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Abstract

Using Wireless Sensor Networks (WSN) to connect hundreds of sensing de-
vices to each other is indispensable in today’s connected and networked society.
However, the issue of powering all of these connected sensing devices remains a
big challenge. Powering them through a main supply, such as wall power, is often
not possible, as this would result in excessive installation costs and restricted de-
ployment abilities. Changing the battery all the time is no option either, as this
would not scale due to too high maintenance. This calls for harvestable energy,
used to provide the required energy supply directly on the sensing devices.
Especially indoors, the amount of harvestable energy available for recharging is
hard to predict. The reason is the dynamic nature of indoor sources, such as
lamps and window blinds, strongly dependent on people being present. This the-
sis focuses on the hypothesis, that more people present in a closed environment
relates to more harvestable energy available. To experimentally investigate this,
a WSN people counting system is implemented. This is achieved my using two
Permamotes which communicate through OpenThread and CoAP. The gathered
data from the Permamotes is sent to a host system, on which a back end and
GUI interface is implemented - to analyze the sensed information. This thesis
therefore provides a complete system to count people, that can be used to inves-
tigate the hypothesis further.
The implementation was then tested to show its performance. The experiments
showed promising first results, with the complete system working as expected
and high accuracy of people counting in some scenarios. However, the experi-
ments also show, that the next step is to increase the accuracy of the counted
people for real-life scenarios, by gathering real-life data. Based on these data,
the accuracy can be increase by implementing an advanced post-processor.
Using this system, it will then be possible to investigate the stated hypothesis
at larger scale and in real-life scenarios.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) have ex-
perienced a lot of attention in the last few decades. One type of application in
the area of sensing are systems for people detection. In parallel to this, new
ways of powering all of the sensor devices have been investigated. This led to
an advancement of research into different ways of powering sensor systems, one
very promising kind being the use of harvestable energy.

These days there is a large interest in WSNs, as more and more sensors are
being deployed everywhere in our environment. It is not uncommon to have
hundreds, if not thousands of sensing devices included into one system. WSNs
allow to connect all sensing devices into a mesh-like network. The data can be
sent over that network to a data-sink, where it is processed further. This type of
network provides us with an efficient and scalable solution, based on well-known
and robust protocols. Examples for this exist plenty. Some examples are smart
buildings to regulate light and radiator, self-driving cars that observe and han-
dle the surrounding traffic, or even sensors measuring the moisture of the soil of
an agriculture plant, for example to automate the watering system - sensor are
penetrating every part of today’s life. Within a building, the sensors are often
distributed to measure on many different locations. Examples are smoke detec-
tors, remote control of windows and doors, or automated temperature regulators.
An easy, inexpensive and scalable way to connect all the sensors is desired. This
has strongly increased the interest into WSNs.

WSNs make it possible to deploy systems without infrastructure, but it is a
challenge to power them. In indoor environments, it would also be possible to
use a wired system, by using the wall power. Most often this is not the best
solution, as this is too expensive due to high installation costs of the additional
infrastructure required. Hence it would not scale well. However, establishing
some kind of network is essential in order to be able to make any use of the
sensed and gathered information on the nodes. Without any connection to send
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1. Introduction 2

the data of all the distributed sensing devices to a central hub, no decision could
be based upon these information.
To power the WSN, energy harvesting can be used, to recharge an intermittent
energy supply. One could also aim for using a normal battery. However, replac-
ing this battery all the time would be too expensive for maintenance. Energy
efficiency is therefore one of the biggest concerns. The nodes should be operating
for years - if not decades - in order to keep the maintenance at a minimum and
hence allow great scalability. By using energy harvesting to power the device,
operation over a long period of time without maintenance becomes possible. But
especially indoors, energy harvesting brings the challenge of not knowing when
in the future and in what quantities the energy will be available. To guarantee
sensing at all time and only use energy-intensive tasks on the sensor when suffi-
cient charge is available, it is important to be able to predict the energy available
in the future. Predicting uncertainties as accurately as possible can decisively
contribute for most-efficient and reliable operation, as the energy consumption
can be adjusted, with respect to its availability.

In this thesis, the overall goal is to improve the prediction of harvestable en-
ergy. To do so, the hypothesis we plan to test is the following: If people are
present within a building, the harvestable energy available increases, compared
to if no people are present. Besides this, if the number of people present in-
creases, also the amount of available harvestable energy increases.
The goal of this thesis is to implement a system, to count the number of people
currently present in an observed indoor environment. For this we used an ex-
isting WSN node, called Permamote. The Permamote includes passive infrared
sensors, which are used for detecting motion. Including multiple Permamotes
into our system allows us to count the number of people. The great challenge
is to predict the people present accurately enough, to be able to use this imple-
mentation to prove or disprove the mentioned hypothesis. Secondly, we want to
provide ground truth of the harvestable energy with the help of the on-board
LUX meter. By implementing the LUX sensor to gather data about the light
intensity, the available energy for a solar source is monitored. Thirdly, we aim to
help researchers analyze and investigate gathered data in an easy and straight-
forward way. To do so, a post-processor and a GUI interface running on the
host computer are implemented. While the post-processor includes a Thread
specifically for programming an accurate and adjustable motion counter, the
GUI interface plots and displays all relevant data to easily analyze them.

Outline The remainder of this thesis is structured as follows: Chapter 2 relates
this work to previous work that has already been written in this field, after which
Chapter 3 provides a more detailed description of the challenges and required
background knowledge with respect to networking, motion sensing, and devices
being used. In Chapter 4, we explain how the people detection application has
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been implemented. First, the different parts of the implementation are being
explained in detail, before Section ?? puts all the pieces together. Having handled
this, Chapter 5 presents the results of testing the implementation’s performance
and discusses the gathered results. In Chapter 6, we summarize the achievements
as well as draw a conclusion.



