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Abstract

We use Deep Reinforcement Learning to simulate worst-case behaviour of fail-
ing nodes for reaching Byzantine Agreement. In particular we study the King
algorithm for the synchronous communication model and the Ben-Or algorithm
for the asynchronous communication model. We find that the byzantine agent
successfully learns strategies leading to maximal run time in various settings of
both algorithms and we study the resulting actions in detail. We conclude that
Deep Reinforcement Learning is a useful tool to simulate worst-case behaviour
in the Byzantine Agreement Problem.
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CHAPTER 1

Introduction

In distributed computing systems, the most dangerous event is not when a node
fails and sends no signal, but when a failing node exhibits arbitrary behaviour.
The approach for solving byzantine agreement is to develop algorithms to ensure
that the non-failing nodes reach consensus, despite a certain maximal number of
failing nodes. In the case of an asynchronous non-cryptographic model, there are
currently only few algorithms that reach byzantine agreement, they either have
a long runtime or tolerate only few failing nodes. [1]

The simulation of the behaviour of the failing nodes can be insightful to study
byzantine agreement further and develop efficient algorithms.
Our aim is to model worst-case behaviour of the failing nodes, in terms of achiev-
ing maximal run time of a given byzantine agreement algorithm, using Deep
Reinforcement Learning. In particular, we consider the King algorithm [2] for
the synchronous model and the Ben-Or algorithm [3] in the asynchronous setting.
To incentivise the failing nodes to exhibit worst-case behaviour, we formulate the
byzantine agreement algorithms as a reinforcement learning environment (see
Chapter 4) and reward the failing nodes for every round in which the correct
nodes have not reached consensus. We show that the trained byzantine agents
(i.e. the failing nodes) achieve maximal run time of both the King and the Ben-Or
algorithm respectively. We study various modifications of the algorithms, includ-
ing one where the agent has to determine the initial values, which she successfully
learns.

Our experiments show that Deep Reinforcement Learning can be used as a
tool for simulating worst-case byzantine behaviour. Deep Reinforcement Learning
(DRL) is a model-free machine learning technique combining classical reinforce-
ment learning with neural networks [4]. DRL has gathered attention when the
learners achieved super-human performance levels in some Atari 2600 games [4].

First, we give an overview of related work in Chapter 2. We introduce the
theoretical framework of byzantine agreement and the algorithms we study in
Chapter 3. Chapter 4 introduces classical and deep reinforcement learning with a
focus on Q-learning. We describe the experimental setup and our implementation
in Chapter 5, present our results in Chapter 6 and discuss them in Chapter 7.



CHAPTER 2

Related Work

Researchers have recently applied Deep Reinforcement Learning to graph prob-
lems in [5] and [6]. In [5], the authors used DRL with Graph Convolutioal Net-
works for channel allocation in WLANSs. [6] apply Graph Neural Networks in
combination with DRL to a routing optimization problem. In contrast, our work
focuses more specifically on faults of nodes. Q-learning was applied to fault tol-
erant control in [7| and to fault handling in self-organizing system by [8]. We are
not directly interested in fault handling in this work, but in the simulation of
byzantine nodes through DRL. An example for the use of DRL for simulations
is [9] where the authors simulate crowd navigation. More closely related to our
work is the simulation of worst-case adversarial behaviour on blockchain by [10],
where the researchers use DRL to identify attack strategies on incentive protocols
such as selfish-mining.

Byzantine faults in relation to machine learning has been focused on studying
distributed machine learning computations and their robustness against byzan-
tine attacks [11, 12, 13, 14].

To the best of our knowledge, we are the first to use DRL to simulate worst-case
byzantine behaviour with respect to the King and the Ben-Or algorithm.



