
PTP Time Synchronization for
FlockLab 2

Semester Thesis

Julian Huwyler

jhuwyler@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Roman Trüb
Reto Da Forno

Prof. Dr. Lothar Thiele

June 12, 2020

mailto:Julian Huwyler<jhuwyler@student.ethz.ch>

Abstract

Evaluation and development of wireless sensor network protocols often requires
a test network for experiments. Testbeds help reducing the effort caused by de-
ploying test networks, providing a reusable infrastructure, while also improving
reproducibility of experiments. FlockLab is such a testbed, which consists of a
system of distributed observers. In systems with distributed measurement col-
lection, tight time synchronization is crucial. The new architecture of FlockLab,
FlockLab 2, achieves the targeted accuracy of approximately 1 microseconds by
synchronizing the time on each observer via a Global Navigation Satellite Sys-
tem (GNSS) receiver. This requires sufficient GNSS reception, which is often
not available indoors. A protocol which can achieve sub-microsecond accuracy
over the existing Ethernet infrastructure is Precision Time Protocol (PTP).
In this thesis, PTP is configured on a BeagleBone single board computer with
the Debian 9 operating system. In addition, the precision and accuracy in dif-
ferent setups was characterized. On the simplest setup, which consisted of two
directly connected BeagleBones, an average offset of 0.003µs with a maximum
offset of 3.070µs is measured. It is also seen that PTP is significantly influenced
by high network load.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

2 Background 4

2.1 Precision Time Protocol . 4

2.1.1 Basic Elements and Hieararchy 4

2.1.2 Message Exchange and Delay Computation 5

2.1.3 Hardware Versus Software Timestamping 6

2.2 The Linux PTP Project . 7

2.2.1 ptp4l . 7

2.2.2 phc2sys . 8

2.2.3 pmc . 8

2.3 FlockLab . 8

3 Materials and Methods 10

3.1 Time Synchronization on the BeagleBone 10

3.2 Measurement of Time Offset . 12

3.2.1 Internal Measurement . 12

3.2.2 External Measurement . 13

3.3 Tools . 13

3.3.1 Measurement Scripts . 14

3.3.2 stress-ng . 14

3.3.3 iperf . 14

3.3.4 Raspberry Pi and Personal Computer 14

3.3.5 Switches . 15

ii

Contents iii

3.4 Measurement Setup . 15

3.4.1 Direct Setup . 15

3.4.2 One Switch Setup . 17

3.4.3 Two Switches Setup . 19

3.5 Data Post Processing . 20

4 Results 22

4.1 Direct Setup . 25

4.1.1 CPU Stress Test . 26

4.1.2 Network Stress Test . 26

4.2 One Switch Setup . 27

4.3 Two Switches Setup . 28

4.4 Measurements with Unexpected Artifacts 29

5 Discussion 31

6 Conclusions 32

6.1 Feasibility of Deployment . 32

6.2 Future Work . 32

A Appendix 1

A.1 Setup of Beaglebones . 1

A.1.1 Configuration files . 2

A.2 Automated Measurement Scripts 3

A.2.1 Internal Measurement Script 3

A.2.2 External Measurement Script 5

A.3 Data Post Processing . 6

A.3.1 Quick Displaying of Collected Data [deprecated] 6

A.3.2 Overview of Data Processing 7

A.3.3 Overview of Files, Functions and Dependencies 8

A.4 Known Issues . 15

A.5 Timetable . 16

A.6 Original Project Assignment . 17

Chapter 1

Introduction

Nowadays, more and more devices are connected to the Internet with a rising
amount of wireless devices [1]. Therefore, wireless protocols gain importance. For
design and evaluation of wireless protocols a testbed helps tackling the challenges
of repeatedly deploying test networks, as well as improving the reproducibility
of experiments. FlockLab is such a testbed, providing distributed infrastructure
to test wireless protocols. It is in service since 2012 and was recently renewed as
FlockLab 2 platform. The testbed is currently extended by placing nodes on the
rooftop to enlarge spacing between them, extending the existing short baseline
distances.
In distributed networks, which obtain data in parallel, time synchronization is
key to order events correctly. Therefore, tight time synchronization in the order
of 1 microsecond is needed for FlockLab 2. Because of this requirement, the
synchronization method was changed from a wireless protocol to GNSS synchro-
nization. The GNSS module used in FlockLab 2 achieves 50ns accuracy, meeting
the targeted 1 microsecond accuracy. If there is no sufficient GNSS reception
available, the time is currently synchronized with the Network Time Protocol
(NTP) achieving an accuracy in the order of milliseconds.
A protocol capable of achieving the targeted 1 microsecond accuracy via Ethernet
is the Precision Time Protocol (PTP) as defined in the IEEE 1588 standard[2].
The goal of this thesis is to configure PTP in the FlockLab 2 environment and
characterize the achievable time synchronization accuracy and quality.

1.1 Motivation

In the current setup we are restricted on the placement of FlockLab 2 ob-
servers, since we need sufficient GNSS signal reception, therefore we can only
place them outdoors or near a window. This restriction is not desired for a
testbed, as we want to measure indoor behaviour as well, thus requiring a
different time synchronization method besides GNSS based time synchronization.

1

1. Introduction 2

There are different methods to synchronize time, like building a dedicated
system, but since the FlockLab 2 testbed already has Ethernet connectivity
on every observer it is obvious to take advantage of this. One method would
be to synchronize the observer via NTP, like it is on many devices, but this
only provides millisecond accuracy. Another protocol is PTP which enables
the targeted sub-microsecond accuracy. If we can show that the PTP protocol
achieves this accuracy on the FlockLab 2 testbed as well, we can use it to
complement the GNSS based synchronization.

1.2 Related Work

To give an idea of the achievable accuracy and precision with PTP, a summary
of selected papers is given in this section.
A similar testbed to FlockLab 2 is Shepherd[3]. It uses SeeedStudio BeagleBone
Green (BeagleBone) as its main platform as well and achieves tight time
synchronization with GNSS and PTP. The performance achieved in a simple
setup with one Ethernet switch states a time accuracy with a maximum offset
of 2.4µs, while 91% of the measurements stay within an offset of 1µs. This offset
is measured by sampling the falling edge of the SPI chip select(CS) signal on
two nodes for 10,000 consecutive samples.
D.i.G. [4] is an out-of-band system developed for monitoring nodes in a high
performance computing cluster. It is based on the BeagleBone Black, which
uses the same processor and Ethernet hardware as the SeeedStudio BeagleBone
Green (BeagleBone). In two papers by Antonio Libri et al. [5][6], they evaluate
how NTP and PTP scale. They achieve an accuracy for PTP of 16.1ns and
a precision of 513.7ns at best and the 99th-percentile is at 1.32µs. In their
setup they used switches with PTP hardware support. As scalability is of
importance in High performance Computing (HPC), the paper investigates
this as well and finds that scalability for PTP is not considered an issue. The
measurement of the time offset explained in [5], involved an oscilloscope to
measure the delay caused by the Interrupt Service Routine(ISR). This allows
to take the offset between ISR delay into account for the final computation of
the system clock time offset. Hence, this improves the accuracy and precision of
the measurements. Also it has to be noted that they did not synchronize their
time to a precise absolute reference (e.g. GNSS) because it was not considered
important in HPC.
In his master project[7] Mudassar Ahmed investigated the performance of PTP
on the Beagle Bone Black in a simple setup for both software and hardware time
stamping as well as under different conditions (Network, IO and CPU load).
For software-based time stamping the average offset was between ±0.5ms, for
hardware-based the accuracy reached approximately 50ns. It was found in this

1. Introduction 3

paper, that CPU and I/O load did not influence the accuracy but network load
did.

Chapter 2

Background

In this section crucial components of this thesis are introduced and explained.

2.1 Precision Time Protocol

The Precision Time Protocol (PTP) is a protocol used to synchronize time on
devices in a Local Area Network (LAN). It was first standardized in 2002 as the
IEEE 1588 standard, extended in 2008 with the IEEE1588-2008 [2] also known
as the PTP version two. Currently a third version is on its way, which takes
the White Rabbit[8] extension into the standard and gives more flexibility in the
configuration. In this thesis, the IEEE1588-2008 standard is used, because the
linuxptp software, explained in section 2.2, uses this standard. In the following
subsections, this standard is explained in detail.

2.1.1 Basic Elements and Hieararchy

PTP knows three different types of clocks: the boundary clock (BC), the BC
and the transparent clock (TC). Every end node, which has only one PTP port
(e.g. a client with only one Ethernet Port), is called an ordinary clock (OC). An
OC can be either slave or master depending on the outcome of the execution
of the best master clock algorithm (BMCA). This algorithm chooses the time
source of the network, by finding the most precise clock based on the declared
precision and other criteria of the clock. After the execution of this algorithm,
the node with the best clock, according to the BMCA, acts as the master and
therefore is the time source in the network. It is also known as grand master
clock (GMC). Every other OC acts as a slave and synchronizes its time to the
GMC.
Every node which connects OC devices or other nodes and supports PTP
is either a BC or a TC. These special clocks are meant to reduce the jitter
introduced by the network itself and lead to more precise synchronization. The

4

2. Background 5

Grand Master Clock
(GMC)

t1

Sync

Follow_Up

Delay_Req

Delay_Resp

t2

t3

t4

t2

t2

t2

t2

Timestamps known by slave

Slave

Time

t1

t1

t1

t3

t3 t4

Figure 2.1: The delay request-response mechanism used by PTP. Solid arrows
are Event Messages, dashed arrows are General Messages. This graphic was
adapted from [6]

TC only measures the time spent in the device of a PTP packet and adds this
to a specific message field in the packet. Therefore it is not a slave, nor a
master and is called ”transparent”. The BC on the other hand has each port
either configured in slave or master mode and actively synchronizes time with
its peers. A node with multiple ports(e.g. a switch without PTP hardware
support), which doesn’t support PTP can significantly reduce the precision by
introducing asynchronous path delays.