Chapter 2

Related Work

The great interest in the field of WSNs has pushed the development of low-
energy, high-reliability networking. New types of network protocols, tailored for
sensing applications and simplifying their deployment, have been invented over
the years [2].

Many systems for detecting people have been designed, utilizing an endless
number of different sensors, such as active and passive infrared sensors, ultrasonic
sensors and microwave sensors. As this thesis is concerned with detecting people
using the passive infrared sensor (PIR), only papers related to this kind of sensor
have been taken into account.
In the past several different measuring methods have been proposed, most of
which are additionally concerned with machine learning for post-processing the
gained data. Jaeseok et al. [3] have studied human movement detection using
three PIR-sensors placed in a hallway. Different walk-through scenarios have
been recorded and the gathered data has been used in order to train a machine
learning model, classifying the different scenarios. The focus was on detecting
direction and speed of movement. Yordan et al. [4] have shown in their paper,
that by using only a single PIR sensor in a room, it is possible to detect the
number of people present with high accuracy, using different machine learning
algorithms. For example, when having a room occupancy of eight people or
lower, 80% of the time the system correctly predicts the number of people with
a maximal deviation of less than one person.

As far as indoor energy harvesting is concerned, various approaches have been
proposed, relating the life-time of the device to the amount of energy available to
be captured. Especially, the importance of energy harvesting for WSNs has been
shown [5], as for such devices energy consumption, as well as maintenance costs
appear to be a real bottleneck. Another important research area is the speed
and efficiency with which harvestable energy can be used for recharging a source.
This increases the amount of energy that can be absorbed. Wensi et al. [6] have
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2. Related Work 5

proposed a solution with a novel charge circuit in their paper. By increasing
the speed and efficiency of charging, more reliable predictions, concerning the
certainty for having enough harvestable energy available in the future, can be
made.

Wireless communication is important for WSNs, as this allows communica-
tion between the different devices, as well as forwarding gathered data from
the sensors. Especially for low-power, local networks, primarily concerned with
in-frequent and low-bandwidth data, WSNs are extremly interesting. Different
networking protocols are available to be chosen from, such as Bluetooth Low
Energy [7], Z-Wave [8], ZigBee [9], or 6LoWPAN [10] based on top of the IEEE
802.15.4 standard.



Chapter 3

Background

In WSNs deployed indoors, it is of vital importance to enable their long-
term operation. For outdoor deployments, equipping nodes with harvesters of
ambient energy is an often-used solution. However, indoor environments feature
1000 times less light energy [11]. This makes their powering by using this form
of energy much more challenging. The longevity of indoor sensor nodes is often
a presumed requirement, but at the same time the greatest challenge. The
sensors record events and communicate with a central server, over a wireless
connection. In WSNs especially, when there is a large number of nodes, it helps if
the maintenance of devices is minimized. Otherwise the amount of sensors being
distributed and powered would not scale. Firstly, the sensors must consume the
lowest amount of power available, in order to prolong the lifetime of the sensor
system as much as possible. Secondly, in order for the device to be able to
perform for years - or even decades - without any maintenance, the call for an
on-board charging technique becomes louder, motivating the use of harvestable
energy for indoor applications as well. Imagine we have a sensor with primary
(i.e. non-rechargeable) and secondary (i.e. rechargeable) energy sources. We
want to use the harvested energy as much as possible, but can make use of the
non-rechargeable battery if necessary. One of the most energy-intensive tasks is
to send the data over a wireless connection. If the sensor node could know, that
enough harvestable energy were to be available in the close future, the device
could wait with sending the data up to that moment. The sensor chooses to only
transmit information when it has sufficient energy stored in its rechargeable
battery. In that way the non-rechargeable energy source of the device can be
saved.

Besides having large harvesters, one way to tackle the uncertainty of low and
intermittent energy sources is to predict its availability. In indoor environments,
the energy available to recharge a sensor node on-board is connected to many
uncertainties. Compared to outdoor, in general there is less energy available that
can be harvested. Predicting this energy can prolong the life-time of the device.
Especially, the prediction allows us to dynamically adjust energy consumption,

6



3. Background 7

as energy harvesting can be used with more certainty. This thesis tries to tackle
just this challenge, by providing a system to be used to better predict the avail-
able energy in indoor environments. To do so, we introduce the following two
hypotheses:

Hypothesis 1:
The (photo-voltaic) energy available within some indoor environment correlates

to the presence of people inside that environment.
Hypothesis 2:

The amount of (photo-voltaic) energy available correlates to the number of
people present. The more people are present, the more solar energy is available

to be harvested and used.

To verify or disprove these hypotheses, a system to count the people present
is implemented in this thesis. The correlation between the amount of people
present and harvestable energy available (i.e. the second hypothesis) is not
expected to be linear. This means that already one person within the monitored
environment is expected to have a great influence on the energy available. Any
further person present is expected to have a smaller influence on the available
energy. The reason for this is that already the first person will for example turn
on most lights, or open the window shutters. Hence, to prove or disprove the
second hypothesis, a high accuracy of the people counted has to be achieved.
Let us use an example to justify this hypothesis, by assuming that it is Sunday.
In a fictive company nobody is normally working, all the shutters and windows
are closed and all the lights are turned off - in order to safe power. Nevertheless,
this day it is different. Due to an approaching deadline an employee decides to
go to work. To not feel as lonely, he opens all the windows and turns on the
lights to bring some life into his office, which increases the light intensity (LUX)
inside the office. A sensing device will regularly communicate this information
to the central server, to inform other sensors and improve their performance
at run-time. The unforeseen sudden available harvestable energy can therefore
influence of how deployed low energy sensing devices process and handle their
data.

