
Distributed

 Computing

Using ElectionGuard for secure remote
voting on untrusted devices

Bachelor’s Thesis

Adrian Zanga

zangaa@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Darya Melnyk, Tejaswi Nadahalli

Prof. Dr. Roger Wattenhofer

September 13, 2020

Acknowledgements

I was fortunate that Darya Melnyk and Tejaswi Nadahalli gave me lots of con-
structive advice as well as helpful ideas and took time for lengthy discussions
throughout the work on this thesis. Thank you!

i

Abstract

One of the most promising systems for electronic voting is currently being de-
veloped by Microsoft under the name ElectionGuard (Benaloh et al., 2020). It
is intended for use in dedicated voting booths and therefore has some functional
limitations compared to e-voting systems specifically designed for use in a remote
environment.
A recently proposed protocol, Artemis (Boss et al., 2019), provides security and
privacy against malicious voting devices. This paper describes ideas, slight mod-
ifications, and implementation for this protocol on ElectionGuard.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 2

2.1 Related Work . 2

2.2 ElectionGuard . 2

2.2.1 Protocol . 2

2.2.2 Cryptographic Primitives 4

2.2.3 End-To-End Verifiability 4

2.3 Artemis . 5

2.3.1 Protocol . 5

3 Adaption 6

3.1 Vote creation . 6

3.2 Authentication . 7

4 Implementation 8

4.1 ElectionGuard Web API . 8

4.2 ElectionGuard Admin Device . 9

4.3 ElectionGuard Voting Terminal and Assistant 9

4.4 Registrar . 11

4.5 Additional Code . 12

4.5.1 Controller . 12

4.5.2 Python Ballot Box . 12

iii

Contents iv

5 Conclusions 13

5.1 Further Ideas . 13

Bibliography 15

Chapter 1

Introduction

The popularity of electronic voting is growing rapidly as an increasing number
of nations and organizations seek to improve their voting mechanisms. There
are many reasons for electronically casting and counting ballots, such as speed,
cost-efficiency, and voter turnout. On the other hand, such systems open up new
vectors of attack for tampering in an election. Therefore, solutions must be found
to ensure the integrity of such systems. A relatively new system for casting and
accumulating ballots is ElectionGuard [1], which is currently being developed
by Microsoft. It is intended to run on dedicated devices in the voting booths.
This thesis will focus on how ElectionGuard can be adapted to enable remote
voting and to deal with the new risks of such a system. Two main challenges of
remote voting are voter authentication and guaranteeing privacy. The latter is
the main focus of this thesis. Artemis [2] is a proposed protocol for the Helios
e-voting system [3] that achieves the correctness and confidentiality of a vote as
well as receipt-freeness using multiple devices, assuming that at least one of the
devices is not corrupt. In this thesis, I will demonstrate how Artemis can be
implemented on top of ElectionGuard and discuss some necessary modifications
to both systems required to achieve this.
Chapter 2 gives an overview of ElectionGuard and Artemis. In Chapter 3, I will
describe the necessary changes to the Artemis protocol such that it can be imple-
mented on top of ElectionGuard. I will explain the details of my implementation
in Chapter 4. Finally, in Chapter 5, I will briefly discuss some ideas for possible
future directions.

1

Chapter 2

Background

2.1 Related Work

Two different proof systems are mentioned in this thesis. One of them is the
Groth-Sahai [4] system which is used by Helios to prove that encrypted ballots
are valid. The second proof system follows the Chaum-Pedersen protocol [5]. It
is implemented in ElectionGuard and its adaption is described in detail in [6].
The PrivApollo paper [7] lies a foundation for the Artemis protocol, outlining
the idea of using a second device together with a candidate-color mapping to
guarantee the privacy of a voter.
Helios [3] is one of the first voting systems to enable cryptographic auditing.
Although Helios is intended for use in remote voting, it is quite similar to Elec-
tionGuard. Some differences are mentioned in Chapter 3 of this paper.

2.2 ElectionGuard

ElectionGuard is a system for holding end-to-end verifiable elections and consists
of multiple open-source components developed by Microsoft. It is still in its early
stages but a first pilot has been successfully carried out earlier this year in an
election in Fulton, Wisconsin [8]. It is important to note that voter authentication
is not part of ElectionGuard. Rather, it is the task of the election staff to grant
access to the voting booths in which ElectionGuard is running only to those
voters who are eligible to vote.

