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Abstract

This thesis extends the ETHVote system with another participant, called voting
assistant. The protocol to vote is adapted and the actual voting process takes
place on two devices. This improves the security of ETHVote significantly, as the
voting device no longer must be trusted. Additionally, a Benaloh Challenge was
added to increase the probability of manipulation detection.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 2

2.1 Apollo & PrivApollo . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Other E-Voting Systems . . . . . . . . . . . . . . . . . . . . . . . 2

3 Protocol 3

3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4 Voting Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4.1 Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.4.2 Vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4.3 Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.4 Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.5 Initialize Audit . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.6 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5 Non-Interactive Zero-Knowledge Proof . . . . . . . . . . . . . . . 7

4 Implementation 10

4.1 Voting Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Main Activity . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.2 Voting Activity . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Authentication & Authorization . . . . . . . . . . . . . . . . . . 11

4.3 State Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



Contents iv

4.4 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4.1 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5.1 Initial Administrator . . . . . . . . . . . . . . . . . . . . . 16

4.6 Implementation Challenges . . . . . . . . . . . . . . . . . . . . . 16

5 Security 18

5.1 Ballot-Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Receipt-Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Election-Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Authenticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5.1 Malicious Data by the Terminal . . . . . . . . . . . . . . . 19

5.5.2 Malicious Data by the Voting Assistant . . . . . . . . . . 19

5.5.3 Collaboration Between Terminal and Voting Assistant . . 20

5.6 Individual Verifiability . . . . . . . . . . . . . . . . . . . . . . . . 20

5.7 Universal Verifiability . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusion 21

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bibliography 22

A Acronyms A-1



Chapter 1

Introduction

While e-voting has been established in Estonia since 2005, it has a difficult stand
in Switzerland. There were two approaches in recent years. CHVote [1] was
developed by the canton of Geneva and has been in use in several cantons since
2003. The development of version 2.0 which should have been available on a
national scale, was stopped after two years in 2018 due to its costliness.

The second system which was a candidate for national e-voting was the Post
E-Voting [2]. This system was developed by the Spanish company Scytl. While
CHVote is completely open-source, the source code of the Post E-Voting is only
available after registration. The project was stopped in 2019 because of serious
flaws in the source code found in an intrusion test [3] in 2019.

Because both projects have been stopped, the Swiss government started a
redesign of the trial phase1 in June 2020. According to the government [4],
the benefits of e-voting in Switzerland are the impossibility of invalid votes, the
faster counting, and accessibility. Their basic principle is security before speed.
A key element, that a system is assumed secure, is verifiability. While previous
systems only had to be individually verifiable, future systems must be universally
verifiable.

This thesis is a continuation of ETHVote [5]. The previous version of ETHVote
was already universally and individually verifiable. But the voter could only verify
that some encryption was saved, but not if it corresponds to their actual choice.
We added a Benaloh Challenge [6] to increase the chance that vote manipulations
are detected.

Even more important than verifiability is the correctness of a voting system.
ETHVote was already correct under the assumption, that the voting device is
honest. To ensure correctness with an untrusted device, a second device, which
must actively participate, is added to ETHVote. With this thesis, correctness is
ensured, as long as at least one of the devices is honest. Even if both devices are
malicious, they must collude to manipulate the vote.

1https://www.bk.admin.ch/bk/en/home/dokumentation/medienmitteilungen.
msg-id-79556.html
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Chapter 2

Related Work

2.1 Apollo & PrivApollo

The Apollo voting protocol [7] adds a Benaloh Challenge [6] to Helios [8]. This
allows the voter to audit the vote on a second device. While this helps to detect
manipulations from the voting device, the voting device still must be trusted that
system is correct.

PrivApollo [9], an extension to Apollo, delegates the actual vote to a second
device. Through this separation, the terminal which encrypts the vote does not
know what the voter votes, since this happens on the second device. With this,
the criterium of correctness is fulfilled even if one of the devices is malicious.

2.2 Other E-Voting Systems

There are several other e-voting systems besides Helios, Apollo, and PrivApollo.
Some of them work similarly in some parts, and some of them work completely
differently.