This chapter will first explain in Section 3.1 what WSNs are, as well as the used
protocol on the networking layer and application layer. In Section 3.2, the sensors
available for people sensing are explained. The focus is on the passive infrared
sensor, which is used in this thesis. The used sensing device, the Permamote, is
explained in Section 3.3.
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3.1 Wireless Sensor Networks

In the last years wireless sensor networks have rapidly emerged in markets of
a great amount of different multidisciplinary fields. It is fair to say, that WSNs
are a big research field of the past years and the advantages of WSN technology
over conventional networking solutions have been shown in various scenarios [2].

Figure 3.1: WSN, sensors (i.e. nodes/children) connecting via some wireless
connection to central sink (i.e. parent).

From a general point of view, a WSN refers to a group of end-devices - referred to
as nodes (i.e. children) - which are then connected via some wireless connection
to a central location (i.e. parent) [12], as illustrated in Figure 3.1. The parent,
known as data-sink, is normally a wall-powered device, not as energy constrained
as the nodes. At the same time, it receives the data from all its children. This
allows the parent to process the received data further. Also, the data sink has a
connection to backbone infrastructure, via a wired internet connection, allowing
it to send the data on to a host computer. The end-devices, which are spa-
tially dispersed in some given area, may include one or more sensors, dedicated
to observe environmental conditions. They are further equipped with a radio
communication interface (for wireless communication), some amount of memory
(to intermediately store gathered data, as well as programs), power supplies (to
operate for a long period of time), as well as an MCU (to control the device’s
behavior) [2].
To keep the power consumption of the children at its minimum, two most im-
portant factors have to be considered within the WSN. Firstly, the nodes should
be in a low-power mode as often as possible. It is therefore important to only
perform sampling operations as much as needed, to get an acceptable amount of
information. Hence the end-devices are referred to as ”sleepy devices”, meaning
they do not have their transceiver enabled all the time. Having the data-sink
always ready to receive information from its children, allows for reliable com-



3. Background 9

munication. Hence, it makes our life much easier if the data sink’s transceiver
always remains enabled. Secondly, the most energy consuming part is the trans-
mission of data via a wireless connection. Regardless, this is an essential part
of any WSN, allowing to further process the acquired data at the data-sink and
base decisions upon them afterwards. As most WSNs are designated to operate
for many years, without any human being needed to maintain the devices, it is
common to use on-board energy harvesting to recharge the devices.

Summarizing, low costs, scalability, versatility, flexibility, and ease of deploy-
ment have been the main drivers that pushed the technology of WSN to be used
in a wide range of applications. In agriculture, WSN technology is being used
to improve for example crop production [13]. Forest fire can be forecasted more
promptly, using WSN [14], or the structural health of civil infrastructure can be
monitored, reducing investigation and visual inspection costs [15].

3.1.1 Thread Network - OpenThread

The Thread protocol [16] is a very widely used communication protocol, pro-
viding an energy-optimized protocol based on IEEE 802.15.4 radio standard,
using 6LoWPAN. It has been specifically developed for the Internet of Things
(IoT), allowing to use the IPv6 standard to create a mesh network.
Thread enables the possibility to connect hundreds or thousands of devices to a
mesh-like network, without high configuration and maintenance. The mesh-like
network has self-healing characteristics and devices can be added or removed
from the network, without manual configuration necessary. Additionally, the
fact that Thread uses IPv6 based networking between the sensor nodes makes it
for any WSN very easy send the data to any centralized server, witout knowing
the network. It is only necessary to configure the sensor nodes correctly. The
IEEE 802.15.4 itself has also been built for the purpose of low power consump-
tion. Using an optimized protocol on top of this provides the best available
technology to fulfill low power requirements. These facts make Thread the per-
fect wireless-protocol for WSNs.

Types of Nodes

Any Thread network includes two main types of nodes, namely the routers
(i.e. parent) and end-devices (i.e. child). It is important to notice, that every
child connects to exactly one parent. The parent’s main task is to handle and
forward packets arriving from its children. Its transceiver therefore always listens
for communication, hence the router always remains enabled. A router can be
configured as Border Router, which allows it to forward traffic between a Thread
network and a non-Thread network.



3. Background 10

A child on the other hand is not forced to listen to incoming traffic. This allows
the child to enter a sleep-state by disabling its transceiver and saving power,
referred to as sleepy end-device (sed). A child can also be seen as a sensing
device, which sends acquired data on occasion towards its router. For a Thread
network, maximum device restrictions apply, as listed in Table 3.1.

Role of device Maximum number per Thread network

Router 32
End Device 511 per Router

Table 3.1: Devices that can be connected to a single Thread network. 32 routers
with 511 End Devices can result in a maximum number of 16’352 sensing devices
in a single Thread network.

OpenThread

An open source implementation of the Thread protocol, called OpenThread
[17] has been released by Net Labs and Google. This implementation provides
all Thread networking layers [18], including:

• IEEE 802.15.4 with MAC security

• IPv6 and 6LoWPAN

• UDP packet compression

• A CoAP implementation

The networking of the thesis will be based upon the OpenThread implementa-
tion.

3.1.2 Constrained Application Protocol (CoAP)

When forwarding packets through some Thread network, the payload of
those packets has to be handled by some Application Layer Protocol. For
wireless machine-to-machine communication between nodes of low-power con-
strained networks and building automation, the Constrained Application Proto-
col (CoAP) has been developed by the Internet Engineering Task Force (IETF)
[19]. An important feature of CoAP is that it provides easy translation to HTTP,
the commonly used protocol for the world-wide-web. This allows low-energy sub
nets, such as Thread, to connect via some interface (i.e. via the Border Router)
to the global internet. High reliability in a low-energy networks is therefore
preserved by using the simple and energy-optimized CoAP - including features



3. Background 11

such as low overhead, asynchronous message exchange, and discovery support.
Nevertheless, easy interfacing towards the bigger internet remains possible, as
CoAP is designed to easily translate to HTTP.

