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Abstract

Combinatorial auctions (CAs) allow an auctioneer to match their goods to bun-
dles, individually composed by the bidders, at competitive prices. CAs gained
importance as tools for auctioning ranges (like time slots or frequency licenses).
This Master’s thesis studies over-bidding in CAs with single-minded bidders.
First, we confirm that there are no over-bidding strategies for non-decreasing
payments. Then we focus on the widely used quadratic payment rule – which
is not non-decreasing – and aim to find a minimal example of over-bidding. We
developed the notion of CA classes, mapping CAs with equivalent behavior onto
a graph. Therefore, we are able to list CA classes by increasing number of bid-
ders. Based on an analysis of the CA class represented by star-graphs, we prove
that CA classes with a single effective core constraint are robust against over-
bidding. This result helped us to show that for four or fewer bidders, there are
no over-bidding strategies in single-minded CA. We list the candidate CA classes
on five bidders, for which over-bidding strategies could exist, and conclude with
an analysis of two candidate classes.
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Chapter 1

Introduction

1.1 Motivation

Just this week, Paul Milgrom and Robert Wilson where honored with the Nobel
Memorial Prize in Economics for their work on auction theory. Auctions are well
established mechanisms to sell unique goods with unknown value at a competitive
market price. Combinatorial Auctions (CAs) are auctions which allow the bidders
to bid on bundles (sets of items), instead of being limited to place bids on single
items. The CA Mechanism is given by a payment function and an allocation
algorithm, which are evaluated on the placed bids. The auctioneer collects all
bids and then determines the winners of the auction according to the allocation
algorithm. The allocation states which bids are winning under the following two
constraints.

• For every bidder, none or a single bid placed by this bidder are winning.

• Every item may belong to at most one winning bundle corresponding to a
winning bid, or simply put - every item can be sold exactly once.

Then the winning bidders acquire their winning bundle in exchange for a payment
dictated by the payment function. By bidding on sets of items, CAs let bidders
express complex valuations. For example a completed collection may be worth
more than the summed values of the individual pieces it contains. Or there might
be diminishing returns when adding interchangeable items to a bundle.

CAs are especially well suited when auctioning off continuous ranges, like time
slots for ads or radio spectrum licenses. CAs have found widespread use in
practice, some applications amount to multi-billion dollar business [1, 2]. This
sparks the interest to have well understood CA Mechanisms, which adhere to
certain game theoretical properties. There is tension between providing the right
incentives to the bidders, such that they don’t attempt to manipulate the auction,
while maximizing the reported social welfare (sum of winning bids) among the
bidders and maximizing the revenue of the auctioneer.

1



1. Introduction 2

For the widely used quadratic payment-rule [3], examples of profitable over-
bidding have been noted [4]. Specific circumstances allow a bidder to favorably
manipulate the auction by placing an over-bid greater than the individual private
value of the bundle. Under -bidding strategies (bid shading) are not problematic
in the same way. In a competitive environment a bidder risks not acquiring
a bundle when bidding too low. Over-bidding on the other hand is not self-
regulating. Over-bidding can be damaging to the other bidders and the auctioneer
as well as reduce the trust in the auction mechanism as a whole.

1.2 Objective

In this Master’s thesis we study over-bidding strategies in CAs. We aim to under-
stand what properties of valuation lead to profitable over-bidding. This knowl-
edge could then be used to design CA mechanisms which cannot be manipulated
by over-bidding.

We begin by studying the existence of over-bidding strategies. In general CAs
there are examples of over-bidding strategies with just three bidders. When
placing multiple bids, over-bidding a losing bid can potentially lower the payment
of ones winning bid. On the other hand, in single-minded CAs, where each bidder
places exactly one bid, the sole example of profitable over-bidding known to us
encompasses eleven bidders. This is a quite complex example, due to the NP-hard
nature of the optimization problems of winner determination and core-selecting1

payment. This thesis focuses on single-minded CAs, with the aim to find a
minimal example (w.r.t. the number of bidders) of over-bidding. We strive to
prove that no over-bidding strategies exist for CAs with up to n players before
considering examples with n+ 1 players.

The search for a minimal example of over-bidding in single-minded CAs should
help us understand what factors are essential to the existence of profitable over-
bidding. Further, we hope to learn about CA scenarios where no over-bidding
strategies exist.

1The core property will be formally introduced at definition 2.7. It requires that after the
auction based on the reported bids there is no subset of bidders which can mutually improve
their utility by trading acquired items among themselves.



Chapter 2

Preliminaries

We study auctions from the perspective of Game theory. The base assumptions
are that each player (the bidders and the auctioneer) are independent, rational
and selfish. Each player aims to maximize their personal utility, by rational
decision making based on their respective incomplete knowledge. Let us begin
by introducing the first price sealed-bid auction, also known as blind auction. It
will serve as a comparison to the combinatorial auction (CA).

2.1 Blind auction

Given a set of M goods (items) to be auctioned off and and a set of N bidders
(players/participants). For every item j ∈ M , each bidder i ∈ N has a private
valuation vi(j) ∈ R≥0. The valuation represents the true value bidder i would
have from owning item j. This information is considered private and is not
available to the other players. In every round one item is sold as follows. Each
bidder places a sealed bid on the item. The auctioneer collects all bids and
selects the highest bidder. The highest bidder pays the submitted price (first
price) in exchange for the item. That way the bids that didn’t win remain hidden
information to the other bidders.

2.2 Combinatorial Auction (CA)

Given a set of M goods and N bidders. For each bundle of goods K ⊆M , each
bidder i has a secret value vi(K) ∈ R≥0 and may submit a bid bi(K) ∈ R≥0. We
can choose to limit every player to bid on at most r bundles. If r = 1 we call
the auction single-minded, for r > 1 multi-minded. This Master’s thesis studies
single-minded CAs (SMCA). For simplicity the definitions have been adapted
accordingly. There’s a single round of bidding where every participant i ∈ N
places one bid bi. The bid bi declares which bundle player i is willing to purchase,
and the bid value represents the highest price player i is willing to pay for this
bundle. The bid profile b = (b1, ..., bn) denotes all bids placed in the auction.

3



2. Preliminaries 4

A CA mechanismM = (X,P ) is given by a winner determination algorithm
X and a payment function P . The winner determination selects the winning
bundles. Every winning bundle is awarded to the player placing the corresponding
winning bid in exchange for the payment determined by the payment function.
As Game theory dictates, each bidders goal is to maximize their own utility. The
utility ui for player i is given by the private valuation of the assigned bundle
minus the corresponding payment: ui(b) = vi(X(b)) − pi(b,X(b)). Both the
valuation vi and the payment pi depend on the allocation algorithm X and the
bid profile b. We first introduce the allocation algorithm X then the payments
P . The social optimum is given by the allocation that maximizes the sum of
valuations of the winning bundles. However the valuations are private, so the
best the auctioneer can do is to maximize the reported social welfare.

Definition 2.1. Let W (b, x) =
∑n

i=1 bi(xi) be the reported social welfare
achieved by an allocation x. Let W (b−i, x−i) =

∑
j 6=i bj(xj) and W (bL, xL) =∑

j∈L bj(xj). Let XL(bL) be the set of allocations x maximizing the social welfare
of bids in L ⊆ N , W (bL, xL).

Definition 2.2. Allocation (winner determination) X(b) is an allocation algo-
rithm which returns efficient allocations x.At the i-th position the allocation x
indicates if the i-th bid (and hence the i-th player) is winning xi = 1 or losing
xi = 0. An allocation is said to be efficient if it maximizes the reported social
welfare: maxxW (b, x) = maxx

∑n
i=1 bi(xi). This optimization problem is subject

to the following two constraints.

• Every bidder can be assigned one or none of its bids as a winning bundle.

• Every item can be sold once in its entirety, or else it will remain unallocated.

Every efficient allocation x ∈ X is realized with the same probability, i.e. in cases
of ties x is selected uniformly at random among all efficient allocations.

This thesis examines over-bidding in single-minded combinatorial auctions
(SMCA). To do so we introduce a definition of over-bidding strategies and nota-
tion.

Definition 2.3. Over-bidding strategy: Considering bidder i with valuation
vi(K) for bundle K, and fixed bids of all other player b−i. An over-bidding
strategy exists for player i on bundle K if there is some bid value boi > vi, such
that the resulting utility of the over-bid placed on bundle K is strictly greater
than the utility of the truthful bid bvi (on the same bundle). To shorten notation
we write bo = (boi , b−i) and bv = (vi, b−i). Formally we say that there exists an
over-bidding strategy if there is at least one participant i who, for some bids b−i,
can increase the utility ui by over-bidding on some bundle rather than bidding
their true valuation:

ui(b
o) = vi(X(bo))− pi(bo, X(bo)) > vi(X(bv))− pi(bv, X(bv)) = ui(b

v)
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With simplified notation we express that there is an over-bidding strategy if for
some i ∈ N it holds that ui(bo) > ui(b

v).

We say a CA mechanismM = (X,P ) is robust against over-bidding strategies
if there exist no over-bidding strategies in M. We will study the existence of
over-bidding strategies in single-minded CA, and consider the following payment
rules.

2.3 Payment-functions and related properties

Definition 2.4. Voluntary participation holds when no bidder risks an out-
come resulting in a negative utility when bidding truthfully. In other words,
losing bidders pay zero and winning bidders are never required to pay more than
the placed bid; ∀i ∈ N : pi ≤ bi.

We only consider payments which satisfy voluntary participation.

Definition 2.5. First price payment: The winning bidders payment is equal
to the corresponding winning bid; ∀i ∈ N : pi(b, x) = bi(xi).

Right from the start we can state that there are no over-bidding strategies for
the first price payment. If an over-bid is not winning, the utility and payment
are zero. A winning over-bid on the other hand leads to negative utility of
ui = vi − boi , as by definition boi > vi. Sounds like the first price payment has
all the properties we are looking for! Yes and no, the first price payment has
another issue. A truthful bid always results in zero utility, for a losing as well as
a winning bid. Hence the only way to generate a positive utility for a bidder is
to under-bid. In practice the first price payment is not used for CA. The lacking
incentives to bid truthfully lead to a worse seller revenue when compared with
other core-selecting payments. We will use the first price payment as a reference
point – an upper-bound of the other payments.

The Vickery-Clarke-Groves (VCG) payment, is the unique payment rule which
results in a truthful CA mechanism with allocation algorithm X. We denote the
VCG-payment as pV , and for a specific bidder i, we write pVi .

Definition 2.6. The VCG-payment is given by the maximal reported social
welfare excluding i’s bid minus the reported social welfare of the winning alloca-
tion excluding the i-th bid: x−i = x \ xi

pi(b, x) := W (b−i, X−i(b−i))−W (b−i, x−i)

The VCG-payment pVi is a measurement of player i’s contribution to the
solution. It represents the difference of the best solution would i not participate
to the remainder of the solution after removing i’s share. Note that the own bid
bi has no influence on the payment pVi .
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Definition 2.7. The core is the set of all points p(b, x) which satisfies the
following constraint for every subset L ⊆ N :∑

i∈N\L

pi(b, x) ≥W (bL, XL(bL))−W (bL, xL)

A payment is called core-selecting if the payment point always lies within the
core.

The core is described by lower bound constraints on the payments such that no
coalition can form a mutually beneficial renegotiation among themselves. Those
core constraints impose that any set of winning bidders must pay at least as
much as their opponents would be willing to pay to get their items. The first
price payment always lies within the core. In fact it’s an upper-bound of the
core.

Definition 2.8. The minimum revenue core forms the set of all points p(b, x)
minimizing

∑
i∈N pi(b, x) subject to being in the core.

2.3.1 Core-selecting payment functions

Let us look at an example to better understand the core and the various payment
functions we will define.

Example 2.9. We consider a single-minded combinatorial auction (SMCA) with
three bidders and two items. We name the bidders A, B, C and the items 1,2.
Player A bids 7 on the single item 1, player B bids 5 on item 2 and player C bids 9
on the bundle containing both items 1 and 2 (table 2.1). We note the bid-profile
b = (7, 5, 9). For those bids we consider the payment outcome p(b) for various
payment functions p. First we evaluate the core. To do so we determine the
winners, which are A and B. Selling the items individually to A and B amounts
to a reported social welfare of 12, whereas the second best solution sums to 9,
when selling both items to bidder C. The core constraint on the winning bidders
payment is pA + pB ≥ 9, as player C is willing to pay 9 for the items. All other
core constraints are less restrictive, they don’t further describe the core. Thus,
combined with the upper-bound by the first price payment the core is given as
the green triangle drawn in figure 2.1.

Definition 2.10. TheVCG-Nearest payment rule (quadratic payment, VCGN)
picks the closest point to the VCG-payment within the minimum-revenue core
with respect to euclidean distance.