2.2.1 Protocol

Setup

ElectionGuard enables complex elections that span several different districts with
different ballot styles, each consisting of a subset of all competitions. For example,
a nationwide presidential election could be made possible in which each voter

2

2. Background 3

could additionally vote for representatives in his or her state. Different types of
competitions are possible, e.g. one-of-n or n-of-m. Voting for unlisted candidates
can also be allowed. All this data must be configured in the election manifest,
which is provided in the form of a JSON file.

Key Ceremony

The key ceremony is the process by which the election trustees share encryption
keys for an election. The trustees are usually election workers, party members,
government officials, or media representatives. After the key ceremony, each
trustee has a private key. The joint public key is published. The trustees are
responsible for holding those private keys that are needed to decrypt the election
results. A quorum of trustees can also be specified to compensate trustees who
may be missing at the time of decryption.

Ballot Encryption

The ballots are encrypted on a uniquely identified device intended for use in
a voting booth. For each selection, a non-interactive zero-knowledge proof is
generated that the encryption is either an encryption of zero or one. In the same
way, a proof is generated for each contest that the sum of all encrypted choices
is equal to the selection limit of the contest (usually one). Once the user has
submitted the ballot to the voting system, a tracking ID is derived from the
encrypted ballot.

Cast or Spoil Ballot

The voter is allowed to audit, or "spoil", a ballot. If a ballot is spoiled, it cannot
be included in the final tally, and the voting system must be able to decrypt
the ballot. Unlike many other e-voting systems, including Helios, spoiled ballots
are put away for later decryption. If the voter decides to "cast" his ballot, it is
marked accordingly and included in the final tally.

Tally

Homomorphic tallying as described in the next section is used to add together
properly formed ballots. This tally can then be decrypted by the trustees to
determine the final election result. Proofs that this tally is correctly formed are
published. Also, all cast ballots are published in their encrypted form, along with
the proofs that they are well-formed. Spoiled ballots are decrypted and published
along with their encrypted version and the proofs.

2. Background 4

2.2.2 Cryptographic Primitives

An exponential form [6] of the ElGamal cryptosystem [9] is used for encryption.
In an initial step, primes p and q are publicly fixed. A generator g of the order
q subgroup Zr

p is also fixed where Zr
p is the set of rth-residues in Z∗

p.
The n trustees of an election are denoted by T1, T2, ..., Tn. Each trustee Ti
generates an ElGamal key pair consisting of a random secret si ∈ Zq and the
corresponding public key Ki = gsi mod p. The joint election public key is

K =
n∏

i=1

Ki mod p

There are some additional steps to allow compensation of missing trustees but
they exceed the scope of this thesis.
To encrypt a messageM ∈ Zr

p a random nonce R ∈ Zq is selected. The ciphertext
is then constructed as the pair (α, β) = (gR mod p, gM · KR mod p). If the
secret s is known, (α, β) can be decrypted as

β

αs
mod p =

gM ·KR

(gR)s
mod p =

gM · (gs)R

(gR)s
mod p = gM mod p

Because only two possible messages are encrypted by ElectionGuard, either zero
or one, M can be computed from gM mod p.
For the tallying step, the homomorphic property of this form of ElGamal en-
cryption is utilized. Given two ciphertexts (α1, β1) = (gR1 mod p, gM1 · KR1

mod p) and (α2, β2) = (gR2 mod p, gM2 ·KR2 mod p) an encryption of the sum
M1 +M2 can be computed by componenet-wise multiplication:

(α, β) = (α1α2 mod p, β1β2 mod p) = (gR1+R2 mod p, gM1+M2 ·KR1+R2 mod p

This property is also used in the re-encryption step by adding an encryption of
zero to every ciphertext.

2.2.3 End-To-End Verifiability

End to End Verifiability (E2E-V) of a voting system follows from three main prin-
ciples: Cast As Intended, Recorded As Cast and Tallied As Recorded [10]. E2E-V
election techniques enable individual voters to check election results without re-
quiring voters to trust election software, hardware, or procedures. ElectionGuard
is designed to give guarantees about these principles:

1. Cast As Intended : The voter can challenge a ballot after the voting terminal
has committed to its encryption. Even though a voter will never know
the contents of a cast encrypted ballot, they can verify the security of the
voting terminal by spoiling as many ballots as they wish. Given that enough
voters spoil a ballot, a malicious system will be detected with overwhelming
probability.