3.1.3 Energy Harvesting

Harvestable energy refers to the energy available in an environment that can
be captured by some energy harvester (e.g. a solar panel). The best known
forms of energy available to be harvested are solar power, wind energy, kinetic
energy, as well as thermal energy. The process of capturing this available energy
is called energy harvesting. Relating the amount of harvestable energy available
in an indoor environment can be much more challenging compared to outdoor
harvesting scenarios. The reason for that is on the one hand the dependency
upon more unpredictable events, which occur with respect to the behavior of
human beings. On the other hand, in an indoor environment the amount of
harvestable energy available is in general way more restricted compared to the
outside. While outside the amount of available energy is mostly dependent on
the weather conditions, this is unmistakably not the case indoors.

3.2 People Sensing

Movement of people within a given area can be sensed in various ways. Some
of the most well-known techniques used these days, to detect motion and pres-
ence of humans are depicted in Table 3.2. The presented sensing methods vary
in their technology and sensing mechanism, which results in different trade-offs
regarding their properties, such as sensing accuracy, power efficiency, range, sen-
sitivity, and reliability. In order to determine the most reasonable sensor within
a WSN system for an indoor people detection application, an analysis about a
fundamental trade-off between accuracy and energy consumption has to be per-
formed.
When using WSNs, one of the large constraints one always has to take into
account is its energy efficiency. Depending on the scenario, we must chose the
most-fitting method that provides the sought-after degree of accuracy while min-
imizing power draw. Accuracy refers to how well the presence of people can be
determined. While a sensor with low accuracy might only be able to predict the
amount of people present, a sensor with high accuracy might count the actual
number of people currently there.

People sensing using video cameras is of course an important and largely
used technology in today’s society. The development and available systems
using video cameras is immense, as the fields of machine learning and com-
puter vision evolve more and more in the market. However, these kind of
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Sensing methods

Active Infrared Sensor
Passive Infrared Sensor

Microwave Sensor
Ultrasonic Sensor

Video Camera Sensor

Table 3.2: Motion detection sensing methods

systems are also known for having a large energy consumption. Further, they
have mainly been developed for people recognition. For this reason, today’s
state of the art camera sensing systems are not applicable for low-energy sys-
tems and this technique of people detection is not taken into account any further.

Two main types of motion sensing mechanisms are available, namely ac-
tive and passive detectors.

3.2.1 Active Detectors

As the name already suggests, active motion sensors consist of a part that
actively sends out waves, called transmitter. These waves are then re-captured
by another sub-part, called receiver. Waves are being sent in form of radio waves
or microwaves. Two different operating modes of active sensors are taken into
account [20].

The first mode of operation is by analysing reflected waves. As soon as an
object moves in the area, which is controlled by the sensor, the receiver of the
sensor senses the Doppler effect taking place. These kind of sensor have the
ability to sense even small movements in the direction perpendicular to the sen-
sor. Microwave detectors [21], as well as ultrasonic detectors [22] belong to this
category of sensors. These type of sensors are widely used in the field of robotics
and obstacle avoidance.

The second type of operating mode is by separating transmitter and receiver
into two devices, using infrared rays in between them. The beam from transmit-
ter to receiver has to cross the detection area. As soon as an object enters this
just mentioned detection area, the beam gets interrupted. This interruption is
registered as an object that has moved into that area, hence motion has occurred.
The active infrared detector is an example of this kind of sensor [23].

The disadvantage of these kind of sensing mechanisms is their permanent and
comparatively high power consumption, coming from their constant transmission
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of waves. However, if the active sensor would not not constantly transmit waves,
it could miss some motion event occurring in between. To avoid this constant
power emission, passive sensors can be used. This lowers the consumption of the
sensing devices as much as possible for WSNs, but comes hand-in-hand with a
loss of accuracy.

3.2.2 Passive Detectors

As opposed to active sensors, passive sensors do not send out any kind of waves,
but simply register changes in the environment - by observing infrared waves that
are sent from heat-emitting objects such as warm human bodies. This makes
passive sensors very efficient and easy to use on the one hand. On the other
hand, however, a trade-off between power consumption and detection accuracy
has to be taken into account. Passive sensors work by observing changes in
temperature of some region within their observed range. It triggers upon changes
in heat registered. This happens, as soon as an object that radiates another
temperature compared to its environment moves within the range of the sensor
[20]. These kind of sensing devices are more prone to false positives of detecting
humans. This is due to the fact that for example a change in light intensity, or
the radiation of heat from a radiator, can also cause the triggering of the sensor.
Therefore, passive sensor are perfect for controlled indoor environments, as less
unpredictable motion events and temperature changes occur. For this reason -
and for their much lower power consumption, as systems do not have to actively
transmit but can only sense - these kind of sensors are very interesting for low-
power WSN applications. The most widely used passive motion sensor is the
passive infrared sensor (PIR), which will be explained in more detail.