2.1.2 Message Exchange and Delay Computation

To be able to exchange data and measure time offset and delay, PTP uses two
different types of messages, namely Event Messages and General Messages. The
Event Messages are used for the synchronization and are a critical part of the
PTP protocol, General Messages on the other hand are used to transmit times-
tamps or distribute announcement, management or signaling messages. A differ-

2. Background 6

ence between the two message types is that the Event Messages get timestamped
and any disturbance in the network on them will affect the quality of the syn-
chronization.
Measurement of path delay and time offset is done with a delay response-request
mechanism, which works as depicted in fig. 2.1: First, the master sends out a
Sync message to all slaves connected to its port, while timestamping the time
t1 when the message was sent. The timestamp will be transmitted to the slaves
right after in a Follow Up message. On reception of the Sync message, the slave
timestamps the message (t2) and sends a Delay Req message which is also times-
tamped (t3) by the slave. The master will then timestamp the reception of this
message (t4) and send it back as a Delay Resp message. After this the slave has
all the data to calculate the path delay δ and the offset σ:

δ = (t4 − t1)− (t3 − t2) (2.1)

σ =
t2 − (t1 +

δ

2
) + t3 − (t4 −

δ

2
)

2
=

(t2− t1) + (t3 − t4)
2

(2.2)

This calculation, adapted from [6], assumes a symmetric path delay, which ex-
plains why any disturbance in the network leading to asymmetric delay can
significantly influence the quality of the PTP synchronization. The PTP main-
tains the synchronization by periodically performing this delay request response
mechanism.
This request response mechanism has two configuration options: either end to
end (E2E) or peer to peer(P2P). In the end to end mechanism the delay is calcu-
lated directly from GMC to slave. This allows for devices without PTP support
to be present in the path. The peer to peer delay mechanism on the other hand
calculates the delay for each segment of the path, therefore it requires PTP
support on every node of the path.

2.1.3 Hardware Versus Software Timestamping

A lot of the jitter introduced in time synchronizations via Ethernet is caused
from passing through the OSI layers. This is because the time when a packet
physically arrives at the port of the device and the time the application gets
notified is not deterministic. Therefore, we need timestamping as close to the
physical layer as possible. In the PTP there are three options specified by the
standard to timestamp the incoming and outgoing messages as seen in fig. 2.2:

A between the physical and mac layer of the OSI reference layer model

B in the kernel space or interrupt service routine

C at the application layer

2. Background 7

Figure 2.2: Possible Timestamping options form the PTP standard. Taken from
[2]

The former two can be referred to as software timestamping whilst the latter
requires hardware assistance. Therefore, we call it hardware timestamping.
Hardware timestamps can be generated either between the MAC and PHY
layer or even inside the PHY layer. Hardware timestamps have the advantage
that they significantly reduce the delay and jitter introduced by the layers. In
general the closer we capture a timestamp at the actual port, the more accurate
the synchronization.

2.2 The Linux PTP Project

As the name suggests this is an implementation of the PTP for the Linux op-
erating system. Included in this project are three software parts, namely ptp4l,
phc2sys and pmc. The Linux PTP Project makes use of the PTP hardware clock
(PHC) subsystem in Linux and has various configuration options required by the
standard. Both software and hardware timestamping are offered via the Linux
SO TIMESTAMPING socket option. The tool synchronizes the system clock in
two steps: First it synchronizes the PHC to a master clock in the network, then
it synchronizes the PHC with the system time. In this thesis version 1.8 for the
Debian 9 (Stretch) distribution is used.
In the following the Linux PTP components are explained in detail.

2.2.1 ptp4l

This software implements the time synchronization part of the PTP protocol. It
synchronizes the PHC to a master clock in the network, or as a master clock syn-
chronises the slaves in the network to its own PHC, according to the standard. If

2. Background 8

the system is not capable of hardware timestamping and therefore does not have
a PHC, the program directly synchronizes the system time. The configuration
of the program can be adjusted via a configuration file.

2.2.2 phc2sys

For the second step in the synchronization, the program phc2sys synchronizes
the system time to the PHC or vice versa. Various parameters can be adjusted
via command line options.

2.2.3 pmc

The last piece of software is the implementation of the PTP management client
as defined in the standard. It can be used to send and receive management
messages, such as to get various measurements about the clock source in the
network.

2.3 FlockLab

Observer

Power

GPIOs/UART

Beaglebone

SWD
J-Link

Debugger

Target

RocketLogger
Power Measurem.

FlockLab Server
PPS

GPS

Observer

Beaglebone

J-Link
Debugger

RocketLogger
Power Measurem.

PPS

GPS

Data/
NTP/
PTP

Figure 2.3: The FlockLab 2 Architecture. Taken from the original assignment
in appendix A.6

FlockLab[9] is a testbed for wireless sensor networks, consisting of a network
of FlockLab observers distributed on the campus of ETH Zurich, with a few
remote nodes in the city. Each observer is directly connected to a device under
test and has capabilities to control and trace inputs and outputs from this node

2. Background 9

as well as to directly reprogram it.
In early 2020, a new version of FlockLab, known as FlockLab 2[10], was released.
We can see a top level view on the architecture in fig. 2.3. Amongst more accurate
power profiling based on the RocketLogger [11], Single Wire Debugging (SWD)
and porting the services to a SoC single board computer platform, a GNSS mod-
ule was added for tight time synchronization, as shown in fig. 2.3. This allows
for precise sub-microsecond accuracy, which is required for high sampling rates
in a distributed system.
The new FlockLab is designed as a cape for the BeagleBone Green single board
computer. The advantage of the BeagleBone Green is, that it features an ARM
335x family processor, which has a 1 GHz single core processor and two Pro-
grammable Real-time Units (PRUs), providing the flexibility of an operating
system combined with single cycle access to pins with the PRU [12]. Another
advantage of the ARM 335x processor is its capability to support hardware
timestamping for Ethernet packets, which enables PTP to use the hardware
timestamping support for more precise time synchronization.
As an operating system the FlockLab 2 (FL2) platform currently uses De-
bian 9 (Stretch) with a Linux 4.14 kernel. This kernel supports the PHC and
SO TIMESTAMPING kernel functions which are required by the Linux PTP
project to run in hardware timestamping mode.

Chapter 3

Materials and Methods

In this chapter details are given about how the time synchronization works on the
BeagleBone. Furthermore, the measurement setup for collecting precise times-
tamp and calculating the offset is explained. All the measurement setups which
were executed are illustrated and a hypothesis on the performance is given for
each one.

3.1 Time Synchronization on the BeagleBone

Section 2.1 stated that in a PTP setup we have one GMC with the rest of
the OCs being slaves. To ensure that in our different measurement setups the
BMCA always chooses the same device as a GMC, the configurations of ptp4l for
the clock precision are set accordingly on each device. The device which has the
most precise clock setting (and therefore gets elected as the GMC), synchronizes
its time via a GNSS module to get the absolute time. This represents a realistic
setup as it could be deployed in FlockLab 2, with a dedicated GMC and the
observers synchronized via PTP. The whole time synchronization, depicted in
fig. 3.1, is explained in the following.
As stated in section 2.3, in FlockLab 2 the time synchronization is implemented

using a GNSS receiver. This receiver is located on the cape of the observer. Since
we are only interested in the time synchronization, we do not need anything but
this GNSS receiver from the cape. Therefore, to perform the measurements, we
only use the BeagleBone itself combined with a ublox LEA-6 GNSS module.
This also allows for direct access to the GPIO pins of the BeagleBone, which
would be used up by the observer cape otherwise. The GNSS module has a USB
connection and a direct outlet for the Pulse Per Second (PPS) signal. Via the
USB connection we get the absolute time reference (UNIX timestamp) while the
PPS is used to synchronize the BeagleBone’s system time with high precision.
In all the test setups, we only need one BeagleBone, which synchronizes its
time with this GNSS module. Therefore, the GNSS module’s USB port is
connected to the GMC’s USB port to provide power to the GNSS module

10

3. Materials and Methods 11

Chrony

system timeSHM 0 dev/pps0

GNSS

dev/ptp0
(PHC)

phc2sys ptp4l

USB GPIO ETHERNET

PPS

Hardware
Software

Chrony/phc2sys

system timedev/ptp0
(PHC)

ptp4l

Hardware
Software

PTP over Ethernet

BeagleBone (GMC) BeagleBone(slave)

network
stack

TS

USB

network
stack

TS

GNSS
MODULE

ETHERNET

TS

Figure 3.1: The complete synchronization of the time from a master to a slave.

and receive the absolute time reference, as seen in fig. 3.1. The PPS signal
is connected to a GPIO pin, which can be configured as the input signal for
a hardware timer in the AM335. The Linux kernel module pps-gmtimer [13]
provides support for having precise PPS available in the Linux system as a pps
device by timestamping the PPS signal with the system time. With the help of
the gpsd [14] service we can receive the GNSS module’s data from the USB port,
which we use to provide the absolute time reference in the system via shared
memory. These two modules are neglected in fig. 3.1 for the sake of simplicity.
Finally, chrony [15] is used to synchronize the system time with the provided
inputs. chrony can synchronize the system clock with various time sources,
providing us flexibility to add backup sources if needed.

To configure a BeagleBone synchronized via GNSS as a GMC, the linuxptp
project is used. In the first step, phc2sys synchronizes the PHC to the system
time. In the next step, we use the software ptp4l to distribute the time from the
PHC to our slaves in the network according to PTP. The Event Messages get
timestamped with the time of the PHC as depicted in 3.1 with the arrow ”TS”.
At the slave, ptp4l synchronises the PHC to the GMC according to PTP.
Afterwards, either chrony or phc2sys can synchronize the system time to the
PHC. In this thesis, chrony is mainly used due to the fact that it is more
versatile and has already been used in FL2 before.

3. Materials and Methods 12

3.2 Measurement of Time Offset

One main challenge is to actually get precise timestamps from the system, since
we cannot directly access any PPS signals. Two methods to get a timestamp
from the system are proposed: One that logs values from the pps-gmtimer kernel
module to a file (referred to as ”Internal”). The other outputs a generated PPS
signal, which is then measured with a logic analyzer (referred to as ”External”).
How these are exactly executed is the subject of this section.

3.2.1 Internal Measurement

Chrony

system timeSHM 0 dev/pps0

GNSS

dev/ptp0
(PHC)

phc2sys ptp4l

USB GPIO ETHERNET

PPS

Hardware
Software

Chrony/phc2sys

system timedev/ptp0
(PHC)

ptp4l

Hardware
Software

PTP over Ethernet

BeagleBone (GMC) BeagleBone(slave)

network
stack

TS

USB

network
stack

TS

GNSS
MODULE

ETHERNET GPIO

PPS

dev/pps0

measurement
script

TSTS

measurement
script

Figure 3.2: The Internal Measurement explained in the direct setup. The light
green parts are added for the measurement of the time offset.

In this method we make use of the pps-gmtimer. By feeding the PPS signal
from the GNSS module to the slave node as well, this module timestamps the
PPS signal against the system time. This timestamp is a UNIX timestamp with
nanoseconds, which we periodically collect (every second). To calculate the offset
we simple take the decimals and if they are greater than 0.5 seconds we assume
that the clock is slow and subtract 1 second from the offset giving us a negative
offset which corresponds to a slow clock. This gives us the relative offset to the
GNSS time source. We take this pps-gmtimer timestamp on the master as well
to be able to see if the GNSS based synchronization of the master produces a
significant offset.
Furthermore, the system log from the phc2sys, ptp4l and chrony software is
collected. This allows for a deeper insight in the time synchronization chain,
which enables more precise conclusions on where the offset error was produced.