2. Background 5

2. Recorded As Cast : A tracking ID is generated for each encrypted ballot.
Those tracking IDs are published alongside the election results enabling
voters to verify that their ballot was included in the final tally.

3. Tallied As Recorded : Alongside the election results, every encrypted ballot
including its zero-knowledge proofs is published. This allows full verifiabil-
ity by third parties.

2.3 Artemis

Artemis [2] is a proposed protocol to secure against malicious voting devices for
the Helios e-voting system. It is inspired by the PrivApollo [7] paper, which
describes a concept for using additional devices in the vote creation step. The
main goal of this thesis is to implement those ideas on the code base of Elec-
tionGuard. Since the concepts of Helios and ElectionGuard are relatively similar
it is reasonable to build on Artemis.

2.3.1 Protocol

In the original Helios protocol, the user enters his desired vote directly into the
voting terminal VT. The VT is therefore a single point that an attacker would
have to control to learn about a voter’s choice. Because Helios allows remote
voting, this scenario is not so far-fetched, since any user with any kind of computer
that provides a web browser can participate in an election. Artemis introduces an
active voting assistant AVA and an arbitrary number of passive voting assistants
VA. The idea behind this is that an attacker cannot learn the choices made by
the voter unless all of these devices are malicious.
VT generates a mapping between the list of encrypted ballots and colors and
sends it to the AVA. VT then displays the unencrypted mapping, while AVA only
displays the colors. The user can choose the color on the AVA that corresponds to
the desired candidate as displayed on VT. AVA re-encrypts the already encrypted
candidate corresponding to the selected color and publishes it. Therefore neither
VT nor AVA will learn the selected candidate unless they collude. The other
VA’s are used to verify that the encryption steps have been performed correctly.
While Artemis describes two types of vote accumulation, namely mix-net tallying
and homomorphic tallying, this work focuses only on the latter. The protocol
makes the tallying step more difficult, as the ballots are re-encrypted so that
normal zero-knowledge proofs become invalid. The use of Groth-Sahai proofs [4]
solves this problem. Although they are computationally expensive, they can also
be re-randomized and are therefore valid after re-encryption. The rest of the
tallying step remains unchanged.

Chapter 3

Adaption

3.1 Vote creation

One difference between Helios and ElectionGuard is the proof method that guar-
antees that the ballots are formed correctly. Helios uses Groth-Sahai proofs for
this. Encrypted ballots with proofs can be pre-generated to avoid creating those
proofs directly on a voter’s device. ElectionGuard uses Chaum-Pedersen Zero-
Knowledge proofs [5], which have the disadvantage that they are invalid after
re-encryption.
To minimize changes to the existing ElectionGuard code, I chose a simpler solu-
tion instead to fix this problem. Before tallying, each ballot is verified by first
accumulating all encrypted votes in a contest. In a second step, the tallying
authority decrypts this new ciphertext, which should yield a zero or a one if the
ballot has been filled out correctly. If this is the case for each competition, the
ballot is included in the final tally. This solution is neither elegant nor efficient,
but I chose it due to time constraints. A better solution would be to implement
Groth-Sahai proofs for ballot validation.
Using this method, the communication between the voting terminal and voting
assistant can be slightly simplified. Initial encryption of the ballot based on the
list of choices is not necessary. Instead, the VA can create the first encryptions
of the choices according to the voter’s decision and return them to VT. VT maps
those choices back to the candidates and re-encrypts them.

1. VT generates a random mapping between colors and candidates. VT dis-
plays this mapping to the voter.

2. VT sends only the colors to VA. VA displays these colors to the voter.

3. The voter checks the mapping and clicks on the color on VA that corre-
sponds to his or her desired candidate.

4. VA encrypts a one for this color and a zero for all other colors with the
election public key. It sends the color-encryption pairs back to VT.

6

3. Adaption 7

5. VT re-encrypts the ciphertext and assigns it to the candidate using its ini-
tially generated mapping. Since the VA has created the ciphertexts and
therefore knows the corresponding plaintext, this step is necessary. It pre-
vents VA from learning the voter’s choice from the resulting ciphertext.

6. Steps 1 to 5 are repeated for each contest in the election. Then VT sends
the resulting encrypted ballot to the server running ElectionGuard.

