough performance evaluation in differ-
ent scenarios. Ideally, a single general-purpose protocol is developed which
is adaptable and performs well in any scenario.

6. Conclusion 42

• Support of redundant edge routers to eliminate the ”Single Point of Failure”
which is currently present by using a single edge router. Synchronous
Transmissions are suitable for this because messages are implicitly flooded
in the entire network.

• Thorough benchmarking against routing-based standards to evaluate which
approach performs better in different scenarios.

A further improvement could be the implementation of a CoAP interface
on the edge router. This interface could allow a user access to a list of the
constrained nodes present in the edge routers subnet which would enable the
user to establish a connection if the directory server does not exist anymore.
The interface could also allow the user access to network statistics and changing
parameters of the synchronous transmissions protocol.

The implementation of the edge router as a CoAP proxy between user and
constrained node could also be beneficial. This proxy could handle retransmis-
sions in case of packet losses. Retransmissions inside the WSN caused by a
packet loss outside of the WSN could therefore be avoided.

Chapter 7

Appendix

7.1 Online Resources

All source code developed in this thesis as well as detailed measurements of the
experiments and the code used to produce the experiments will be made publicly
accessible in a GitLab repository [49].

43

Bibliography

[1] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Chal-
lenges in IoT Networking via TCP/IP Architecture. Technical re-
port, ucla,cisco, 2016. URL https://pdfs.semanticscholar.org/e4ef/

f4b8cc9636783ab3054f2976d1975cdd3cba.pdf.

[2] Harvard Business Review. Internet of things: Science fiction or business
fact? 2014. URL https://hbr.org/resources/pdfs/comm/verizon/

18980_HBR_Verizon_IoT_Nov_14.pdf.

[3] Manish Mahato. Internet of things (iot): Research, architectures and appli-
cations. 2018.

[4] Oliver M Heckmann. The competitive Internet service provider: network
architecture, interconnection, traffic engineering and network design. John
Wiley & Sons, 2007.

[5] Tim Winter, Pascal Thubert, Anders Brandt, J Hui, Richard Kelsey, Philip
Levis, Kris Pister, Rene Struik, JP Vasseur, R Alexander, et al. Rpl: Ipv6
routing protocol for low-power and lossy networks. rfc 6550. 2012. ISSN
2070-1721. URL https://tools.ietf.org/html/rfc6550.

[6] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, David
Culler, et al. Rfc 4944: Transmission of ipv6 packets over ieee 802.15.4
networks. 2007. URL https://tools.ietf.org/html/rfc4944.

[7] Hanane Lamaazi, Nabil Benamar, and Antonio J Jara. Rpl-based networks
in static and mobile environment: A performance assessment analysis. Jour-
nal of King Saud University-Computer and Information Sciences, 30(3):
320–333, 2018.

[8] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Effi-
cient network flooding and time synchronization with glossy. In Proceedings
of the 10th ACM/IEEE International Conference on Information Processing
in Sensor Networks, pages 73–84. IEEE, 2011.

[9] Marco Zimmerling, Luca Mottola, and Silvia Santini. Synchronous trans-
missions in low-power wireless: A survey of communication protocols and
network services. arXiv preprint arXiv:2001.08557, 2020. URL https:

//arxiv.org/abs/2001.08557.

44

https://pdfs.semanticscholar.org/e4ef/f4b8cc9636783ab3054f2976d1975cdd3cba.pdf
https://pdfs.semanticscholar.org/e4ef/f4b8cc9636783ab3054f2976d1975cdd3cba.pdf
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc4944
https://arxiv.org/abs/2001.08557
https://arxiv.org/abs/2001.08557

BIBLIOGRAPHY 45

[10] Olfa Gaddour, Anis Koubâa, and Mohamed Abid. Quality-of-service aware
routing for static and mobile ipv6-based low-power and lossy sensor networks
using rpl. Ad Hoc Networks, 33:233–256, 2015.

[11] Hossein Fotouhi, Daniel Moreira, and Mário Alves. mrpl: Boosting mobility
in the internet of things. Ad Hoc Networks, 26:17–35, 2015.

[12] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-
power wireless bus. In Proceedings of the 10th ACM Conference on Embed-
ded Network Sensor Systems, pages 1–14, 2012.

[13] Kasun Hewage, Simon Duquennoy, Venkatraman Iyer, and Thiemo Voigt.
Enabling tcp in mobile cyber-physical systems. In 2015 IEEE 12th Inter-
national Conference on Mobile Ad Hoc and Sensor Systems, pages 289–297.
IEEE, 2015.

[14] IEEE Standards Association et al. 802.15.4-2015 - ieee standard for low-rate
wireless networks. IEEE Std, 2016. URL https://ieeexplore.ieee.org/

document/7460875.

[15] Contiki-ng, . URL http://contiki-ng.org/. Accessed: 2020-02-07.

[16] Zach Shelby, Klaus Hartke, Carsten Bormann, and B Frank. Rfc 7252: The
constrained application protocol (coap). Internet Engineering Task Force,
2014.