3. Materials and Methods 13

3.2.2 External Measurement

Chrony

system timeSHM 0 dev/pps0

GNSS

dev/ptp0
(PHC)

phc2sys ptp4l

USB GPIO ETHERNET

PPS

Hardware
Software

Chrony/phc2sys

system timedev/ptp0
(PHC)

ptp4l

Hardware
Software

PTP over Ethernet

BeagleBone (GMC) BeagleBone(slave)

network
stack

TS

USB

network
stack

TS

GNSS
MODULE

ETHERNETGPIO

pps-
gen

Logic Analyzer

GPIO

pps-
gen

PPS
PPS

PPS

TS

Figure 3.3: The external measurement explained in the direct setup. The light
green parts are added for the measurement of the time offset.

The best case to measure the offset would be to measure the PPS signals pro-
duced by the various clocks directly. However, these signals are not physically
accessible directly, but we have to output them somehow. To our best knowl-
edge there exists no standard way to output a PPS signal in Linux. Therefore
a kernel module was written to generate and output a PPS signal based on the
Linux system time. This module, called pps-gen, outputs this PPS signal on one
of the GPIO pins of the BeagleBone. To minimize interference, the pps-gmtimer
module on the slaves is disabled while measuring externally. This achieves a pre-
cision in the range of microseconds because of timing variations in the execution
of the kernel module. To collect these PPS signals, the Salae Logic 8[16] logic
analyzer was used which sampled the PPS from the GPS module and all the
generated PPS signals from the slaves.
In setups concerning network load, introduced in section 3.4.1, the external mea-
surements were omitted, because it is expected that the effect of network load is
best seen in the ptp4l data which is not accessible with external measurements.

3.3 Tools

Since we want to explore various aspects of the PTP and ensure the same con-
ditions for all measurements, some software tools are needed. For this purpose,
custom scripts to start the measurements and collect data were written. These
scripts make use of two additional tools, to apply network and CPU load to the
setup. All these tools are briefly introduced in this section.

3. Materials and Methods 14

3.3.1 Measurement Scripts

Two scripts were written, one for the external and one for the internal measure-
ments. Both restart all the Linux system services which are used to synchronize
the time at the beginning of each measurement, as well as inserting or remov-
ing kernel modules used in the corresponding measurement. Furthermore, the
script timestamps the start and end of the measurement. These timestamps are
used for the post processing of the data. The scripts are deployed to all Beagle-
Bones and the start is initiated on the master device, which then distributes the
command via SSH to the slaves automatically. The internal measurement script
allows to generate artificial CPU and network load, to collect all the different
measurement setups automatically. The external script does not have this abil-
ity, since the measurement with the logic analyzer software could not be started
automatically at the same time and therefore this had to be done manually.
After a successful measurement, all the system logs, configurations and created
documents get collected on each device and sent to the master. This way, col-
lected data needs to be manually copied for data analysis only from a single
device rather than from each device individually. All the data is later post pro-
cessed as described in section 3.5.
For more information on the exact usage of these scripts please refer to the
Appendix A.2.

3.3.2 stress-ng

For the application of artificial CPU load, the stress-ng [17] tool is used. The tool
is either started automatically with the internal measurement script or manually
for the external measurements.

3.3.3 iperf

The tool iperf [18] was used to apply artificial network traffic in the setups. In all
of the setups UDP traffic was applied, because the used version (version 2) only
supports bandwidth limitation for UDP traffic. UDP results in a asymmetric
load on the network which was observed using the netstat tool.

3.3.4 Raspberry Pi and Personal Computer

A Raspberry Pi 4 Model B with Raspbian and a standard desktop Personal
Computer(PC) running Ubuntu 18 with a ASUS ROG STRIX Z270E GAM-
ING motherboard using a Intel I219-V Gigabit Ethernet controller were used
additionally in the setups involving network load. In the cross traffic and link
overload setups (explained in section 3.4.2 and section 3.4.3) the desktop was

3. Materials and Methods 15

used as an iperf server and the Raspberry Pi sent traffic to it. The Raspberry Pi
was also used to generate traffic for the slave network overload setups described
in section 3.4.2. Those two computers are used because they are able to pro-
duce 1 Gbit/s of traffic, while the BeagleBones’s Ethernet port is only capable
of 100 Mbit/s.

3.3.5 Switches

In the different measurement setups up to two network switches are used. The
primary switch used is a Planet GSD-805 Desktop Gigabit Ethernet Switch [19]
with eight ports each supporting 10/100/1000 Mbit/s Gigabit Ethernet. It also
supports up to 16 Gbit/s non-blocking switch fabric. In this thesis it is referred to
as switch 1. The other switch, referred to as switch 2, is an Ubiquiti Unifi Switch
8 Model US-8 [20]. This switch supports 8 Gbit/s total non-blocking throughput
and up to 16 Gbit/s switching capacity. Both switches do not support PTP.

3.4 Measurement Setup

In the following section the different measurement setups are described. For all
setups phc2sys synchronizes the time 12 times a second and ptp4l performs syn-
chronizes the time every second, which are the optimal synchronization rates ac-
cording to [6]. Also only hardware timestamping is applied, since software times-
tamping misses the targeted accuracy of 1 microsecond by orders of magnitude[7].
For more information on the exact setup of the BeagleBone please refer to the
Appendix A.1
All measurements are performed for a duration of 1000 seconds to collect 1000
data points. One slave is always configured as GMC and the others will act as
slaves. In the measurement descriptions and results we refer to the GMC as
master and to the different slaves as slave24, slave25 and slave26. The numbers
at the back of each slave name refer to the device name, which was bb-24 for
example, but this is only relevant for the static IPs and the distinction of the
slaves in the results.

3.4.1 Direct Setup

In the direct setup, we connect two BeagleBones via an Ethernet cable as de-
picted in fig. 3.4. One has GNSS time synchronization and act as a GMC as
explained in section 3.1, the other will therefore be a slave after executing the
BMCA. This setup is used to get a benchmark on what is the best achievable
time synchronization. Also, the different configurations are explored to evaluate
if one performs better than the other. From these results a basic configuration

3. Materials and Methods 16

slave24master

Figure 3.4: The Direct Setup with two BeagleBone. The antenna symbol indi-
cates the time synchronisation via GNSS.

(abbreviated ”BC” in the names of the measurements) is derived for the re-
maining measurements. To explain the names of the measurements (depicted in
fig. 3.5) which will be executed, the BC is already explained here. The BC was
chosen to be the end to end delay mechanism with the UDP over IPv4 transport
for the reason explained in section 4.1. Despite testing different configurations
of ptp4l, we also tested a different configuration of chrony and made one mea-
surement with phc2sys running on the slave instead of chrony. The change in
the configuration of chrony is the changed poll rate. It is set to a poll rate of
4, which corresponds to a 16 second interval. Therefore, chrony only takes the
filtered measurements of 16 consecutive measurements.
It is expected that all the configurations perform equally well, since the precision
of PTP should be achieved mainly through hardware timestamping rather than
different configurations.

setup delay transport slave using
mechanism poll rate phc2sys

P2P-L2 P2P Layer 2 (IEEE 802.3) 0 no
E2E-UDPv4 E2E UDP IPv4 0 no
BC-poll4 E2E UDP IPv4 4 no
BC-phc2sys E2E UDP IPv4 0 yes

Figure 3.5: Names of the measurements in the direct setup. Note that slave poll
rate is given as power of two.

3. Materials and Methods 17

CPU Stress Test

Since software is used to synchronize the time, it might get influenced by the
CPU load, therefore CPU stress tests are performed using the stress-ng tool. The
same setup as in the direct measurements is used and the basic configuration is
applied. The stress-ng tool is started after a delay to give the system some
time to stabilize the time synchronization and ensure that solely the applied
CPU stress affects the time synchronization. In separate measurements, different
percentages of artificial CPU load are applied to the CPU from the GMC as well
as the CPU of the slave as seen in fig. 3.6.
In [7] CPU stress did not cause an issue with PTP, it is expected that the
influence in these measurements should be minor as well.

setup CPU load CPU load
(master) (slave)

BC-sCPU-50d 0% 50%
BC-sCPU-100d 0% 100%
BC-CPU-50d 50% 0%
BC-CPU-100d 100% 0%

Figure 3.6: Names of the measurements in the CPU stress setup. The lowercase
d at the end of each name stands for ”delay”

Network Stress Test

Network stress test are needed as PTP uses the network to synchronize time.
The GMC is used as an iperf server and the slave sends UDP traffic to the
the GMC. The bandwidth was limited with the -b flag to test certain loads.
Measurements were performed for different network loads, as seen in fig. 3.7, to
get an overview of how PTP performs. This covers the maximum network load
for the BeagleBone, since it is only capable of sending and receiving of up to
100Mbit/s. UDP traffic was applied since the tool only allowed for UDP traffic
bandwidth to be limited and our basic configuration is using UDP traffic as well.
This measurement is expected to influence PTP because of the asymmetric net-
work load. The asymmetry increases form about 1:10 to about 1:100’000 as the
network load increases.

3.4.2 One Switch Setup

For measurements with more than one slave and simulating realistic scenarios,
different measurements with devices all connected to one switch are performed as
depicted in fig. 3.8. First, a measurement with only two BeagleBone connected to

3. Materials and Methods 18

setup network load

BC-NW-10k 10 kbit/s
BC-NW-100k 100 kbit/s
BC-NW-1M 1 Mbit/s
BC-NW-10M 10 Mbit/s
BC-NW-100M 10 Mbit/s
BC-NW-200M 10 Mbit/s

Figure 3.7: Names of the measurements in the network stress setup.

the switch, one as GMC, the other as slave as in the direct setup, was performed.
As a second measurement two more BeagleBone were connected to the switch and
configured as slaves. After this, a measurement with cross traffic was performed,
where we sent data through the switch from the RaspberryPi to the desktop PC.
At last, network traffic was sent to a slave for the evaluation of the influence
of traffic load on the slave separately. In the following the measurements are
described in detail.

One Slave Connected to the Switch

In this setup we have the same setup as in the direct measurement, but the slave
and master are connected via an Ethernet switch instead. With this measure-
ment the goal is to be able to see the influence of the switch with nothing else
influencing the measurement. It is expected, that the switch alone should not
have an impact on performance in this setup, even if it has no hardware support
of PTP, because the switch does not have any load applied to it except for the
PTP messages. Therefore it should not have to delay packets.
For all these measurements switch 1 was used as already stated in section 3.3.5.