I adapted the re-encryption step for the exponential ElGamal system. In-
stead of multiplying the ciphertext by an encryption of one, which would work
for textbook ElGamal [9], it is multiplied by an encryption of zero. Due to the
exponential ElGamal construction described above, this will have the effect of
adding a zero to the ciphertext, which will ultimately re-encrypt the same plain-
text.

3.2 Authentication

Helios requires each user to authenticate with a username and password before
casting a ballot. ElectionGuard on the other hand delegates voter authentication
to election workers, which have to make sure only eligible voters can use the
ElectionGuard system.
For authentication, I chose a simpler approach compared to Helios. Before the
election, each voter receives a random token. Upon casting a ballot, this token
can be sent to the registrar together with the encrypted ballot. If the token is
valid and has not yet been used, the registrar creates a signature of the encrypted
ballot and publishes it. No signature is required to spoil a ballot. This allows
non-eligible voters to check the security of the system as well, which is especially
necessary if they are potentially affected by the election results. At the end
of the election, anyone could verify that each encrypted ballot contained in the
final tally has a corresponding valid signature from the registrar. The alternative
solution has the advantage that it does not require secure storage of usernames
and passwords and their transmission during the authentication step. It could
potentially be further optimized by deriving the token from a secret together with
the voter details. This would minimize the required secure storage to a single
secret.

Chapter 4

Implementation

4.1 ElectionGuard Web API

In its early stages, ElectionGuard was implemented in C. It includes all core
functions such as the generation of election keys, the encryption of a plaintext
ballot, the casting of ballots, and the creation of a tally. It is not necessar-
ily intended for direct access by the end-user. Microsoft has released a web
API written in C] that allows developers to program their own voting devices,
such as a voting terminal or ballot box, and access ElectionGuard functionality
through HTTP. However, while I was working on this thesis Microsoft released a
completely rewritten version of ElectionGuard in Python 3.8 [11]. The revised
version is much better documented and the code is simple to understand. The
main problem was that a web API was missing. Part of this project was therefore
to write a web API to allow all devices involved in an election to communicate
with a central ElectionGuard instance. Microsoft has already opened an issue on
GitHub and described that they want to implement a web API using the Flask
[12] framework. Therefore, it was an easy decision to use Flask for the web API
with the intention to possibly open a pull request at a later date. The resulting
Flask API provides an interface for:

• Creating an Election.

• Creating a CiphertextBallot object from a ballot provided in JSON format.
This endpoint supports ballots in the format described in the Artemis pro-
tocol.

• Casting or Spoiling a ballot.

• Receiving the election public key which is used by the voting devices to
encrypt candidate choices.

• Receiving the election manifest, which is a JSON object containing all con-
tests and their possible candidates for different ballot styles.

8

4. Implementation 9

The Web API supports multiple concurrent elections on a single instance. The
state of each election is stored in files on the server using the pickle package [13].
Pickle is used for serialization and de-serialization of Python object structures.
For security reasons it is very important to ensure that only ElectionGuard writes
and modifies files containing these pickle objects.
A fork of the official ElectionGuard Python repository was created to add my code
[14]. Most of this code is split into three files in the src/electionguardFlaskApi
folder. The file flask_app.py is the one that should be executed to start the pro-
gram, as it provides the endpoints for the users of the API. The task of handling
the loading and saving of election-specific data is separate and is always called
by the API endpoints. The most interesting part of fulfilling the actual consumer
request is done in a third file. It contains a lot of function calls to the existing
ElectionGuard code. The only change made to the original ElectionGuard code
itself was to disable ballot validation, which is not possible with the intended
Chaum-Pedersen proofs due to the re-encryption step. The ballot validation was
therefore replaced by the simpler method described above.

4.2 ElectionGuard Admin Device

This project includes a simple user interface for creating an election, calling the
tally endpoint, and clearly displaying the election results. It was implemented
with VueJS [15].

4.3 ElectionGuard Voting Terminal and Assistant

Since most of the changes to the original ElectionGuard protocol take place during
the vote creation phase, the Voting Terminal (VT) and the Voting Assistant (VA)
were the focus of this work. Both the VT and the VA are bundled in a single
project. JavaScript using the VueJS framework is used to create a reactive web
user interface.