CHAPTER 3

Byzantine Agreement

We consider a system of nodes, where any two nodes can communicate directly.
In the context of byzantine agreement we are interested in the case where some
nodes in the system are failing, i.e. they exhibit arbitrary behaviour including
sending different signals to different nodes. In the following, we will refer to the
failing nodes as byzantine nodes and to the non-failing nodes as correct nodes.
Furthermore, we use n to denote the total number of nodes in the system, f for
the number of byzantine nodes, which leaves us with n — f correct nodes. We
assume that byzantine nodes can not forge their sender address and therefore can
not impersonate other nodes. However, the byzantine nodes can be controlled by
a single agent - which will be crucial in Chapter 5. We say byzantine agreement
is reach, if we have consensus in the described system. |[1]

3.1 Consensus

Definition 3.1 (Byzantine Agreement). There are n nodes, of which at most f
might be byzantine, i.e. at least n— f nodes are correct. Every node 7 starts with
input value v;. The correct nodes must decide for one of those values, satisfying
the following properties: |[15]

e Agreement All correct nodes decide for the same value.
e Termination All correct nodes terminate in a finite number of steps.

e Validity The decision value must be the input value of a node.

There are various forms of validity. For our algorithms we will focus on the
weakest definition of validity, called all-same validity.

Definition 3.2 (All-Same Validity). If all correct nodes start with the input
value v, the decision value must be v. [1]

To study byzantine agreement, we need to keep in mind the following theorem:

3



3. BYZANTINE AGREEMENT 4

Theorem 3.3. A network with n nodes cannot reach byzantine agreement with
f > n/3 byzantine nodes. [16]

Proof. Essentially one can show that a system with f > n/3 byzantine nodes can
not satisfy both all-same validity and agreement by a proof of contradiction. We
give a more detailed proof in the appendix. O

Definition 3.4 (Synchronous and Asynchronous Model). In the synchronous
model all nodes operate in synchronous rounds. Where one round consists of
sending and receiving messages and doing some local computation. In the asyn-
chronous model each node only awaits a certain number of messages of the
current round. [1]

3.2 The Synchronous Model

Algorithm 1 King Algorithm for f < n/3 (from [1])

1: = my input value
2: for phase =1 to f+1 do

Round 1
3: Broadcast value(z)
Round 2
4: if some value(y) received at least n — f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: r==z
9: end if
Round 3
10: Let node v; be the predefined king of this phase i
11: The king v; broadcasts its current value w
12: if received strictly less than n — f propose(y) then
13: T =w
14: end if
15: end for

We give the pseudo-code for the King algorithm in Algorithm 1.

There are a few important statements to be made about the King algorithm.

Lemma 3.5. The King algorithm satisfies all-same validity. [1]

Proof. If all correct nodes start with value v, every correct node will fulfil Line 4
and propose v. Then no correct node fulfils Line 7 and will therefore not change
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its value in Line 8. Neither will any correct node change to the kings value in
Line 13, as no correct node fulfils Line 12. This holds for all following phases.
[1] O

Lemma 3.6. There is always at least one phase with a correct king. And af-
ter a phase with a correct king, the correct nodes will not change their values v
anymore. [1]

Proof. The first part is trivial, since we have f 41 phases, f byzantine nodes and

a different (predefined) king in each phase, one of the kings must be a correct
node. The proof of the second part is given in the appendix. [1] O

3.3 The Asynchronous Model

Algorithm 2 Ben-Or for f < n/10 (from [1])

1.z, € {0,1} > input bit

2: r=1 > round

3: Broadcast propose(x,,r)

4: repeat

5: Wait until n — f propose messages of current round r arrived

6: if at least |n/2] + 3f + 1 propose messages contain same value x then

7: Ty, = x, decided = true

8: else if at least [n/2| + f + 1 propose messages contain same value x
then

9 Ty =T

10: else

11: choose z,, randomly, with Pr|z, = 0] = Priz, =1] =1/2

12: end if

13: r=r+1

14: Broadcast propose(x,,r)

15: until decided (see Line 7)
16: decision = x,,

The Ben-Or algorithm is given in Algorithm 2. Note, that not both x and y
where x # y can be chosen in Line 9. For the sake of contradiction assume both
x and y with = # y implying both were proposed by at least [n/2] + 1 correct
nodes, which is impossible since 2- (n/2+1) =n+2>n— f. [1]