Electionguard1 from Microsoft is a software development kit to verify that
votes were correctly encrypted. It is based on Josh Benaloh’s PhD thesis [10] and
uses a similar key generation mechanism as ETHVote, but a different encryption
scheme. It was never used productively yet.

Belenios [11] modifies the Helios protocol and does the key generation fully
distributed, which means that no trustees are needed. Belenios is implemented as
an online platform, like ETHVote. It was used already for academic, educational,
and association elections.

While all mentioned systems are open-source, there exist also closed source
solutions like Voatz2 which has already been in use for local government elections
in the USA. Voatz uses a blockchain to audit the votes.

1https://github.com/microsoft/electionguard
2https://voatz.com/
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Chapter 3

Protocol

The main ideas of the protocol are still the same as in the previous version of
ETHVote [5]. The only changed phase is the voting one, where an additional
participant, the voting assistant was added and the protocol was adapted. As
a consequence, the non-interactive zero knowledge proof (NIZKP) had to be
adapted as well.

3.1 Participants

While the participants are the same as in the previous version, we took the
terminology from PrivApollo [9] to clearly distinguish the two devices. This
results in the following participants.

• Voter: The human voter can read and compare strings and colors. The
voter decides which option they choose.

• Terminal: The web application, on which the voter votes. The terminal
initializes and casts the vote. The voter can audit the voting on it. In the
previous version, it was called “front end”.

• Voting Assistant: The voting assistant is used to audit the voting. In
ETHVote only active voting assistants exist, meaning a voting assistant
sends the choice of the voter to the server.

• Server: The server stores the voting data and the voters. The terminal
and the voting assistant communicate through the server. The server does
no computations except checking zero-knowledge proofs.

3.2 Model

To create a new vote, the following parameters must be chosen:

3



3. Protocol 4

• Z∗p : Cyclic group in which all computations will be performed.

• Trustees: The trustees generate the keys for encryption and decryption.

• Security Threshold: k, the number of trustees that have to participate
in key generation.

• Option Primes: To every option, a unique prime number is assigned.

For key generation, trustee i generates a secret polynomial si of degree k− 1,
and the corresponding public polynomial yi computed as in Equation 3.1. To
encrypt votes s and y as defined in Equations 3.2 and 3.3, are used as the private
and public key.

yi(x) := gsi(x) (3.1)

s := s(0) :=
∑
i

si(0) (3.2)

y := y(0) :=
∏
i

yi(0) (3.3)

In order to vote, a voter encrypts the prime number of their chosen option
with ElGamal encryption [12] in Z∗p with y as the public key. The resulting
ciphertext is a pair (α, β), where α does not depend on the vote, but β does.

For decryption, trustee i sends point si(j) to trustee j. Trustee j fetches
∏
αi

from the server and can then compute their decryption factor Dj as in Equation
3.4. d(x) is defined as a polynomial of degree k where d(x) = Dx for all known
Dx.

Dj := (
∏
i

αi)
s(j) = (

∏
i

αi)
∑

i si(j) (3.4)

When at least k trustees computed Dj , d(0) can be computed by doing La-
grange interpolation. With d(0) the product of the selected primes can be de-
crypted, however single votes can not be decrypted. Since the decrypted result
is a product of primes, votes can easily be counted by doing prime factorization.

3.3 Key Exchange

The voting assistant needs some information about the vote to participate in the
voting process. To exchange this data the terminal displays a QR code, which is
scanned with the voting assistant and contains the following data:
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• Server Address: The voting assistant can connect with the server listen-
ing at the server address.

• Vote ID: The ID of the vote, the voter currently participates in.

• Token: The authentication token of the terminal. The implemented au-
thentication mechanisms are described in Section 4.2.

• Secret Key: The secret key sk is generated by the terminal and used
to encrypt private data. sk is never sent to the server, meaning only the
terminal and the voting assistant know this key.

• Web-Socket Address: The voting assistant opens a web-socket with the
server through this address. Web-sockets are used to get fast state updates
as described in Section 4.3.

Scanning the QR code is possible as long the vote is open. This allows the
voter to reconnect the voting assistant with the server when the authentication
expires or the connection is closed. The voter can also use another voting assistant
and proceed there.

