
Visual analysis and comparison of
seismic events

Semester Thesis

Tobias Kuonen
tkuonen@student.ethz.ch

Computer Engineering and Networks Laboratory
Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:
Matthias Meyer
Andreas Biri

Prof. Dr. Lothar Thiele

December 23, 2019

mailto:Tobias Kuonen<tkuonen@student.ethz.ch>


Acknowledgements

I would like to thank Matthias Meyer and Andreas Biri for their continuous
support during this project. I would also like to thank Jan Beutel for the insight
into the geophone platform he provided. Furthermore, I would like to thank
Prof. Dr. Thiele for supervising this thesis. This work would not have been
possible without them.

i



Abstract

Continuous environmental monitoring using distributed sensor networks pro-
duces an enormous amount of data. Getting an understanding of such a big
data set can be hard. Having a visualization tool can help a lot in such a case
by displaying the relevant data extracted using various filters. Recently, a new
seismic sensor platform was deployed in the Swiss Alps, which in contrast to
previously deployed seismic sensors records single events instead of continuous
signals. Therefore, a new visualization tool is needed, which allows to analyse
and compare this new type of seismic data. This thesis presents such a visualiza-
tion tool. By using user specifiable processing algorithms utilising parameters,
which are dynamically changeable in the user interface, we enable the filtering
of signals in a flexible manner. We show, that our tool enables clean, flexible
visualizations which run normal consumer devices without having to rely in a
powerful server.
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Chapter 1

Introduction

1.1 Motivation

The increasing annual mean temperature can destabilize rock slopes [1]. Con-
tinuously monitoring such rock slopes helps to better understand the involved
processes. This can be done using distributed sensors networks. Such mea-
surements however can produce a large quantity of data. One example of such
a dataset is the data collected by the PermaSense project. The PermaSense
project collects data using 17 different sensor types at 29 distinct locations in
the Swiss Alps. This leads to over 114.5 million data points collected so far in
the last 10 years [2] (not considering seismic data). Analysing such a big dataset
by hand is not feasible. Therefore, automatic analysis methods are needed. A
good understanding of the entire data set is crucial in order to use such methods
effectively. A visualization tool can help achieving this by displaying the relevant
information extracted by various filters.

1.2 Goals

The goal of this thesis is to develop a flexible visualization tool for the seismic
data of the PermaSense project with the following features:

• Ability to compare seismic data from different sensors at different points
in time

• Integration of a newly developed seismic sensor platform [3], which records
single events instead of continuous seismic signals

• Ability to switch dynamically between different time scales

1



1. Introduction 2

1.3 Outline

The remainder of this thesis is structured in the following way: The background
of this project is briefly presented in section 2. In section 3, the basic concepts
and design choices will be elaborated. The actual implementation is discussed in
section 4. In section 5, the result is evaluated. Possible future work is presented
in section 6. In the end, a conclusion is drawn in section 7.



Chapter 2

Background

2.1 Previous work

This thesis builds upon a lot of previously existing work. This work is briefly
presented here.

Since 2008, the PermaSense project collects various measurements on the
Matterhorn and other locations in the Alps [2]. Most of these measurement data
is publicly accessible at http://data.permasense.ch/. The visualisation tool
developed in this thesis directly integrates the data collected by this project.

In 2018, a new type of seismic sensor platform has been developed: An
embedded system with a single axis geophone sensor. Instead of continuously
recording data as traditional systems, the system only samples its sensor after the
signal exceeds a configurable threshold in order to reduce its energy consumption
[3]. The downside of this measure is that there can be large time spans without
any samples which means the signal has no uniform sampling rate. All algorithms
relying on a uniform sampling rate can therefore not be used directly with this
type of data, here called event-based data.

In a previous semester thesis [4], a visualization tool has already been de-
veloped, which enabled the user to analyse continuous seismic data but lacked
support for event-based data and for comparing multiple sensors or time frames.
Another tool was written by Jan Beutel in R, which is an interpreted program-
ming language designed for statistical computations [5],to analyse the event-
based data. It however only contained static plots and had no possibility to
integrate user interaction. Therefore, a new tool was needed.

This year, a new data analysis framework called "Stuett"[6] was developed by
Matthias Meyer. This framework allows access to the continuous sensor data of
the PermaSense project. Furthermore, it enables one to assemble filters for data
analysis represented by directed graphs, where each node stands for a process-
ing algorithm and each edge for a data dependency between these algorithms.
The terminology "processing graph" is used in the rest of this thesis to refer

3
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2. Background 4

to such graphs. Stuett creates these processing graphs using Dask[7] which is
a framework exactly designed for this purpose. Xarray[8], a data structure for
labelled multi-dimensional arrays [8], is used as a container for the measurement
data. Stuett is written in Python[9], a interpreted object oriented programming
language which is often used in data science [10, 11].

2.2 Sensor types

The PermaSense project collects data from various sensor types. This section
present those integrated into the visualization tool.

Two types of seismic data are present. One is the event-based seismic data
presented in the section above and the other one is continuously sampled seismic
data. The main focus of the visualization tool lies on analysing these two types
of data.

The context is very important when analysing data. Webcam images for ex-
ample can provide information whether a seismic event was created by a moun-
taineer or by a rockfall event 1. For this reason, various additional information
sources are displayed in the visualization tool. These consists of weather data,
rock temperature data and the already mentioned webcam images.

The data is retrieved from two storage systems. One such system is the GSN
server, which provides public access to most of the measurement data. This
data can be found at http://data.permasense.ch and is grouped by data type
into so called "vsensors". The other system is a private network drive called the
"permasense vault". This storage system is used for seismic data and the webcam
images.