For the bid profile b taken from example 2.9, the VCG payment for player A,
equals 4: the second best solution when A does not participate has a reported
social welfare of 9. Then we subtract 5, the sum of other bids in the winning
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bidder bundle bid b x First price pV VCGN Proxy Prop
A {1} 7 1 7 4 5.5 4.5 21/4
B {2} 5 1 5 2 3.5 4.5 15/4
C {1, 2} 9 0 0 0 0 0 0

Table 2.1: Example 2.9, the outcomes for the various payments.

allocation. VCG payment for player B is 2. The sum of VCG payments is equal
to six. The core requires that pA + pB ≥ 9, thus the VCG-Nearest rule closes the
distance to the core by adding each of the winning bidders 3

2 to their payments.

Definition 2.11. The Proxy payment selects the point in the core with min-
imal euclidean distance to the origin (zero payments) for winning bids. Losing
bids have a payment of zero. Equivalently we can define it as the unique point
in the core being of the form pi(b, x) = min[α, bi] for some α ≥ 0.

In example 2.9 the proxy payment is 4.5 for each of the two winning players.
This corresponds to the closest point in the core from the origin.

Definition 2.12. The Proportional payment for winning bids, is given by the
point within the core that minimizes the total payment

∑
i∈N pi(b, x) and is of

the form pi(b, x) := α · bi(xi) for some α ≥ 0 ≤ 1. Losing bids have a payment
of zero.

Continuing example 2.9, the proportional payment (pA, pB) = (21
4 ,

15
4 ) lies at

the intersection of the diagonal, connecting the origin to the first price point,
with the core constraint.
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Figure 2.1: SMCA example 2.9 illustrates the core (green triangle), and various
payment points: first price, proxy, proportional (Prop), VCG-Nearest and VCG
payment.

2.4 Computation

Evaluating the outcome of CAs for specific bids is rather complex to do by hand.
In general winner determination as well as determining the core-selecting pay-
ments are NP-hard problems. To solve examples and validate assumptions we
coded a solver in C++ using the CGAL library [5]. The code can be found in
gitlab with this URL: https://github.com/meiera-CAOS/CAOS. Here’s a short
overview of the implemented functions:

https://github.com/meiera-CAOS/CAOS
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• winner determination (LP / bruteforce)

• core allocation (LP / bruteforce)

• payment functions

– fist price

– VCG

– VCG-Nearest (QP)

– Proxy (QP)

– Proportional (limited precision binary search over LP)

• print functions to output bids, winner determination, payments

In brackets noted are the techniques used for the computation. LP, QP stand for
linear program and quadratic program respectively. A cleaner implementation of
winner determination would be to use integer programming, which only allows
for integer solutions. The implementation was tested by comparing the outputs
to known examples from research1.

2.5 Examples of over-bidding

In this section we give two examples of over-bidding in CAs, one for multi-minded
bidders and one for single-minded bidders.

2.5.1 Over-bidding in multi-minded CA

The example on multi-minded bidders for the VCGN-payment is based on an
example from the paper [4]. The auction consists of three bidders A, B, C and
two items 1,2. The truthful bid-profile bv is given as follows: A bids 4 on the
bundle {1}, B bids 4 on {2} and 5 on {1, 2}, C bids 6 on {1, 2}. The over-bidding
bid-profile bo is identical to bv, except that B over-bids 7 instead of 5 on the
global bundle {1, 2}. In both cases the maximal reported social welfare is equal
to 8 where bidder A and B acquire a single item each. Therefore the bids of 4 on
an individual item are the winning bids. The payment outcomes are illustrated
in figure 2.2. By over-bidding the losing bid on the global bundle, bidder B
increased the VCG-payment of player A from 2 to 3. This results in a decrease
of the over-bidders VCGN payment pB by half a unit. Note that the winning bid
of player B remaines unchanged.

1The tests are listed in the testsets folder of the aforementioned git repository.
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Figure 2.2: On the left, the payment outcome for the truthful bid-profile bv, on
the right the changes due to the over-bid in bo.

2.5.2 Over-bidding in single-minded CA

In single-minded CA, as every bidder places exactly one bid, a bidder cannot
manipulate the auction by misrepresenting one of their losing bids. Hence ev-
ery over-bidding strategy is limited to over-bidding the winning bid. The over-
bidding example in SMCA with VCG-Nearest payment shown in table 2.2 moti-
vates our search for a minimal example. We are not aware of an example on less
than eleven bidders.
This example is quite complex, we can see this by looking at the core. Every

one of the 211 possible subsets of bidders adds a core constraint which might
impact the payment outcomes. Further, every core constraint depends on the
optimal winner determination within the subset - an NP-hard problem on it’s
own. To analyze over-bidding for the VCGN payment in SMCA, examples with
less bidders would reduce the complexity considerably. If we had an example of
over-bidding which is proven to be minimal, this could help crystallize the essen-
tial conditions where over-bidding strategies exist. Also it would imply that all
auctions with fewer bidders are robust against over-bidding.



2. Preliminaries 11

bidder bundle bid bv over-bid bo pV (bv) pV (bo) pV CGN (bv) pV CGN (bo)

#1 {1} 5 5 2 1 37/12 36/12
#2 {2} 5 5 0 0 16/12 18/12
#3 {3} 4 5 1 1 37/12 36/12
#4 {4} 1 1 0 0 7/12 6/12
#5 {5} 1 1 0 0 7/12 6/12
#6 {6} 1 1 0 0 10/12 12/12
#7 {1, 2, 4} 5 5
#8 {2, 3, 5} 5 5
#9 {1, 3, 6} 7 7
#10 {4, 5, 6} 2 2
#11 {2, 3, 4} 5 5

Table 2.2: Over-bidding example in SMCA on eleven bidders from Bosshard18 [4].
Bidder #3 over-bids their bid on bundle {3}, causing a decrease in the VCG-
payment (pV ) of bidder #1 and a decrease in the over-bidders VCG-Nearest
payment (pV CGN ).
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Related work

For spectrum auctions1 the benefits of combinatorial auctions over classical auc-
tion mechanisms have been studied. Most notably, CA allow "alternative tech-
nologies that require the spectrum to be organized in different ways to compete
in a technology-neutral auction." [1]

The computational complexity of CAs has been addressed as an initial hurdle
to implement CA mechanisms in practice [6]. Over the years, increased com-
putational power and more efficient algorithmic solutions, coupled with some
complexity limiting design choices, allowed the effective use of CAs. The impact
w.r.t. efficiency and revenue of the two main design choices – compact or fully
expressive bids and first price or core-selecting payments – has been analyzed [7].
The authors argued in favor of simplicity, both in the expressiveness of bidding
and the complexity of payment.

Winner determination considers feasible allocations of bundles which max-
imize the reported social welfare. One branch of combinatorial auctions re-
search focuses on how various payment functions affect the behaviour of the
bidders when combined with reported social welfare maximizing allocation al-
gorithms. The Vickery-Clarke-Groves (VCG) payment is the unique payment
function which then results in a truthful mechanism. Truthful mechanisms in-
centivize the bidders to bid according to their private valuation. The incentive
is given as for each bidder, a truthful bidding strategy results in maximal utility.
The VCG-payment is not suitable in practice due to various shortcomings [8].
The most pronounced issue of the VCG-payment may be that it frequently leads
to very low (even zero) seller revenues.

To give guarantees on the seller revenue payment rules which select points
within the core [9] are used. Drawing the parallels to stable matching mecha-
nisms, Day and Milgrom [10] analyzed the benefit of core-selecting CA in 2007.
They note that minimal-revenue core-selecting payment maximizes the truthful
bidding. There are various core-selecting payment functions, each optimizing a

1Auctions used by governments to sell signal transmission licences on specified frequency
ranges of the electromagnetic spectrum.

12
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point within the core according to its own criteria.

Variations of the quadratic core-selecting payment [3] are generally used in
practice for spectrum auctions with core-selecting payment [11]. The quadratic
rule picks the point within the core with least euclidean distance to the VCG-
payment2. The authors hypothesize that this should preserve as much truthful
bidding incentive as possible. Other core-selecting payments have been suggested
and trade-offs between the payments are being analyzed. In 2018, driven by a
computational search for good core-selecting rules, two alternative payment func-
tions have been proposed [12]. Those rules were classified as Large-style rules,
as they provide better incentives for bidders with large values compared to the
quadratic rule. Since core-selecting auctions are not truthful, the bidders ac-
tion space cannot be simplified to truthful bids, making the outcomes increas-
ingly hard to predict. This has motivated the study of Pure-Nash-Equilibria and
Bayes-Nash-Equilibria for simple auction settings like the LLG model [11, 13].
Incentives for over-bidding [14] have been described for multi-minded bidders.
Over-bidding losing bids was found to be profitable, when increasing other bid-
ders payments links to a decrease of the over-bidders payment. Further, equi-
libria in minimal-revenue core-selecting auctions including over-bidding were dis-
covered. The analysis was conducted for multi-minded bidders for full infor-
mation and a variety of incomplete information settings. Positive impacts of
over-bidding were noted to be increased seller revenue and improved expected
efficiency. An example3 of over-bidding in single-minded (one bid per bidder)
CA was described [4] for quadratic payment. To prevent over-bidding by design,
the notion of non-decreasing payment rules [4] was introduced. In single-minded
CAs non-decreasing payments do not suffer from over-bidding, as non-decreasing
payments prevent higher bids leading to lower payments. The quadratic rule
is not non-decreasing. For the quadratic rule, it remains unclear under what
conditions over-bidding strategies are possible.

2That’s why we refer to the rule as the VCG-Nearest payment.
3The example is transcribed in table 2.2



Chapter 4

Non-decreasing payments

The over-bidding examples in section 2.5 have shown us that the utility gain
of over-bidding strategies is linked to a decrease in the over-bidder’s payment.
A natural way to counteract this is with payment-functions for which an in-
crease in a single bid never reduces the corresponding payment. The paper by
Bosshard et al. [4] defines non-decreasing payment rules for CA as follows.

Definition 4.1. For any allocation x let Bx be the set of bid profiles for which x
is efficient. The payment-rule p(b, x) is non-decreasing at x if, for all bidders i
and bid profiles b, b′ ∈ Bx with b−i = b′−i the following holds:

b′i ≥ bi =⇒ pi(b
′, x) ≥ pi(b, x)

A payment rule p(b, x) is non-decreasing if it is non-decreasing at all alloca-
tions x.

As long as the over-bid does not cause a change in the allocation x, any non-
decreasing payments do not allow for profitable over-bidding strategies. This
follows directly from the fact that in those circumstances an over-bid can not
result in a reduced payment.

Let us begin our analysis of over-bidding strategies in single minded combina-
torial auctions (SMCA). We split the over-bidding scenarios into two cases.

• If a truthful bid would be losing, can a winning over-bid return a positive
utility?

• If a truthful bid is winning, can an over-bid increase the utility?

Note that the first case considers a change in allocation, the over-bidding player
i turns a losing bid into a winning bid. For the second case however, we consider
a fixed allocation x. The allocation x remains efficient when increasing the bid
of one of the winning players. Therefore we will be able to reason with non-
decreasing payments in the second case.

14
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4.1 Over-bidding losing bids

Here we show that it is not possible to get a positive utility by over-bidding a
bid, where the truthful bid would otherwise not be part of the allocation.

Theorem 4.2. Given a CA mechanism where X is an allocation algorithm max-
imizing reported social welfare, and P is a core-selecting payment satisfying vol-
untary participation. Consider N single minded bidders, for any bidder i and
fixed bids of the other players b−i. If a truthful bid of player i is a losing bid for
x ∈ X(vi, b−i), xi = 0, there are no over-bidding strategies for this player.

Proof. A losing bid has zero utility due to voluntary participation, no bundle is
acquired, no value gained and the payment is zero. A losing over-bid equally
results in zero utility. Thus if there is over-bidding that increases the utility, it
must result from winning over-bids. For player i where the truthful private value
vi is a losing bid, we observe that for the winner determination over all bids, the
allocated solution’s social welfare must be greater or equal1 to the maximal social
welfare achievable by any solution where i is winning. The over-bid of player i
must be winning, thus leading to a solution with greater or equal social welfare
than any allocation where i is losing. As notation we write xi to be a maximal
allocation where i is winning – independent of the bid value. For the truthful
and over-bidding bid profiles we write bv = (vi, b−i), b

o = (boi , b−i) in short. Then
we get:

W (bv, xi) ≤W (bv, X(bv)) ≤W (bo, xi) = W (bo, X(bo))

The difference in social welfare between a maximal allocation and a maximal
allocation containing i is W (bv, X(bv)) −W (bv, xi)) = ∆ ≥ 0. We set the over-
bidding value to be the minimal winning over-bid boi = vi + ∆ which leads to
W (bv, X(bv)) = W (bo, xi). Note that it is sufficient to check if boi can result in
greater zero utility, as any over-bid greater boi will be covered in the over-bidding
a winning bid case (by assuming that boi = vi is truthful).

Let T be the set of winning bids in x′ ∈ X(bv) T = {j ∈ N | x′j = 1}. Further
let S be the set of winning bids in both x′ and xi, S = {j ∈ N | x′j = 1∧xij = 1}.
We look at the core constraint on the payments of N \ T with the bids bo under
the allocation xi to derive a lower bound.