3.4 Voting Phase

The voter chooses their option on the voting assistant. This adds several actions
to our protocol. Figure 3.1 shows the states a vote can assume during the voting
phase and the actions needed to transition into those states. Blue actions must be
executed by the terminal, red actions by the voting assistant, and violet actions
can be executed by both devices. These states are voter dependent, meaning
each vote can be in different states at the same time for different voters. In this
section, the actions needed to transition between the states are described.

3.4.1 Initialize

To initialize the voting process, the terminal chooses n colors [c1, . . . , cn] where
n is the number of options. It then generates a random permutation π used to
assign each option a color. Additionally, a random number ri for every option i,
used as randomness for ElGamal encryption, is generated.

Since the terminal does not know which option will be chosen, it has to
encrypt all options and send the ciphertexts together with the assigned color to
the server. For every option, the terminal computes αi and βi as in Equations
3.5 and 3.6. g is a generator of Z∗p and was defined when the vote was created,
mi is the prime corresponding to option i, and y is the public key as defined in
Equation 3.3.
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Initial Ready Voted

Audit
Init

Audit
Ready

Cast

initialize

vote

reset

audit

reset cast

initialize audit

reset

reset

Figure 3.1: State machine for the voting phase

αi := gri (3.5)
βi := miy

ri (3.6)

Next, the terminal sends then the triplets 〈αi, βi, cπ(i)〉 to the server for every
option i. At the same time, it displays the mapping from options to colors to the
voter.

Additionally, it encrypts the list of colors with sk and sends the ciphertext to
the server. When the server receives the ciphertext, initialization is finished and
the vote transitions into the state “Ready”.

3.4.2 Vote

When the vote is ready, the voting assistant fetches the colors from the server,
decrypts them, and shows a button for each color to the voter. When the voter
chooses the color of their wanted option, the voting assistant sends the chosen
color to the server.

When the chosen color is saved on the server, the vote is in the state “Voted”
and the user has to choose whether they want to audit or cast the vote.
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3.4.3 Cast

When the voter decides to cast the vote, the terminal computes a NIZKP to
prove that all option primes were encrypted exactly once. Section 3.5 explains
the mathematics behind the proof. When the server receives the NIZKP, the
server checks if the proof is valid. If it is valid, the vote transitions into state
“Cast” and can not be changed any longer.

3.4.4 Audit

To audit the vote, the voter presses the “audit” button on the terminal or the
voting assistant. The targeted device then notifies the server that the voter wants
to audit the vote and the vote transitions into the “Audit Init” state.

3.4.5 Initialize Audit

When the terminal receives the new state “Audit Init”, it fetches the selected color
from the server. With the color, it checks which option s the voter voted for and
display this to the voter. Then the terminal looks up rs and sends {|rs|}sk to the
server, where {|x|}k notates symmetric encryption of x with key k.

The voting transitions into “Audit Ready” state when the server receives
{|rs|}sk. The voting assistant then fetches {|rs|}sk and the selected encrypted
option 〈αs, βs〉 from the server and decrypts {|rs|}sk. With ri all option primes
can be encrypted until 〈αi, βi〉 is found. When the encryption from the voting
assistant and the server matches the voting assistant found the selected option
and shows it to the voter.

After auditing the vote must be reset, such that the voter has no receipt for
what they voted.

3.4.6 Reset

When something failed or after auditing, a vote can always be reset. As soon as
the server receives the command to reset a vote, it will delete the already saved
data and update the state to “Initial”.

3.5 Non-Interactive Zero-Knowledge Proof

To create a NIZKP, the fact that ElGamal encryption is homomorphic is used.
“Proof Systems for General Statements about Discrete Logarithms” [13] describes
how proofs for linear relations among discrete logarithms can be created.
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To prove that the terminal encrypted the option primes, it computes r as in
Equation 3.7, where ri is the randomness used to encrypt option i (see Section
3.4.1).

r :=
∑
i

ri (3.7)

Because the prime number mi is known for every option i, the server can
compute β and β′ as in Equations 3.8 and 3.9 when it receives r.

β :=
∏
i

βi (3.8)

β′ := yr
∏
i

mi (3.9)

When it computed β and β′, the server can check that the following assump-
tions hold.