1Webcam images were used in conjunction with other data sources to classify seismic events
in [12].

http://data.permasense.ch


Chapter 3

Concepts

The design choices made during the development of the visualization tool are
presented here together with their reasons.

3.1 Basic design

Having the possibility to outsource the computation-intensive data processing
to a powerful server can be an advantage when analysing big amount of data.
Therefore we made the choice to separate the user interface from the data pro-
cessing by using web technologies. This approach has the additional advantages
of supporting the integration of the visualization tool into an existing webpage
and of supporting to display the user interface on a broad range of devices, as
almost any internet capable device supports these web technologies.

The back-end server, which is performing the actual computations, was cre-
ated using Python[9]. The main reason for this choice is that the existing pro-
cessing framework "Stuett"[6] is written in Python.

A framework called Dash[13] is used to connect the graphical user interface
(GUI) with the Python server. This allows to easily create interactive web pages
using Python and bind events of the user interface to function calls in Python.

The communication between the browser and the Python server works as
follows (slightly simplified): Upon changing parameters in the user interface,
these parameters are send to the Python server, which assembles and executes
the processing graph using these parameters. This processing graph acquires
the original data from the configured data storages and processes them in order
to produce the relevant data, which is sent back to the browser. The browser
then displays this relevant data. This communication process can also be seen
in figure 3.1

5
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Figure 3.1: The parameters entered in the web browser are sent to the Python
server, which fetches the original data from the data storages and then sends
back the fully processed data.

3.2 Extensibility

To easily extend the visualization tool with new data sources, processing al-
gorithms, plot types and GUI elements, its Python code is split into modular
components. These components are separated into data processing (for example
seismic event loader or event downsampling) and user interface logic (for example
image viewer or date and time selector). These modules are automatically con-
nected upon initialization using a configuration file. With this subdivision into
individual components, adding a new feature is as easy as writing the according
module and adding it to the configuration file. This separate configuration also
allows a user to modify the layout of the user interface according to his needs.

3.3 Data processing

3.3.1 Processing graph

There are two possibilities to add a parameter to a processing graph. These will
be presented here.

The most intuitive way to add a parameter to a processing graph is by adding
an additional node, which has no inputs and always returns the constant value of
this parameter. There are however cases, where this method does not work. This
is the case if the value, which needs to be added to the beginning of the processing
graph depends on some state of a node in the middle of the processing graph. If a
node for example caches some measurement data, then the parameter specifying
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the time frame to load the data from depends on the values already stored by the
cache. Stuett solves this by propagating all such parameters backwards through
the processing graph. This makes it possible for all nodes to modify or store
these parameters as needed.

3.3.2 Analysing event-based data

To be able to analyse event-based data using the existing tools developed for
continuous signals, this data first needs to be converted into a continuous signal.
This can be done by combining all the data from the events and filling the
rest with zeroes. Sharp edges in the resulting signal can be prevented by first
multiplying every event with a window function. A tukey window [14] is used in
order to not loose too much information from the beginning of the events.

Each event has its own metadata. Examples for these metadata are the
start time, the end time and the maximum peak value. The presence of these
metadata offers additional analysis opportunities. To leverage this potential, a
flexible filter based on the metadata, and a statistical plot of the event length
are available for the user to display additional information and easily focus on
the scope of interest.

3.3.3 Supporting different time scales

The original data from large time frames can have a lot of samples. A sensor
continuously recording with 1000Hz for example creates 3.6 million samples per
hour. A computer screen however only has a limited resolution. Therefore,
displaying all the samples slows down the application without providing any
additional information. This visualization tool uses downsampling in order to
reduce the amount of data. Depending on the time frame and the type of data, a
different downsampling method and rate is used. The selection of these methods
and rates is based on [4]. The implementation of the downsampling methods
from the Stuett library is used.

When working with event-based data, an additional step is performed after
downsampling. Multiple events are merged into a single big event, if they would
appear to be too close in the resulting graph. There are two reasons for this
choice. One is performance: When analysing a large time frame, the number of
events would be rather big. This could considerably slow down the application.
Another reason is the usability: When looking at a big time frame, a user is
generally not interested in the properties of every single event, but rather in
the properties of the combination of those. An example is the event length
property. When looking at a short burst of events within a large time frame,
it might be more interesting to know the length of the burst rather than the
length of every single event. Therefore, it makes sense to combine the events
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and their properties. Depending on the screen resolution, the sampling rate,
the user preference and other factors, the needed threshold can be different. In
order to accommodate for these different needs, the threshold is a configurable
parameter. The threshold is specified relative to the sampling order for it to
work across different time scales.

3.4 User interface

3.4.1 Basic structure of the plots

The basic structure of the plots in the user interface is presented in this section.
There are multiple plot types in the user interface, created from different

data sources. An example of such a plot type is the plot of the weather data or
the plot of the seismic data. Contextual information, for example provided by
the plot of the weather data, is only useful when it is from the same time frame
as the seismic plot currently analysed. Therefore, an instance of each plot type is
combined into a group using a shared time axis. There are multiple such groups
using the same plot types in order for the user to be able to compare data from
different point in time. In the user interface, the plots are ordered by plot type
rather than by group to facilitate the comparison of these plots.

3.4.2 Spectrogram

Spectrogram plots visualize both the features of the time space as well as the
features of the frequency space. This makes these plots quite useful for analysing
seismic data. Therefore, this plot type is used as the main analysis tool of this
visualization tool. The effectiveness of spectrograms in seismic data analysis can
be seen in [12]. The spectrogram implementation from the Stuett library is used
in the visualization tool.