Three Slaves Connected to the Switch

In this two more BeagleBones acting as PTP slaves are added to put the perfor-
mance of PTP with multiple slaves to test. Since [5] stated that scaling up the
number of PTP slaves should not be considered an issue, it is expected in this
setup that three slaves will not have an influence on performance.

Cross Traffic Simulation

For the cross traffic simulation, the RaspberryPi and the desktop computer were
used to exchange traffic with each other as described in section 3.3.4. With
the produced network load on the switch it might be possible to reduce perfor-
mance of PTP, because of the indeterminate behaviour of the switch in terms of

3. Materials and Methods 19

master slave25 slave26

Switch 1

slave24

RaspberryPi
Desktop

Figure 3.8: The Setup with one switch, one BeagleBone as a GMC and three
BeagleBone as slaves. The slaves on the right are transparent because they are
only used in certain measurements.

packet reordering at high rates. Although this is expected to be negligible, since
the switch works way below its capacity limit of 16 Gbit/s switching traffic(see
section 3.3.5 for more information on the switches).

Network Stress Test Slave

With this setup the goal is to get the influence of network load to a slave on
the performance of PTP. The RaspberryPi is therefore configured to generate
artificial network load to one of the slaves. A significant influence of this network
load on PTP is expected since it can create asymmetric path delay in the network
path.

3.4.3 Two Switches Setup

A common issue in networks is the overload of a link, often hindering packets to
traverse this link and potentially slowing down the whole network. What effects
an overloaded link has on the PTP is subject of this measurement. Therefore,
we connect two switches with a single Ethernet cable (the link, which later is
overloaded), as depicted in fig. 3.10. First, a measurement with three slaves

3. Materials and Methods 20

setup number network load network load
of slaves (cross) (slave)

BC-1slave 1 0 0
BC-3slave 3 0 0
BC-3s-cross 3 1 Gbit/s 0
BC-3s-slave1M 3 0 1 Mbit/s
BC-3s-slave5M 3 0 5 Mbit/s
BC-3s-slave10M 3 0 10 Mbit/s
BC-3s-slave100M 3 0 100 Mbit/s

Figure 3.9: Names of the measurements in the one switch setup.

slave24master slave26 slave25

Switch 1
RaspberryPi Desktop

Switch 2

Figure 3.10: The setup with two switches, one BeagleBone as a GMC and three
BeagleBone as slaves. Also traffic on the link can be applied via a RaspberryPi
and another computer.

connected to different switches was performed to obtain a baseline measurement
on how accurate the synchronization is without the link overload effect. The
additional switch is expected to not have an influence on the performance of
the PTP. Secondly, we use the RaspberryPi connected to one switch and the
desktop computer connected to the other switch, to overload the 1 Gbit link
with 1 Gbit/s traffic. Here it is expected to influence the performance because
of the large asymmetric link load which causes an asymmetric path delay for the
slaves connected to the switch 2 without the GMC present.

3.5 Data Post Processing

After the measurements are collected, further processing is required to be able to
display and analyze the data. It was post processed using Python with the pack-

3. Materials and Methods 21

setup network load on link

BC-2switch 0
BC-link-1M 1 Mbit/s
BC-link-10M 10 Mbit/s
BC-link-100M 100 Mbit/s
BC-link-1G 1 Gbit/s

Figure 3.11: Names of the measurements in the two switch setup.

ages pandas,bokeh and matplotlib. Everything was set to the master timescale.
This allows for consistent and comparable measurement points. Furthermore,
the first 200 seconds of each measurement were dropped to get rid of the unsta-
ble initialization part of the measurements. Afterwards, different summaries of
all the setups and measurements as well as plots were made using this processed
data. For more details please refer to the documentation of the code in Appendix
A.3.

Chapter 4

Results

In this section the results of the described measurements are presented in the
corresponding sections. A complete summary with mean and maximum offset
of the devices is given in Table 4.1 for the internal and in Table 4.2 for the
external measurements, which are both found in the appendix.

22

4
.

R
e
su

lt
s

23

device master slave24 slave25 slave26
measure avg min/max avg min/max avg min/max avg min/max

setup measurement [µs] [µs] [µs] [µs] [µs] [µs] [µs] [µs]

direct P2P-L2 -0.196 2.690 -0.307 -1.015 NaN NaN NaN NaN
E2E-UDPv4 0.015 2.758 0.003 3.070 NaN NaN NaN NaN
BC-poll4 -0.307 2.311 -0.582 1.676 NaN NaN NaN NaN
BC-phc2sys -0.025 3.023 0.048 2.320 NaN NaN NaN NaN

NW BC-NW-10k -0.185 3.040 -0.303 2.551 NaN NaN NaN NaN
BC-NW-100k -0.192 2.174 -0.314 -1.470 NaN NaN NaN NaN
BC-NW-1m -0.209 2.674 -0.377 -1.231 NaN NaN NaN NaN
BC-NW-10m -0.132 3.232 -0.532 -2.742 NaN NaN NaN NaN
BC-NW-100m -0.676 -3.820 -413.606 -828.926 NaN NaN NaN NaN
BC-NW-200m -0.207 -1.569 37.427 42.701 NaN NaN NaN NaN

CPU BC-sCPU-50d -0.049 2.814 0.208 2.843 NaN NaN NaN NaN
BC-sCPU-100d -0.038 2.886 0.614 2.616 NaN NaN NaN NaN
BC-CPU-50d -0.615 -7.914 -1.525 -9.869 NaN NaN NaN NaN
BC-CPU-100d -1.587 -12.307 -3.202 -13.708 NaN NaN NaN NaN

2-switch BC-2switch -0.005 3.127 0.153 2.452 1.842 3.261 1.878 3.302
BC-link-1M 0.274 3.149 0.048 -1.233 2.150 3.874 1.725 3.314
BC-link-10M -0.188 2.473 -0.490 -3.223 1.621 3.053 1.254 2.823
BC-link-100M -0.032 2.792 -0.235 2.695 1.723 3.302 1.318 3.341
BC-link-1G -0.267 3.072 1.103 4.332 1.496 3.206 2.844 6.817

1-switch BC-1slave -0.048 2.755 -0.252 2.512 NaN NaN NaN NaN
BC-3slave 0.009 2.585 0.079 3.742 1.995 4.092 2.086 3.783
BC-3s-cross -0.103 3.063 -0.153 1.674 1.678 3.254 1.745 3.168
BC-3s-slave1M 0.002 3.193 -1.228 -63.947 1.901 3.521 1.850 3.423
BC-3s-slave5M -0.042 2.888 -5.725 -103.984 1.609 3.185 1.462 3.066
BC-3s-slave10M -0.087 1.921 -7.226 -127.537 1.893 3.239 1.809 3.418
BC-3s-slave100M 0.071 3.399 -5815.683 15027.272 1.776 3.233 1.720 3.192

Figure 4.1: All setups with the corresponding measurements from the internal measurements and their mean and maximum
of the pps-gmtimer offset given in microseconds

4
.

R
e
su

lt
s

24

device master slave24 slave25 slave26
measure avg min/max avg min/max avg min/max avg min/max

setup measurement [µs] [µs] [µs] [µs] [µs] [µs] [µs] [µs]

direct P2P-L2 -2.416 -4.900 -2.390 -7.280 NaN NaN NaN NaN
E2E-UDPv4 -2.520 -5.580 -2.431 -4.400 NaN NaN NaN NaN
BC-poll4 -2.591 -6.200 -2.366 -4.250 NaN NaN NaN NaN
BC-phc2sys -2.565 -7.159 -2.429 -5.980 NaN NaN NaN NaN

CPU BC-sCPU-50d -2.621 -5.600 -4.342 -9.800 NaN NaN NaN NaN
BC-sCPU-100d -2.550 -5.075 -6.243 -9.876 NaN NaN NaN NaN
BC-CPU-50d -3.670 -9.725 -1.425 8.400 NaN NaN NaN NaN
BC-CPU-100d -3.933 16.725 0.400 20.475 NaN NaN NaN NaN

2-switch BC-2switch -2.708 -5.125 -2.696 -9.375 -4.705 -11.950 -4.933 -12.675
1-switch BC-3slave -2.833 -6.775 -2.554 -6.249 -4.941 -12.399 -5.013 -12.825

BC-3s-cross -2.857 -6.201 -2.523 -5.000 -4.680 -12.000 -4.795 -12.425
BC-1slave -2.682 -5.320 -2.558 -5.320 NaN NaN NaN NaN

Figure 4.2: All setups with the corresponding measurements from the external measurements and their mean and maximum
of the offset given in microseconds

4. Results 25

4.1 Direct Setup

1 0 1 2 3
s

0

5

10

15

20

25

Nu
m

be
r o

f s
am

pl
es

BC-phc2sys
BC-poll4
E2E-UDPv4
P2P-L2

(a) Internal Measurement

7 6 5 4 3 2 1
s

0

10

20

30

40

50

60

70

Nu
m

be
r o

f s
am

pl
es

BC-phc2sys
BC-poll4
E2E-UDPv4
P2P-L2

(b) External Measurement

Figure 4.3: Distribution of offset on the slave for each tested configuration.

In the direct setup only a subset of configurations for ptp4l worked, namely
the peer to peer (P2P) option combined with the layer 2 transport(L2) and
the end to end option combined with UDP transport on IP version 4 (UDPv4).
UDP on IP version 6 did not work at all. If a configuration worked or not was
determined by the slave clock being able to recognize the GMC as a master. A
full overview on the working configurations is given in fig. 4.4
These two different setups do not differ significantly in terms of offset. The time

L2 UDPv4 UDPv6

E2E no yes no
P2P yes no no

Figure 4.4: A matrix of the combinations of configurations that worked in the
direct setup.

offset on the slave of the E2E-UDPv4 configuration has 97% of its values inside
the ±1µs boundary. Since we use network hardware that does not support PTP
in our tests, the E2E-UDPv4 setup was defined as the basic configuration (BC)
for the remaining measurements. Furthermore, it can not be assumed that the
network has PTP support on every node in the FlockLab 2 network.
The changed poll rate of chrony did not influence the precision or accuracy
significantly. If the time synchronization on the slave was done with phc2sys
instead of chrony the precision and accuracy did not change significantly as seen
in Fig. 4.3.
The distribution of the BeagleBone which acted as a GMC was similar to the
one from the slave.
In Fig 4.3b we see that the external measurement has an offset from zero. This

4. Results 26

is likely caused by the non-deterministic execution of the kernel module.