1. β′ = β

2. Exactly one ciphertext per option was sent.

When both assumptions hold, the server knows that the terminal encrypted
all option primes exactly once.

Proof. Equation 3.10 shows that β is equal to β′ when every βi is valid ciphertext
of option i.

β =
∏
i

βi =
∏
i

miy
ri = y

∑
i ri

∏
i

mi = yr
∏
i

mi = β′ (3.10)

If the terminal encrypts a number, which does not belong to the set of option
primes, the product of encrypted numbers is different from the product of all
option numbers because prime factorization is unique. It follows that

∏
βi 6=∏

miy
ri and further β 6= β′.

However, the terminal can combine multiple options. If there are for example
three options, “yes”, “no”, and “maybe” with the primes 2, 3, and 5 assigned
respectively, it can combine “yes” and “maybe”. It then encrypts 10 and 3 instead
of 2, 3, and 5. Because the product is 30 in both cases, β = β′ still holds. But
since the server also checks that exactly one ciphertext for every option was sent,
it detects the attack.

To create a valid NIZKP with invalid data, the terminal has to combine
options as described before. Additionally, it has to send some encryption of 1
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for every combined option, such that the total number of ciphertexts equals the
number of options. However, the voter will recognize this attack, when they
audit the vote because valid option numbers are always prime and neither 1 nor
a product of multiple primes, is prime.

To learn anything about single options, the server has to decrypt ElGamal
ciphertexts. For this, the private key or the randomness is needed. Because
the private key is distributed under the trustees, nobody has the whole private
key. A single randomness ri can also not be computed, because there are infinite
possibilities to sum up r.



Chapter 4

Implementation

The code of the previous version of ETHVote [5] was used as a base. While
the terminal and the server only needed adaptions to work with the extended
protocol, the voting assistant was built from scratch.

4.1 Voting Assistant

The voting assistant is implemented as an Android app. Kotlin is used to get
a clear code with small overhead. For network requests and other background
tasks as decryption, coroutines were used. Coroutines make it easy to define the
thread on which a function should run.

To keep the app small and trustable, only a few libraries, besides standard
Android libraries, are included. Namely, ZXing1 to scan and decode QR codes,
Retrofit2 for network requests, and Moshi3 to parse and write JSON.

The app contains two activities. The main activity to scan and decode the
QR code and the voting activity to vote and audit. Screenshots of both activities
can be seen in Figure 4.1.

4.1.1 Main Activity

The main activity is responsible to scan the QR code displayed on the terminal.
The QR code contains the five values described in Section 3.3, separated by
“;”. If the QR code contains valid data, the voting assistant saves the data and
vibrates. This vibration tells the voter that the QR code was successfully scanned
and decoded, and that they can proceed with the voting process.

To convince the voter that the data was read correctly, a fingerprint of the
data is shown on the terminal and the voting assistant.

1https://github.com/journeyapps/zxing-android-embedded
2https://square.github.io/retrofit/
3https://github.com/square/moshi

10
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(a) Main Activity (b) Voting Activity

Figure 4.1: Screenshots of the voting assistant

4.1.2 Voting Activity

When the voting assistant enters the voting activity, it will first fetch all required
data for the selected voting. Additionally, it subscribes to state updates. On
every state update, it fetches the required data, decrypts it if necessary, and
updates the user interface. In Section 3.4 is described what data is fetched in
which state.

If the voter presses the audit or reset button, the voting assistant sends the
command to audit or reset respectively the voting to the server. If the voter
chooses a color, the voting assistant marks the chosen color and sends it to the
server.

4.2 Authentication & Authorization

Shibboleth is used to authenticate voters. With this, a secure authentication
mechanism is guaranteed, without much effort. It is also convenient for the voter
as they can use their well-known username and password combination and do
not have to register to yet another platform.

While Shibboleth already provides a name, an email address, and a unique
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{
"subId": "3",
"sub": "Tobias Ballat",
"registered": true,
"exp": 1599570354,
"device": "TERMINAL",
"numberOfVotesWithTrusteeRole": 7,
"subRoles": [

"ADMINISTRATOR",
"VOTING_ADMINISTRATOR"

]
}

Listing 4.1: Example payload of a JWT

ID, this is not enough to authorize the voter. ETHVote has a role system, where
each voter can have one or multiple roles. Additionally, the voting administrator
can only authorize registered voters to vote. Voters can either register themselves
or be registered by a registrar or an administrator.