1Equality of the social welfare would indicate a tie among multiple efficient allocations. The
allocation algorithm X breaks ties by picking an efficient allocation x uniformly at random.
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∑
j∈N\T

pj(b
o, xi)

≥
∑
j∈T

bj(XT (bT ))j − bj(x
i
j) core property

≥
∑
j∈T

bj(XT (bT ))j −
∑
j∈S

bj by definition of S

≥
∑
j∈T

bj(x
′
j) −

∑
j∈S

bj as x′ is efficient in T ⊆ N

≥ W (bv, X(bv)) −
∑
j∈S

bj

In the last step we applied that the sum of the bids in T under the allocation
x′ is equal to the reported social welfare for bv. This holds as x′ is an efficient
allocation for bv and T contains all winning bids of x′.

Using the fact that a payment is never greater than the corresponding bid, we
upper bound the same term that we lower bounded above.

∑
j∈N\T

pj(b
o, xi)

≤
∑

j∈N\T

bj(x
i
j)

≤
∑
j∈N

bj(x
i
j)−

∑
j∈S

bj as ∀j ∈ S : (xij = 1)

≤W (bo, xi)−
∑
j∈S

bj
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Combined we get

W (bv, X(bv))−
∑
j∈S

bj ≤
∑

j∈N\T

pj(b
o, xi) ≤W (bo, xi)−

∑
j∈S

bj

W (bv, X(bv)) = W (bo, xi) by choice of boi = vi + ∆

=⇒ W (bv, X(bv))−
∑
j∈S

bj =
∑

j∈N\T

pj(b
o, xi) = W (bo, xi)−

∑
j∈S

bj

=⇒ all inequalities above must infact be equalities, then∑
j∈N\T

pj(b
o, xi) =

∑
j∈N\T

bj(x
i
j)

the only way to build that sum s.t. ∀j ∈ (N \ T ) pj ≤ bj
is when ∀j ∈ (N \ T ) pj = bj =⇒ pi = boi

Therefore any over-bid boi which changes a truthful losing bid to a winning bid
results in utility uoi = −∆ ≤ 0.

The proxy, proportional and VCG-nearest payments are each core-selecting
and satisfy voluntary participation. If we pair any one of those payment functions
P with a winner determination algorithm X maximizing the reported social wel-
fare to getM = (X,P ), then by theorem 4.2 the mechanismM is robust against
over-bidding strategies of players where a truthful bid is a losing bid.

4.2 Over-bidding winning bids

We now consider winning truthful bids, that is to say for a player i and fixed
bids of other players b−i, the allocation x ∈ X(vi, b−i), xi = 1 selects the i-th bid
of value vi as winning. Here we ask if for some over-bid boi > vi the payment
to acquire the corresponding bundle can decrease. When truthful bid vi is part
of the efficient allocation x, then for the over-bid boi the allocation x must also
be efficient. Further we note that for bo, every efficient allocation must contain
boi , as the reported social welfare of every efficient allocation containing i was
increased by the same amount the bid was increased (boi − vi). If we assume an
identical allocation x ∈ X(boi , b−i) for any over-bid boi , then we can apply the non-
decreasing payment functions definition 4.1 from the start of this chapter. That
way, for non-decreasing payments it follows that the payment can not decrease
for the fixed allocation x. This implies that over-bidding strategies do not exist
for non-decreasing payments when over-bidding winning bids results in the same
allocation x.
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Theorem 4.3. Given a CA mechanismM = (X,P ) with an allocation algorithm
X maximizing social welfare, and non-decreasing core-selecting payment function
P . Considering single minded bidders, for any bidder i and fixed bids of the other
players b−i. If a truthful bid of player i is a winning bid for x ∈ X(vi, b−i), xi = 1,
there are no over-bidding strategies for this player under the allocation x.

Proof. Considering some player i, we compare a truthful bid profile bv = (vi, b−i),
and an over-bidding profile bo = (boi , b−i), vi ≤ boi . Both the truthful bid and the
over-bid are winning in the efficient allocation x ∈ X(vi, b−i) ∩ X(boi , b−i), xi =
1. A non-decreasing payment guarantees that the payment cannot decrease,
p(bo, X(bo)) ≥ p(bv, X(bv)). Hence, there are no over-bidding strategies.

4.3 Over-bidding any bids

In this section we unite the results from over-bidding losing bids and over-bidding
winning bids. We address the case of tie-breaking winner determination w.r.t.
over-bidding and conclude with an observation about Nash equilibria.

What about the case when the allocation x′ of the over-bid is different to
the allocation x of the truthful bid x 6= x′, x, x′ ∈ X(bv) ∩ X(bo)? This can
only happen in case of ties, i.e. when there are multiple efficient allocations.
The winning probability of every efficient allocation is identical, due to the allo-
cation algorithm X picking one efficient allocation uniformly at random among
all efficient allocations. We can analyze the expected payment for each player
and bidding profile. For non-decreasing payments it follows that the expected
payment of any given bidding profile is non-decreasing, as for every distinct allo-
cation the payment is non-decreasing. For non-decreasing payments the expected
payment is non-decreasing. These two deductions imply that over-bidding is not
profitable in expectation. We conclude that there are no over-bidding strategies
in SMCA for non-decreasing, core-selecting payments which satisfy voluntary
participation.

The corollary 4.4 follows from combining theorems 4.2 and 4.3 with the above
insight on tie-breaking. When we compound the required properties on the al-
location algorithm X and payment function P , those two theorems cover any
over-bid in single minded CAs.

Corollary 4.4. Given a CA mechanism M = (X,P ), where X is an allocation
algorithm maximizing reported social welfare, and P is a core-selecting, non-
decreasing payment satisfying voluntary participation. For single minded bidders,
there are no over-bidding strategies.

We show corollary 4.4 by arguing that the expected utility of over-bidding is
lesser equal to the expected utility of a truthful bid.
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Proof. By theorem 4.2 we know that over-bidding losing bids leads to a utility
of less or equal to zero. It is never profitable to over-bid a losing bid. Next
we consider winning bids. Considering some bidder i, we compare a truthful bid
profile bv = (vi, b−i), and an over-bidding profile bo = (boi , b−i), vi ≤ boi , where the
truthful bid is winning for some efficient allocations x ∈ X(bv), xi = 1. Let Xi

be the set of efficient allocations for the bid profile bv where player i is winning.
Then the set Xi is equal to all efficient allocations for any over-bid boi . The
expected payment of a truthful winning bid is equal to

E[pi(X
i, bv)] =

∑
x∈Xi pi(x, b

v)

|Xi|
≤
∑

x∈Xi pi(x, b
o)

|Xi|
= E[pi(X

i, bo)]

The inequality follows from theorem 4.3, which states that for any x ∈ Xi the pay-
ment is non-decreasing. This shows that the expected payment is non-decreasing
and therefore the expected utility of over-bidding (valuation minus expected pay-
ment) can not be greater than the expected utility of bidding truthfully. And as
no rational player chooses to play a strategy with worse expected utility, there are
no over-bidding strategies in SMCA for non-decreasing, core-selecting payments
which satisfy voluntary participation.

The conditions of corollary 4.4 imply that given any bid-profile b, it is never
beneficial to over-bid for any single one of the bidders. Let us again consider
bidder i and fixed bids of the other bidders b−i, b = (bi, b−i). A bid b′i which
maximized the utility for bidder i given b−i is called best response for bidder i,
maxb′i

ui(b
′
i, b−i). We name any strategy which increases the utility (but is not

necessarily maximal) a better response. Over-bidding is never a better response
strategy, in fact we showed that it is dominated by the truthful strategy. That
is to say, for any bids of other players b−i, the utility of a truthful strategy is
never lesser than the utility of an over-bidding strategy, ui(vi, b−i) ≥ ui(b

o
i , b−i),

for vi ≤ boi .
A Nash equilibrium is a stable state of a game, in the sense that none of the

players have an incentive to change their respective strategies. Any single player
deviating their strategy from the Nash equilibrium can not increase their own
utility in doing so. Nash equilibria are studied in Game theory to estimate the
states to which a game may converge after repeated playing. For instances of over-
bidding, one important question is whether over-bidding exists in Nash-equilibria,
or if there is always a more profitable option (which excludes over-bidding as a
best-response strategy). As we have shown that the truthful bidding strategy
dominates any over-bidding strategy we get the following corollary for free.

Corollary 4.5. Given a CA mechanism M = (X,P ), where X is an allocation
algorithm maximizing reported social welfare, and P is a core-selecting, non-
decreasing payment satisfying voluntary participation. For single minded bidders,
over-bidding strategies can not be part of a Nash equilibria.
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4.4 Proxy and proportional payments

In this section we confirm that the proxy and proportional payment functions are
non-decreasing payment rules, taking into account how over-bidding may affect
the core.

Claim 4.6. The proxy payment function and the proportional payment function
are non-decreasing for single minded CA.

For a fixed allocation x, it has been shown in the paper Bosshard18 [4] that
the proxy and the proportional payments are non-decreasing when the core con-
straints are unaffected by the over-bid. Hence there exists no over-bidding strat-
egy for non-decreasing payment functions, when the over-bid does not affect the
core constraints and the allocations x are identical for the over-bid and the truth-
ful bid. We extend the proof to include the cases where over-bidding affects the
core and show the proxy and proportional payment are non-decreasing.

The proof of theorem 4.2 shows that any core-selecting payment function
satisfying voluntary participation results in payment equal to the over-bid, when
over-bidding a losing bid with the minimal winning over-bid. Hence the payment
is non-decreasing for such over-bids. Knowing so, we are free to assume that
for player i the truthful bid profile bv = (vi, b−i) is winning, and show that any
over-bid from this point on equally results in non-decreasing payment. Combined
we then conclude that, independent of the true bid being losing or winning, and
independent of the over-bid value, the proxy and proportional payments are non-
decreasing.

To reason about the core constraints, we require the notion of a limiting
constraint and of relaxing a constraint.

• A limiting constraint (or blocking constraint) is an inequality constraint for
which equality holds. For core constraints when the lower bound set by a
constraint has been reached – in the sense that the minimization problem2

on the payment has no degree of freedom to further decrease – it is a limiting
constraint.

• A constraint is relaxed if its bound is modified to increase the range of val-
ues the constrained variable(s) can take. On the other hand, a constraint
is strengthened if a change in the bound reduces the range of values the
constrained variable(s) can take. To illustrate, we say a lower bound con-
straint l on the variable a, a ≥ l is relaxed when the right hand side (RHS)
of the inequality decreases. Let l′ < l. Then exchanging l with l′ relaxes

2The minimization problem refers to the objective function of the proxy, proportional or
some other non-decreasing payment. For example the objective function for the proxy payment
is the minimal euclidean distance to the origin min(

∑
j∈N p2j ) under the constraints set by the

core and voluntary participation.
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the constraint to be a ≥ l′. Analogously the bound would be strengthened
if l′ > l.

Proof. We prove claim 4.6. It suffices to prove that the changes to the core
constraints induced by over-bidding winning bids, can not lead to a decrease in
payment for the over-bidder i. There are two conceivable ways how changes to
the core constraints can reduce the payment of the over-bidding player i.

1. A blocking constraint on player i is relaxed:
Then it could be that the payment on i is decreased up to the point where
this or another constraint is limiting again.

2. A blocking constraint on player j 6= i is strengthened:
Allocating a higher payment to player j could lead to reduced payment for
player i.

We inspect the ways that over-bidding the i-th player can affect the core. For
every possible coalition L ⊆ N there is one constraint:∑

j∈N\L

pj(b, x) ≥W (bL, XL(bL))︸ ︷︷ ︸
A

−W (bL, xL)︸ ︷︷ ︸
B

Any core constraint where i /∈ L is unaffected by the over-bid when the allocation
x is fixed. Term A has identical value independent of the choice of the winner
determination x, x′ ∈ X(bv) ∩ X(bo). Term B on the other hand is directly
dependent on x. While any efficient allocation x, x′ has identical social welfare
over all N bidders, for different allocations we do not know how the respective
terms compare x′ 6= x =⇒ W (bL, xL) R W (bL, x

′
L). That is why we require

a fixed allocation x. For fixed allocation x the term B is unchanged whenever
i /∈ L. Thus we observed that all core constraints on the set N \ L where i /∈ L
are unaffected by over-bidding. This eliminates the possibility to relax a blocking
constraint on player i.

Now we list every way a core constraint where i ∈ L can be affected by an
over-bid of player i. Is it possible to strengthen another player’s constraint?

Consider the constraint on N \ L, i ∈ L. For bl = (bli, b−i) and br = (bri , b−i)
where bri − bli = ε, for an arbitrarily small ε > 0. Since we are considering over-
bids on winning bids, bli, b

r
i are winning bids, and thus included in the term B.