One can show that it solves byzantine agreement: [1]
e All-Same Validity If every correct node has the same initial value v, every

node will terminate in the first phase since n — 2f > [n/2] + 3f + 1 for
f < n/10.
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e Agreement For two nodes at most 2 f messages can be different. If a node
terminates to value vfing (Line 7) it has received vginq at least |n/2] +
3f+1 times, then all other nodes must have received vfnq at least [n/2]+
3f+1—-2f=|n/2| + f+1 times and fulfil (at least) Line 8.

e Termination For termination we essentially need to wait until all correct
nodes randomly choose the same value which happens with a probability
2~ (=)+1 leading to exponential runtime. Of course, if all correct nodes
start with the same initial value the algorithm terminates immediately by
all-same validity.



CHAPTER 4

(Deep) Reinforcement Learning

4.1 Reinforcement Learning

In this section we follow [17] in describing the reinforcement learning problem.

Consider an agent interacting with an environment. Assume that, the agent
observes states s; € S then takes an action a; € A and receives a reward r; € R.
For our purposes we consider discrete time steps t = 0,1,2,3,... The agent acts
according to her policy m(als;) which is a conditional probability distribution
over the actions given the current state s;. Her goal is to maximise the expected
(discounted) reward given by Ry = > 70 v*"trpyq, with 0 < 4 < 1, where 7 is
the discount factor. We assume the states to fulfil the Markov Property meaning
the response at ¢ + 1 only depends on the action and state at time ¢ and the
reinforcement learning task is a (finite) Markov Decision Process (MPD). This
means the process is fully described by the one-step dynamics, i.e. the transition
probabilities

Pe, =P(sp41 = §'|st = s,a; = a)

and the expected next reward

/
Rey =E(ryi|se = s,ar = a,8¢41 = §)
We can now define the action-value function for policy m as

Q" (s,a) = Ex(R¢|s; = s,a; = a)

We are interested in the optimal action-value function Q*(s,a) = max, Q™ (s, a)
which satisfies the Bellman Equation:

Q*(a,s) = E(ryy1 + ymax Q*(s,a’)|s; = s,a; = a)
a//

There are several methods to solve the reinforcement learning task, such as
state-value or policy iteration. In this work we will focus on Q-learning.
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4.1.1 Q-learning

The above Bellman Equation for the Q-function can be solved using an iterative
process, which is shown to converge to the optimal value in [18]. We consider an
agent in stage k observing sg, taking action ag, receiving reward r; and observing
next state sx11. Then it should update its action-value function according to:

(= a)Qr-1(s,a) + ag[ry +ymaxy Qr_1(skr1,0")] if a = ay,s = sy
Qk(sa (L) = .
Qr—-1(s,a) otherwise

where oy, is a predefined learning rate. [18]

4.2 Deep Reinforcement Learning

In Deep Reinforcement Learning a neural network is used to approximate the
Q-function [4] i.e. Q(s,a;0) = Q*(s,a). To find the parameters one can use the
loss function

Li(0k) = Esal(yx — Q(s, a; 01))]
with yp = Eg o[r + v maxy Q(s',d';0k-1)]s,a]. [4]

In our work, we use the DQN algorithm, which is based on Q-learning. Note,
that there exist various other Deep Reinforcement Learning approaches, also ones
not using Q-learning [19]