Therefore, JSON Web Tokens (JWTs) [14] are used to authorize voters. List-
ing 4.1 shows an example payload of an ETHVote JWT. It contains the following
data.

• subId: The ID of the voter, used to identify them by the system.

• sub: The name of the voter, used to identify them by other voters.

• registered: Whether the voter is already registered.

• exp: Timestamp when the token expires. To not bypass Shibboleth a new
Token is valid only 10 minutes. This forces to authenticate the voter by
Shibboleth every 10 minutes. Because the Shibboleth session is valid longer,
this can be done by the terminal, without any interaction from the voter.
When the terminal receives an unauthorized error from the server, it sends
an authentication request with the Shibboleth session cookie, and if this is
successful it sends the failed request again.

• device: The device type on which the voter is authorized. This is used
by the server to check, that actions are only performed from a legitimate
device.

• numberOfVotesWithTrusteeRole: A number indicating in how many
votes the voter is a trustee. When the voter is a trustee in at least one
voting, the terminal displays the trustee-interface to them.
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• subRoles: A list of roles the voter has. It can contain "ADMINISTRATOR",
"VOTING_ADMINISTATOR" or "REGISTRAR". The terminal reads the roles to
show the corresponding interfaces to the voter and the server to authorize
the performed actions.

To prevent a voter to manually log in again on the voting assistant, the token
of the terminal is sent to the voting assistant via QR code as described in Section
3.3. The voting assistant uses the terminal token to authenticate the voter on
the server and receives a valid voting-assistant token.

4.3 State Updates

With the voting assistant, multiple devices can send requests to the server, which
will then update the voting state. Therefore, it is not enough sending the new
state as a response to the request, because only the device that sent the request
would receive the new state.

As a countermeasure, web-sockets were introduced. When a device wants
to get state updates, it opens a socket to the server. The device sends the
authorization token as the first message. If the token is valid, the server saves
the connection and assigns the voter’s ID to it.

The server sends the new state, together with the ID of the changed vote to all
sockets belonging to the originating voter. This allows all devices to update their
user interface right after a state change, even when another device initialized the
change.

HTTP requests are parsed by Apache httpd4, serving the terminal, and for-
warded to Apache Tomcat5, serving the server via AJP6. Because AJP cannot
handle web-sockets the socket request must be sent directly to Tomcat. This is
the reason that the QR code contains the server address and a separate web-
socket address as described in Section 3.3.

4.4 User Experience

The user experience is very similar to the one in the previous version. Material
design is still used on the terminal and now also on the voting assistant. The
changes made for this new version are described here.

4https://httpd.apache.org/
5https://tomcat.apache.org/
6https://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

https://httpd.apache.org/
https://tomcat.apache.org/
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sudo docker-compose up -d --build

Listing 4.2: Command to build and start ETHVote

4.4.1 Colors

Colors for the options are taken from the Material design guidelines7, which the
components follow too. If there is a feasibly small number of options, colors with
big distances are chosen, such that they are easily distinguishable. To ensure
color-blind people can vote as well, the name of the color is also displayed.

When the voter resets their vote, the colors for the options are reshuffled as
described in Section 3.4.6. As you can see in Figure 4.2, completely new colors
are taken after a reset. This ensures that the voter notices that the colors have
changed and does not press the same color again without checking to which option
it now belongs.

4.4.2 Instructions

Since the complexity of the voting process has increased, instructions were added
to the terminal. The instructions tell the voter what they have to do, and on
which device they have to do it, to continue the voting process.

4.5 Deployment

To deploy ETHVote, Docker containers8 are created for the database, the server,
and the terminal. Docker Compose9 is used to start all containers with one
command (see Listing 4.2). Docker Compose also creates a local network between
the docker containers and backs up the database to the host operating system.

For configuration, environment variables stored in a file .env, are used. This
makes it easy to configure and deploy ETHVote on different environments, with-
out having to adapt the code. It also ensures that all passwords and secrets used
are only stored locally, and not for example in a git repository.