We list the four cases w.r.t allocations in term A, writing XLj(b) as a maximal
social welfare allocation of the bids in L at index j with bids b:

1. XL(bl)i = 0 ∧XL(br)i = 0: over-bidding affects the core constraint as sum
A is unchanged, but sum B increased by ε thus relaxing the constraint by
ε.
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2. XL(bl)i = 0 ∧XL(br)i = 1: Over-bidding affects the core constraint up to
the threshold value bti, b

t = (bti, b−i). The threshold value bti is the minimal
bid s.t. W (bl, X(bl)) = W (bt)xi(bt)). Meaning that it is the minimal over-
bid by player i s.t. in L the social welfare where bti is a winning bid is equal
to the social welfare under any maximal allocation. For some arbitrarily
small ε > 0, we split this case into instances of cases 1 and 4 as follows:
(XLi(b

l) = 0 ∧XLi(b
t
i − ε, b−i) = 0), (XL(bt)i = 1 ∧XL(br)i = 1).

3. XL(bl)i = 1∧XL(br)i = 0: This case can not occur. Winner determination
would necessarily allocate the over-bid br in L if a lower bid bl was already
winning.

4. XL(bl)i = 1 ∧XL(br)i = 1: This case leads to no change in the constraint,
as the over-bid is represented in both A,B cancelling out.

For a fixed x over-bidding can not cause any core constraint to be strength-
ened. The only way constraints may be affected by an over-bid, is that some
constraints on payments (not including the over-bidder) may relax. Thus the
effect over-bidding has on the core-constraints cannot reduce the payment of the
over-bidding player i.

This confirms that the proxy and the proportional payments are non-decreasing
in single minded CA even when the over-bid affects the core.

Note that theorem 4.3 does not apply for the VCG-nearest payment.
Bosshard18 [4] showed that the VCGN payment is not non-decreasing. The VCG
point changes depending on the bids. This change of the optimization target can
lead to decreasing payments for over-bids.



Chapter 5

Combinatorial auction classes

As the VCG-nearest payment is not non-decreasing in SMCA, we are interested
to find a minimal example of over-bidding for said payment. We want to learn
how to distinguish CA models that behave differently - or vice versa, group those
auctions which behave equivalently to one another. In doing so, we are able to
look for over-bidding examples in increasingly complex models of CA.

A valid solution for winner determination never sells an item more than once
and has every bidder win either none or one bundle. For now we ignore the goal to
maximize social welfare. We can abstract away the exact contents of the bundles
by keeping track of which bundles intersect. This let us model the bids as a graph
where V is the set of bids. An edge connects two vertices if the respective bundles
do intersect. For single minded CA there’s one bid per participant |V | = |N |.
A valid allocation is then any independent set in the corresponding graph. One
can see this as every bidder placed one bid on a single bundle (represented by a
vertex). An independent set is a then a set of bundles which do not share any
items. Using this model we can list all different auction classes for some |N | by
listing all non isomorphic graphs with |N | or less vertices. Figure 5.1 shows all
non isomorphic graphs on 2 or 3 vertices.

The LLG model [8] (local, local, global) describes a single minded CA with
three bidders bidding on two items. The two local bidders want to acquire a single
item each, and desire a different item from one another. The Global bidder places
a bid on the (global) bundle containing both items.

The LLG model behaves identically when one substitutes the two items by
any two independent bundles. It can be represented by the class of single minded
CA’s with corresponding graph P3. The two leafs represent the local bidders
and do not share an edge. The global vertex however, bids on a bundle which
intersects with each of the local bidders bundles.

23
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Figure 5.1: List of non isomorphic graphs on 2 or 3 vertices,
source: https://www.graphclasses.org/smallgraphs.

https://www.graphclasses.org/smallgraphs
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5.1 General observations

Before studying specific models let us note some general statements we can make
for single minded CA’s independent of the number of players taking part.

5.1.1 Independent bids

We say two bids are independent if their bundles are disjoint. For a set T of
bids, the bids in T are fully independent if ∀ i, j ∈ T s.t. i 6= j, the respective
bundles of i and j are disjoint (do not intersect). In our graph representation
this is equivalent to a graph on |T | vertices without any edge.
Clearly the winner determination results in every bid being a winning bid (given
that the bid values are > 0). For any subset L ⊆ N we have that, the maximal
reported social welfare in the subset L is equal to the reported social welfare
of the bids in L under the maximal allocation x over N : W (bL, XL(bL)) =
W (bL, xL). This corresponds to the RHS of the core constraints, which can then
be summarized as ∀i ∈ N : pi(b, x) ≥ 0. For any bid profile b the VCG-nearest,
proxy and proportional payments will be 0. There cannot be any over-bidding
strategies for independent bids under one of those core-selecting payments.

For disconnected graphs, every connected component behaves like an inde-
pendent auction to the other components. Between two components there is no
overlap in the bundles (and therefore items) that are bid on. Say there are n com-
ponents. We number the components from 1 to n. One could split the offered
items in n sets (M1, ...,Mn). For every component i ∈ [n], we do so by including
all items that are bid on within the i-th component into set Mi. We disregard
items which are never bid on. For every component i, the vertices of the i-th
component form sets of bidders (N1, ..., Nn). Now we interpret every connected
component i as a single independent auction of itemsMi and with bidders Ni. As
every component of a disconnected graph behaves like an independent auction,
it suffices to consider connected classes to cover all different CAs. As an example
we can view the graph P̄3 (figure 5.1) as (K2 ∪K1) or in similar fashion 3K1 as
(K1 ∪K1 ∪K1).

5.1.2 Fully dependent bids

For a set T of bids, the bids in T are fully dependent if ∀i, j ∈ T s.t. i 6= j, the
respective bundles of i and j do intersect. This is represented by complete graph
on |T | vertices.
The winner determination must assign the highest bidder of the fully dependent
bids the bundle they bid and nothing to the other bidders. The core constraints
are such that the winning player must pay at least as much as any of the other
bidders is willing to pay. This makes CA with minimal core-selecting payment
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functions (VCG-nearest, proxy, proportional) equivalent to a second price auc-
tion. As we know second price auctions are strategyproof [15] (the truthful strat-
egy weakly dominates all other strategies). Therefore there are no over-bidding
strategies in CA’s with fully dependent bids.

5.2 Over-bidding with three or less bidders

With the notion of the CA classes, we began the search for an example of over-
bidding in CA for the VCG-nearest payment. Specifically we looked for an exam-
ple with minimal number of participants. At this point the minimal example we
were aware of (table 2.2) contains eleven bidders. Using the graph model we can
list all connected non-isomorphic graphs with increasing number of vertices and
begin to examine them. Every graph on three or less vertices except the path on
3 vertices P3 consists of fully connected and or fully independent components.
Thus, as argued in the general observations section 5.1, we know that there exist
no over-bidding strategies in those classes. We examined P3 as generalized LLG
model. Another way to see P3 is as a 2-star graph, where the center vertex (G)
is connected to each of the other two vertices (L). Based on the explicit formula
of the VCG-Nearest payment as characterized in the paper [11], it is clear that
the VCGN payment is non-decreasing in the P3 class. By corollary 4.4 we know
that, for non-decreasing, core-selecting payments satisfying voluntary participa-
tion, there are no over-bidding strategies in SMCA. This concludes that there are
no over-bidding strategies for the VCGN payment in SMCA with less then four
bidders.

5.2.1 The link to single constraint classes

As a first instance of connected graphs on four vertices we studied the 3-star
graph. It represents the class equivalent to the LLLG model, a simple extension
of the LLG model by adding another local (independent) bundle and bidder (L)
and where the global bidder is again interested in all items. To examine it we
derived an explicit formulation of the VCGN payment for this model and then
showed that it is non-decreasing. From this evolved the idea to study the n-star
class we name L*G, instead of brute-forcing the various classes on four vertices.
The L*G class characterizes the class with n local bidders and one global bidder.
The analysis of L*G then lead to the result on SMCAs with a single effective core
constraint (SECC). In the next chapter we first show the result on SECC. Then
we present L*G and apply said result. Since LLG and LLLG are instances of
L*G, this result covers those two individual cases, hence we refrain from writing
down the individual proofs.
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single effective core constraint

For core selecting payments, the core constraints bound the payments. If one lists
every core constraint on the set of winning bidders, we often observe that many
of the constraints are obsolete in the presence of a more restrictive constraint.
For example if we look at the following three inequalities we observe that the last
constraint encompasses the first two.

p1 ≥ bG − b2
p2 ≥ bG − b1
p1 + p2 ≥ bG

Since voluntary participation implies that bi ≥ pi and for bG ≥ 0, when the
constraint p1 + p2 ≥ bG is satisfied so are the others. We say a constraint α
covers constraint β if α =⇒ β. For b1 + b2 ≥ bG and bG ≥ bi for i ∈ {1, 2} those
are the core constraints of the LLG class. For specific payment functions like the
VCG-Nearest payment, we can further ignore all constraints which are implicitly
satisfied by the payment. Notably those are the constraints on a single payment
for which the right hand side (RHS) is equivalent to the VCG payment. Those
are implicitly satisfied, as pV CGNi ≥ pVi , which states that at every position i,
VCGN payment is never lesser than VCG payment.

Definition 6.1. A CA class has a single effective core constraint (SECC) if
the core constraints can be fully expressed by a single constraint. We call such
classes single core constraint classes.

As we argued above, the core constraints of LLG can be reduced to a single
effective core constraint, namely p1 + p2 ≥ bG.

Theorem 6.2. For SMCA classes where the core constraints can be represented
by a single effective core constraint, the VCGN payment is non-decreasing and
therefore there are no over-bidding strategies.

Let n ≥ 1 be the number of winning bidders. We will show theorem 6.2
by deriving the representation pV CGN = pV + x for some x, where for all

27
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i ∈ [n], xi ≥ 0. Then we provide the optimal point x∗ which added to the
VCG point pV results in the VCG-Nearest point. Finally, from this explicit for-
mulation of the VCG-Nearest point, we deduce that it is non-decreasing in single
core constraint classes.

6.1 Explicit VCGN formulation

This section derives an explicit formulation of the VCGN-point for SMCA classes
whith a single effective core constraint.

6.1.1 Shift from VCG point to origin

For the set of winning bidders L, we formulate the single core constraint as follows:∑
i∈L pi(b, x) ≥ BR. This core constraint covers all other core constraints, i.e.

when
∑

i∈L pi(b, x) ≥ BR holds, every core constraint is satisfied. We compare
the sum of winning player’s VCG-payments to the RHS value BR of the single
core constraint.

Lemma 6.3. Let L be the set of winning bidders, |L| = n,
∑n

i=1 bi = BL ≥ BR.
We show that

∑n
i=1 p

V
i ≤ BR.

Proof. For a SMCA with singe effective core constraint
∑

i∈L pi(b, x) ≥ BR. We
assume

∑n
i=1 p

V
i > BR and do a proof by contradiction. The core constraint on

any single winning payment pl, for l ∈ L is given by

pl ≥W (b−l, X−l(b−l))−W (b−l, x−l) = pVl

for L being the set of winning bids, let B′R =
n∑

i=1

pVi =
n∑

l∈L
pVl ≤

n∑
l∈L

pl

The assumption BR <
∑n

i=1 p
V
i implies that not all the core constraints on the

single payments, are covered by the single effective constraint. Summing up the
constraints on single payments

∑n
l∈L p

V
l = B′R > BR forms a constraint which

is not covered by the constraint characterized by BR. This is a contradiction to
the assumption that BR is a single effective core constraint, which requires that
it covers all other core constraints.

Using the result above, in SMCA classes with a single effective core constraint
we can represent the VCGN payment of any player i as pV CGNi = pVi + xi for
some xi ≥ 0. Let us adapt the constraint such that we can look for the closest
point x∗ on the modified constraint to the origin instead of the vcg-point. For a
single constraint, the total VCGN payments are always equal to the RHS value of
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the constraint BR. It is necessarily a blocking constraint, making it an equality
constraint.

|pV CGN |1 =
∑
i∈L

pVi + xi = BR ⇐⇒
∑
i∈L

xi = BR −
∑
i∈L

pVi = |x∗|1

6.1.2 Intuitive deduction of explicit formula

With a single blocking constraint, the difference of the total payment and the
fixed allocated VCG-payments ∆ =

∑
i∈L xi = BR −

∑
i∈L p

V
i , with ∆ ≥ 0 by

Lemma 6.3. We need to find the xi that minimize the distance to the core while
maintaining voluntary participation pi ≤ bi =⇒ xi ≤ bi − pVi . We denote the
constraints resulting from voluntary participation as b′i = bi−pVi . A constraint b′i
can be seen as that players budget, since after paying the VCG-payment player i
is willing to pay up to the budget b′i to acquire corresponding bundle to the bid.
W.l.o.g. we say that the constraints b′i are sorted increasingly. I.e. the lowest
index is bound by the smallest value: b′1 = b1 − pV1 ≤ b′2 ≤ · · · ≤ b′n = bn − pVn .
The core constraint

∑n
i xi = ∆ can be seen as the hyperplane in Rn

+ defined
by (

∑n
i xi) − ∆ = 0 and has the n-dimensional normal vector ~n = (1, . . . , 1)>.