4.1.1 CPU Stress Test

12.5 10.0 7.5 5.0 2.5 0.0 2.5
s

0

10

20

30

40

50

60

70

Nu
m

be
r o

f s
am

pl
es

BC-CPU-100d
BC-CPU-50d
BC-sCPU-100d
BC-sCPU-50d

(a) Internal Measurement

10 5 0 5 10 15 20
s

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f s
am

pl
es

BC-CPU-100d
BC-CPU-50d
BC-sCPU-100d
BC-sCPU-50d

(b) External Measurement

Figure 4.5: Applying CPU load to master or slave has an impact on the PTP
performance

If we apply CPU load to the master, the performance of the time synchro-
nization is influenced, as depicted in Fig. 4.5. The maximum offset in the
measurement with 100% CPU load on the master leads to an offset of 12µs and
an average of 0.3µs on the master. If we instead apply CPU stress to the slave,
the performance is impacted as well, but less significant as with the master CPU-
load. We get an average offset of 0.6µs and a maximum offset of 2.6µs at 100%
CPU load on the slave for the internal measurements. For the external measure-
ments, shown in Figure 4.5b, the maximum offset increases to 9.876µs with an
average of -6.243µs.

4.1.2 Network Stress Test

Already starting at a network load of 10 Mbits/s, the time synchronization on
the slave suffers as shown in Fig 4.6. It has to be noted, that the application of
network load using iperf applied a CPU load of up to about 30% on the slave,
therefore this might also have an influence. The effect of the network load can
be seen in the offset of the ptp4l measurements depicted in Fig. 4.6b
For the 100 Mbits/s network load measurement seen in Fig. 4.7 we get nearly an
uniform distribution of the offsets. Also, for this measurement we do not get any
ptp4l values from the slave since it could not receive the packets to calculate the
offset. The log from ptp4l shows more delay timeouts for higher network load.

4. Results 27

3 2 1 0 1 2
s

0

5

10

15

20

25

Nu
m

be
r o

f s
am

pl
es

BC-NW-10k
BC-NW-100k
BC-NW-1M
BC-NW-10M

(a) gmtimer offset

0.4 0.2 0.0 0.2 0.4
s

0

10

20

30

40

50

Nu
m

be
r o

f s
am

pl
es

BC-NW-10k
BC-NW-100k
BC-NW-1M
BC-NW-10M

(b) ptp4l offset

Figure 4.6: It is seen that the distribution changes already at 10 Mbit/s of net-
work load.

800 700 600 500 400 300 200 100
s

0

2

4

6

8

10

Nu
m

be
r o

f s
am

pl
es

BC-NW-100M

Figure 4.7: If the slave sends 100 Mbit/s network load to the master, we approx-
imate a uniform distribution.

4.2 One Switch Setup

By adding a switch in the setup and adding more slaves to it, the performance
did not change significantly. Even with 1 Gigabit/s cross traffic the performance
did not suffer. We only see larger maximum offsets in Fig. 4.8, compared to the
direct setup. Also the external measurements did not get influenced by these
parameters as well, depicted in Fig. 4.8b.
Figure 4.9 shows us the behaviour of the slave with different network loads
on the distribution of the ptp4l data. It becomes apparent that at a network
load of 10 Mbits/s leads to a more widespread distribution on the slave with a
mean of -7.2µs and a maximum offset of 125µs for the gmtimer measurement.
At 100 Mbit/s (Fig. 4.9b) these numbers change to a mean of -5815.7µs and
maximum offset of 15027.3µs as depicted in fig. 4.1.

4. Results 28

1 0 1 2 3 4
s

0

5

10

15

20

Nu
m

be
r o

f s
am

pl
es

BC-1slave
BC-3slave
BC-3s-cross

(a) Internal measurement

6 5 4 3 2 1
s

0

10

20

30

40

50

Nu
m

be
r o

f s
am

pl
es

BC-1slave
BC-3slave
BC-3s-cross

(b) External measurement

Figure 4.8: The measurements from the slave24 in the one switch setup

100 50 0 50 100
s

0

50

100

150

200

250

300

350

Nu
m

be
r o

f s
am

pl
es

BC-3s-slave1M
BC-3s-slave10M

(a) 10/100 Mbit/s network load

5000 0 5000 10000 15000 20000
s

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f s
am

pl
es

BC-3s-slave100M

(b) 100 Mbit/s network load

Figure 4.9: Already a small asymmetric network load of 10 Mbit/s can influence
the performance of PTP significantly as seen in the distributions of the ptp4l
calculated offsets

4.3 Two Switches Setup

For the setup with two switches, the measurement with three slaves led to similar
results as in the direct setup with an average of 0.15µs and a maximum offset
2.45µs. Although, the external measurements had outliers with a larger offset
as in the direct setup as seen in Fig 4.10. When load is applied to the link
between the two switches the performance is not influenced significantly except
for the measurement with 1 Gbit/s load as depicted in Fig. 4.11. There the mean
was 1.1µs with a maximum offset 4.3µs. We see in Fig. 4.11b that the offset
calculated by ptp4l shows a wider distribution for the 1 Gbit/s measurement as
well.

4. Results 29

9 8 7 6 5 4 3 2 1
s

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f s
am

pl
es

BC-2switch

Figure 4.10: The distribution of the external measurement without any network
load on the link showed larger maximum offsets.

3 2 1 0 1 2 3 4
s

0

5

10

15

20

25

Nu
m

be
r o

f s
am

pl
es

BC-2switch
BC-link-100M
BC-link-10M
BC-link-1G
BC-link-1M

(a) gmtimer Measurement

2 1 0 1 2 3 4 5
s

0

10

20

30

40

50

60

Nu
m

be
r o

f s
am

pl
es

BC-2switch
BC-link-100M
BC-link-10M
BC-link-1G
BC-link-1M

(b) ptp4l Measurement

Figure 4.11: A link overload can influence performance of ptp4l

4.4 Measurements with Unexpected Artifacts

Every now and then, artifacts were discovered in the data with a large offset
(approximately 0.1 up to 0.5 seconds) on the master, depicted in Fig. 4.12. It is
unknown where this error originates.

4. Results 30

(a) Measurement with link load of 50 Mbit/s
(b) Measurement with one switch and one
slave.

Figure 4.12: Two time series with artifacts.

Chapter 5

Discussion

In the direct setup the data suggests, that the performance of each configuration
is similar, which was expected.
In the measurements with artificial CPU load we verified, that the CPU load on
either slave or master can influence the performance. Considering the values of
ptp4l it can be concluded, that this influence does not originate from PTP. It is
supposed that a user space program suffers from high CPU load, which would
draw the attention to chrony, but this speculation is not proven in this thesis.
Applying network load had a noticeable impact on the performance. This
behaviour was expected as well because of the assumption of symmetry in the
calculation of the offset in PTP. The asymmetric network load from the slave
to the master is therefore sub optimal for the performance of PTP. However,
regarding the CPU load that the network load simulation causes, this could be
influencing the results.

After examining the performance of PTP on one switch and on a setup with
two switches, it is apparent, that adding three slaves into the network has a
negligible impact on the performance. However, we cannot make statements
about setups with large numbers of slaves, as we have not measured with more
than three slaves. Although, according to [5] scaling up the number of slaves
should not be an issue.
Adding one or two switches has a negligible impact as well. The cross traffic on
the switch itself proved to not have a significant impact on the performance as
well. With overloading the link between two switches, the performance dropped
as expected.

31

Chapter 6

Conclusions

During this semester thesis, a PTP configuration for the BeagleBone was success-
fully found. Through different measurements the performance of this protocol
was tested on different setups to specify its accuracy and precision. Nearly all the
expectations were met, except for the CPU load measurement, which showed an
unexpected impact. The goal of sub microsecond accuracy and precision could
only be met in setups with no network or CPU activity.

6.1 Feasibility of Deployment

The question remaining is whether PTP can be deployed to FlockLab 2. From
the conclusion in the previous section it can be concluded that attention has to
be paid to CPU and network load. Furthermore, a question that remains open,
is if the protocol scales to bigger networks without hardware support of PTP.
Considering that only under perfect conditions the targeted 1 microsecond accu-
racy and precision could be met, it is unclear if in a real network setup this target
can be achieved. Also, a dedicated GMC should be deployed in the network to
ensure that the CPU load on the master stays as low as possible.

6.2 Future Work

After examining the network load impact on PTP using UDP traffic to the slave,
it is obvious to perform measurements in the other direction. Despite the fact
that we already have direction from the slave to the master in the direct setup,
the isolated impact of traffic going to the slave has not been evaluated yet.
Long time measurements (e.g. during 24h) would be interesting too, to determine
the long term stability of the system.
It is also apparent to do a measurement on the FlockLab 2 itself. With this
the performance could be evaluated and a status quo in terms of accuracy and
precision can be defined.

32

Appendix A

Appendix

A.1 Setup of Beaglebones

In this section the whole process of setting up a BeagleBone as a FL2 observer
with PTP capabilities is described. First a step by step solution is presented
and in the further subsections the configurations are explained.

1. Setup observer according to FL2 wiki1

2. Install the linuxptp project with apt install linuxptp

3. Create a new folder under /etc/systemd/system which is named
phc2sys.service.d, which is used to place the configuration of the
phc2sys file

4. Take the configuration files and place them at the following locations:

chrony.conf → /etc/chrony/chrony.conf

phc2sys.conf→ /etc/systemd/system/phc2sys.service.d/phc2sys.conf

ptp4l.conf → /etc/linuxptp/ptp4l.conf

5. enable the ptp4l and the phc2sys service

6. restart the services chrony, phc2sys and ptp4l

This is the same for the setup of an observer as a PTP master or a slave, except
the configuration files are different. If phc2sys is not used on the slave, the
corresponding steps for it can be skipped. Also if the master only serves as a
GMC, the setup of the whole observer can be skipped and the tools for the GNSS
time synchronization can be added manually instead.