CHAPTER 5

Implementation

We are ultimately interested in whether a byzantine agent, trained by deep re-
inforcement learning, can achieve maximal run time of the King or the Ben-Or
algorithm. We make use of the fact, that all byzantine nodes can be controlled by
one adversary and therefore train a single agent controlling all byzantine nodes
simultaneously, where the maximal number of byzantine nodes is given by each al-
gorithm respectively. We use the DQN algorithm by Stable Baselines [20], where
we use a 2 hidden layer Multi Layer Perceptron (MLP) network with 64 nodes
in each hidden layer. The DQN algorithm uses an e-greedy strategy, meaning a
random action is chosen with probability € and otherwise the action maximising
the current Q-function. The DQN algorithm starts with e = 1 and anneals it to
e = 0.02 over the exploration fraction of the entire training period, then keeps
€ = 0.02 constant for the rest of the training. For the environment we follow the
formalism of the Gym-package [21]|. Essentially the environment is a class which
needs to fulfil the following:

e action space, observation space attributes defined as Gym-spaces
e reset function to set the beginning of a new game

e step function taking the argument action and returning the tuple observa-
tion, reward, done, info where done is a bool indicating whether the game
has terminated

In our case, the environment is given by either the King or Ben-Or algorithm,
which we will present in more detail in the next sections.

In the following we will refer to a full run of a byzantine agreement algorithm
as a game or an episode, and to one time step as step. We will refer to the
adversary controlling all byzantine nodes as agent or byzantine agent. We train
a separate agent for each of the following versions.
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5.1 King Algorithm

The most important aspect to note about the King algorithm is, that each phase
consists of 3 rounds (see Algorithm 1). Therefore, a step of the game corresponds
to a round in the algorithm, where we let the agent observe in which round she
currently is. The start and end of each round is slightly different from the ones
defined in Algorithm 1. The decisive point of when a round has to end is given by
when the agent has to take an action, which is in Lines 3, 5, 13 of Algorithm 1.

We have to define who will be king in which phase, where no one can be
king more than once and hence one of the kings is a correct node. As shown
in Section 3.2, all correct nodes decide after a correct node was king (and stay
decided). For the game to be interesting, we therefore let each byzantine node be
king once and a correct node be king in the last phase. Furthermore, we need to
define the initial values of the correct nodes at the beginning of each episode. We
choose them randomly but exclude cases where all correct nodes have the same
initial conditions, since in that case no correct node would ever change its value
and the byzantine agent had no chance.

5.1.1 Actions and Observations

The messages the nodes exchange are binary values v € {0,1}. An observation
consists of a concatenation of:

e vector of values sent by correct nodes corresponding to Lines 3, 5 in Algo-
rithm 1 and a vector of current values of the correct nodes before the king
action

e current round of the game € {1,2,3} (encoded as a one-hot vector)

e who of the byzantine nodes is king in the current phase (encoded as a
one-hot vector)

We make the assumption, that the byzantine agent first receives all messages
sent by the correct nodes, then sends her message(s) and the correct nodes finally
receive all messages at once. The agent can send an arbitrary value € {0,1} or
send nothing at all for each byzantine node individually, however the messages she
sends are the same for all correct nodes. This is a restriction which technically
makes the game harder for the agent, but it allows for a much smaller action
space and makes the exploration easier. The order of the byzantine agents does
not matter, which allows us to reduce the size of the action space further. Hence
the actions of the agent are binary vectors of length f containing the values v
send by the agent, after the first and the second round and a single number after
the third round.
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5.1.2 Rewards and Termination

We check whether all the correct nodes have the same value after each step. If
not, the agent receives a reward, otherwise she receives no reward and the game
is over. Note that the King algorithm would technically not terminate but run
for the full f + 1 phases although all the correct nodes have the same value. But
all-same validity tells us that the agent has no influence anymore once all correct
nodes have the same value. For the evaluation we say the agent wins the game
if the algorithm needs to run maximally long i.e. until the correct node is king.

5.2 Ben-Or Algorithm

The Ben-Or algorithm does not have distinct rounds, every phase directly cor-
responds to a step in the game. Important to note is, that the correct nodes
only await n — f messages, which means they can consist of anything between
only those of correct nodes or those of n — 2f correct and f byzantine nodes.
Effectively, the byzantine agent observes n — f messages from all correct nodes
and can then decide which values (at most f) she wants to replace with a value
of her choice. The correct nodes then receive the modified n — f messages. In
general the agent can send different modifications to each correct node. The
Ben-Or algorithm relies on the chance that all correct nodes get the same value
from the coin, but there are three interesting variations which we will introduce
below.