Hence the closest point p? on the hyperplane to the origin lies in direction of ~n
at euclidean distance ∆√

n
, p? = ∆

n ~n. If no budget constraint is violated by p?,
then b1 − pV1 ≥ ∆

n , and p
? represents pV CGN . This would translate to xi = ∆

n ,
for every i. Else the closest point x∗ is constrained by some budget limit in (at
least) the first of the sorted indices x∗1 = b′1 <

∆
n . Let ∆j be the remainder of the

total payment (s.t. it sums up to ∆), to be assigned among winning bidders with
index greater j, when the j payments with least indices reached their respective
budget limits (∀i ∈ [j], x∗i = b′i)

∆j =

{
∆ if j = 0
∆−

∑j
i=1 b

′
i for 1 ≤ j ≤ n

For 0 ≤ k ≤ n − 1 let k be the smallest index s.t. we can distribute ∆k evenly
among the n− k players with greatest budgets (the greatest n− k indices) while
respecting the constraints b′i for every winning bidder i. Such a k always exists
for winning players as

∑
i∈L bi > BR =⇒

∑
i∈L(bi− pVi ) > BR−

∑
i∈L p

V
i = ∆.

Thus, ∆k
n−k ≤ b

′
k+1 and for k ≥ 1, ∆k−1

n−k+1 > b′k. We claim that the closest point to
the origin lying in the core1 is x∗.
Claim 6.4.

x∗i =

{
b′i = bi − pVi if 1 ≤ i ≤ k
∆k
n−k if k + 1 ≤ i ≤ n

When k = 0 we get an even distribution of the remaining payment, ∆k
n−k for

all i ∈ [n].
1Here the single core constraint is

∑
i∈L xi = ∆.
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6.1.3 Optimality certificate for x∗

To calculate point x∗ we employ a quadratic program. According to the CGAL
definition [16] a quadratic program (QP) has the following form:

minimize xTDx + cT + c0

subject to Ax R b

l ≤ x ≤ u

in n real variables x = (x0, . . . , xn−1).

• A is an m× n constraint matrix

• b is an m dimensional right-hand side vector

• R is an m-dimensional vector of relatrions from {≤,=,≥}

• D is a symmetric positive-semidefinite n×nmatrix (the quadratic objective
function)

• n-dimensional vector of lower bounds l and upper bounds u for x

• n-dimensional c, the linear objective function

• c0 a constant of the objective function

We aim to show claim 6.4. To do so we first declare the quadratic problem,
then provide an optimality certificate λ, and finally show that λ satisfies the
conditions of lemma 6.5. The lemma 6.5 and its proof are taken from the CGAL
documentation [17].

Lemma 6.5 (optimality certificate). A feasible n-vector x∗ is an optimal solution
of the Quadratic Program if an m-vector λ with the following properties exists.

1. if the i-th constraint is of type ≤ ( ≥, respectively), then λi ≥ 0 ( λi ≤ 0,
respectively).

2. λT (Ax∗ − b) = 0

3. (cT + λTA+ 2x∗TD)j


≥ 0, if x∗j = lj < uj
= 0, if lj < x∗j < uj
≤ 0, if lj < uj = x∗j

The proof of lemma 6.5 follows.
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Proof. Let x be any feasible solution. We need to prove that

cTx + xTDx ≥ cTx∗ + x∗TDx∗

For this, we argue as follows.
cTx + 2x∗TDx ≥ cTx + 2x∗TDx + λT (Ax− b) (by Ax R b and 1.)

= (cT + λTA+ 2x∗TDx)x− λT b
≥ (cT + λTA+ 2x∗TDx)x∗ − λT b (by l ≤ x ≤ u and 3.)
= cTx∗ + 2x∗TDx∗ (by 2.)

After adding xTDx−xTDx+x∗TDx∗ = x∗TDx∗ to both sides of this inequality,
we get

cTx + xTDx− (x− x∗)TD(x− x∗) ≥ cTx∗ + x∗TDx∗,

and since D is positive semidefinite, we have (x − x∗)TD(x − x∗) ≥ 0 and the
lemma follows.

With this we are ready to prove claim 6.4: x∗i =

{
b′i = bi − pVi if 1 ≤ i ≤ k
∆k
n−k if k + 1 ≤ i ≤ n

Proof. We formulate the quadratic problem, which solves for the minimal (squared)
distance of a point within the core to the origin with respect to the constraints,
as follows:

minimize xTx

subject to Ax ≥ b
l ≤ x

Here we have

• n real variables x representing the payment

• A is an m×n constraint matrix, where m = n+1, for n budget constraints
and one core constraint.

• b is an m dimensional right-hand side vector

• l lower-bounds x s.t. ∀i ∈ [n] : xi ≥ 0

• D the n× n identity matrix

Ax ≥ b ⇐⇒


−1

. . .
−1

1 · · · 1


x1

...
xn

 ≥

−b′1
...
−b′n
∆

 (6.1)

Thus, for 1 ≤ j ≤ n+1 we have (Ax ≥ b)j =

{
−xj−n ≥ −b′j−n if 1 ≤ j ≤ n∑n

i=1 xi ≥ ∆ if j = n+ 1
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We show that the optimal point is x∗ by providing a certificate λ which satisfies
the conditions of Lemma 6.5.
As reference, when k > 1, x∗T =

[
b′1 . . . b′k

∆k
n−k . . . ∆k

n−k

]
.

We claim that the following λ is an optimality certificate for x∗

For 1 ≤ j ≤ n+ 1, λj =


2b′j −

2∆k
n−k if 1 ≤ j ≤ k

0 if k + 1 ≤ j ≤ n
− 2∆k

n−k if j = n+ 1

(6.2)

Hence for k > 1, λT =
[
(2b′1 −

2∆k
n−k ) . . . (2b′k −

2∆k
n−k ) 0 . . . 0 − 2∆k

n−k

]
We show the conditions of the Lemma 6.5 in order.

1. Since all constraint relations are ≥2, we require λi ≤ 0, for all i ∈ [n + 1].
From the number of winning players n follows n > k. The definition of
∆k entails that k ≥ j =⇒ 0 ≤ b′j <

∆k
n−k . Therefore, by definition of λ

(equation 6.2) at every index j, 1 ≤ j ≤ n+ 1, the value of λ is λj ≤ 0.

2. Show that λT (Ax∗ − b) = 0:

We have (Ax∗ − b)j =


0 if 1 ≤ j ≤ k
b′j −

∆k
n−k if k + 1 ≤ j ≤ n

0 if j = n+ 1

It is easy to see that λT (Ax∗−b) = 0, as for every j ∈ [n+1] either λj = 0
or (Ax∗ − b)j = 0.

3. We show that for lj ≤ x∗j ≤ uj : (cT + λTA+ 2x∗TD)j = 0:
For our quadratic program the expression simplifies to (λTA + 2x∗T )j as
there is no linear objective and the matrix D is the identity matrix.

(λTA)j =

{
−2b′j if 1 ≤ j ≤ k
−2 ∆k

n−k if k + 1 ≤ j ≤ n 2(x∗
T

)j =

{
2b′i if 1 ≤ j ≤ k
2 ∆k
n−k if k + 1 ≤ j ≤ n

This concludes that for j ∈ [n] : (λTA+ 2x∗T )j = 0

Having proven claim 6.4 it follows that pV CGNi =

{
bi if 1 ≤ i ≤ k
∆k
n−k + pVi otherwise

We get this by adding x∗ to the VCG-point.
2The core constraint can be formulated with ≥ instead of equality, as the objective function

will be minimized until the core constraint is blocking and equality holds.
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6.2 Analyzing over-bidding in SMCA with SECC

We can deduct from the above formulation of the VCG-Nearest payment that
it is non-decreasing in classes with a single effective core constraint. This then
implies that there are no over-bidding strategies in SMCA with SECC using
VCG-Nearest payment.

Consider winning bidder i, truthful bid vi and over-bid boi . For some ε > 0 we
have vi + ε = boi . Bids of the other bidders b−i are fixed. All participants bids are
denoted bv = (vi, b−i) and bo = (boi , b−i) respectively. Let us look at the budget
b′j = bj − pVj (b) of the winning players j ∈ [n]. The budget b′j represents the
upper bounds on payment xj in the QP after we shift the objective to minimize
the distance from VCG to the origin. We will distinguish the budget w.r.t. player
i over-bidding by noting b′j

v = bvj − pVj (bv) and b′j
o = boj − pVj (bo). The truthful

bids bv are sorted in ascending order, for l, j ∈ [n], l < j, bvl ≤ bvj . Arrange the
over-bid vector bo to contain the same players bid at the same position as the
ordering of the truthful bids. Then for all indices j ∈ [n], j 6= i we have boj = bvj .
Solely the over-bid at position i differs, which may cause boj to no longer being
sorted.

When we insert the definition of the VCG-payment (and under the assump-
tion that

∑
j∈L bj = BL > BR) the budget reads:

b′j =

{
bj if pVj = 0 ⇐⇒ bj < BL −BR

BL −BR otherwise =⇒ pVj > 0

Let s be the number of bids from winning players which have VCG-payment of
zero. For s > 0 this implies bs < BL − BR. All indices greater than s result in
the same budget since b′j = bj − pVj = bj −

(
BR−

∑
l 6=j∧l∈L bl

)
= (
∑

l∈L bl)−BR.
An ascending (or descending) ordering of the bids b is maintained among the
corresponding budgets b′. As we know that there exists a minimal k, 0 ≤ k ≤
n − 1 s.t. ∆k

n−k ≤ b′k+1, it follows for the greatest budget b′n ≥
∆k
n−k , or else no

solution would be possible3. Additionally, the greatest budget b′n cannot exceed
BL −BR.

Compare the VCG-payments of the truthful bid and the over-bid. The over-
bidder i has identical VCG-payment pVi (bv) = pVi (bo) as all other bids are fixed.
The VCG-payment of any other bidder may decrease by up to ε = boi − vi (but
not increase). The sum of payments ∆ which are not fixed by the VCG pay-
ments may increase as result of over-bidding. We introduce ∆v and ∆o, the
difference of payments from the core constraint BR to the sum of VCG payments

3We know that there must always be a solution due to BL ≥ BR.
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in dependence of player i over-bidding.

for j ∈ L, j 6= i, pVj (b) = max
(
0, BR −

∑
l∈L∧l 6=j

bl
)

pVj (bv) ≥ pVj (bo) =⇒ BR −
∑
l∈L

pVl (bv) = ∆v ≤ ∆o = BR −
∑
l∈L

pVl (bo)

Let ∆v
j = ∆v −

∑j
l=1

(
bvl − pVl (bv)

)
. For ∆v

j , 1 ≤ k ≤ n let k be the smallest
index s.t. we can distribute the remaining ∆v

k payment evenly among the n− k
players with greatest budgets b′v = bv − pV (bv). By analogy, we define ∆o

j =

∆o −
∑j

l=1

(
bol − pVl (bo)

)
. And for ∆o

j , 1 ≤ k′ ≤ n let k′ be the smallest index
s.t. we can distribute the remaining ∆o

k′ payment evenly among the n−k′ players
with greatest upper bounds b′o = bo − pV (bo). For every bidder j, the budgets
b′j

v for bids bvj and b′j
o for boj compare as follows.

pVj (bv) ≥ pVj (bo) =⇒
b′j

v = bj − pVj (bv) ≤ bj − pVj (bo) = b′j
o

Lemma 6.6. For some bidder i, we consider truthful bid profile bv = (vi, b−i)
and over-bid profile bo = (boi , b−i), b

o
i ≥ vi. Then, for the VCG-Nearest payment

and single constraint CA classes, we have

∆v
k

n− k
≤

∆o
k′

n− k′

Remember that we sorted the budgets b′v in ascending order and arranged
b′o s.t. the every bidder is ordered according to the ordering in b′v. We prove
lemma 6.6 by showing that k′ ≥ k, as we know ∆o ≥ ∆v. Here’s a concise proof
by contradiction.

Proof. Assume k′ < k. Then by definition we must have ∆o
k

n−k > b′k+1
o and

∆v
k

n−k ≤ b′k+1
v. We have b′k+1

o ≥ b′k+1
v, and ∆v

k ≤ ∆o
k both following from the

fact that over-bidding can reduce some VCG payments. Then, ∆o
k

n−k > b′k+1
o ≥

b′k+1
v ≥ ∆v

k
n−k . This stands in contradiction to ∆v

k ≤ ∆o
k. The conclusion is

k′ ≥ k.