PIR sensor Passive infrared sensors (PIR) are based on pyroelectric detectors.
The working principle of these kind of detectors is based on two IR-sensitive
elements with opposite polarity. The detector has the capability to develop an
electric field between these two IR elements, which appears as soon as one of the
elements experiences a change in temperature [24]. State-of-the-art PIR sensors
being used in today’s industry include many IR-sensitive elements, alternating
the polarities in a mesh-like grid. This gives these sensors the ability to detect
motion in two dimensions. Refer to Figure 3.2 for an illustration. The figure
shows four elements, alternating the polarity to each other. Any heat object
entering from one of the four sides and covering the two closest elements will cause
the sensor to trigger. Additionally, the fine-grained placement of IR elements
within a PIR sensor increases the detection accuracy, meaning that already small
movements within detection range can be detected. Often 40 and more of these
sensing elements are placed within one single sensor, refer to Figure 3.3. As soon
as any two elements register a voltage difference, a motion detection is being
triggered through the voltage difference of exactly those two elements.
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Figure 3.2: Opposite poled IR-elements placed in an alternated way, in order to
detect motion in 2D [1]

Most commonly used PIR-sensors have three pins attached to it: HIGH, LOW
and OUTPUT. Whereas the first two pin provide the supply voltage, as well
as the ground level, the OUTPUT pin switches from LOW to HIGH as soon
as a voltage is detected between any two adjacent and opposite polarized IR-
elements. It is very important to notice that any PIR-sensor can only sense
motion somewhere in the area of its range, but but cannot distinguish where
within that area. The consequence is that it is not possible to sense multiple
different motion-events occurring at the same time within a single PIR-sensor’s
range, as these different events are not distinguishable. They will simply be
registered as motion detected, resulting in a LOW-to-HIGH transition on the
OUTPUT-pin.

3.3 Permamote

Permamote [25] is a small hardware device that has been developed by Neal
Jackson et al., at the University of California, Berkeley. The device features
six different sensors - one of them being a PIR-sensor. A great advantage of
the Permamotes are the two different energy sources of the device. It includes
a primary voltage source - which is a normal battery - as well as a secondary
voltage source, which is a rechargeable battery. As the secondary energy source,
an indoor photo-voltaic cell has been integrated into the system, which allows
the secondary source to be recharged on-board. All of these modules, as well as
a radio, are placed around an nRF52840 microcontroller (MCU), which enables
this device to be used as a very low power node of a WSN.
For completeness, in Table 3.3 all sensors available on the Permamote have been
listed. The first column names the type of sensor, the second column provides
an abbreviation being used for the sensor and the third column shows the model.
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Figure 3.3: Fine-grained placement of IR-elements within a PIR-sensor, for
higher detection accuracy withing the detection area [1]

This device has been chosen to be used as the basis for developing and im-
plementing the people counting application in this thesis, due to several distinct
reasons. Multiple of these Permamotes can be connected to form a WSN, via an
OpenThread network. This allows for scaling, as well as sending all data to a
central server, which can then process the data and combine the different sensor
streams. Another advantage is that different kind of sensors are available on the
Permamote, which can be used to increase the accuracy of the people detection,
by supporting the PIR sensor with additional environmental information. The
Permamote is further optimized for energy efficiency and has been implemented
for indoor environments. Using the harvestable solar energy available to send
the gathered information of the sensors via the Thread network towards the
Border Router allows operation at very low energy consumption without any
maintenance overhead. This guarantees operation for over 10 years, without any
required maintenance.

Last but not least, one other main reason for using the Permamote is to further
explore the abilities and capabilities of the device itself.
The PIR-sensor integrated is the EKMB1101111, as stated in Table 3.3. The
sensor has a detection-range of 5m, whereas its horizontal and vertical angle
of detection is 94◦ and 82◦ respectively. The PIR-sensor is subdivided into 64
detection zones (refer to Section 3.2.2), which provides a good resolution in the
range of the sensor. Figure 3.3 has been taken from [1], in order to visually show
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Sensor type Abbreviation Model Functionality

Humidity and
Temperature

HUM SENS Si7021 Can sense temperature
and humidity.

Pressure and
Temperature

PR SENS MS5637 Can sens pressure and
temperature.

Light LT SENS MAX44009 Senses light in lux. The
lux-intensity is given as
a binary value.

Light Color CLR SENS TCS34725 This sensor returns the
RGB values of the light
color.

Accelerometer ACC SENS LIS2DW12 Measures gravitational
force on all three axis.

PIR PIR SENS EKMB1101111 The PIR sensor indi-
cates detected motion
within its range.

Table 3.3: Sensors integrated on the Permamote.

one dimension of detection range and its IR-element placement. This figure refers
to the vertical range.



Chapter 4

Implementation

Detecting the presence of people can be done in many different ways, as has
been explained in Section 3.2. Several aspects were to be achieved within this
work, which can be summarized as follows:

1. Using the Permamote to create an application to detect the presence
of people in some closed and well-defined environment. This applica-
tion should enable the ability to relate the presence of people to available
harvestable energy in the same environment, as explained in Chapter 3.

2. The people detection application should be implemented as a low-power
application, supporting different modes of operation. The aim is to
use the secondary battery as much as possible, in order to keep the lifetime
of the device as high as possible, without maintenance requirements.

3. In a second iteration step, the application was to be improved in terms of
people detection accuracy as well as power efficiency. While the first aim
was simply to detect the presence of human beings in general, the improved
application counts the number of present people. This improvement is
achieved by including multiple Permamotes into the system and combining
multiple PIR-sensors.

4. The application is to be embedded in a complete and well-functioning sys-
tem, based on a WSN, where the sensing devices are connected via
OpenThread to a Border Router. This enables the gathered data
to be sent from the Permamotes, parsed, interpreted and further investi-
gated on some central server. Further, the Permamotes are relieved from
computational burden, increasing their lifetime even further.

The Permamote offers a platform, perfectly tailored for low-power WSN appli-
cations. Its integration of a combination of sensors, together with its ability to
choose between two energy supplies - based upon the availability of harvestable
energy - seems to make it an incomparably well fitted platform. Due to these

17
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facts the occasion of investigating the abilities of Permamote further, encouraged
the decision to implement the people-detection application on this platform. As
the Permamote relies on a PIR sensor to detect people, a single device can only
detect motion in general. Therefore, any implementation is bounded to only
work correctly if some general conditions are given. This application has been
designed designed to work in an environment, respecting the following conditions:

• The implemented system has been designed to work in closed indoor envi-
ronment. ‘Closed’ refers to an area, to which there is only access through
one single entrance. This means that anybody entering or leaving that area
has to pass through that entrance.