Setup

A user opens the same website on two separate devices to start the voting process.
He then enters a random secret on both devices to link them together. A future
solution using QR codes would make this step a little easier for the end-user.
The communication between VT and VA is done over sockets using the library
socket.io [16]. Socket.io enables efficient real-time communication, eliminating
the need for each client to constantly poll for updates, resulting in a smooth user
experience. To achieve this, in addition to the process that serves the site, a
second process handles this communication by receiving messages and sending

4. Implementation 10

Figure 4.1: Interface of the Voting Terminal.

them to all other clients who have registered with the same secret. It is therefore
important that the user enters a long, random secret.

Candidate-color mapping

After the clients have established a connection, the next step is to present the
candidates to the user. VT receives the public candidate list for the first contest
and pairs each candidate with a random color from a predefined color set. It
displays this pairing (Figure 4.1) and sends the list of used colors to VA.

Encryption

The user decides which candidate to choose and selects the matching color on
the VA (Figure 4.2). Since the VA does not know the candidate-color mapping,
it cannot learn the choice as long as the VT is not malicious. The VA then en-
crypts a 1 for the selected color and a 0 for all other colors with the public key
of the election. It sends the resulting ciphertexts back to the VT in combination
with the corresponding colors. Using the previously generated mapping, VT as-
signs each candidate to the received ciphertext and re-encrypts it by multiplying
it with the encryption of 0. This process is repeated for each election contest.
Finally, VT sends the generated ballot, consisting of each candidate associated
with an encrypted 1 or 0, to the ElectionGuard Web API.
On the voting devices the open-source elgamal.js [17] library is used for encryp-
tion. Because ElectionGuard changed the encryption step as described in the

4. Implementation 11

Figure 4.2: Interface of the Voting Assistant, giving the voter the option to select
a color.

Cryptography section above, this change had to be incorporated into the elga-
mal.js library as well. The constants p and q used for encryption are hard-coded
into the project, similar to ElectionGuard.

Cast & Spoil decision

At the end of the encryption step, the generated ballot was sent to the Web API in
JSON format. To use further functionality provided by ElectionGuard, we need
to convert this ballot into a Python CiphertextBallot object. Internally, such
an object consists of all candidates in plaintext with either an encrypted 0 or 1
assigned to each candidate. Since this object is almost identical to our previously
generated JSON object, the conversion is quite simple. Only the encryption steps
provided by ElectionGuard can be omitted since we have already done this on
the voter’s devices. The last step a user has to take is to decide if he wants to
either cast or spoil the ballot. ElectionGuard already provides the functionality
to mark a CiphertextBallot accordingly. So it is sufficient to send this decision
to the web API which utilizes this functionality.

4.4 Registrar

In the initial phase of this project, I implemented a simple registrar. It can
be used to generate PINs to be distributed to the eligible voters for a specific
election. The registrar then provides a web API that enables consumers to:

4. Implementation 12

• Enter a ballot and PIN. If the PIN is valid, the API uses the RSA algorithm
to produce a signed version of the ballot.

• Provide a signature and let the API check if the signature is valid.

At the end of an election, the registrar is intended to publish all the signatures
along with the encrypted ballots. There is an additional verification script that
can be executed by anyone who wishes to verify those signatures.

4.5 Additional Code

4.5.1 Controller

The controller script was used to run an election using the old C] version of the
ElectionGuard Web API. Since Microsoft has deprecated this version, the script
is now obsolete.

4.5.2 Python Ballot Box

Similar to the controller script, the ballot box implementation in Python was
intended for use with the now outdated web API. Microsoft delegated the task
of keeping track of the IDs of the cast and spoiled ballots to the user, which
led to the creation of this script. It provided another web API to do just that.
Fortunately, this functionality was directly integrated into the revised version of
ElectionGuard.

Chapter 5

Conclusions

In the past, many different systems have been proposed for electronic voting.
Many of them lack a secure foundation, while others have made the leap into
practice. Some did both. What makes ElectionGuard stand out in this mix is
that it is developed by one of the largest technology companies in the world. Mi-
crosoft has very talented researchers with numerous publications in the field of
cryptography and voting. They also get the necessary attention from researchers
who take a second look at the system to possibly find design problems or errors
in the code. It remains to be seen how and if ElectionGuard will grow in the
future and possibly even be used in the US presidential election in 2020.
This thesis tries to present some ideas on how ElectionGuard can be used for
electronic remote voting, what the challenges are, and an approach for a possible
implementation. This implementation has not been subjected to a security anal-
ysis, neither has Artemis at the time of writing this thesis. It should therefore
not be used in real elections.