5.2.1 Fair Coin

Here we study the Ben-Or algorithm given in Section 3.3 without modifications.
The byzantine agent observes the (binary) messages sent by the correct nodes. In
contrast to the case of the King algorithm we do not need to give any additional
information to the agent. The byzantine agent can only send the same modified
message-vector to all correct nodes. This implies that her goal must be to let the
correct nodes flip a coin, otherwise they all will be decided in the next two steps.
After each step the agent receives a reward if she lets the correct nodes flip a
coin. The game is over when a correct node has decided (Line 7 of Algorithm 2).
It can happen that [n/2] + 2f + 1 correct nodes flip the same value by chance,
in this case the agent has won the game and receives an additional reward.

5.2.2 Predefined Coin

Here we consider a modification of Line 11 of Algorithm 2, where the coin is not
random but predefined for each round to either be Pr{z, = 0] =1 or Pr(z, =
1] = 1 (however, the sequence of the predefined coins is chosen randomly). The
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byzantine agent now observes the coins value of the current and the next round in
addition to the messages sent by the correct nodes. In this case it is obviously not
optimal for the agent to let all correct nodes "flip" the coin since all will receive
the same value. The agent needs to be allowed to send different modifications of
the messages to different correct nodes.

Initial Value

Assuming the first value of the coin is x, = 1 the byzantine nodes need to have
initial values with a majority of 0’s. Actually there need to be between |n/2] +1
and |n/2| + 2f zeros, such that the agent can send some correct nodes to "flip"
and some to enter Line 9 of Algorithm 2. Whether she sends the majority to
"flip" the coin or not, depends on the value of the next coin.

Termination

The algorithm terminates when all correct nodes have the same value. It is
important to note, that the Ben Or algorithm does not need to terminate in
this setting. However, this does not lead to problems during training as the
agent always explores with a certain probability and therefore makes "mistakes",
which lead to termination of the game.

5.2.3 Predefined Coin and Agent Selects Initial Values

This version is largely the same as the above, with the difference that the byzan-
tine agent selects the initial values of the correct nodes. She observes a vector
of 0’s in the first step and decides for each entry, whether to leave it be a 0 or
change it to a 1. We need to give the agent the additional information about
whether it is the first step or not in her observation.



CHAPTER 6

Training and Results

For training we mostly use the default values for the parameters of the Stable
Baseline’s DQN Algorithm [20]. We increase the exploration fraction form 0.1
(default) to 0.2, leading to a longer period of exploration. The total length of
the training period differs for the various versions. To monitor and evaluate the
performance of the learner (agent) we focus on the following:

e Learning Curve

e Deterministic Validation Performance

The learning curve shows the (smoothed) rewards the agent achieved in each
episode over the course of the training. Of course, we want the agent to learn,
i.e. we want the rewards to increase the further we are in the learning process.
On the other hand we want a stable performance of the agent, meaning we don’t
want to see large fluctuations in rewards between episodes.

By deterministic validation performance we mean, that we let the agent play
after the training and measure her performance then. This is important, since
the agent always explores during the training. Recall that the exploration rate is
annealed to a final value of 0.02, meaning she takes 2% of her actions randomly.
When we watch the agent play after the training the weights of the Q-network
are kept fixed and she does not explore anymore. It is also important to keep the
exploration in mind when studying the learning curves.

6.1 King Algorithm

6.1.1 One Byzantine Node

In this setting we train the agent to control only one byzantine node and use
three correct nodes. Algorithm 1 tells us, we need at least 4 nodes in total in this
case. The action space is small, the agent can only send 0, 1, or nothing. We set
the training period to 200,000 steps.

13
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Learning Curve

The learning curve (Figure 6.1a) shows, that the agent has learned and reaches
the maximal reward of 5 frequently after the exploration fraction.