Finally, we are ready to prove theorem 6.2. As recapitulation, we have shown
the following explicit formulation for the VCGN-payments in SMCA with SECC:

pV CGNi =

{
bi if 1 ≤ i ≤ k
∆k
n−k + pVi otherwise
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Where k is the smallest index 0 ≤ k ≤ n − 1 s.t. we can distribute ∆k evenly
among the n− k players with greatest budgets (the greatest n− k indices) while
respecting the constraints b′i for every winning bidder i. And ∆k being

∆k =

{
∆ if k = 0
∆−

∑j
i=1 b

′
i for 1 ≤ k ≤ n

Proof. To show theorem 6.2, we do a case distinction on the VCG-Nearest pay-
ments player i bidding truthfully or over-bidding to show that the payments are
non-decreasing.

• (pvV CGNi
= vi) ∧ (poV CGNi

= boi )
As boi > vi this is an increase in payment.

• (pvV CGNi
= vi) ∧ (poV CGNi

=
∆o

k′
n−k′ + pVi )

In this case vi <
∆v

k
n−k +pVi which by lemma 6.6 ∆v

k
n−k ≤

∆o
k′

n−k′ cannot decrease
the payment.

• (pvV CGNi
=

∆v
k

n−k + pVi ) ∧ (poV CGNi
= boi )

Here ∆v
k

n−k + pVi ≤ vi < boi , and therefore it is an increase in payment.

• (pvV CGNi
=

∆v
k

n−k + pVi ) ∧ (poV CGNi
=

∆o
k′

n−k′ + pVi )

Again by lemma 6.6 ∆v
k

n−k ≤
∆o

k′
n−k′ the over-bid cannot result in a lesser

payment.

To summarize we showed that the VCG-Nearest payment is non-decreasing for
single minded combinatorial auction classes with a single effective core constraint.
By corollary 4.4 this proves that there exist no over-bidding strategies in SMCA
with single effective core constraint.

Corollary 6.7. SMCA classes where any winner determination results in two or
less winning bidders have no over-bidding strategies under the VCGN-payment.

We prove 6.7 by showing that two or less winners implies a single core con-
straint. Then it follows from theorem 6.2

Proof. It suffices to look at the core constraints of the (two or less) winners. We
know that core constraints for single players are by definition equal to the VCG-
payment and therefore implicitly satisfied by VCGN-payment. If there are two
winners, the core constraint which lower-bounds the sum of the winning players
with the greatest RHS is most limiting. This blocking constraint covers all other
(non-trivially satisfied) constraints. The core is fully defined by this most limiting
core constraint, which is the single effective core constraint.
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The corollary 6.7 lets eliminate over-bidding strategies under the VCGN-
payment in every SMCA class where there are at most two winners. Considering
all (non-isomorphic) connected graph’s on 4 or less vertices, only the class repre-
sented by the 3-star graph allows for an independent set of three or more vertices.
Hence only the SMCA class represented by the 3-star graph can have three win-
ners. For all other SMCA classes on 4 or less vertices, corollary 6.7 implies that
there exist no over-bidding strategies under VCGN payment. Next section cov-
ers the LLLG class indirectly by showing that for any n ≥ 1, an n-star class is
a single core constraint class. This let us apply theorem 6.2 to state that the
VCGN payment behaves non-decreasingly for n-star classes, which makes them
robust against over-bidding.

6.3 L*G

With L*G we consider all the classes of CA which can be modeled as star graphs.
The star graphsfrom three to seven vertices are depicted in figure 6.1. In other
words, L*G is the class of all CAs where there is one global bidder and some
number of local bidders. The global bidder bids on a bundle which intersects
with every other bidders bundle in one or more items. Among the local bidders,
the selected bundles are mutually independent. We say there are n ≥ 1 local
bidders who form the set L.

Figure 6.1: The star graphs with 3, 4, 5, 6 and 7 vertices. The central vertex
(yellow) represents the global bid, which intersects with every of the local (blue)
bids.

We show that L*G is a single core constraint class. This implies that there
are no over-bidding strategies for the VCGN payment in single minded CA of the
L*G class.

Should the global player win, the payment is given as pG =
∑

i∈L bi. The
global players utility is only positive if its valuation is greater than the corre-
sponding payment. Therefore the global bidders dominant strategy is to place a
truthful bid bG. The global player has no over-bidding strategies. As shown in
theorem 4.2 there can only be over-bidding in SMCA when a truthful bid would
be winning. That is why we consider outcomes of local bidders victory. Note that
a sufficient argument against over-bidding by the global player is to show that
this case implies a single effective core constraint (theorem 6.2): pG ≥

∑
i∈L bi.
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Or even simpler, by corollary 6.7 to argue that in this case there are less than
two winners.

6.3.1 Core constraints in L*G

When local players win there is effectively a single core constraint in L*G. Namely
on the payments pi of local players i ∈ L:∑

i∈L
pi ≥ bG = BR

Here the global player’s bid directly translates to the best allocation in N \
L = BR. To prove this, consider any coalition C ⊆ L, the corresponding core
constraint is given as:∑

i∈L\C

pi ≥
{

0 if local players in C form a better solution than bG
bG −

∑
i∈C bi otherwise

where
∑

i∈L\C

pi ≥bG −
∑
i∈C

bi

⇐⇒
∑

i∈L\C

pi +
∑
i∈C

bi≥bG

and due to pi ≤ bi :
∑

i∈L\C

pi +
∑
i∈C

bi≥
∑
i∈L

pi

It follows that the most restraining constraint is for C = L, the set of all local
players. ∑

i∈L
pi ≥ bG

Hence, L*G classes have are single effective core constraint, and by theo-
rem 6.2 we know that there are no over-bidding strategies.



Chapter 7

Searching for minimal examples
of over-bidding

7.1 Listing SCMA classes with five bidders and three
winners

Based on corollary 6.7, which states that there are no over-bidding strategies
for VCGN payment when there are two or less winners, we continue the search
for a minimal example of over-bidding under VCGN payment in SMCA with
five bidders. There are nine non-isomorphic connected simple graphs1 on five
vertices that contain one independent sets of size three. They are depicted in
figure 7.1. One of them is 5-path, which we will discuss in detail in the next
section. Another is the self complementary ’bull’, which we can see as 5-path
with the additional edge (ml,mr). We will also discuss bull in more detail. Then
there are seven graphs which are LLLG + 1 connected vertex. We name those
7 cases LLLG+1{g,l} for g ∈ {0, 1}, l ∈ {0, 1, 2, 3} denoting the number of edges
to the global or local players. We require at least one edge between the added
vertex (+1) and LLLG to have a connected graph, thus l+ g can’t be zero. Due
to symmetry among the local vertices for l > 0, the l edges can connect to any l
different vertices among the local ones.

LLLG+1{1,0} is equivalent to LLLLG, for which we know that it is a single
core constraint class, as it belongs to the classes of star graphs discussed in
section 6.3. On a short glance, LLLG+1{0,3} looks like it can be reduced to
LLLG by considering the added vertex (+1) and the global bidder G to be the
a single global bidder G′. With this interpretation we would sum up their bids
bG′ = bG + b+1 to get the bid of the new global bidder bG′ , which we can do, as
they are independent of one another and can never be allocated together with
any local bid. Similarly for LLLG+1{1,3} it seems that we can reduce it to LLLG
by discarding the smaller bid of the added vertex and the global bidder. The
remaining six classes (5-path, bull, LLLG+1{0,1}, LLLG+1{1,1}, LLLG+1{0,2},

1Simple graphs have no loops, or multiple edges or edge weights.

38
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LLLG+1{1,2}) are interesting candidates to look for over-bidding under VCG-
Nearest payment.

Figure 7.1: All connected SCMA classes on five vertices which allow for three
winners (light blue vertices). LLLG+1{0,1} and LLLG+1{1,1} have two possible
allocations of three winners, pairing the two local vertices with lighe blue-yellow
gradient with the third local vertex or yellow +1 vertex. LLLG+1{1,0} has an
allocation of four winners.
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7.2 5-path

The 5-path graph represents a CA class that allows outcomes of three winners,
namely the leaves l, r and the middle node m. We want to verify if the core
constraints can be reduced to a single effective constraint, and if not see if there
can exist over-bidding strategies. We name the vertices of the 5-path in this order
l,ml,m,mr, r, as drawn in figure 7.2.
The valid maximal assignments are ({l,m, r}, {l,mr}, {ml,mr}, {ml, r}).

Figure 7.2: Five bidders placing one bid each represent the vertices. Edges
indicate a non-empty intersection of items among the connected bundles.

cID payment variables WD(cID)−W (bcID, xcID)

0 pl + pm + pr ≥ bml
+ bmr

1 0 + pm + pr ≥ max
(
(bml

+ bmr), (bl + bmr)
)
− bl

2 pl + 0 + pr ≥ max
(
(bml

+ bmr), bm
)
− bm

3 0 + 0 + pr ≥ pVr

4 pl + pm + 0 ≥ max
(
(bml

+ bmr), (bml
+ br)

)
− br

5 0 + pm + 0 ≥ pVm

6 pl + 0 + 0 ≥ pVl

Table 7.1: Core constraints of 5-path, given that (l,m, r) is the winning assign-
ment. We use the constraint identifier cID to refer to a specific core constraint.

pVr = max
(
(bml

+ bmr), (bl + bm), (bl + bmr)
)

−(bl + bm)

pVm = max
(
(bl + br), (bl + bmr), (bml

+ bmr), (bml
+ br)

)
−(bl + br)

pVl = max
(
(bml

+ bmr), (bm + br), (bml
+ br)

)
−(bm + br)

7.2.1 Reducing core constraints

We list all core constraints in table 7.1. The cIDs 3,5 and 6 are identical to the
VCG-payment and therefore trivially satisfied by the VCG-Nearest payment.

Is 5-path a single constraint class? First we check if cID 0 covers cID 1,
2 and 4. For this we subtract one of pl, pm, pr from cID 0 and compare the
resulting right-hand side (RHS) with the constraint with equal left-hand side
(LHS) (after subtraction).
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cID 0 =⇒ pm + pr ≥ bml
+ bmr − pl

cID 1 =⇒ pm + pr ≥ max((bml
+ bmr), (bl + bmr))− bl

if bl ≤ bml
cID 0 covers cID 1

else if pl ≤ blm cID 0 covers cID 1
else cID 1 RHS = bmr > bml

+ bmr − pl = cID 0 RHS− pl

So we see that there are conditions in which cID 1 and by symmetry 4 cannot be
reduced by constraint 0. Namely, for cID 1 when pl > bml

and when pr > bmr

for cID 4. Note that since bl ≥ pl the first condition bl > bml
always holds when

pl > bml
.

We will check how cID 0 and cID 2 compare with the same approach as above.

cID 0 =⇒ pl + pr ≥bml
+ bmr − pm

cID 2 =⇒ pl + pr ≥max((bml
+ bmr), bm)− bm

cID 2 is not trivial for max((bml
+ bmr), bm) 6= bm

bml
+ bmr − bm ≤bml

+ bmr − pm

Here we note that cID 2 is always covered by cID 0. This we see as
0 ≤ bml

+ bmr − pm when the RHS of cID 2 is unequal to zero, and bm ≥ pm.

Next we check if cID 1 and 4 are trivially satisfied by the VCG paymeny.
An example confirming that constraint with cID 1 and 4 are not covered by the
VCG-payments is (bl, bml

, bm, bmr , br) = (1, 1, 1, 1, 1). Then the VCG-payments
are each 0, but the RHS of both 1 and 4 are equal to 1. We therefore reduced
the core constraints to the three non-trivial constraints with cID 0, 1 and 4.

cID payment variables WD(cID)−W (bcID, xcID)

0 pl + pm + pr ≥ bml
+ bmr

1 pm + pr ≥ bmr

4 pl + pm ≥ bml

Table 7.2: Essential core constraints for 5-path, given bml
< pl and bmr < pr

7.2.2 Blocking core constraints

To further examine 5-path, we look at the blocking constraints. Is it possible to
have a total payment greater than bml

+bmr? If so then there must exist multiple
constraints which are blocking simultaneously.

Claim 7.1. cID 0 is always a blocking constraint in 5-path, when l,m, r win the
CA.
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Proof. If cID 0 is not blocking, then there exists cases, where the sum of payment
is greater than the RHS of cID 0: pl +pm +pr > bml

+bmr . As VCG-nearest pay-
ment minimizes the distance, clearly one or more constraints must be blocking.
Note that when cID 0 is not blocking, cID 2 cannot be blocking either as it is
covered by cID 0. We do a case distinction on other constraints being blocking.
We list all other combinations of blocking constraints and show that in no case
the sum of payment is greater than the RHS of cID 0.

1. cID 1 and 4 not blocking:
Then the payment must be equal to the VCG-payment, as those are the
remaining constraints on every individual winning bidders payments. This
would require that

pVl + pVm + pVr > bml
+ bmr =⇒

max
(
(bml

+ bmr), (bm + br), (bml
+ br)

)
+ max

(
(bl + br), (bl + bmr), (bml

+ bmr), (bml
+ br)

)
+ max

(
(bml

+ bmr), (bl + bm), (bl + bmr)
)

> bml
+ bmr + 2(bl + bm + br)

And l,m, r winning requires that max(bl + bmr , bml
+ bmr , bml

+ br) ≤ bl +
bm + br.