3.4.3 Separation of plots and settings

The developed visualisation tool has an external settings window. This section
motivates this choice.

When working with several complex data processing graphs, the number of
configurable parameters can be fairly big with each parameter requiring an ac-
companying GUI element. To not overload the main window with these elements,
they were moved into another window. An alternative to this solution would be
to leave these elements in the main window and add the option to hide them.
This alternative however would have the disadvantage that when having multiple
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monitors, one would not have the possibility to show the plots on one monitor
and the GUI elements for the parameters in the other one.

Such a setup achieves to goal of providing a clean visualization while pre-
venting the need to constantly switch between the plots and the settings.



Chapter 4

Implementation

The actual implementation can be separated into two parts: GUI logic and data
processing. The basic design of the most important modules of both parts will
be elaborated in this chapter.

4.1 Configuration

The entire user interface is constructed according to a configuration file in order
to have a flexible and customizable visualization tool. This also simplifies adding
new data sources, new plot types, new processing algorithms and GUI objects.

The configuration contains five entries. The first one specifies how many
instances of each plot are to be added to the user interface. These different
instances are used to compare different sensors and points in time as described
in 3.4.1.The next two entries specify the start and the end time of the initial time
frame. Each of those are specified as a list, to support different initial time frames
for the different instances of the plot. The last entry is taken multiple time, in
the case that the number of instances is higher than the number of entries in
these lists. The third entry is a list of all the configurations for the graph objects.
These are further explained in 4.3.2. The last entry is a list of configurations
for other GUI objects. Each such configuration contains a reference to the class,
which is used to create the object. Any GUI object can be added here, with the
limitation, that its initialization function needs to accept the same parameters
as the graph class. Currently, the only class that fits this requirement is the
images class, described in 4.3.3.

The exact syntax of this configuration file is described in appendix B.

10
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4.2 Data processing

The entire data processing is done using processing graphs in order to allow
filtering the signal in a flexible manner. These processing graphs are created
using Stuett[6], a framework developed exactly for this purpose. In order to
support event-based data, several nodes for this processing graph have been
created. These will be presented here.

4.2.1 Loading of seismic events

Stuett has no node to fetch the seismic event data. Therefore, such a node was
created for this visualization tool.

Source of the data

The seismic event data consists of the metadata and of the seismic waveforms.
The metadata and the waveforms are fetched from the GSN server and the
permasense vault.

Most of the event data on the GSN server consists of metadata only. These
metadata are wirelessly transmitted to a base station and then uploaded to the
GSN Server. Therefore, these metadata are available rather soon after acquiring.
However due to transmission errors in the wireless communication, these do not
need to be complete. Some events also have the seismic waveforms on the GSN
server. This however is only the case, if it was manually queried.

The data on the permasense vault comes from the on-site readouts. There-
fore, this data is the most complete one. However, due to the fact that on-site
maintenance work does not happen very often, it can take a long time until the
data of a newly captured event is added to the permasense vault.

To have the data as up-to-date and as complete as possible, both sources
are combined. If an event is present in both sources, the permasense vault is
preferred. In the case, that only the metadata of an event is available (when the
data has not been read out on-site and not been queried manually), these events
are still returned, because he metadata themselves can be interesting to analyse
(frequency of the events,event duration, maximum and minimum peak values,
...).

Assumed maximum event length

When requesting event data of a given time frame, it is assumed that the duration
of an event is less than one hour. The reason for this assumption is that the
metadata of an event only contain the start but not the end time of it. Therefore,
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when requesting event data from the GSN server, it is not possible to filter
according to the end date, which is necessary when one also wants to include
events that started before the given time frame but ended during or after the
time frame. Without the assumption of a maximum event duration, one would
need to request all event metadata from the beginning of the measurement, until
the end of the time frame.

With the assumption of a maximum event duration however, it is sufficient
to request the data which started in between one hour before the beginning of
the time frame and the end of the time frame. Only these events can possibly
intersect with the given time frame.

This is a big reduction in data which needs to be requested from the server
and therefore also in delay. This can be seen in 5.2. The correctness of this
assumption will be shown in 5.1.

The event data on the permasense vault

The original measurement data on the permasense vault is split into multiple
directories. Every deployment has its own base-directory 1.

Inside this base directory, the data is ordered first by read-
out date, then by device id then by date. The path to the
folder, containing the measurement data can be constructed as
<BasePath of deployment>/<Name of readout directory>/<device id>/<YYYY-MM-DD>/.
In some cases however, there are deviations from this template (e.g.
pos_<position id>_<device id> instead of <device id>). Furthermore, the mapping
between device id and position id is not static but can change over time. The
mapping can be found on http://data.permasense.ch/topology.html (tab
"Position Mapping"). It can also be retrieved as an xml from the virtual sensor
"<deployment>_maping_chart".

Due to these facts, requesting all events which occurred at a specific posi-
tion during a given time frame using this folder structure would require several
intermediate steps 2,which would make it quite complex.

To make the requesting of the data simpler and more efficient, a script
was developed, which creates an alternative folder structure. To prevent
duplicate data on the filesystem, symlinks to the original data are used.
In this new folder structure, all the data are first ordered by deployment,
then by position id, then by date. The new path can be constructed as
<constant BasePath>/<Name of deployment>/<position id>/<YYYY-MM-DD>/. In each of

1e.g. data_archive/deployments/matterhorn2007/2018_gpp_data for the deployment on
the Matterhorn

2First, determine the base-directory for the given deployment. Then iterate over all readout
folders. Then determine the (possibly varying) mapping between position id and device id and
then iterate over all the necessary device id folders

http://data.permasense.ch/topology.html
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these date folders there are symlinks to all corresponding folders containing the
measurement data of the original folder structure. There might be multiple such
folders in case the mapping of position and device id changed in that particular
day. The symlinks have integer values as a name, starting from zero up to the
number of symlinks in the current folder minus one.