• The closed area has a known number of people inside at the moment where
the Permamote/Permamotes are being put into operation.

Final Application Structure: The final application has been built in an it-
erative process, including different major steps. The final system contains three
main implementations. On the Permamotes, a program handling the device and
its sensors is implemented. On the host-computer, a program post-processing
the gathered data from the Permamotes is implemented. The third implemen-
tation, also on the host-computer, provides a GUI interface, making if easy for
any researcher to analyze all the information gathered of the people counting
application. The overall goal is to provide a flexible system that is able to accu-
rately count people and is easy to be installed and used. To provide flexibility,
we use a WSN, which makes it very easy to include additional sensors. At the
same time, the system should provide an easy way to analyze data, which is
achieved by integrating a GUI. The challenge is to arrive at a high people count
accuracy, while using a low power sensor. To achieve this, multiple PIR sensors
are integrated within the system. Further, long lifetime and low maintenance
of our system are important. To overcome this challenge two different modes
are implemented, whereas one keeps the energy consumption at its lowest if not
enough harvestable energy is available to be used. An overview of the entire
system is provided in Figure 4.1, showing the the names of all implemented pro-
grams and their place within the whole system. The remainder of this chapter
explains the different parts of this system in detail.

Permamote Setup The implementation on the Permamotes is implemented
in C-code, embedded in the Permamote repository [25]. The structure inside
the repository can be found to be as follows:

Permamote

software

apps
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Figure 4.1: Final Application’s structure

people detection

main.c

config.h

app.h

README.md

As the Permamote is based upon the nRF52840 SoC from Nordic Semicon-
ductors, the above mentioned repository integrates Nordic’s software develop-
ment kit (SDK), version 15.3.0 for Thread and Zigbee [26]. The people counting
application therefore makes use of this SDK as well.

4.1 Simple People Detection

The simplest way to detect people’s presence is by registering any event of
motion within an area. Let us for this purpose consider a room, for example a
small office. A single PIR sensor can be placed in such a way, that the majority
of the room of a small office is covered by the range of the sensor. This enables
the detection of most of the movement within the room. Of course, this kind
of people detector does not try to count the amount of people present within
this area. However, as has been explained in Chapter 3, the correlation between
number of people present and amount of available harvestable energy is not as-
sumed to have a linear correlation. This means, as long as a single PIR-sensor
can predict people being present in general, a correlation towards available har-
vestable energy should already be possible.
Due to this fact, the first step to a working systems was twofold. From the
application’s implementation point of view, the first step was to implement the
PIR-sensor to count the motion events happening within a certain time. The
PIR-sensor is set to its sense state, while the remaining systems remains in a
low-power mode, in order to conserve energy. As soon as the PIR-sensor detects
motion, the system’s nRF chip is triggered to wake up and handle the detected
motion.
From the whole system’s point of view, the Permamote is just the sensing device,
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called the node of the system. In a later phase of the implementation it will be
important to handle the data gathered by the Permamote further, using a WSN
setup. A Thread network topology is established, using the OpenThread imple-
mentation. In order to do so, the following, already available hardware-setup is
put into operation: A Raspberry Pi B+, loaded with an OpenThread Border
Router image [27], is set up. An nRF52840 Dongle [28] is used as network co-
processor (NCP), plugged into the Border Router and loaded with an already
available system NCP-software [29]. The NCP establishes the Thread connec-
tion towards any active Permamote, whereas the Border Router has the ability
to either forward the received packets further over an Ethernet connection, or
handle the data itself.

4.2 Operating Modes

The nRF52840 SoC has the ability to remain in a very low-power mode during
most of the time. It can be woken up through external interrupts, to process some
occurring event. It is desirable for a low-power device to choose between different
scenarios, on when to switch between low-power and higher-power operation
states, based on the amount of energy available. As mentioned, the Permamote
provides two energy sources that can be used, one of them being an energy
harvester. Therefore, two different modes of operation are implemented to most
efficiently use two different energy sources. These two modes are a high-power
mode, while enough energy is available in the secondary (i.e. rechargeable)
battery, and a low-power mode, for the case that the primary battery (i.e. not
rechargeable) has to be used for operation. The energy consumption is therefore
adjusted by switching between the different modes of operation. This allows to
operate with rechargeable energy whenever possible, prolonging the lifetime of
the non-replaceable batteries.

4.2.1 High-Power Mode vs Low-Power Mode

The high-power mode differs from the low-power mode in the way the packets
are being sent over the wireless connection. As with any sensor operating as
real-time application, it is not possible to change the moment of sensing. This is
due to the fact, that sensing needs to be done in real-time and cannot simply be
delayed to a later moment, as the events to be sensed cannot be delayed. There-
fore, the device always needs to wake up for any kind of sense event of interest.
However, the handling of the gathered data can be adjusted. High-power mode
directly sends gathered motion events to the Border Router, allowing real-time
post-processing of these data.
The low-power mode, on the other hand, stores the gathered data on the Per-
mamote and sends them towards the Border Router at some later point in time.
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Let us assume the device operating with primary battery, as the secondary bat-
tery’s charge state is too low. If now a lot of harvestable energy is available,
the low-power mode allows to delay the sending of packets, until the secondary
battery has been charged enough to be used again.
It is important to notice, that the Permamote itself chooses upon the primary
or secondary battery to be used. The choice is simply based on the charge state.
While the secondary battery is being used, a flag - called VBAT OK - is raised,
which is read by the MCU. However, the choice between which of the imple-
mented power modes should be used, is based on measuring the actual voltage
of the secondary battery. The reason for doing so is to allow more flexibility:
Choosing when to switch from low- to high-power mode can be easily adjusted
by the user - by simply adjusting the voltage threshold of the secondary battery
for switching.