Deterministic Validation Performance

During the test the byzantine agent wins the game 1000/1000 times. Her strat-
egy consists of making sure the correct nodes can’t propose anything (Line 5 of
Algorithm 1), to this end she broadcasts nothing if there is a majority of 0’s in
the correct nodes’ values, and 0 if there is a majority of 1’s. Then she herself
can propose anything, she chose to always propose 0. Note that no correct node
enters Line 8, because there is only 1 proposal. When the agent is king, she
proposes nothing, meaning no correct node changes its value.

6.1.2 Five Byzantine Nodes

In this setting we train the agent to control five byzantine nodes and use 11
correct nodes, fulfilling the condition of f < n/3. The training period has a
length of 3,000,000 steps.

Learning Curve

The learning curve looks promising (see Figure 6.1b). It shows that the agent
reaches the maximum reward of 17 frequently.

Deterministic Validation Performance

Again, we evaluate the agent’s performance after training, letting her play 1000
games. Out of those, she wins 991. Her strategy is similar to before, with the first
action of each phase she makes sure none of the correct nodes propose anything,
leaving her to be able to propose anything. Again, all byzantine kings propose
nothing.

The nine cases where the agent lost, all followed the same pattern. The correct
nodes all have starting value 0, except one correct node starts with 1. Note that
it is still possible for the agent to win in this case, but the agent has little room
for error. The agent then makes the mistake in the first step of the last phase,
where she sends 0 for at least one of the byzantine nodes, letting the correct
nodes reach agreement on 0. We argue this happens because the last phase was
rarely explored during the training, especially during the exploration fraction.
It is important to keep in mind here, that the number of the phase is part of
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the observation, since the agent has therefore rarely observed the described case
during training.

6.2 Ben-Or Algorithm

6.2.1 Fair Coin

We train the agent to control only one byzantine node and use 10 correct nodes,
since Algorithm 2 requires f < n/10. We use 1,000,000 steps for training.

Learning Curve

The learning curve (Figure 6.2a) shows a continued learning process of the agent
over the course of the training. There is no global maximum reward anymore,
since the termination of the game is partly stochastic, due to the coin.

Deterministic Validation Performance

We consider the game to be won, when the algorithm terminated because [n/2]+
2f +1 correct nodes received the same value from the coin. Thereafter the agent
has no influence anymore, since she can only send the same message to all correct
nodes. We let the trained agent play 1000 games and she wins all of them. The
agent’s actions are simple, she works towards an equal number of 0’s and 1’s
in the messages she sends to the correct nodes. If she allowed a majority of
seven identical values, no correct node would flip a coin and the algorithm would
terminate within the next two steps (see Line 7, Algorithm 2).

6.2.2 Predefined Coin

We train the agent for 2,000,000 steps, where we again have one byzantine node
and 10 correct nodes.

Learning Curve

The learning curve shows a quick and steep learning process (Figure 6.2b). How-
ever, the rewards fluctuate a lot after the exploration fraction. As pointed out in
Section 5.2.2, the algorithm does not need to terminate at all. If it does it is due
to either exploration or a mistake by the agent. It is therefore even more crucial
to focus on the deterministic validation performance.
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Deterministic Validation Performance

Because the algorithm can run forever, given the agent has learned, we impose
a maximum number of 10,000 phases after which we stop the game and consider
the agent to have won. The trained agent wins 1000/1000 games. Essentially the
agent’s actions follow the principle by which we set the initial value, described in
Section 5.2.2. The agent sends part of the correct nodes to the coin, how many
depends on two aspects:

e The agent can not allow for any majority of more than |n/2]| +2f to form,
since she would then have no influence in the next round.

e The value of the next coin: If the next coin will have the same value as
the current coin, the agent wants the majority not to flip the coin. If the
next coin will have the opposite value from the current, the agent lets the
majority flip.

6.2.3 Predefined Coin and Agent Selects Initial Values

The agent’s training consists of 5,000,000 steps in the setting of 10 correct nodes
and one byzantine node.