If (bml
+ bmr) were maximal in any of the three cases, we see that the

above inequality cannot hold, due to the requirement of l,m, r winning.
This observation allows us to simplify the expression removing the case
(bml

+ bmr) from every max function.

max
(
(bm + br), (bml

+ br)
)

+ max
(
(bl + br), (bl + bmr), (bml

+ br)
)

+ max
(
(bl + bm), (bl + bmr)

)
 > bml

+ bmr + 2(bl + bm + br)︸ ︷︷ ︸
A
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The 12 possible outcomes (from the 3 max functions) are each strictly
inferior to A.

(a) (bm + br) + (bl + br) + (bl + bm) = 2(bl + bm + br)

(b) (bml
+ br) + (bl + br) + (bl + bm) = bml

+ 2bl + bm + 2br

(c) (bm + br) + (bl + bmr) + (bl + bm) = bmr + 2bl + 2bm + br

(d) (bml
+ br) + (bl + bmr) + (bl + bm) = bml

+ bmr + 2bl + bm + br

(e) (bm + br) + (bml
+ br) + (bl + bm) = bml

+ bl + 2bm + 2br

(f) (bml
+ br) + (bml

+ br) + (bl + bm) = 2bml
+ bl + bm + 2br

(g) (bm + br) + (bl + br) + (bl + bmr) = bmr + 2bl + bm + 2br

(h) (bml
+ br) + (bl + br) + (bl + bmr) = bml

+ bmr + 2bl + 2br

(i) (bm + br) + (bl + bmr) + (bl + bmr) = 2bmr + 2bl + bm + br

(j) (bml
+ br) + (bl + bmr) + (bl + bmr) = bml

+ 2bmr + 2bl + br

(k) (bm + br) + (bml
+ br) + (bl + bmr) = bml

+ bmr + bl + bm + 2br

(l) (bml
+ br) + (bml

+ br) + (bl + bmr) = 2bml
+ bmr + bl + 2br

Therefore, pVl + pVm + pVr ≤ bml
+ bmr the VCG-payments cannot be the

only blocking constraints.

2. cID 1 and 4 blocking:

pl + pm = bml
∧ pm + pr = bmr =⇒

pl + pm + pr = bml
+ bmr − pm ≤ bml

+ bmr

cID 1 and 4 cannot be simultaneously blocking, as that would result in a
payment violating the constraint with cID 0 for pm > 0.

3. cID 1 blocking, 4 not blocking:
Then pm + pr = bmr , and in order for cID 0 not to be blocking we require
pl > bml

. The only remaining constraint that could inform pl is cID 6 wich
equals the VCG-payment pVl . Hence, we need to check if it is possible that
pVl > bml

.

pVl = max((bml
+ bmr), (bm + br), (bml

+ br))− (bm + br) > bml

=⇒ (bml
+ bmr) ≥ max

(
(bm + br), (bml

+ br)
)

=⇒ bmr > bm + br =⇒ bl + bmr > bl + bm + br

This contradicts the assumption that l,m, r are winning. The same argu-
ment holds by symmetry for cID 4 blocking and cID 1 not blocking.

Because there exists no combination of other blocking constraints which result in
a payment greater than bml

+bmr , we conclude that cID 0 is always blocking.
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This tells us that the social welfare of the VCG-Nearest payment is always
equal to bml

+ bmr in the SMCA class 5-path.

Claim 7.2. The core constraints with cID 1 and 4 are always covered by cID 0. In
other words, the conditions for cID 0 to be covered by one or the other, bml

< pl
for cID 1 and bmr < pr for cID 4, are never satisfied.

Proof. We assume that the constraint 1 is not covered by cID 0. The condition for
cID 1 to not being covered by cID 0 is pl > bml

. We deduce by contradiction that
pl ≤ bml

. Having proven claim 7.1 we know that cID 0 is blocking and therefore
pl + pm + pr = bml

+ bmr . The constraint cID 1 states that pm + pr ≥ bmr . After
subtracting cID 1 from cID 0 we are left with pl ≤ bml

, contradicting that cID 1 is
not covered by cID 0. The same argument concludes for cID 4 that pr ≥ pmr

Therefore, the core constraints of the class 5-path can be reduced to the single
effective constraint cID 0. By theorem 6.2 there are no over-bidding strategies in
the SMCA class 5-path. To summarize, 5-path is an example of a SMCA which
allows for three winners, but can be reduced to a single effective core constraint.

7.3 bull-graph

Let us analyze the CA class characterized by the bull graph (drawn in figure 7.1).
Is it a single constraint class like 5-path? For this let us start by checking if
the core constraints, when there are three winners, can be reduced to a single
constraint.

We list the core constraints on the winning bidders. Similarly to 5-path we
name the winning bidders l,m, r where the left and right horns of the bull map
to l, r and the nose maps to m. The losing bids (eyes) we map to ml for the left
and mr for the right.

payment variables WD(cID)−W (bcID, xcID)

0 pl + pm + pr ≥ max(bml
, bmr)

1 0 + pm + pr ≥ max
(
bml

, (bl + bmr)
)
− bl

2 pl + 0 + pr ≥ max(bml
, bm, bmr)− bm

3 0 + 0 + pr ≥ pVr = max
(
bml

, (bl + bmr), (bl + bm)
)
− (bl + bm)

4 pl + pm + 0 ≥ max
(
(bml

+ br), bmr

)
− br

5 0 + pm + 0 ≥ pVm = max
(
(bl + br), (bl + bmr), (bml

+ br)
)
− (bl + br)

6 pl + 0 + 0 ≥ pVl = max
(
(bml

+ br), (bm + br), bmr

)
− (bm + br)

Table 7.3: Core constraints of bull, given the winning assignment (l,m, r)
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7.3.1 Reducing core constraints

To check if a core constraint covers another, we compare the lower-bounding
RHS of the constraints after adding or subtracting something to get an equal
LHS. If for two resulting RHSs one is greater, it covers the other constraint. For
the VCG-Nearest payment the constraints on single payments (cIDs 3, 5 and 6)
are trivially satisfied, as they are equivalent to the VCG-payment. We begin by
comparing the non-trivial constraints (cIDs 0, 1, 2 and 4) against each other.
Note that the covers relationship is transitive, i.e. if x covers y and y covers z,
then x covers z. This follows from the transitivity of the ≥ relation.

Like for 5-path, cID 2 is covered by cID 0, when its RHS is greater zero:

cID 0 =⇒ pl + pr ≥ max(bml
, bmr)− pm

cID 2 =⇒ pl + pr ≥ max(bml
, bm, bmr)− bm

cID 2 is not trivial for max(bml
, bm, bmr) 6= bm

max(bml
bmr)− bm ≤ max(bml

, bmr)− pm

Hence, cID 2 can be removed, as it does not additionaly restrict the core given
cID 0. We continue by checking how cID 0 compares to cIDs 1 and 4. Like for
5-path we can again take advantage of the symmetry between l, r and ml,mr.
We check how cID 0 compares with cID 1.

cID 0 =⇒ pm + pr ≥ max(bml
, bmr)− pl

cID 1 =⇒ pm + pr ≥ max
(
bml

, (bl + bmr)
)
− bl

cID 0 covers cID 1 ifmax(bml
, bmr)− pl ≥ max

(
bml

, (bl + bmr)
)
− bl

=⇒ when bmr + pl ≤ bml
cID 0 covers cID 1

And vice versa, if bmr + pl ≥ bml
cID 1 covers cID 0

By symmetry cID 0 covers cID 4 if bml
+ pr ≤ bmr , and that cID 4 covers cID 0

when bml
+ pr ≥ bmr .

Among the non-trivial constraints, what remains to be done is the comparison
of cID 1 and cID 4. We do this by subtracting pr, respectively pl s.t. the LHS is
equal to pm for both constraints. In this chapter we write R if we don’t know if
the relation is ≥ or ≤.

cID 1 =⇒ pm ≥max(bml
, (bl + bmr))− bl − pr

cID 4 =⇒ pm ≥max(bmr , (br + bml
))− br − pl

Comparing the RHSs:

max(bml
, (bl + bmr))− bl − pr Rmax(bmr , (br + bml

))− br − pl
Adding (pl + pr) =⇒

max(bml
, (bl + bmr)) + pl − bl Rmax(bmr , (br + bml

)) + pr − br
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We differentiate three cases:

1. bml
≥ bl + bmr , then cID 4 covers cID 1

2. bmr ≥ br + bml
, then cID 1 covers cID 4

3. bml
≤ bl + bmr ∧ bml

≤ bl + bmr : In this case cID 1 covers cID 4 if
bmr + pl ≥ bml

+ pr, and cID 4 covers cID 1 if bmr + pl ≤ bml
+ pr.

Thus, we observe that either cID 1 or 4 always covers the other. So far we showed
that each of the cIDs 0, 1, 4 may cover the other two, depending on the bids.
Next we study what may be the blocking core constraints.

7.3.2 Blocking core constraints

We show that, for SMCA represented by the bull-graph, it is possible to have total
payment greater max(bml

, bmr). That is to say multiple constraints (including
the constraints on single payments) can be simultaneously blocking, as no single
constraint has RHS greater max(bml

, bmr).

sum of VCG payments We begin by checking if the sum of VCG payments
could result in greater payment.

pVl + pVm + pVr > max(bml
, bmr) =⇒

max
(
bmr , (bm + br), (bml

+ br)
)

+ max
(
(bl + br), (bl + bmr), (bml

+ br)
)

+ max
(
bml

, (bl + bm), (bl + bmr)
)

 > max(bml
, bmr) + 2(bl + bm + br)

We can eliminate the cases bmr ≥ (bm + br) and bml
≥ (bl + bm), as they cannot

be satisfied when l,m, r are the winners of the auction, which requires
max(bl + bmr , bml

+ br) ≤ bl + bm + br. Hence we simplify to:

pVl + pVm + pVr > max(bml
, bmr) =⇒

max
(
(bm + br), (bml

+ br)
)

+ max
(
(bl + br), (bl + bmr), (bml

+ br)
)

+ max
(
(bl + bm), (bl + bmr)

)
 > max(bml

, bmr) + 2(bl + bm + br)︸ ︷︷ ︸
B

Those are the same potential outcomes as listed in the 5-path subsection on
blocking constraints 7.2.2. What changed is that we compare to B which is less
than A = B + min(bml

, bmr). We refrain from listing all cases again. Instead we
give one example which is always less than B to show the argumentation and list
the three cases which may be greater B. Case (f) (as listed in 7.2.2) is always
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lesser than B. We assume otherwise and derive a contradiction.

2bml
+ bl + bm + 2br > max(bml

, bmr) + 2(bl + bm + br)

=⇒ 2bml
> max(bml

, bmr) + bl + bm

=⇒ bml
> bl + bm

=⇒ bml
+ br > bl + bm + br

As we must have bl +bm +br ≥ bml
+br for there to be three winners, this implies

that (f) < B. Here listed are the three terms which – depending on the bids –
may be greater than B:

(h) (bml
+ br) + (bl + br) + (bl + bmr) = bml

+ bmr + 2bl + 2br
(j) (bml

+ br) + (bl + bmr) + (bl + bmr) = bml
+ 2bmr + 2bl + br

(l) (bml
+ br) + (bml

+ br) + (bl + bmr) = 2bml
+ bmr + bl + 2br

We see that (h), (j) and (l) each require that bml
≥ bm ∧ bmr ≥ bm. This

leaves only the cases derived the from VCG-payment of m: max
(
(bl + br), (bl +

bmr), (bml
+ bm)

)
. Further we observe that cases (j) and (l) are symmetric, as

one could swap bl with br and bml
with bmr and get the other case.

Let us look at (h) precisely. The conditions to get (h) are: bl ≥ bml
≥ bm,

br ≥ bmr ≥ bm. Assuming (h) > B we get:

bml
+ bmr + 2bl + 2br > B

=⇒ min(bml
, bmr) > 2bm

To verify that under the conditions of (h) the sum of payments is greater than
max(bml

, bmr), we construct an example.
Consider bid profile b = (bl, bml

, bm, bmr , br) = (6, 5, 1, 5, 6) which has VCGN
payment outcome p(b) = (4, 0, 1, 0, 4). The payments sum up to 9 > 5 =
max(bml

, bmr) confirming the hypothesis. We wonder if we can reduce the to-
tal payment by over-bidding one of the winners in a way that reduces the over-
bidders payment. The only player which can reduce the sum of payment by
over-bidding is m. This is the case, as by the conditions of (h), pm is the only
variable controlled by one of the winning bidders which determines if the sum
of payments is greater than B or not (min(bml

, bmr) > 2bm). As predicted,
we observe no change in the outcome after over-bidding of bl or br. Over-
bidding bm on the other hand does indeed reduce the sum of payment up to
max(bml

, bmr). However, in the examples we studied, we observe an increasing
payment pm = min

(
bm,max(bml

, bmr)
)
. This would indicate that there is no

incentive to overbid for player m.