The voting assistant is an Android application, which can be built via script.
The passwords needed to sign the application, are also set in .env. When the
script is executed, it will copy the built application into the terminal container.
This ensures that a voter always can download a voting assistant which works

7https://www.materialui.co/colors
8https://www.docker.com/resources/what-container
9https://docs.docker.com/compose/

https://www.materialui.co/colors
https://www.docker.com/resources/what-container
https://docs.docker.com/compose/
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Figure 4.2: Terminal before and after reset
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Figure 4.3: Terminal on a mobile phone

with the current version of ETHVote. In Figure 4.3 the button to download the
app can be spotted in the top bar. The button is already visible before the voter
is authenticated, to prevent that the voter has to log in on the smartphone.

4.5.1 Initial Administrator

Newly registered voters have no special roles by defaul, but only administrators
can add roles to voters. To ensure that ETHVote always has an administrator, the
environment variable ADMIN_SHIBBOLETH_IDS can be set. As the name suggests
a list of Shibboleth IDs is taken, and if a voter is registering and the Shibboleth
ID is in this list, the administrator role is assigned to this voter.

4.6 Implementation Challenges

While some elements could be easily implemented because a codebase already
existed, there were also more challenging elements. For example, making the
whole system configurable with one single configuration file was quite tricky be-
cause the server, terminal, database, and voting assistant must listen to this file.
While in the previous version each component had a different way of handling the
configuration, there is now only one single place to configure the whole system.
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Another tricky part was the QR code scanning. There exist a lot of libraries
for this, but this made it difficult to choose the right one. And camera manage-
ment is difficult in Android apps because there exist a lot of different devices.

While adding new endpoints to the server was easy, modifying the terminal
was more difficult. To make the terminal more adaptable, a lot of code had to be
refactored first. Also implementing a secure authentication mechanism, that is
easy to use for the voter, was challenging. Checking the NIZKP on the server was
another challenge because the server did not any mathematical computations at
all before.



Chapter 5

Security

In this thesis, the security of the previous version of ETHVote [5] was improved.
All security requirements holding in the previous version still hold. Therefore,
the focus in this chapter is set to the improved parts.

5.1 Ballot-Privacy

As long the trustees follow the protocol, ballot-privacy is achieved, because all
options are encrypted before they are sent to the server and the decryption factors
can only be used to decrypt the product of votes, but not to decrypt single votes.

Ballot-privacy can be broken, when k trustees collude. For this k trustees
must exchange their parts of the secret polynomial. With k points of the poly-
nomial s(0) can be computed, which is the private key of the encrypted votes.

5.2 Receipt-Freeness

While the new protocol makes getting a receipt of the vote more difficult, it is still
possible. For this, a malicious terminal saves all ri, used to encrypt the options,
as a receipt. When the vote is published it encrypts all option primes once with
every ri. When the encryption matches the published encryption, it found the
voted option.

To get the voted option of a vote with n options, an attacker needs at most
n2 tries. However, because n is very small, this does not matter.

5.3 Election-Fairness

It is not possible to receive any information about the voting outcome before the
vote is closed, because the voting phases are strictly separated.

18
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5.4 Authenticity

Authenticity is achieved because the terminal and the voting assistant must au-
thenticate the voter. The server accepts only authenticated vote requests, and
only as long as the vote is not cast.

5.5 Correctness

The attacks described in “ETHVote - A Distributed E-Voting Application" [5]
during key derivation and decryption phase are still mitigated by the same coun-
termeasures because those phases did not change.

Attacks during the voting phase are even more difficult to perform. While
in the previous version the terminal must be trusted, the new protocol ensures
correctness also when at least one of the terminal and the voting assistant is
honest. The following two attacks are mitigated by the new protocol.

5.5.1 Malicious Data by the Terminal

While in the previous version sending an invalid option was already detected,
the terminal could just send a wrong but valid option. To encounter this, in
this version the voting assistant has to send the vote. And the new NIZKP as
described in Section 3.5 forces the terminal to send valid ciphertexts for every
option available, such that sending invalid options is still not possible.