Inside the folders containing the measurement data, there is a file which
lists all the events contained in that folder together with their metadata. The
waveform of each event is stored in binary form in a separate file in the same
folder.

The seismic event data on the GSN server

The seismic event data on the GSN server is split across two vir-
tual sensors: "<deployment>_dpp_geophone_acq__conv" and "<deploy-
ment>_dpp_geophone_adcdata__conv". The first sensor contains the meta-
data and the second one the waveforms of the events. Assembling the URL to
retrieve this data is explained in [2] and [15].

Converting the seismic data

On the device, the geophone sensor is connected to an ADC. This ADC first
amplifies this voltage, and then converts it to unsigned integers. This is then
stored in binary form on an sd card (24bit3 unsigned integers, big endian).

To get back the actual output voltage of the geophone sensor, the binary data
is first converted to a list of unsigned integers. The programming code used to
to this conversion is based on a script, created by Reto Da Forno. The resulting
integers are then mapped to mV using the formula (4.1). The derivation of this
formula can be found in appendix D.

f(x) = 2500
g · (2n − 1)

(
x− 2n − 1

2

)
(4.1)

4.2.2 Event downsampling

Downsampling event-based data works by first applying a given downsampling
method to all events. Afterwards, it is tested, if the gap between any two events
is smaller than a given threshold. This threshold is given by a constant divided
by the new sampling rate, where the constant is a tuneable parameter. If this
condition is met, then the waveforms of these events are merged. After merging,

3The binary data on the GSN server was sometimes converted to a lower bit depth before
transmitting.
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the start and the end time of the event is adjusted in the metadata. Further-
more, a counter in the metadata representing the number of merged events gets
incremented. The rest of the metadata is taken from the first event. The meta-
data of the later event gets copied into a list in the new metadata in order to
avoid loosing any information.

4.2.3 Converting event-based data to continuous data

To be able to use the existing data analysis tools, a node for the processing
graph was created, which converts a list of events to a continuous signal. This
conversion is done by first combining the samples of all the events. Then, the
data is resampled using the lowest sampling rate of all the events. The value of
the closest point in the original data is used as the new value, if it is not further
away than 1 divided by the sampling rate. If it is further away, then zero is taken
as the new value in order to prevent having a constantly high value in between
events.

4.2.4 Multiplying event data with a window function

When converting event-based data to continuous data, sharp edges can occur
at the boundaries of events. This can be prevented by first multiplying every
event with a window function. A node for the processing graph has been created
to do exactly this multiplication. Upon receiving a list of event data, the node
generates a window function for every event of the same number of samples
as the waveform of the event itself. This window function and the waveform
are then multiplied sample by sample using a corresponding function from the
Xarray library. The samples of the window function are generated using a Python
function, taking the number of samples as an argument and returning the samples
of the window function. This Python function can be specified as an argument
when initializing the node in order to support arbitrary window function. A
function from the SciPy[16] library is used, to generate the samples of the tukey
window used in this visualization tool.

4.2.5 Selecting the data columns to visualize

The used data can have several columns. The weather data for example includes
among others the wind speed and the relative humidity. Displaying too many
columns can overload the GUI. To prevent this, a node for the processing graph
was created to filter these columns.

The available columns can differ between the sensors, even if they are of the
same type. It would be possible to select the columns to show by name. This
however has some disadvantages. To be able to select any column, it would be
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necessary to know the names of the available columns. Hard coding these names
into the visualization tool would be possible, however, it would be inflexible
and would require modifications every time the available columns would change.
Another possibility would be to take the names of the columns from the last
execution of the processing graph. However, this would only work if there had
been a previous execution using the currently selected sensor. All the times,
where this would not be the case, no columns could be selected. A solution for
this would be to execute the processing graph twice in these cases. This solution
however would cause unnecessary computations.

To circumvent these disadvantages, the columns to show are not selected
by name but rather by the index they have in an alphabetically sorted list of
all currently available columns. In order to still be able to show the names of
all the columns which a user can select, the name of all dropped columns are
added to the metadata of the data. This way, the sorted list of column names
can be reconstructed in the control logic of the GUI. In the case, that there
was a previous execution of the processing graph using the same sensor, nothing
changes compared to the method mentioned above. However, when changing
the selected sensor, the number of selected columns stays the same (if the new
sensor has enough columns). This makes it possible to initially select the first n
columns without even knowing what columns are available.

In the data, there might be some columns we always want to drop if they
are present. One example for this could be the current position id. To support
this, a list of such column names can be given to the filter. Not only will these
columns always be dropped, but they will also be excluded from the sorted list
of columns and from the list of dropped columns added to the metadata. This
way, these columns will not show up in the column selection of the GUI.

4.2.6 Filter events using the metadata

Every event has metadata associated with it. Examples for this metadata are
the start time, the end time and the maximum peak. To support filtering these
events in a flexible manner using these metadata, a node for the processing graph
was created which accepts a normal python expression as the filter rule. All those
events for which the expression evaluates as false will be discarded.