Let us do the same analysis in case (j), we will deduce symmetric results for
case (l).
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Conditions of (j) are:
max(bl + bmr , bml

+ br) ≤ bl + bm + br l,m, r winning
(bml

≥ bm) ∧ (bmr ≥ bm) common conditions of (h), (j), (l)
(bmr ≥ br) ∧ (bmr − br ≥ bml

− bl) specific conditions to (j)
Assuming (j) > B we get:

bml
+ 2bmr + 2bl + br > B

=⇒ bml
+ 2bmr −max(bml

, bmr) > 2bm + br

=⇒
{

2bmr > 2bm + br if bml
≥ bmr

bml
+ bmr > 2bm + br if bml

≤ bmr

Again we confirm that this results in a sum of payments greater than max(bml
, bmr)

by example. If bml
≥ bmr , for bids (bl, bml

, bm, bmr .br) = (6, 5, 3, 6, 4) the VCGN
payment equals (2, 0, 3, 0, 3). Then the sum of payments 8 is greater than
max(bml

, bmr) = 6. For the second case bml
≤ bmr , an example is p(6, 7, 4, 5, 3) =

(3, 0, 4, 0, 1). Here the payments sum to 8 while the greatest losing bid amounts
to 7.

Like before, we are interested to observe how over-bidding affects the sum
of payment. In the examples we explored, over-bidding bm behaved according
to case (f). Over-bidding reduced the sum of payment but increased pm to the
detriment of the over-bidder. As the conditions on (j) > B are characterized by
2bm + br, we expected that over-bidding br would equally lead to a decrease in
total payment. Against our expectations, over-bidding br for (j) (or bl in case
(l)) to go from (j) > B to (j) < B did not reduce the sum of payment. In fact
it had no effect on the outcome. One explanation would be that in this case,
there is a dominating blocking constraint of cID 1 and 6 or cID 3 and 4. This
dominating constraint would cover the sum of VCG payments. We will verify
this when comparing cID 1 and 6 blocking to the sum of VCG payments.

cID 1 or 4 blocking By symmetry we only look at the case when cID 1 is
blocking. This constraint limits pm, pr. The constraint cID 6 lower-bounding
only pl could be blocking together with cID 1. When cID 1 and 6 are blocking,
we begin by comparing the sum of the RHSs to the RHS of cID 0 max(bml

, bmr).
We assume that cID 1 covers 0, which holds when bmr + pl ≥ bml

.

pVl + max(bml
, bl + bmr)− bl = pVl + bmr R max(bml

, bmr)

=⇒ max
(
(bml

+ br), (bm + br), bmr

)
+ bmr R bm + br + max(bml

, bmr)
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We distinguish cases based on the maximal value of the LHS:

• (bml
+ br) = max

(
(bml

+ br), (bm + br), bmr

)
:

=⇒ bml
≥ bm ∧ bml

+ br ≥ bmr , then
bml

+ br + bmr > bm + br + max(bml
, bmr) ⇐⇒ min(bml

, bmr) > bm

• (bm + br) = max
(
(bml

+ br), (bm + br), bmr

)
:

=⇒ bml
≤ bm ∧ bml

+ br ≥ bmr , then
bm + br + bmr ≤ bm + br + max(bml

, bmr), as bmr ≤ max(bml
, bmr)

• bmr = max
(
(bml

+ br), (bm + br), bmr

)
:

=⇒ bml
≤ bm ∧ bml

+ br ≤ bmr , then
2bmr ≤ bm + br + max(bml

, bmr), as bmr ≤ bm + br due to l,m, r winning

The only case when cID 1 covers cID 0 (bmr + pl ≥ bml
) where blocking cIDs 1

and 6 result in total payment greater max(bml
, bmr) is when

bml
≥ bm ∧ bml

+ br ≥ bmr ∧min(bml
, bmr) > bm

Next we check if blocking cID 1 and 6 may also cover the sum of VCG
payments in cases (f), (l), (j). In fact, we find that if cID 0 is covered by cID 1
or 4, then the resulting sum of payment is always greater than the sum of VCG
payments. Here we note the case for cID 0 being covered by cID 1 and verify
that bmr + pVl ≥ pVl + pVm + pVr .

bmr > pVm + pVr =⇒

bmr + 2bl + bm + br︸ ︷︷ ︸
C

>

{
max((bl + br), (bl + bmr), (bml

+ br))
+ max(bml

, (bl + bm), (bl + bmr))

One can list all 9 possible outcomes of the two max functions and verify that it
is always strictly smaller than C. To do so we make use of the assumption that
l,m, r are the winning bidders: bl + bm + br ≥ bml

+ br =⇒ bl + bm ≥ bml
and

similarly for bmr ≤ bm + br. Additionally, we make use of the assumption that
cID 0 is covered by cID 1 bmr + pl ≥ bml

=⇒ bmr + bl ≥ bml
. If we drop this

last assumption for some of the cases the sum of VCG payments is greater than
the RHS of cID 1 + the RHS of cID 6.

Let us write down the cases where the sum of VCG payment is not covered
by blocking cIDs 1 and 6 and check if those match with cases (f), (j) or (l). We
will see that the cases when the sum of VCG payment is not covered by blocking
cIDs 1 and 6, are different from (f), (j) or (l). Therefore, we know that when
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the sum of VCG payment is not covered by cIDs 1 and 6, then it is covered by
cID 0. Or differently put, whenever the VCG payments are not covered by cID
0, they are covered by cIDs 1 and 6 or 3 and 4.

The two cases which require the assumption that cID 0 is covered by cID 1
to be less than C, ask for bml

≥ bl ∧ (bml
+ br ≥ bl + bmr). The first case has the

stronger conditions bml
≥ bl + bm ∧ bml

≥ bl + bmr . Then we get

C R 2bml
+ br =⇒ bmr + 2bl + bm R 2bml

we know that bl + bm ≥ bml

if bml
− (bmr + bl) > (bl + bm)− bml

=⇒ C < 2bml
+ br

else C ≥ 2bml
+ br

This states that under those conditions (bml
≥ bl + bm ∧ bml

≥ bl + bmr ∧ 2bml
>

2bl + bmr + bm) the sum of VCG payments is greater than the RHSs of cID 1 +
cID 6. Let us check if it is then covered by RHS of (cID 3 + cID 4). To do so we
compare

bml
+ pVr R pVl + pVm + pVr ⇐⇒ bml

R pVl + pVm

=⇒ bmr + bl + bm + 2br︸ ︷︷ ︸
D

R

{
max((bml

+ br), (bm + br), bmr)
+ max((bl + br), (bl + bmr), (bml

+ br))

We apply the constraints from above:
bml
≥ bl+bm∧bml

≥ bl+bmr , and 2bml
> 2bl+bm+bmr . Then the sole possibility

of the max functions results in

D < 2bml
+ 2br =⇒ bmr + bl + bm < 2bml

this follows from 2bml
> 2bl + bm + bmr

It is not covered by blocking cIDs 3 and 4. But comparing with the conditions
from (f), (j) and (l) we see that it must be covered by cID 0. The cases (f), (j),
or (l) require bmr ≥ bm which results in a contradiction to l,m, r winning the
auction as follows

2bml
> 2bl + bm + bmr ≥ 2bl + 2bm =⇒ bml

+ br > bl + bm + br

Hence this represents a case where the sum of the three VCG payments is covered
by cID 0, but not by 1 or 4.

We perform the same analysis on the second case not covered by blocking
cIDs 1 and 6. This case has the conditions bml

≥ bl ∧ (bml
+ br ≥ bl + bmr) and

bl + bm ≥ (bml
) ∧ bm ≥ bmr .

C R bl + bml
+ bm + br =⇒ bmr + bl R bml

In order to have have a RHS greater C we need to assume bmr + bl < bml
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Applying those constraints to check if those are covered by cID 3 and 4 we end
up with

D R max((bml
, bm) + 2br + bml

Considering the cases which may be in (f), (j), (l) requires bml
≥ bm

=⇒ D R 2br + 2bml
same as above.

Hence we showed that in the SMCA class represented by the bull-graph, the cIDs
3, 5, 6 never form blocking constraint together, as the sum of VCG-payments is
always covered by either cID 0, cIDs 1 and 6, or cIDs 3 and 4.

Finally, we exclude the possibility of both cID 1 and 4 being blocking at the
same time. Recall when we checked the conditions where cID 1 covers 4 and
vice versa. We have seen that one of the two constraints always covers the other.
Therefore, for specific bids it cannot be that we require both constraints 1 and 4
to express the core.

7.4 Outlook

We showed that the bull-graph represents a class of SMCA with three winners
which is not a single core constraint class. This makes it an interesting class to
examine with regards to over-bidding. Our efforts so far could neither confirm
nor disprove the existence of over-bidding strategies in the bull class. We char-
acterized the conditions of the non-trivial core constraints with cIDs (0,1,4) to
cover one another. Further, we confirmed that there exist outcomes with sum
of payment greater than max(bml

, bmr). This indicates that multiple core con-
straints can be blocking simultaneously (one of 0, 1 and 4 combined with some of
the constraints on single payments 3,5 and 6). With the question of over-bidding
in mind, we know that, for bids in ranges where a single constraint covers the
others, there is no over-bidding. It would be interesting to study if one can find
over-bidding strategies where the over-bid leads to a change in which constraint(s)
are blocking. This can never happen in single core constraint classes.

From the seven LLLG+1 classes (see figure 7.1) four ({0,1},{1,1},{0,2},{1,2})
could be interesting with regards to over-bidding and have not been examined.
They represent open cases of SMCA classes on five bidders with three winners,
which potentially include examples of over-bidding under VCG-Nearest payment.
Analyzing those would further our understanding on when over-bidding can or
can not occur. Studying those along with the bull class appears like the logical
next step on the quest to find a minimal example of over-bidding.



Chapter 8

Conclusion

This Master’s Thesis sets the foundations for reasoning about over-bidding in
single-minded combinatorial auctions (CA). We began by defining over-bidding
strategies and setup the search for a minimal example of over-bidding in single-
minded CA under the VCG-Nearest payment. Along the way we gained valuable
insight concerning existence criteria of over-bidding strategies.

8.1 Results

Our model focused on single-minded combinatorial auctions (SMCA) mechanisms
M = (X,P ), with allocation algorithm X maximizing the reported social welfare
and core selecting payments P satisfying voluntary participation.

• In section 4.4 we extend the proof by Bosshard18 [4] that proxy and pro-
portional payments are non-decreasing, by taking into account how over-
bidding may effect the core.

• We show that over-bidding a losing bid, such that the over-bid value turns
it into a winning bid, is never profitable (theorem 4.2).

• For non-decreasing payment P , we show that there exist no over-bidding
strategies in SMCA (corollary 4.4). This implies that for non-decreasing
payment P , there exist no Nash equilibria containing over-bidding in SMCA.

• We introduced SMCA classes, grouping instances with same behaviour
(chapter 5). We achieved this by mapping CA to graphs where a bid is
represented by a vertex and two bids are connected by an edge, if the re-
spective bundles the bids where placed on intersect in some items. Hence,
we can list the finite CA classes on n bidders by their finite representations
of non-isomorphic graphs on n vertices.

• Chapter 6 describes our result on single core constraint classes. If the
core constraints can be reduced to a single effective constraint, the VCGN
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payment is non-decreasing (theorem 6.2). The corollary 6.7 states that CA
classes, which have no possible allocation with more than two winners, are
single core constraint classes.

• Based on the result from corollary 6.7, and the graph representation of
CA classes, we know that CAs with four or less bidders are robust to over-
bidding under the VCGN payment. In chapter 7 we list the nine CA classes
on five bidders, which allow for three or more winners. For four of them, we
argue that they are robust against over-bidding. The remaining five classes
are the minimal candidates, for which we could not eliminate the existence
of over-bidding in the scope of this thesis.

8.2 Future work

To continue the search for the minimal example of over-bidding in SMCA under
VCGN payment, picking up where chapter 7 ended appears promising. Another
way to find smaller examples of over-bidding, could be to try to simplify the
over-bidding example on eleven bidders (table 2.2). Maybe not all bidders are
necessary to provoke over-bidding. If this fails, one could directly study the eleven
bidders example. Maybe one can reduce the number of core constraints to just a
few critical ones? Or, observe how the core is affected by the profitable over-bid?

When the occurrence of over-bidding is better understood and more examples
are known, new directions of questioning become interesting. We end this thesis
with a list of potential research questions.

• Is over-bidding a viable strategy, when the players have incomplete infor-
mation?

• Do over-bidding strategies occur in Nash equilibria?

• Can a single bidder reliably abuse over-bidding to their benefit?

• Is over-bidding a significant issue that needs to address by mechanism de-
sign, or does it occur to infrequently and with too little impact?

• What changes when we consider multi-minded CA?

• Can one leverage computational approaches to tackle over-bidding?
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