[17] Krijn Leentvaar and Jan Flint. The capture effect in fm receivers. IEEE
Transactions on Communications, 24(5):531–539, 1976.

[18] Wave interference, . URL https://en.wikipedia.org/wiki/Wave_

interference. Accessed: 2020-02-07.

[19] Eric Rescorla and Nagendra Modadugu. Rfc 6347: Datagram transport
layer security version 1.2. 2012.

[20] Roy T Fielding and Richard N Taylor. Architectural styles and the design
of network-based software architectures, volume 7. University of California,
Irvine Irvine, 2000.

[21] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1.
1999.

[22] Klaus Hartke. Rfc 7641: Observing resources in the constrained application
protocol (coap). 2015.

[23] Osi model. URL https://en.wikipedia.org/wiki/OSI_model. Accessed:
2020-02-06.

https://ieeexplore.ieee.org/document/7460875
https://ieeexplore.ieee.org/document/7460875
http://contiki-ng.org/
https://en.wikipedia.org/wiki/Wave_interference
https://en.wikipedia.org/wiki/Wave_interference
https://en.wikipedia.org/wiki/OSI_model

BIBLIOGRAPHY 46

[24] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins,
Neal Jackson, and Prabal Dutta. The Internet of Things Has a Gateway
Problem. 2015. doi: 10.1145/2699343.2699344.

[25] ZigBee Alliance. Zigbee ip specification. ZigBee 095023r10, Work in
Progress, July, 2010.

[26] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim,
Kevin Weekly, Qin Wang, Steven Glaser, and Kris Pister. Openwsn: a
standards-based low-power wireless development environment. Transactions
on Emerging Telecommunications Technologies, 23(5):480–493, 2012.

[27] Michael Spörk, Carlo Alberto Boano, Marco Zimmerling, and Kay Römer.
BLEach: Exploiting the Full Potential of IPv6 over BLE in Constrained
Embedded IoT Devices. In Proceedings of the 15th ACM Conference on Em-
bedded Network Sensor Systems - SenSys ’17, 2017. ISBN 9781450354592.
doi: 10.1145/3131672.3131687.

[28] Martina Brachmann, Olaf Landsiedel, and Silvia Santini. Concurrent Trans-
missions for Communication Protocols in the Internet of Things. In Pro-
ceedings - Conference on Local Computer Networks, LCN, 2016. ISBN
9781509020546. doi: 10.1109/LCN.2016.69.

[29] Uniform resource identifier. URL https://en.wikipedia.org/wiki/

Uniform_Resource_Identifier. Accessed: 2020-02-06.

[30] Carles Gomez, Andrés Arcia-Moret, and Jon Crowcroft. Tcp in the internet
of things: from ostracism to prominence. IEEE Internet Computing, 22(1):
29–41, 2018. URL https://ieeexplore.ieee.org/abstract/document/

8259430.

[31] IEEE Standards Association et al. Guidelines for use of extended
unique identifier (eui), organizationally unique identifier (oui), and com-
pany id (cid), 2018. URL https://standards.ieee.org/content/dam/

ieee-standards/standards/web/documents/tutorials/eui.pdf.

[32] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell,
Romain Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. The dual
processor platform architecture: Demo abstract. In Proceedings of the 18th
International Conference on Information Processing in Sensor Networks,
IPSN ’19, pages 335–336, New York, NY, USA, 2019. ACM. ISBN 978-1-
4503-6284-9. doi: 10.1145/3302506.3312481. URL http://doi.acm.org/

10.1145/3302506.3312481.

[33] Felix Sutton, Marco Zimmerling, Reto da Forno, Roman Lim, Tonio Gsell,
Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele.
Bolt: A stateful processor interconnect. In Proceedings of the 13th ACM

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://ieeexplore.ieee.org/abstract/document/8259430
https://ieeexplore.ieee.org/abstract/document/8259430
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
http://doi.acm.org/10.1145/3302506.3312481
http://doi.acm.org/10.1145/3302506.3312481

BIBLIOGRAPHY 47

Conference on Embedded Networked Sensor Systems (Sensys ’15), pages
267 – 280, New York, NY, 2015. ACM. ISBN 978-1-4503-3631-4. doi:
10.1145/2809695.2809706. 13th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2015); Conference Location: Seoul, South Korea;
Conference Date: November 1-4, 2015.

[34] Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng, Xiaobo Wang, and
Wenji Liu. Study and application on the architecture and key technologies
for iot. In 2011 International Conference on Multimedia Technology, pages
747–751. IEEE, 2011.

[35] Susan Thomson, Thomas Narten, Tatuya Jinmei, et al. Rfc 2462: Ipv6
stateless address autoconfiguration. Technical report, 1998. URL https:

//tools.ietf.org/html/rfc4862.