Having the possibility to enter a python expression as a filter rule gives the
opportunity to filter according to arbitrary complex policies. However, allowing
the execution of arbitrary expressions from an untrusted source can be a serious
security thread. This thread was mitigated by creating a custom parser which
only allows the execution of selected operations. Such a parser can easily be
created using the ast module of the Python standard library. This module allows
one to convert a python expression into a abstract syntax tree. This tree can
then be traversed node by node to evaluate the expression using only the selected
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operations. The list of the selected operations can be found in C.
The current implementation of the parser does not limit the resources used

to evaluate the expression. Therefore, it might be possible to create a malicious
expression which exhausts the resources of the server. However, considering the
expensive computations that can be started using the web interface, implement-
ing a resource limit should be implemented for the entire processing graph rather
than for a single node in it. Furthermore, the number of processing graph exe-
cutions per user per time would also need to be limited. Otherwise, a malicious
user could just overload the server with too many requests.

4.3 GUI logic

The GUI is created using Dash[13], as already mentioned in 3.1. The basic
workflow when using Dash is to first assemble the basic HTML layout using
simple components, such as text inputs, div tags or a graphical plot. Each such
component can have several properties, such as the entered text in a text input.
These properties are then connected using so-called "callbacks". These are just
Python functions, which take the values of some properties as the input and
produce the values of some other properties as the output. Every time, one of
the input changes, these functions are executed in order to update the resulting
properties [13].

The GUI logic was split into reusable objects in order to support having an
arbitrary number of plots in the user interface. These objects have two main
functionalities. The first one is to provide the part of the HTML layout needed
to display the object. The second one is to provide the needed callbacks, either
by creating them directly or by providing the information needed by another
object to integrate the properties of the current object into the callbacks of the
other one. The rest of this section will present the objects available in this
visualization tool.

4.3.1 Date and time selection

In the GUI, in order to be able to compare the data from multiple points in
time, we can have several groups of plots. To be able to efficiently select the
time frame for each of these groups, an according selector is added to the top
of the main window for each of these groups. In order to filter out invalid time
frames, for example when the start time is later than the end time, the last valid
time frame is stored inside the browser. All callbacks use this stored time frame
except the one which updates the stored value. This prevents the execution of
the processing graph with invalid inputs.
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4.3.2 Graph class

In order to analyse one type of data, multiple plots might be needed. All these
plots are based on the same data. If all these plots would be updated individually,
this data would need to be computed over and over again. To prevent these
unnecessary computations, the graph class was created. It displays multiple
plots, which are all updated together. To also be able to compare the data from
multiple sources or time frames, multiple instances of this graph class can be
created. The HTML layout of these instances are not added one after another
to the main interface but rather in an interleaved fashion, in order to display
all identical plot types next to each other. This facilitates the comparison of
information.

The content of a graph object is defined by an entry in the configuration file in
order to be able to visualize any type of data with as many plots as needed. This
configuration consists of three parts. The first part specifies the name displayed
as a title of the plots. The second part specifies all the sources which can be
used to create these plots. Each source is specified by a processing graph, here
called "source processing graph", which describes how to retrieve and process
the data. Each source also contains a list of parameters used by the source
processing graph, which can be set in the settings window. Only one source is
used at a time. The currently active one is selected in the settings window. The
third part specifies all the plots which can be displayed by this graph object.
Each plot is specified by a processing graph, here called "plot processing graph",
which describes how the data given by the source processing graph needs to be
processed further for the browser to be able to display it. This includes adding
layout information such as the plot type or the axis title. Each plot also comes
with a list of parameters, which can be set in the settings window. All these
plots can individually be hidden in the settings window. The exact syntax of the
configuration file can be found in appendix B.

The selected time frame can not only be set in the "date and time selector"
described in 4.3.1 but also in all the plots with a time axis, which use the same
"date and time selector". Therefore, to keep everything consistent, the current
time frames of all such plots need to be inputs to the callback, which updates
these plots. This measure however would lead to unnecessary computations,
since a change in the time axis of one plot would cause an update of all the other
plots, which would change the time axis of all these plots and therefore again
trigger an update of all the plots. This is prevented by saving the time frame
used for the last update together with the used parameters from the settings
in the browser. An update is then only performed if any of these values have
changed. These values are saved in the browser rather than the server in order
to be able to support having multiple users.

The graph class has two main callbacks. One takes all the parameters from
the settings objects, the time frame from the "date and time selector" and the
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time frames from all the plots using the same "date and time selector" as an
input and produces the values stored in the browser as the output. The other
one takes these values as an input and produces the content of all the plots
as an output. To obtain this output, first, the processing graph is assembled
from the selected source processing graph, the plot processing graphs of the not
hidden plots and all the stored values. This processing graph is then executed.
The values returned at the end of each plot processing graph is then taken as
the content of the corresponding plot. Every plot has one additional callback.
This callback hides the plot when the according parameter is set in the settings
window.

4.3.3 Images class

In order to provide some contextual information in the form of (webcam) images
to the measurement data, a image viewer class was created. The basic idea and
design choices of this image viewer are based on [4]

The image class displays three images from the current time frame. One
image each is taken from the beginning and the end of the current time frame.
Another image is taken from somewhere in between, selected by a slider.

The images are loaded from with a processing graph, specified in the con-
figuration file, in order to support arbitrary image sources. These processing
graphs are expected to return a base64 encoded image together with the image
type such as "jpg". These images are then converted into a data-URL, as de-
scribed in [17] and then used as the "src" attribute of the image. The reason for
this choice is, that Dash[13] only accepts URLs as the content of images, not
images directly. An alternative solution would be to create a second server for
these images. This would make the transmission of an image much more effi-
cient. However, the implementation would get much more complex in order to
still support an arbitrary number of image objects each with a possibly different
processing graph to load the images. The overhead caused by the data-URL was
preferred over the complexity of the image loader, due to the fact that only three
images need to be loaded per graph object per update. Therefore, the overhead
should not be too high.