The reason for implementing the behavior in this way becomes obvious when
considering the following fact: As soon as the secondary battery has been charged
to a level, that allows it to be used as energy source, VBAT OK will indicate
so. Assuming that the state is now directly being switched to high-power mode
might drain the battery to immediately drop below the VBAT OK threshold
again, resulting in a toggling between the different modes of operation. This is
prevented by implementing the threshold to be adjustable to the user’s needs.
Next to choosing the mode through the battery charge state, it has also been
implemented to manually select the operation mode as user directly. This enables
to overrule and set one of the modes to be used, not taking into consideration
the battery’s charge state at all.

In order for the user to configure the application in a simple and straightfor-
ward way, a configuration file has been implemented. Within this file all relevant
parameters can be set for the application. The file’s structure and functionality
is explained in more detail in Section 4.3.2.

4.3 Advanced People Detection

After having established a first working people-detector, different aspects to
improve this implementation have been taken into account. The biggest challenge
being tackled with this advanced implementation is for people to be counted,
instead of only distinguishing between presence and absence of people in general.
This brings some additional challenges, because a single PIR sensor has no sense
of direction of the detected motion, nor the number of simultaneous motions
detected. Two different approaches were considered to overcome these issues.
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Figure 4.2: Setup, using two Permamotes

One approach is to use classifiers, as to estimate an accurate number of people
in a certain area. This requires a high amount of post-processing of gathered
data, using machine learning and other statistical approaches, which is by no
means easy to implement. Additionally a lot of data must be gathered before-
hand, to be able to use data for predictions and models.
As such heavy processing is unsuitable for low-power implementations, a second
approach has been chosen, which includes a second Permamote (i.e. a second
PIR sensor). Further considering the assumptions made at the beginning of this
chapter, the setup to count the number of people present within a closed envi-
ronment is illustrated in Figure 4.2. Any person entering or leaving the closed
environment is crossing the range of each of the two PIR-sensors, whereas one of
them is placed withing the environment and the other one outside of it. As soon
as a PIR-sensor detects an event of motion, it starts sampling for a user-defined
period of time, e.g. two seconds. As the PIR-sensor is equipped with 64 detec-
tion regions (refer to section 3.3), multiple motion-events will be triggered during
these two seconds. All motion events during these two seconds are summed up
and the gathered data is stamped with an NTP-synchronized time. This setup
makes it possible to detect the direction of any person crossing both sensors,
with the help of the acquired timestamps on both sensors. As people enter the
area, the timestamp of the Permamote placed outside of the environment will
indicate an earlier time compared to the other Permamote. If the timestamps
are within a certain margin to each other, the event counts as a person entering
the room. At the same time, taking the timestamps allows us to handle some
false-counts. Let us assume only one sensor registered motion within a certain
time-span. This can be due to a sudden change in light intensity, a human being
entering the range of the sensor without actually leaving or entering the moni-
tored environment, or some similar scenario. The Permamotes do not have any
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timestamps within a certain margin in this case, meaning that nobody entered
or left the room.

4.3.1 Integrating Other Sensors

Additional sensors are available on the Permamote. It is possible to use them,
to arrive at an application with the ability to correct false measurements of
the amount of people present over time. This is an important requirement for
accuracy and robustness of the application.
To correlate people’s presence to the amount of energy available as accurately
as possible, the application must fulfill some crucial requirements. First of all,
it is clear that measurements are to be taken over a long period of time, to
be able to accurately evaluate the hypothesis (Chapter 3). It can always occur
that the people counted within the monitored environment is not completely
accurate. Especially the trade-off towards accuracy, by using a sensor as simple
as the PIR-sensor validates that fact. This is undesirable, but at the same time
unavoidable with hundred per cent certainty. One possible scenario explaining
this issue is, if two people leave the gateway in the same sampling period of time.
The two persons would only be registered as one. To completely prevent this
from happening is a close to impossible task. Therefore, more importantly, this
error needs to autonomously vanish over time. Only then it can be guaranteed to
monitor the presence of people with a high enough accuracy over a long period
of time, if a change in number of people present should be correlated to a change
in harvestable energy available.

To achieve the just explained requirements, the light sensor in combination
with the PIR sensor and timers are used. The reason for this implementation
choice is the following: In any realistic scenario, there is a period of time every
day, where normally nobody is present in the monitored environment for a few
hours. This is usually at night. Therefore, as soon as the light intensity falls
below a defined threshold (i.e. indicating ’night’) and no motion has been de-
tected for a long enough period of time (e.g. four hours), the application has the
ability to correct itself by automatically setting the currently registered present
people back to zero. This shows one way how additional sensors can be used to
increase the accuracy of people counting.

4.3.2 Configuration File

For a user to handle the implemented application in a straight-forward way,
it needs to be easy to adjust all variable parameters within the application.
To facilitate the handling of the application, a configuration file, config.h, has
been added. This enables a user to adjust all parameters, without diving into
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the code of the application’s implementation, and is structured in the following
three parts:

1. MODE SETTING: This part relates to Section 4.2. The user has the
option to either set the threshold of the charge state to switch between
the modes manually, permanently set one of the two modes. Further, the
time period with which the Permamote should send the packets in low-
power mode can be specified, as well as the maximum number of packets
that can be stored inside the local memory of the Permamote, in order to
pre-allocate the memory.

2. NETWORKING: It is important to decide if one wants to specify an
address, towards which the sent packets are being directed. The default
address is defined as ’COAP SERVER HOSTNAME’. To overwrite this
address, one simply has to set ’COAP CUSTOM DEST ADDR’ to the
public IPv6 of the desired destination.