Learning Curve

The learning curve (Figure 6.2c) looks similar to the previous case. Again, we
observe large fluctuations in the reward, but want to emphasize the importance
of deterministic validation.

Deterministic Validation Performance

We again set a maximum number of phases of 10,000 and consider the agent to
have won thereafter. Our trained agent wins 1000/1000 games. It is interesting
for us to study the agent’s behaviour in the first step of a game, during the rest
she develops a similar strategy as in the previous case. For the first step she
selects a vector of initial values, where 4 correct nodes have the value of the first
coin, hence creating a majority for the opposite value to that of the first coin.
This is consistent with what we described in Section 5.2.2.
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Figure 6.1: King algorithm: learning curves smoothed by a moving average of 50
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Figure 6.2: Ben-Or algorithm: learning curves smoothed by a moving average of
50 episodes, using code from [22]



CHAPTER 7

Discussion

Our results show, that Deep Reinforcement Learning can be effectively used to
learn and simulate (worst-case) byzantine behaviour. The agents develop optimal
strategies for almost all settings, in terms of achieving maximal run time of
each algorithm. Furthermore we can study the agents’ actions, allowing us to
potentially gain insights into approaches we did not think of. In some cases, the
agents’ actions are precisely in line with our own understanding, most obviously
when the byzantine agent chooses the starting conditions for the correct nodes
in Section 6.2.3.

We were able to formulate our problem as a Deep Reinforcement Learning
task and to encode the full algorithm in the environment. Although the re-
ward function is not unique, it is straightforward to reward the agent for every
step where the algorithm does not terminate, in order to achieve maximal run
time. Therefore, the problem is of a sensible form to apply Deep Reinforcement
Learning. We want to highlight again, that the agent was never given other infor-
mation about the algorithms than the observations and the rewards. Especially,
did we not pre-train by feeding the agent certain actions, i.e. we did not show
her strategies we considered useful.

Studying the results for the King Algorithm with five byzantine nodes, we
found that the agent can run into trouble if a certain observation only occurs at
a late stage of the game, which might not be reached often during exploration.
In our case, we always used the same sequence of byzantine kings. Especially, in
the last phase the king was always a correct node. Working with permutations
of that sequence might improve the learning results. However, this is non-trivial,
because a correct node being king earlier reduces the maximum run time of the
algorithm.

Given the success of our experiments, we would be interested to see Deep
Reinforcement Learning to be applied to other algorithms for the synchronous or
asynchronous models in Byzantine Agreement. An interesting extension would
be to use self-play, where we train not only the byzantine nodes but also the
response of the correct nodes. Thereby effectively learning a new algorithm to
solve the Byzantine Agreement problem.
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APPENDIX A

Proofs

A.1 Proof of Theorem 3.3

Assume an algorithm reaches byzantine agreement for f > [n/3]. Consider now
three groups of size n/3, [n/3] or |n/3]. Where the group of size [n/3] consists
of all byzantine nodes and in one group (correct nodes) all have value 1, in the
other group all have value 0. The byzantine group sends different values to each
other group, always supporting the value of the group, such that every correct
node observers its own value n — f times. By all-same validity each correct node
will decide on its own value and therefore agreement is violated. [16] [1]

A.2 Proof of Lemma 3.6

Case 1: All correct nodes change to the king’s value, then all correct nodes have
the same value. [1]

Case 2: Some nodes do not change to the king’s value, implying they have
received a value x;, proposed n — f times. Therefore, all other correct nodes have
received the same value x, n —2f times and have set their value to z, (Line 8 of
Algorithm 1) including the correct king. [1]

Only one value can be proposed more than f times. In order to propose a
value a node must have received it n — f times (Line 4 of Algorithm 1) of which
n—2f must have come from correct nodes. If two correct nodes propose different
values, it suggests there are 2(n — 2f) + f = 2n — 3f > n nodes in the system
(using 3f < n), which is a contradiction. |[1]
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