1https://gitlab.ethz.ch/tec/research/flocklab/flocklab2/-/wikis/home

1

A. Appendix 2

A.1.1 Configuration files

chrony

Two different configuration files are provided: One for master and one for slaves.
On the master we take the existing file from the FlockLab 2 observer and only
change the option makestep to makestep 1 -1 such that the clock gets stepped
if the offset is bigger than 1 second.
On the slave we define one refclock as refclock PHC /dev/ptp0 refid PTP

poll 0 offset -37 which lets chrony synchronize the time to the PHC.

phc2sys

To be able to pass configuration values to phc2sys the drop-in replacement
method from systemd is used, therefore we have to replace the execution op-
tion as done in the file.
On the master the source is set to the systemtime and the PHC as slaveclock.
The synchronization rate is set to 12 Hz and an offset of 37 seconds is set for the
right conversion from UTC(Universal Time Coordinated) to TAI(International
Atomic Time). The summary option -u is set to 12 measurements to log 1 mea-
surement to the systemlog per second.
On the slave the systemtime is set as slaveclock and the PHC as source. Every-
thing else is the same as in the master, except for the -w flag is set to wait until
ptp4l is synchronized.

ptp4l

In both configuration files we set the device to the corresponding delay mech-
anism and network transport mode of a measurement. In the basic setup this
would be end-to-end (E2E) and UDPv4 transport mode. The synchronization
interval is set to 0, which corresponds to a 1 second interval and the announce
interval is left at its default value of 1. Because we use hardware timestamping
and the announce and synchronization interval is similar we set the timestamp
processing mode tsproc to raw, which should perform well according to the De-
bian manual2. Delay filter and length are left at default values.
For the master we configure the values in the [global] section to reflect the
GNSS clock we are using, therefore setting accuracy to 0x20 and the clockclass
to 6. On the slave we use default values but set the step treshold to 1.0 sec-
onds to let the program step the clock if it has a bigger offset than 1 second.
A file named ptp4l-backup.conf is provided where all values are left like it was
after installing.

2https://manpages.debian.org/testing/linuxptp/ptp4l.8.en.html

A. Appendix 3

A.2 Automated Measurement Scripts

In this section the internal and external measurement scripts and their usage are
described. Both need superuser permissions to work since they need to restart
applications. Also the devices are assumed to use fixed ip addresses in the format
192.168.1.bb where bb is the number of the BeagleBone.

A.2.1 Internal Measurement Script

This script is used to automatically start measurements for this thesis. It is
meant to be started on the PTP master with the -m master flag.

Prerequisites

For the CPU stresstests the packet stress-ng has to be installed on all devices.
In network related measurements the tool iperf has to be installed on all devices

Synopsis

./startMeasurements -tmp [-n number-of-measurements][-f

foldername][-l slave-nw-load][-x cross-traffic][-c cpu-stress][-s

slave-cpu-stress][-b beaglebone][-d delay]

A. Appendix 4

Options

-n number-of-measurements the number of measurement steps in seconds
-t give the time in minutes instead of the number of mea-

surements. The number of measurements given with -n

will be multiplied by 60.
-m this option has to be set if the script is started on the

master. It will allow it to start the same options given
by other flags on other BeagleBone specified with the -b

flag.
-p use phc2sys on the slaves as time synchronization instead

of chrony.
-f foldername the name of the folder where all the data produced gets

saved to. Default name is measurements
-l slave-nw-load applies the specified network load to the BeagleBone 24

(ip 192.168.1.24). The value should be the same as with
the bandwidth flag in the tool iperf e.g. ”1M” for 1
megabit/s. iperf has to be running on the BeagleBone
24 as a server for UDP traffic (iperf -usD)

-x cross-traffic applies the specified network load from a RaspberryPi
to a host with ip address 192.168.1.148 for simulation
of crosstraffic. iperf has to be running on the host as a
server for UDP traffic (iperf -usD)

-c cpu-stress applies the specified percentage of load to all CPU cores
of the master BeagleBone using stress-ng

-s slave-cpu-stress applies the specified percentage of load to all CPU cores
of the slave BeagleBone 24 using stress-ng

-b beaglebone specify the ID of the BeagleBone to be used in this mea-
surement, e.g -b 24 for BeagleBone 24. Can be set mul-
tiple times to include multiple BeagleBones. The ID of
the BeagleBone has to correspond to its static ip ad-
dress(e.g. bb-24 has ip 192.168.1.24).

-d delay the number of measurement steps the script shall wait
until to apply any kind of network or CPU load

Example

sudo ./startMeasurements -m -n 1000 -f test -b 24

This command started on the master will start a measurements with 1000 steps
(1000 seconds) on master and a BeagleBone with the number 24, saving the data
to the file named test.

A. Appendix 5

A.2.2 External Measurement Script

This script changes kernel modules on the BeagleBone and sets the direction of
the GPIO pin used for the external measurement, as well as restarting all the
services used for the time synchronization. In normal operation (not reversed)
it inserts the pps-generator kernel module on both master and slave and sets the
GPIO direction in /sys/class/gpio/gpio60/direction(pin P9.12 on Beagle-
Bone) to out. On the slaves it also removes the pps-gmtimer kernel module to
reduce interference of modules. In reverse mode only the modules that previ-
ously got inserted are removed and the removed ones are inserted, but no restart
of the services is initiated.
This script is meant to run on the slaves and to be used right before the start of
a measurement using a logic analyzer.

Synopsis

./extMeasurement -rmp [-b beaglebone]

Options

-r reverse the operation and load the module
-m this option has to be set if the script is started on the

master. It will allow it to start the same options given
by other flags on other BeagleBone specified with the -b

flag.
-p use phc2sys on the slaves as time synchronization instead

of chrony.
-b beaglebone specify the ID of the BeagleBone to be used in this mea-

surement, e.g -b 24 for BeagleBone 24. Can be set mul-
tiple times to include multiple BeagleBone. The ID of
the BeagleBone has to correspond to its static ip ad-
dress(e.g. bb-24 has ip 192.168.1.24).

Example

sudo ./extMeasurement -m -r -b 24

This command started on the master reverses the insertions of the pps-generator
kernel module on the master as well as the BeagleBone with op 192.168.1.24

A. Appendix 6

A.3 Data Post Processing

In this section all the scripts used for processing and displaying the data collected
are explained. All the scripts are written in Python with use of the pandas,
numpy, pyparsing, bokeh and matplotlib packages. The first two scripts in the
first section were only used for quick display of data and the functions in the
script calculate statistics.py were taken and adapted in the later scripts for a
more clean and better working post processing of the data.

A.3.1 Quick Displaying of Collected Data [deprecated]

The scripts calculate statistics.py and calculateHistograms.py were used to get
a quick look at the collected data. They are not used for the final plots and
are deprecated, although they still work. The usage of them is birefly explained
here.

calculate statistics.py

This script takes measurement data as input and outputs a bokeh html plot
website with interactive timeseries of all the collected measurements.
Synopsis
calculate statistics.py [-h] [--p] [--l] [--t] folder name

folder name

Options
positional arguments:
folder name Name of the folder which the programm should calculate

the statistics: 2 Arugments for nested folders: example:
direct E2E-phc2sys for folder direct/E2E-phc2sys

optional arguments:
-h, –help show this help message and exit
–p choose phc2sys file on slave instead of chrony (de-

fault:chrony)
–l parse logic analyzer file or skip it(default:parse it)
–t trim timescale to all be the same(default:trim it)

Example
python calculate statistics.py --l --t direct E2E-UDPv4

This command takes all the data from the measurement in the folder direct/E2E-
UDPv4 except for the external measurement data from the logic analyzer and
plots it. Every timeseries has their own timescale since it is not adjusted by the
script.

A. Appendix 7

Note
Noteprocessed_

data

*.csv files with
processed data

Note
Notelogic_

processed

*.csv files with
processed data

[setup_folders]
Array with names of

setup folders with data

*.csv file with
summarized data

*.pdf file with
distribution plots

processExternalData(setup_folders,margin_start,
 margin_end, filename)

processInternalData(setup_folders,margin_start,
 margin_end, filename)

summarizeInternalMeasurementsAvgMax
(setup_folders,

margin_start, margin_end, filename)

plotMeasurement(processed_measurements_path, title)
plotDistSetup(setup_folder,...,title)

*.csv file with
summarized data

*.pdf file with
distribution plots

summarizeExternalMeasurementsAvgMax
(setup_folders,

margin_start, margin_end, filename)

plotMeasurementExt(path, title)
plotDistSetupExt(setup_folder,...,title)

Figure A.1: The top view of the post processing workflow. Green is for internal,
blue for external collected data.

calculateHistograms.py

This script takes measurement data as input and outputs a bokeh html plot
document with summarized histograms containing the average and the maxi-
mum of each measurements gmtimer data. It imports the conver to gmtimer df
function of the calculate statistics.py.
Synopsis
calculateHistograms.py [-h] [--p] [--name FILENAME] [N [N ...]]

Options
positional arguments:
N Name of the folder which the program should calculate

the statistics: 2 Arguments for nested folders: exam-
ple: direct E2E-phc2sys for folder direct/E2E-phc2sys
the first folder has to be the setup folder (e.g. ”direct”)

optional arguments:
-h, –help show this help message and exit
–p choose phc2sys file on slave instead of chrony (de-

fault:chrony)
–name FILENAME name of output file

Example
python calculateHistograms.py direct BC-sCPU-50d BC-sCPU-100d

BC-CPU-50d BC-CPU-100 --name CPU-Histogram

This command summarizes all the data from the gmtimer measurements of the
different measurements and plots it as a grouped histogram. The name of the
file will be CPU-Histogram.html.

A.3.2 Overview of Data Processing

Since the data, which was collected during measurements was heterogeneous and
did not necessarily share the same start and endpoint of the timeseries the first

A. Appendix 8

processData.py

processInternalData(setup_folders,margin_start,margin_end,filename)
processExternalData(setup_folders,margin_start,margin_end,filename)

importData.py

importBBData(folderpath, is_master, is_phc2sys)
importMeasurementData(folderpath, marginStart, marginEnd, is_phc2sys)

plotData.py

plotDistMeasurement(processed_measurements_path, title)
plotDistSetup(measurement_folders,device,source,measure,title)
plotDistMeasurementExt(processed_measurements_path,title)

plotDistSetupExt(measurement_folders,device,title)

summarizeData.py

summarizeInternalMeasurementsAvgMax(setup_folders,source,measure)
summarizeExternalMeasurementsAvgMax(setup_folders)

helper_functions.py

convert_to_df(filepath)
convert_to_df_chrony(filepath)

convert_to_df_gmtimer(filepath)
convert_to_df_logic(filepath)
date2timestamp(datestring)

edgeDetect(npdata,device_index)
getStartEnd(filepath)

getDFRangebyStartEnd(df, start, end)

Parser.py

class Parser(object)

Figure A.2: The relationship of the files with their functions to one another.

step was to process this data to later be able to conveniently plot from this
processed data or get the average of all measurements. This also reduced the
processing effort, since the parsing of the raw data was quite intense. Another
advantage of this split between the processing and the plotting is that we only
have to do one post processing for many plots.
In fig. A.1 The processing of the data is depicted with the corresponding func-
tions. On the left we see an array with the names of the folders which should
be processed and contain the raw data, is processed by the functions and for
each device (e.g. master or slave BeagleBone) a table with the processed data
is saved in the corresponding folder. This is done for the internal and external
data separately. On the right sight we see the processed data is read back in
by the summarizing and the plot function to produce tables with averages and
maximum (like in fig. 4.1) or plots as seen in the results section of the thesis.
In the next section the dependency relationship between the functions is given
and every function is briefly described.