[36] Sebastian Kaebisch, Takuki Kamiya, M McCool, and V Charpenay. Web
of things (wot) thing description. First Public Working Draft, W3C, 2017.
URL https://www.w3.org/TR/wot-thing-description/.

[37] Dual processor platform wiki. URL https://gitlab.ethz.ch/tec/

public/dpp/-/wikis/home. Accessed: 2020-02-07.

[38] Digital humidity sensor sht3x (rh/t). URL https://www.

sensirion.com/en/environmental-sensors/humidity-sensors/

digital-humidity-sensors-for-various-applications/. Accessed:
2020-02-07.

[39] Romain Jacob, Jonas Bächli, Reto Da Forno, and Lothar Thiele. Syn-
chronous transmissions made easy: Design your network stack with baloo.
In Proceedings of the 2019 International Conference on Embedded Wireless
Systems and Networks (EWSN ’19), pages 106 – 117, Canada, 2019. Junc-
tion Publishing. ISBN 978-0-9949886-3-8. doi: 10.3929/ethz-b-000324254.
16th International Conference on Embedded Wireless Systems and Net-
works (EWSN 2019); Conference Location: Beijing, China; Conference
Date: February 25-27, 2019.

[40] Bolt github repository. URL https://github.com/ETHZ-TEC/BOLT. Ac-
cessed: 2020-02-07.

[41] Colibri imx7. URL https://developer.toradex.com/products/

colibri-imx7. Accessed: 2020-02-07.

[42] Scapy, . URL https://scapy.net/. Accessed: 2020-02-07.

[43] Gitter scapy channel, . URL https://gitter.im/secdev/scapy. Accessed:
2020-02-10.

https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://www.w3.org/TR/wot-thing-description/
https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home
https://gitlab.ethz.ch/tec/public/dpp/-/wikis/home
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/
https://github.com/ETHZ-TEC/BOLT
https://developer.toradex.com/products/colibri-imx7
https://developer.toradex.com/products/colibri-imx7
https://scapy.net/
https://gitter.im/secdev/scapy

BIBLIOGRAPHY 48

[44] Coapthon. URL https://coapthon.readthedocs.io/en/latest/. Ac-
cessed: 2020-02-07.

[45] Lenovo thinkpad t450s. URL https://www.lenovo.com/ch/en/laptops/

thinkpad/t-series/t450s/. Accessed: 2020-02-07.

[46] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. FlockLab: A Testbed for Distributed, Synchro-
nized Tracing and Profiling of Wireless Embedded Systems. In Proceed-
ings of the 12th International Conference on Information Processing in
Sensor Networks, IPSN ’13, pages 153–166, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1959-1. doi: 10.1145/2461381.2461402. URL
http://doi.acm.org/10.1145/2461381.2461402.

[47] Jiakang Lu and Kamin Whitehouse. Flash flooding: Exploiting the capture
effect for rapid flooding in wireless sensor networks. IEEE, 2009.

[48] Anonymous. Triscale: A framework supporting reproducible networking
evaluations. 2019. doi: 10.5281/zenodo.3464273. URL https://zenodo.

org/record/3464274#.Xj6ggXVKhhG. Accessed: 2020-02-08.

[49] Pushing the internet to the edge gitlab repository. URL https://gitlab.

ethz.ch/tec/public/students/ip_over_lpn.

https://coapthon.readthedocs.io/en/latest/
https://www.lenovo.com/ch/en/laptops/thinkpad/t-series/t450s/
https://www.lenovo.com/ch/en/laptops/thinkpad/t-series/t450s/
http://doi.acm.org/10.1145/2461381.2461402
https://zenodo.org/record/3464274#.Xj6ggXVKhhG
https://zenodo.org/record/3464274#.Xj6ggXVKhhG
https://gitlab.ethz.ch/tec/public/students/ip_over_lpn
https://gitlab.ethz.ch/tec/public/students/ip_over_lpn

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Application Scenario
	1.3 Goals
	1.4 Challenges
	1.5 Outline

	2 Background
	2.1 Synchronous Transmissions
	2.2 CoAP
	2.3 6LoWPAN
	2.4 Related Work

	3 Design
	3.1 Extending IP to the Edge
	3.2 Network Architecture
	3.2.1 Network Stack
	3.2.2 Network Components
	3.2.3 Modular Hardware

	3.3 Information Exchange
	3.3.1 Establishing Connectivity
	3.3.2 Enable Interaction

	4 Implementation
	4.1 Constrained Node
	4.1.1 APP Board
	4.1.2 COM Board
	4.1.3 Bolt

	4.2 Edge Router
	4.2.1 Baseboard

	4.3 Directory Server
	4.4 User
	4.5 IP Tunnel

	5 Evaluation
	5.1 Experiment Setup
	5.1.1 Topology
	5.1.2 Traffic

	5.2 Experiment Results
	5.3 Mobility Comparison to Industry Standards
	5.4 Demonstration

	6 Conclusion
	6.1 Findings
	6.2 Future Work

	7 Appendix
	7.1 Online Resources