5.1 Further Ideas

The time constraints for this work allowed me only so much to do. I want to end
this thesis with a few improvements that could be considered in the future:

• Registrar: The current registrar is quite simple and not tightly integrated
into the system. Instead, the registrar could be split into multiple trustees.
This would aid in making sure that tokens don’t get linked to individual
voters and an accurate list of eligible voters is used.

• Web API: The web API currently does not support a real key ceremony,
but only one trustee. Furthermore, in the future, an SQL database could
be used instead of storing the state of an election in files. Solving both
tasks correctly is not trivial, therefore a simpler approach was chosen for
this project.

13

5. Conclusions 14

• Ballot validation: A clean solution for validating ballots needs to be
considered. Using Groth-Sahai proofs similar to Helios would be a possible
approach.

Bibliography

[1] “Building an end-to-end verifiable election using electionguard.”
[Online]. Available: https://github.com/microsoft/electionguard/wiki/
Building-an-End-to-end-Verifiable-Election-with-Electionguard

[2] M. Boss, “Artemis: Solving the secure platform problem for the helios e-
voting system,” 2020.

[3] B. Adida, “Helios: Web-based open-audit voting,” USENIX security sympo-
sium, 2008.

[4] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear
groups,” pp. 415–432, 2008.

[5] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” pp. 89–
105, 1992.

[6] J. Benaloh, “Electionguard preliminary specification v0.85.” [Online].
Available: https://github.com/microsoft/electionguard/wiki/Informal/
ElectionGuardSpecificationV0.85.pdf

[7] P. L. V. Hua Wu and F. Zagórski, “Privapollo – secret ballot e2e-v internet
voting,” 2019.

[8] S. Fleming, “The inside story of microsoft’s electionguard pilot in wisconsin,”
Microsoft News, 2020. [Online]. Available: https://news.microsoft.com/
on-the-issues/2020/05/13/microsoft-electionguard-pilot-wisconsin/

[9] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,
pp. 469–472, 1985.

[10] J. Benaloh, “End-to-end verifiability,” 2016. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/11/e2e-primer.pdf

[11] “Electionguard-python.” [Online]. Available: https://github.com/microsoft/
electionguard-python

[12] “Flask.” [Online]. Available: https://flask.palletsprojects.com/en/1.1.x/

[13] “pickle.” [Online]. Available: https://docs.python.org/3/library/pickle.html

15

https://github.com/microsoft/electionguard/wiki/Building-an-End-to-end-Verifiable-Election-with-Electionguard
https://github.com/microsoft/electionguard/wiki/Building-an-End-to-end-Verifiable-Election-with-Electionguard
https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecificationV0.85.pdf
https://github.com/microsoft/electionguard/wiki/Informal/ElectionGuardSpecificationV0.85.pdf
https://news.microsoft.com/on-the-issues/2020/05/13/microsoft-electionguard-pilot-wisconsin/
https://news.microsoft.com/on-the-issues/2020/05/13/microsoft-electionguard-pilot-wisconsin/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/e2e-primer.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/e2e-primer.pdf
https://github.com/microsoft/electionguard-python
https://github.com/microsoft/electionguard-python
https://flask.palletsprojects.com/en/1.1.x/
https://docs.python.org/3/library/pickle.html

Bibliography 16

[14] “Modified version of electionguard-python.” [Online]. Available: https:
//github.com/Fredilein/electionguard-python

[15] “Vuejs.” [Online]. Available: https://vuejs.org

[16] “Socket.io.” [Online]. Available: https://socket.io

[17] “elgamal.js.” [Online]. Available: https://github.com/kripod/elgamal.js

https://github.com/Fredilein/electionguard-python
https://github.com/Fredilein/electionguard-python
https://vuejs.org
https://socket.io
https://github.com/kripod/elgamal.js

	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 ElectionGuard
	2.2.1 Protocol
	2.2.2 Cryptographic Primitives
	2.2.3 End-To-End Verifiability

	2.3 Artemis
	2.3.1 Protocol

	3 Adaption
	3.1 Vote creation
	3.2 Authentication

	4 Implementation
	4.1 ElectionGuard Web API
	4.2 ElectionGuard Admin Device
	4.3 ElectionGuard Voting Terminal and Assistant
	4.4 Registrar
	4.5 Additional Code
	4.5.1 Controller
	4.5.2 Python Ballot Box

	5 Conclusions
	5.1 Further Ideas

	Bibliography