The manipulation, the terminal can do is showing a wrong mapping to the
voter. For example, it can send the mapping (“yes” 7→ “red”, “no” 7→ “blue”)
to the server but display (“yes” 7→ “blue”, “no” 7→ “red”) to the voter. This
falsifies the outcome, but an attacker has no benefit from it because the selection
of the options is made on the voting assistant. Therefore, the probability to get
voted is 50% for both options. Additionally, the voter notices the manipulation
when they audit the vote.

5.5.2 Malicious Data by the Voting Assistant

The color chosen by the voter is the only data the voting assistant sends to the
server. Therefore, the only manipulation is to send a different color than the
chosen one. This manipulation has the same limitations as described in Section
5.5.1 where the terminal displays a wrong mapping. Namely, an attacker has no
benefit from it and the manipulation is noticed when the voter audits their vote.
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5.5.3 Collaboration Between Terminal and Voting Assistant

While neither a malicious terminal nor a malicious voting assistant can falsify
the voting on their own, there exists an attack if both collude. For an attack,
the terminal must be able to send the mapping of options to the voting assistant.
With this information the voting assistant sends the color, corresponding to the
preferred option, no matter which color the voter has chosen.

Since the terminal and the voting assistant are malicious, they also collude
during the audit phase. This is necessary so the voter does not recognize the
attack. But when both devices display the option wanted by the voter instead of
the transmitted one, the voter will not notice the attack.

To mitigate this attack, the voting assistant and the terminal runs on physi-
cally different devices. This makes it difficult to communicate directly. The direct
communication channel of the QR code cannot be used, because the voter could
reset the vote after they scanned the QR code. But it is still possible for the
terminal and the voting assistant to communicate with each other. For example,
they could encrypt data with their secret key sk.

To convince the user that a malicious terminal is the official one, a man-in-the-
middle-attack must be performed. Therefore, ETHVote is only available through
HTTPS. Imitating a mobile app is even more difficult. Each mobile application is
signed. When the attacker presents the malicious app as an update, the operating
system will prevent the user from installing the update, because it is signed with
a different key.

If ETHVote is used for a security-relevant vote, the voting assistant app should
also be published to the official app stores. When the voting assistant can be
downloaded from the terminal, it is easy for a malicious terminal to serve a
colluding voting assistant.

5.6 Individual Verifiability

Individual verifiability is fulfilled because all encrypted votes are published. There-
fore, a voter can check if some encrypted vote was saved for their voter ID. Addi-
tionally, the voter can audit their vote before casting. With this, they challenge
the system to prove that it encrypts correctly.

5.7 Universal Verifiability

Universal verifiability is fulfilled because all encrypted votes and decryption fac-
tors are published. To check that everything is correct, the decryption of the
encrypted votes can be recomputed.



Chapter 6

Conclusion

ETHVote was secured by adding a new participant, the voting assistant. This
made ETHVote correct even with an untrusted Terminal. To break correctness
an attacker must now manipulate two applications, namely the terminal and the
voting assistant, and convince the voters to use the manipulated devices.

6.1 Future Work

There still exist several options to improve ETHVote. While it is theoretically
already possible to add up to 45 options to a vote, it is not very usable. Because
the voter must be able to distinguish from 45 colors and scroll on a mobile phone
until they find the wanted color. There is the possibility to extend ETHVote
similar to the system used for Swiss national elections. Meaning that the voter
first has to choose a color for the party of the candidate and after this a color for
the candidate.

Another extension would be to allow multiple votes. Right now it is only
possible to choose one option. For an election with n candidates for m seats,
a voter should probably have m votes. Or it should even be possible to give
multiple votes to one option. In Swiss national elections, a voter has several
votes and can give either zero, one, or two votes to a candidate.

While the separation idea of PrivApollo [9] is already implemented, Priv-
Apollo also shows a message for every data posted on the server on all devices.
This helps the voter to ensure that the correct data was saved on the server. This
addition would also be possible in ETHVote.

The voting assistant is now only an Android application. To allow more voters
to participate in a vote an iOS application should also be available.

To improve confidence about ETHVote it would also be possible to verify the
used protocol. For this, a tool like for example Tamarin1 could be used.

1https://tamarin-prover.github.io/
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Appendix A

Acronyms

NIZKP non-interactive zero knowledge proof

JWT JSON Web Token

A-1
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