It is not always necessary to update all the images. For example, the first
image does not need to be updated when only the end the time frame changes.
Such unnecessary updates are prevented by saving the time used to load each
image. This allows to load the image only when necessary.

4.3.4 Settings objects

Each parameter of the processing graphs needs an according object in the settings
window in order for a user to be able to set it. Several classes to create such
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objects were developed in order to support different types of parameters. These
include a boolean switch, a text input, a class to enable the log scale on several
axis and multiple classes to select values from a list.

Three values need to be specified in order to add such an object to the
configuration file. These values are the name, which the object should have
in the settings window, the class, which is used to create the object, and the
parameters needed to instantiate the class.

4.3.5 External settings window

Creating callbacks between Dash components from different windows is not sup-
ported directly in Dash. To still be able to have the settings objects in an external
window, a custom Dash component called "MessageBox" was created, which can
be used to copy a parameter from one window to the other.

The instances of this MessageBox always come in pairs. One MessageBox is in
the main window, the other one in the settings window. If the property "send"
is updated in one MessageBox, then the value is transmitted to the "receive"
property in the other MessageBox. Transmitting the value between the different
windows works by using the postMessage function of the browser, which is de-
scribed in [18, 19]. This allows a window to send a message to another window.
To support having multiple pairs of MessageBoxes, even though only one com-
munication channel is present, an id identifying the recipient is sent along every
message. To avoid inconsistencies upon reloading one window, a special message
is send when initially loading a MessageBox. This causes the MessageBox in the
other window to repeat the last send value. This guarantees the consistency in
one communication direction. The other direction does not need a special mea-
sure since all callbacks are initially triggered (as described in [20]). This causes
the sent property of the MessageBox in the reloaded window to be updated,
which triggers the normal transmission process.

In order to integrate the settings objects into the callbacks of the main win-
dow using this MessageBox component, the callbacks need to be adjusted to use
the parameters of these MessageBoxes instead of the parameters of the original
settings object. Furthermore, a callback needs to be added, which connects the
parameters of the settings object with the sent parameters of the MessageBoxes.
A class was created to automate this process. This class also automatically adds
the needed MessageBoxes to the HTML layout.
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Evaluation

This chapter evaluates the results based on performance and the comparison
capabilities. Furthermore, some statistical analysis of the event data is presented
to support the assumption made in 4.2.1.

5.1 Length of events

When loading the events, it is assumed, that all events are shorter than one hour.
This section will show that this assumption is reasonable.

Figure 5.1: Distribution of the event length of all the events until noon, December
9, 2019; All events have a duration much shorter than the assumed maximum of
one hour.

Figure 5.1 shows the distribution of the length of all events (until noon,
December 9, 2019). In this figure, one can see that the average length is about

20
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8.5 seconds with a standard deviation of about 18.2 seconds. The maximum
observed event length is about 3 minutes. This shows, that the assumption of
all events being shorter than one hour is valid in the current dataset.

Under the assumption, that the expected value of the event length corre-
sponds to the measured average event length (µ) and that the measured standard
deviation (σ) corresponds to the expected standard deviation, an upper bound
to the probability, that an event will have a length larger than one hour, can
be given using Chebyshev’s inequality. This inequality state that for any (inte-
grable) random variable X, with an expected value of µ, a non zero variance σ2

and k > 0, inequality (5.1) holds [21].

Pr(|X − µ| > kσ) < 1
k2 (5.1)

By defining X as the length of the events (in seconds) and by setting k to
3600−µ

σ , we obtain:

Pr(|X − µ| > 3600− µ) < σ2

(3600− µ)2 (5.2)

By using X ≥ 0 (events cannot have a negative length) and µ− x < 3600−
µ∀0 ≤ x ≤ µ (holds for µ < 1600), this can further be simplified to:

Pr(X > 3600) < σ2

(3600− µ)2 ≈ 2.6 · 10−5 (5.3)

This shows that the probability is pretty high that this assumption will also
hold in the future, as long as the mean and the standard deviation of the event
length will not change significantly.

5.2 Performance of event loading

As explained in 4.2.1, assuming a maximum event length reduces the amount of
data which needs to be requested from the server. To illustrate the difference in
delay this causes, the time it takes to load all events from an entire month was
measured with and without the assumption.

During the test, only the metadata was loaded, since loading the actual
waveforms is not affected by the assumption 1. Furthermore, only the GSN

1Before loading the waveforms, it is tested whether the event intersects with the requested
time frame. Therefore, the same number of waveforms would be fetched in both cases
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server was used, because it would be possible to load the data efficiently from
the permasense vault without the assumption using the following idea: On the
permasense vault, the metadata are stored in normal text files, one event per
line. This makes it possible to access the start time of the previous and the next
event. If this start time is earlier than the beginning of the requested time frame,
then one can be certain that all prior events start and end before the requested
time frame, due to the fact that a geophone sensor can only record one event at a
time and that these events are sorted by their start time. By iterating backwards
through the events from the actual start time until this condition is met, one can
be certain to have found all prior events intersecting with the given time frame
without the need to iterate through all events.

Figure 5.2: Distribution of the loading times, when using the assumption of a
maximum event length of one hour (top) and when not (bottom)

Figure 5.2 shows the distribution of execution times observed by loading the
data 100 times with and without the assumption of a maximum event length of
one hour. The observed average loading time with the assumption was about 1.3
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seconds with a standard deviation of about 0.1 seconds. Without the assumption,
the observed average loading time was 16.6 seconds with a standard deviation
of about 3.3 seconds. This shows, that this assumption indeed leads to a big
performance gain.