A.3.3 Overview of Files, Functions and Dependencies

In fig. A.2 The dependencies between the files and their functions is given. It is
seen that because of the split between the processing and displaying the data,
the corresponding functions do not directly depend on each other. The only
dependency is the way the processed data is saved and read back in by the
functions has to be consistent. In the following the functions from each file are
briefly explained.

A. Appendix 9

helper functions.py

This file contains small helper functions and the basic functions for the import
of raw data.

convert to df(filepath)
Convert tha raw data from the ptp4l.log or the phc2sys.log file to a pandas
DataFrame.
Parameters: filepath: string

The exact filepath to the log file
Returns: DataFrame

Dataframe with timestamps as index and columns offset
and delay or rms,max,delay,delay dev depending on the
raw data

convert to df chrony(filepath)
Convert tha raw data from the chrony.log file to a pandas DataFrame.
Parameters: filepath: string

The exact filepath to the chrony.log file
Returns: DataFrame

Dataframe with timestamps as index and columns offset
and offset std dev

convert to df gmtimer(filepath)
Convert tha raw data from the gmtimer.csv file to a pandas DataFrame.
Parameters: filepath: string

The exact filepath to the gmtimer.csv file
Returns: DataFrame

Dataframe with timestamps as index and column offset

convert to df logic(filepath)
Convert the raw data from the logic.csv file to a pandas DataFrame using the
edgeDetect function
Parameters: filepath: string

The exact filepath to the gmtimer.csv file
Returns: DataFrame

Dataframe with no explicit index and the columns mas-
ter,slave24, slave25, slave26 which contain the calcu-
lated time offset for each point in time

date2timestamp(datestring)
Convert a date in the form ”%Y-%m-%d %H:%M:%S” to a timestamp

A. Appendix 10

Parameters: datestring: string
The string to be parsed and converted

Returns: Timestamp: Int
Timestamps (seconds since origin)

edgeDetect(npdata,device index)
Detect a rising edge in the raw logic analyzer data and calculate the offset.
Parameters: npdata : numpy array

The numpy array with the raw data form the logic ana-
lyzer
device index : Int
The index of the column of the device of which we want
to calculate the offset of.

Returns: Panda Series: pd.Series
Panda series with all the offsets calculated in nanosec-
onds

getStartEnd(filepath)
Get the start and end time of the measurement from the time.txt file
Parameters: filepath : string

The path to the folder of the time.txt file
Returns: (start,end)

The start and end time as specified in the time.txt file,
as a tuple of timestamps

getDFRangebyStartEnd(df, start, end)
Get a range of a DataFrame using start and endtime given as integers.
Parameters: df : pd.DataFrame

The DataFrame which we like to project from
start:Int
The timestamp of the starting time
end: Int
The timestamp of the end time

Returns: DataFrame
The range from the Dataframe which lies in the
timerange of start and endtime given

Parser.py

Parser Class
A Parser object used to parse systemlog files. It has an initialization function
and a function parse(self,line). The code was adapted from github3

3https://gist.github.com/leandrosilva/3651640

A. Appendix 11

Parser.parse(self,line)
Parse a line of the syslog file.
Parameters: line : string

A single line from the syslog as a string
Returns: Dict

Returns the different parts of the systemlog as a dic-
tonary with keys timestamp, hostname, appname and
message

importData.py

In this file the two functions used to import the raw data are located.

importBBData(folderpath, is master, is phc2sys)
Imports the raw data from a single device/BeagleBone and outputs a single
table in the form of a DataFrame.
Parameters: folderpath : string

The path to the folder containing the raw data.
is master:boolean
If the folder and measurement belong to a master device
then it should be set to True, False else.
is phc2sys:boolean
If the measurement was done using phc2sys instead of
chrony this Boolean should be True, False otherwise.

Returns: Dataframe
Returns a DataFrame containing all measured values in
a corresponding column with the timestamps as index.
This Dataframe has multicolumns for each measurement
and the corresponding measure.

importMeasurementData(folderpath, marginStart, marginEnd,
is phc2sys)
Imports the raw data from a whole measurement and outputs a single table in
the form of a DataFrame.

A. Appendix 12

Parameters: folderpath : string
The path to the folder of the measurement containing
the folders of the devices with the raw data from the
measurements in it.
marginStart:Int
Number of values to be dropped at the beginning of the
table
marginEnd:Int
Number of values to be dropped at the end of the table
is phc2sys:boolean
If the measurement was done using phc2sys instead of
chrony this Boolean should be True, False otherwise.

Returns: Dataframe
Returns a DataFrame containing all measured values
from all the devices in a corresponding column with
the timestamps as index. This Dataframe has multi-
columns for each device, measurement and the corre-
sponding measure.

processData.py

This file contains the toplevel functions to process the raw data to processed data.

processInternalData(setup folders,margin start,margin end,filename)
Processes all the raw data from the internal measurements, drops the given
number of rows at the beginning and end of the table and writes it to a file.
Parameters: setup folders : Array of strings

An array of the paths to the folders of the measurements
containing the folders of the devices with the raw data
from the measurements in it.
margin start:Int
Number of values to be dropped at the beginning of the
table
margin end:Int
Number of values to be dropped at the end of the table
filename:string
Name of the output file

processExternalData(setup folders,margin start,margin end,filename)
Processes all the raw data from the external measurements, drops the given
number of rows at the beginning and end of the table and writes it to a file.

A. Appendix 13

Parameters: setup folders : Array of strings
An array of the paths to the folders of the measurements
containing the folders of the devices with the raw data
from the measurements in it.
margin start:Int
Number of values to be dropped at the beginning of the
table
margin end:Int
Number of values to be dropped at the end of the table
filename:string
Name of the output file

summarizeMeasurements.py

This file includes all functions which are used to summarize measurements.

summarizeInternalMeasurementsAvgMax(setup folders,source,measure)
This function outputs a DataFrame with the average and maximum of the
column specified with source and measure over all the setups given via the
setup folders array. The sources are the internal measurements.
Parameters: setup folders : Array of strings

An array of the paths to the folders of the measurements
containing the folders of the devices with the raw data
from the measurements in it.
source:string
The name of the column which corresponds to the source
of the measurement data, e.g. gmtimer.
measure:string
The name of the column from the measure of the source,
e.g. Offset

Returns: Dataframe
Returns a DataFrame containing all the averages and
maximums from all devices and all setups given

summarizeExternalMeasurementsAvgMax(setup folders)
This function outputs a file with the average and maximum of the external
measurement data given for all the setups given via the setup folders array.

A. Appendix 14

Parameters: setup folders : Array of strings
An array of the paths to the folders of the measurements
containing the folders of the devices with the raw data
from the measurements in it.

Returns: Dataframe
Returns a DataFrame containing all the averages and
maximums from all devices and all setups given

plotData.py

This file contains all functions used for plotting.

plotDistMeasurement(processed measurements path, title)
Writes to a matplotlib object the distribution of the gmtimer,offset column for
all devices of a measurement.
Parameters: processed measurements path : string

The path to the processed data file.
title : string
Title of the plot.

plotDistSetup(measurement folders,device,source,measure,title)
Writes to a matplotlib object the distribution of the specified column for the
specified device of all the measurements in a setup.
Parameters: processed measurements path : string

The path to the processed data file.
device:string
The name of the column which corresponds to the name
of the measurement device, e.g. slave24.
source:string
The name of the column which corresponds to the source
of the measurement data, e.g. gmtimer.
measure:string
The name of the column from the measure of the source,
e.g. Offset
title : string
Title of the plot.

plotDistMeasurementExt(processed measurements path,title)
Writes to a matplotlib object the distribution of the column for all devices of a
measurement.
Parameters: processed measurements path : string

The path to the processed data file.
title : string
Title of the plot.

A. Appendix 15

plotDistSetupExt(measurement folders,device,title)
Writes to a matplotlib object the distribution of the specified column for the
specified device of all the measurements in a setup.
Parameters: processed measurements path : string

The path to the processed data file.
device:string
The name of the column which corresponds to the name
of the measurement device, e.g. slave24.
title : string
Title of the plot.

A.4 Known Issues

• PHC changes form ptp0 to ptp1 and back

maybe caused by already running instance of ptp4l

• P2P does not work

might be hardware issue 4

• Failed clock creation: Rarely, ptp4l failed on startup because it could not
create a clock

maybe caused by an already running instance of ptp4l

4https://e2e.ti.com/support/processors/f/791/t/650432?Linux-TMDXIDK5728-PTP-issue

A. Appendix 16

A.5 Timetable

Week No.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bibliography

Familiarization

make PTP work

Design Experiments

Run Experiments

Buffer week

Write Report

Finalize Draft

Correct from Feedback

Bibliography

Collect Papers for similar Project and necessary Standard Documentation and
read them.

Familiarization

Get familiar with the beaglebones and chrony.

make PTP work

Make a first Version with two beaglebones directly connected work and try to
measure it.

Design Experiments

Design different experiments and setup a measurement framework.

Run Experiments

Execute the different experiments and gather data.

A. Appendix 17

A.6 Original Project Assignment

 Institut für
 Technische Informatik und
Kommunikationsnetze

Semester Thesis at the
Department of Information Technology and

Electrical Engineering

for

Julian Huwyler

PTP Time Synchronization for FlockLab 2

Advisors: Roman Trüb
Reto Da Forno

Professor: Prof. Dr. Lothar Thiele

Handout Date: 20.01.2020
Official Start Date: 06.03.2020
Due Date: 12.06.2020

1 Project Description

Observer

Power

GPIOs/UART

Beaglebone

SWD

J-Link
Debugger

Target

RocketLogger
Power Measurem.

FlockLab
Server

PPS

GPS

Observer

Beaglebone

J-Link
Debugger

RocketLogger
Power Measurem.

PPS

GPS

Data/
NTP/
PTP

Figure 1: FlockLab 2 Architecture.

Since 2012, the Computer Engineering Group (TEC) operates the Flock-
Lab testbed [4] for developing and evaluating wireless sensor network protocols.
A testbed helps to reduce the effort of repeatedly deploying test networks when
developing protocols for wireless sensor networks. Furthermore, such a testbed
improves the reproducibility of experiments and allows to share infrastructure.

Currently, we are in the process of extending the existing short baseline distances
in FlockLab by adding additional nodes on rooftop locations and with significantly
larger spacing. Since the existing implementation of FlockLab is based on hardware
components which are no longer in production we developed the next generation
of the FlockLab, FlockLab 2. The new architecture is depicted in Figure 1.
Among other improvements, FlockLab 2 incorporates a Linux platform with
more performance (Beaglebone Green), more precise power tracing based on the
RocketLogger [5], as well as state-of-the-art debugging support. In addition, it
extends the possibilities for time synchronization of the observers.