5.3 Performance of the visualization tool

The performance of the final version depends on the used operating system and
the amount of requested data. During this test, a device running Ubuntu 18.10
with 7.7GiB ram and an Intel R© CoreTM i5-8250U CPU is used. The analysed
time frame was chosen to be rather short (one hour). The reason for this decision
was that when performing the evaluation, the implementation of the local cache
in the Stuett repository was not finished yet and hence caching not yet available.
Therefore, loading a bigger time frame would have taken considerably longer
than it will, once the cache is integrated.

To test the performance, the loading time of the webpage and the time it
took to start the server were measured in four cases. All of these used slightly
modified versions of the default configuration file. Two of the cases used the
event-based seismic data, the other two the continuous seismic data. For both
types of data, the measurement was performed when having every plot only once
(denoted with n = 1) and when having it twice (denoted with n = 2), which
would be needed in order to compare the data from two sensors or points in time.
The loading time of the webpage can be seen in table 5.1.

event-based continuous
n = 1 7s 14s
n = 2 17s 22s

Table 5.1: The observed loading times of the webpage

All these measurements have been performed only once. Therefore, these
numbers should be taken with a grain of salt. However, it is enough to get a
rough idea of the loading times, which can currently be achieved. The transfer
rate observed when copying data from the permasense vault to the local hard
drive without using the visualization tool indicates, that the current bottleneck
is the transfer rate of the storage server. Therefore, a significant speed up is
expected, once the local cache is integrated.

In all the cases it took about 3 seconds to start the server. With Windows
10, start-up times of about 23 seconds were observed. However, this was only
the case for the first start up after the last reboot of the system. All subsequent
start-ups took between 4 and 7 seconds. On access scans of antivirus software
might be cause of this.
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Next, we investigate the amount of data sent and received. During the case
with the biggest amount of data (when using continuous seismic data and having
every plot twice), 24.9 MB data is downloaded from the storage servers. To
request this data, 0.7MB is send. While loading the page (with disabled cache),
a total of 9.9MB is downloaded by the browser. The amount of data send by
the browser sums up to 4.7MB. Considering that the average mean internet in
Switzerland is 38.5Mb/s [22], this amount of data is almost nothing.

5.4 Comparison of seismic events

This section presents, how this visualization tool can be used to analyse and
compare data.

Figure 5.3: Analysing and comparing seismic events from different sensors

Figure 5.4: Analysing and comparing seismic events from different points in time
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Figure 5.5: Working with different time scales

Figure 5.3 shows, how seismic events from different sensor positions can be
analysed and compared. Figure 5.4 shows, how events from different points in
time can be compared. Figure 5.5 shows, that the visualization tool supports
different time scales.



Chapter 6

Future work

This work could be extended in several ways in the future. One possibility would
be the integration of a local cache in the Python sever. Having a local cache
would remove the need to always download the raw data and downsample it.
This would greatly improve the performance.

Another possibility would be to improve the current implementation of the
spectrogram. Its current implementation handles downsampled data rather
poorly. The used downsampling method only preserves the features of the time
domain, but not the ones of the frequency domain. This produces a lot of dis-
tortions. By using a local cache, it would be possible to implement a more
sophisticated version of the spectrogram with integrated downsampling, as pro-
posed in [4]. This was not yet implemented, as it was out of the scope of this
thesis.

Other analysis methods could also be integrated. This could be for example
a plot of the Fourier transform, the possibility to apply classical filter like a low
pass or signal classifiers.

When classifying a seismic signal using a convolutional neural network as
in [12], one needs to have a labelled dataset. Integrating the already existing
labelling tool into the visualization tool could simplify the workflow.

Another possible future work is to port this visualization tool to other
datasets. Having the possibility to reuse an existing user interface to analyse
a dataset reduces the amount of needed duplicated work. Since the data pro-
cessing is separate from the GUI logic, doing this would only require the creation
of a processing graph which loads the data of this dataset and converts it into
the data type used by this visualization tool.

Another interesting topic would be to investigate the possibility to execute
the processing graph on a cluster of machines. This would allow the usage of
computation intensive algorithms running on several servers. This is supported
by Dask[7], which is used to create processing graphs with Stuett[6].
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Conclusion

In this thesis, we were able to create a dynamic visualization tool for the data
of the PermaSense project, which has support for the event-based seismic data.
Using this visualization tool, it is possible to compare data from multiple sensors
at differing points in time as shown in 5.4. Using the integrated downsampling
methods, it is also possible to operate on different time scales in a user-friendly
way. The modular design of this visualization tools makes it possible to easily
extend it with new features such as data sources, processing algorithms and plot
types as described in 3.2.

Having such a visualization tool can help getting an understanding of the
entire dataset. The knowledge gained with this can help improving the on-site
measurements and can be used as an additional tool in research yet to come.
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Appendix A

Screenshots

This chapter shows screenshots of the entire user interface. All the screenshots
use the same parameters, set in the settings window.

A.1 The main window

1
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A.2 The settings window
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Appendix B

Configuration file

The configuration is stored inside the variable dui_config in the file config.py.
This chapter shows the basic structure of this configuration. Always replace
<...> with the appropriate content.

Main config:
du i_conf ig = {

" n_para l l e l ":<n>,
" start_time " : [ < time1>,<time2 >] ,
" end_time " : [ < time3>,<time4 >] ,
" graphs " : {

"<unique id >":<Graph con f ig >,
"<unique id >":<Graph con f ig>

} ,
" o the r s " : {

"<unique id >":<Other GUI element con f i g>
}

}

In this configuration, <n> needs to be replaced with the number of signals
one wants to compare. All <timeX> need to be replaced with python datetime
objects. All <unique id> need to be replaced with unique simple strings. These
will be used as ids in the resulting HTML. The entry graphs contains all the
configurations, used to create the graph objects. Other types of objects can be
added to the entry others. graphs as well others can contain an arbitrary
number of objects. start_time and end_time can contain one or more datetime
objects.

Graph config:
{

" fr iendly_name ":<name>,
" sou r c e s " : {

"<uniqueId >":<Source con f i g >,

7
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"<uniqueId >":<Source con f i g>
} ,
" p l o t s " : {

"<uniqueId >":<Plot con f i g >,
"<uniqueId >":<Plot con f i g>

}
}

<name> is the name displayed in the GUI as a title for these plots. The
number of entries in sources and plots need to be at least one. More entries
are possible.

Source config:

{
" dask_graph ":<graph func t i on source >,
" s tue t t_con f i g ":< con f i g funct ion >,
" s e t t i n g s " : {

"<unique id >":< Se t t i n g s con f i g >,
"<unique id >":< Se t t i n g s con f i g>

}
}

<graph function source> is a function, which takes a python dictionary con-
taining the current values of the settings parameters of this source as an ar-
gument and returns a processing graph which loads the requested measurement
data. <config function> is a function, getting the same argument and return-
ing the object, which gets propagated backwards through the processing graph.
settings can contain an arbitrary number of entries.

Plot config:

{
" fr iendly_name ":" <name>" ,
" sync_xas is ":< sync xa s i s boolean >,
" dask_graph ":<graph func t i on plot >,
" s e t t i n g s " : {

"<unique id >":< Se t t i n g s con f i g >,
"<unique id >":< Se t t i n g s con f i g>

}
}

<sync xasis boolean> specifies, weather the x axis of this plot should be inter-
preted as a time axis or not. <graph function plot> is a function, taking the
processing graph from the selected source and a python dictionary containing
the current values of the settings of this plot as an argument and returns a
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processing graph, which produces the data to plot. settings can contain an
arbitrary number of entries.

Settings config:

{
" fr iendly_name ":" <name>" ,
" c l a s s ":< r e f e r e n c e to c l a s s >,
" init_arguments " : {

"<argument name 1>":<value o f argument 1>
}

}

<reference to class> is used to create the settings object, which is added to
the settings window. friendly_name is the title the setting has in the settings
window. The entries of init_arguments are used as parameters to initialize the
object.

Other GUI element config:

{
" c l a s s ":< r e f e r e n c e to c l a s s >,
<r e s t o f c on f i gu r a t i on depends on c l a s s type>

}

reference to class is used to create the object. The rest of the configu-
ration file depends on the chosen class. One example of such a config file is the
image viewer config.

Image viewer config:

{
" c l a s s ":< r e f e r e n c e to image viewer c l a s s >,
" fr iendly_name ":" <name>" ,
" dask_graph ":<graph func t i on image>,
" s tue t t_con f i g ":< con f i g funct ion >,
" s l i d e r_ t ex t ":" < s l i d e r text >" ,
" trans form ":" < c s s trans form ru l e s >"

}

<name> is the title used for the image viewer. <slider text> is the text
displayed as a title for the slider, which selects the middle image. <transform>
is the value, which gets set as the CSS transform property of the images. This
can be used to rotate the images. <graph function image> is a function taking
the argument {"start_time":<time of image>} and returning a dask graph to
fetch the requested image. <config function> is a function, getting the same
argument and returning the object, which gets propagated backwards through
the processing graph.
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Syntax of the filter rule

The filter rule is an ordinary python expression, supporting the following func-
tions:

• datetime(year,month,day,hour,minute,second,microsecond): Cre-
ate a corresponding datetime object

• date(datetimeObject): Create a date object from a datetime object

• date(year,month,day): Create a corresponding date object

• time(datetimeObject): Create a time object from a datetime object

• time(hour,minute,second,microsecond): Create a corresponding time
object

• timedelta(**KeywordArguments): Create a timedelta object
Supported keyword arguments: weeks, days, hours, minutes, seconds, mil-
liseconds, microseconds

• abs(value): returns |value|

Following attributes are supported:

• datetime objects: year, month, day, hour, minute, second, microsecond

• date objects: year, month, day

• time objects: hour, minute, second, microsecond

10



Appendix D

Derivation of the conversion
formula for the event data

The following section derives the conversion formula used in 4.2.1.
The ADC output zero corresponds to an amplified input voltage of about

-1.25V. The value 224 − 1 corresponds to about 1.25V. The voltage levels of
the integer values in between are distributed equidistant between those two val-
ues. Therefore, the mapping is linear.1 With this, a conversion formula can be
derived:

Maximum output voltage (in mV) of the geophone sensor the ADC correctly
represent: umax
Minimum output voltage (in mV) of the geophone sensor the ADC correctly
represent: umin
Gain of the ADC: g
Number of bits of the output of the ADC: n
Maximum output of the ADC: xmax = 2n − 1
Minimum output of the ADC: xmin = 0
Function, that maps the integer values returned by the ADC to the estimated
geophone voltages (in mV): f

u = f(x) = a · x+ b (D.1)
umin = f(xmin) = f(0)→ b = umin (D.2)

umax = f(xmax) = f(2n − 1)→ a = umax − umin
2n − 1 (D.3)

(D.4)
1These informations were kindly provided by Jan Beutel.

11
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→ f(x) = a · x+ b = umax − umin
2n − 1 · x+ umin (D.5)

= umax − umin
2n − 1

(
x+ umin

umax − umin
(2n − 1)

)
(D.6)

With umax = 1250/g;umin = −1250/g:

f(x) = 2500
g · (2n − 1)

(
x− 2n − 1

2

)
(D.7)
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