Since the testbed is a system of distributed observers which are used to develop
and debug a network wide wireless protocol, the time synchronization of the obtained
measurement data is very important. We target a time synchronization accuracy
of approximately 1 microsecond. The new platform features a GNSS receiver
which provides accurate time synchronization at locations with sufficient GNSS
reception. For locations without sufficient GNSS reception, the Precision Time
Protocol (PTP) [2] over Ethernet can be used to synchronize the time of the observer.
PTP has the potential to provide sub-microsecond accuracy.

2

2 Project Goals

The goals of this project are:

• Getting PTP time synchronization running on Beaglebone single board
computers with the Debian operating system.

• Characterization of the achievable time synchronization accuracy and quality.

3 Project Tasks

• Formulate a time schedule and milestones for the project. Discuss and approve
this time schedule with your supervisors.

• Search and read related work (e.g. [3]) and familiarize yourself with the PTP
standard[2].

• Familiarize yourself with the Beaglebone single-board computer, the Debian
Linux system, and the FlockLab 2 hardware setup.

• Work out a working PTP time synchronization setup with 2 Beaglebone Green
single board computers running Debian 9 (or later). Investigate different
configuration options (e.g. with/without hardware time stamping support,
etc.). The idea is to use the provided Linux kernel (i.e. not using a custom
compiled kernel) and to use the chrony[1] time service implementation.

• Design (with the help of the supervisors) and execute experiments to
characterize the time synchronization accuracy achieved with PTP on the
Beaglebone platform. Consider different setups with potentially different time
synchronization properties:

– Directly connect two Beaglebones via an Ethernet cable.

– Connect two Beaglebones using a hub, a switch, a router.

– Synchronize the time of more than 2 Beaglebones using PTP.

• Document your project with a written report. As a guideline, your
documentation should be as thorough to allow a follow-up project to build
upon your work, understand your design decisions taken as well as recreate
the experimental results.

4 Project Organization

Deliverables

• Time schedule (2 weeks after start date)

• Initial presentation (3 min)

• Final presentation (15 min)

3

• Weekly report, which includes: current progress, problems encountered and
next steps.

• Code of implementation including documentation

• Final report, which includes: introduction, analysis of related work,
documentation of decisions, evaluation, description and HowTo guide of the
developed software.

Offers

• The supervisors offer the student the opportunity to do a rehearsal of the
initial and the final presentation. The supervisors offer to give feedback how
to improve the presentations.

• The supervisors offer to proof-read a draft of the final report. The draft is not
required to be complete. The draft should be handed in no later than 1 week
before the due date of the thesis.

General Requirements

• The project progress shall be regularly monitored using the time schedule.
Unforeseen problems may require adjustments to the planned schedule.
Discuss such issues openly and timely with your supervisors.

• Use the work environment and IT infrastructure provided with care. The
general rules of ETH Zurich (BOT) apply. In case of problems, contact your
supervisor.

• Code versioning is mandatory throughout the thesis and the student is
responsible for regularly pushing her/his contributions to the repository.

Weekly Meeting

• At the beginning of the thesis, a time slot for the weekly meeting will be agreed
on. The weekly meeting is used to discuss the project’s progress based on a
schedule defined at the beginning of the project.

• The weekly report should be provided at latest at 23:59 on the day before the
weekly meeting.

Initial Presentation

Prepare the intial presentation which should include:

• Short introduction (e.g. name, origin, previous studies, current study status,
why you are interested in this topic)

• Short description of the project (What do we do, why do we do it and why is
it hard)

4

• Project goals (What do we want to achieve)

• Intended way to reach goals (How do we want to achieve it)

The presentation must not exceed 3 minutes (approx. 3 slides with content). A date
for the presentation will be assigned during the project.

Final Presentation

Prepare the final presentation which needs to include:

• Short project description and project goals

• Detailed presentation of the work done

• Detailed presentation of the results

• Conclusion and outlook on possible future work

The presentation must not exceed 15 minutes. A date for the presentation will be
assigned during the project.

Handing In

• Hand in a single PDF file of your project report via email. In addition, hand
in the signed declaration of originality on paper. A hard-copy of the report is
not required.

• Clean up your digital data in a clear and documented structure using the
provided GitLab repository. In the end, all digital data should be contained
in the student’s GitLab repository for the thesis. This includes: developed
software, measurements, presentations, final report, etc. An exception are
large amounts of measurement data which is stored separately (ask your
supervisors!).

References

[1] chrony. https://chrony.tuxfamily.org/v.

[2] IEEE 1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, 2008.

[3] K. Geissdoerfer, M. Chwalisz, and M. Zimmerling. Shepherd: a portable testbed
for the batteryless iot. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, pages 83–95, 2019.

[4] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. In Proceedings of the 12th International Conference
on Information Processing in Sensor Networks, IPSN ’13, pages 153–166, New
York, NY, USA, 2013. ACM.

5

[5] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele.
Measurement and validation of energy harvesting iot devices. In Proceedings of
the 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE
2017), Lausanne, Switzerland, Mar 2017.

6

Bibliography

[1] Cisco annual internet report (2018–2023) white paper. URL https://www.

cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html.

[2] Ieee standard for a precision clock synchronization protocol for networked
measurement and control systems. IEEE Std 1588-2008 (Revision of IEEE
Std 1588-2002), pages 1–300, 2008.

[3] Kai Geissdoerfer, Miko laj Chwalisz, and Marco Zimmerling. Shepherd: A
portable testbed for the batteryless iot. 11 2019. ISBN 978-1-4503-6950-3.
doi: 10.1145/3356250.3360042.

[4] Antonio Libri, Andrea Bartolini, and Luca Benini. Dwarf in a giant: En-
abling scalable, high-resolution hpc energy monitoring for real-time profiling
and analytics. 06 2018.

[5] Antonio Libri, Andrea Bartolini, Daniele Cesarini, and Luca Benini. Eval-
uation of ntp/ptp fine-grain synchronization performance in hpc clusters.
In Proceedings of the 2nd Workshop on AutotuniNg and ADaptivity Ap-
pRoaches for Energy Efficient HPC Systems, ANDARE ’18, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450365918.
doi: 10.1145/3295816.3295819. URL https://doi.org/10.1145/3295816.

3295819.

[6] Antonio Libri, Andrea Bartolini, Michele Magno, and Luca Benini. Eval-
uation of synchronization protocols for fine-grain hpc sensor data time-
stamping and collection. In 2016 International Conference on High Per-
formance Computing & Simulation (HPCS), pages 818–825. IEEE, 2016.

[7] Robert Manzke Mudassar Ahmed. Implementation and performance anal-
ysis of precision time protocol on linux based system-on-chip platform. 9
2018.

[8] J Serrano et al. The white rabbit project, proceedings of the 2nd interna-
tional beam instrumentation conference, 2013.

[9] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. Flocklab: a testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. pages 153–166, 04 2013.
doi: 10.1145/2461381.2461402.

24

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/3295816.3295819
https://doi.org/10.1145/3295816.3295819

BIBLIOGRAPHY 25

[10] Flocklab 2. URL https://flocklab.ethz.ch.

[11] Rocketlogger. URL https://rocketlogger.ethz.ch/.

[12] Beaglebone pru. URL https://beagleboard.org/pru.

[13] Beaglebone black hardware counter capture driver(pps-gmtimer). URL
https://github.com/kugelbit/pps-gmtimer.

[14] gpsd — a gps service daemon. URL https://gpsd.gitlab.io/gpsd/

index.html.

[15] chrony. URL https://chrony.tuxfamily.org/.

[16] Saleae logic 8, logic analyzer. URL https://www.saleae.com.

[17] stress-ng. URL https://manpages.debian.org/testing/stress-ng/

stress-ng.1.en.html.

[18] iperf. URL https://iperf.fr/.

[19] Planet gsd-805 gigabit ethernet switch, . URL https://www.planet.com.

tw/en/product/gsd-805.

[20] Ubiquiti unifi switch 8, . URL https://www.ui.com/unifi-switching/

unifi-switch-8/.

https://flocklab.ethz.ch
https://rocketlogger.ethz.ch/
https://beagleboard.org/pru
https://github.com/kugelbit/pps-gmtimer
https://gpsd.gitlab.io/gpsd/index.html
https://gpsd.gitlab.io/gpsd/index.html
https://chrony.tuxfamily.org/
https://www.saleae.com
https://manpages.debian.org/testing/stress-ng/stress-ng.1.en.html
https://manpages.debian.org/testing/stress-ng/stress-ng.1.en.html
https://iperf.fr/
https://www.planet.com.tw/en/product/gsd-805
https://www.planet.com.tw/en/product/gsd-805
https://www.ui.com/unifi-switching/unifi-switch-8/
https://www.ui.com/unifi-switching/unifi-switch-8/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Background
	2.1 Precision Time Protocol
	2.1.1 Basic Elements and Hieararchy
	2.1.2 Message Exchange and Delay Computation
	2.1.3 Hardware Versus Software Timestamping

	2.2 The Linux PTP Project
	2.2.1 ptp4l
	2.2.2 phc2sys
	2.2.3 pmc

	2.3 FlockLab

	3 Materials and Methods
	3.1 Time Synchronization on the BeagleBone
	3.2 Measurement of Time Offset
	3.2.1 Internal Measurement
	3.2.2 External Measurement

	3.3 Tools
	3.3.1 Measurement Scripts
	3.3.2 stress-ng
	3.3.3 iperf
	3.3.4 Raspberry Pi and Personal Computer
	3.3.5 Switches

	3.4 Measurement Setup
	3.4.1 Direct Setup
	3.4.2 One Switch Setup
	3.4.3 Two Switches Setup

	3.5 Data Post Processing

	4 Results
	4.1 Direct Setup
	4.1.1 CPU Stress Test
	4.1.2 Network Stress Test

	4.2 One Switch Setup
	4.3 Two Switches Setup
	4.4 Measurements with Unexpected Artifacts

	5 Discussion
	6 Conclusions
	6.1 Feasibility of Deployment
	6.2 Future Work

	A Appendix
	A.1 Setup of Beaglebones
	A.1.1 Configuration files

	A.2 Automated Measurement Scripts
	A.2.1 Internal Measurement Script
	A.2.2 External Measurement Script

	A.3 Data Post Processing
	A.3.1 Quick Displaying of Collected Data [deprecated]
	A.3.2 Overview of Data Processing
	A.3.3 Overview of Files, Functions and Dependencies

	A.4 Known Issues
	A.5 Timetable
	A.6 Original Project Assignment