3. TIMING: In this section all timers that are active can be re-adjusted. The
most important parameters to adjust, however, are ’PIR SENSE PERIOD’
and ’PIR TIMEOUT’. These timers decide upon how long the sensor keeps
detecting, after registering a first event of motion, and the time the sensor
remains disabled after this period is over respectively. Hence, the sys-
tem is able to adjust its detection period to PIR SENSE PERIOD +
PIR TIMEOUT . These two two parameters are combined as one com-
plete detection period during evaluation later on.

Some parameters can only be set to ideal values after some amount of
experimental testing. This is due to the fact, that they depend on individual
deployment setup of the people counting system. One has to be able to adjust
the system to questions like: How far apart are the two Permamotes? How long
should one period of sensing be?

4.4 Data Post-Processing

The Border Router is the central hub of the application, which receives pack-
ets from the different Permamotes. It is therefore the first possible place to
capture and process packets from the two different devices. However, this is
not the easiest and most straightforward way on doing the post-processing, as
working directly on the Border Router requires to implement everything using
its terminal. Also, a usual scenario for the Border Router is to work as an inter-
mediate gateway, routing from Thread to the internet protocol and forwarding
the packets towards its final destination address. This means that the traffic can
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be forwarded to any other host computer - using the globally standardized IPv6
protocol. The host computer is then used as the server, parser, and analyzer, for
capturing and handling the received data. This approach makes it much simpler
for researchers to process and analyse the data.
Post-processing the data after capturing it is essential, as it is only after this
step, that the gained information has a human-interpretable meaning and con-
clusions can be generated. Before coming to this more detailed explanation of
the post-processor, in Section 4.4.1 we will show how a host will receive a packet,
using the CoAP protocol. This allows the reader to understand how the packet
can be parsed. Thereafter, we will then focus on the essential post-processing in
Section 4.4.2.

4.4.1 Packet Structure Analysis

To analyze the packets coming from the Permamotes, they have been captured
directly on the Border Router. To do so, a tcpdump using the terminal was
captured, listening on the Ethernet interface of the Border Router:

sudo tcpdump -i eth0 -vv udp port 5683 -X -n -w /tmp/packet dump.pcap

As can be seen in the command above, the packets arriving at standard CoAP
port 5683 are being stored as a pcap file, called packet dump.pcap. This file,
containing all the received packets, was then analyzed, using Wireshark1. Fig-
ure 4.3 shows the general structure of the packets coming from the Permamote.
The aim is not to go into detail with regards to the headers of the different
layer-protocols. But rather a general overview should be gained, of how packets
coming from the Permamote are structured, especially with respect to its pay-
load. Nevertheless, for the sake of completeness, in Figure 4.4 the packet’s total
content is split with respect to the protocol to which each fragment belongs to,
whereas Figure 4.5 specifically shows the CoAP’s content in detail. Be aware
that data is displayed in hexadecimal notation, for better readability compared
to bit representation.

With respect to the people detection application, four important fragment of
information are within the payload of each packet. As more than one Permamote
is active, each of them must be uniquely identified. This allows to associate
packet-content to the right Permamote. The easiest way to get a unique ID for
each Permamote is by extracting its MAC address. Secondly, the type of content
included inside the packet needs to be determined. The type of content can for
example be motion from the PIR-sensor, light intensity from the light sensor,
or also voltage reading of the different energy sources. To distinguish between

1https://www.wireshark.org/



4. Implementation 26

Figure 4.3: Captured packet, containing different layer’s headers, as well as
CoAP’s payload, called Data

these, every packet includes a URI-path, identifying the type of data which the
packet contains. As third information, the timestamp relating to when exactly
the sensor has taken the measurement has to be extracted. And as a last peace
of information, the actual value measured needs to be extracted. Refer to Figure
4.5, which shows in detail where in the packet’s payload these just mentioned
information can be found.

4.4.2 Multi-Threading

Let us now take a closer look of how the packet post-processor is implemented
on the host computer. The implemented packet analyzer executes three im-
portant tasks in parallel. Figure 4.6 gives an overview about the parallelized
Threads and the different storages used. Refer to the figure at any time during
this section as an accompanying illustration. Each Thread is explained in the
following.

Server/Parser Thread

First of all, incoming CoAP packets are being captured and parsed by a server,
listening on port 5683. This server Thread needs to be able to capture packets
at any time. This is important, because dropped packets are lost, as the UDP
protocol without any acknowledgement is used. At the same time, this Thread
parses the packets to extract the information explained in Section 4.4.1. After
parsing the packets, the server simply stores the packets to a queue, which is the
end of its duty with respect to the received packet.
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Figure 4.4: Captured packet, split according the the protocol the data belongs
to

Figure 4.5: CoAP’s packet content is being analysed in more detail, showing the
important fragments with respect to the people detection application

Post-processing Thread

This Thread reads packets from the queue and post-processes their content.
The reason for handing this procedure to a second process, instead for the server
to handle the task, is that this is not time-critical. The amount of time for the
server to be occupied with a single packet should be kept as short as possible,
in order to be uncommitted for future packets to arrive. This Thread handles a
packet read from the queue in the following way:

1. Determine the URI-path of the packet, to decide on the storage to use.

2. If it is a LUX or voltage packet, the following happens: The ID is read and
afterwards the packet replaces the currently stored packet with the same
ID in the URI’s active storage. The currently stored packet is moved to
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the archive, as its information is now outdated.

3. If it is a motion packet, the process only reads the ID and appends the
packet to the correct active motion storage. A third process is then re-
sponsible to handle the motion packets further.

Motion-handling Thread

The reason for using an additional Thread to handle the motion events, is to
provide flexibility to easily adjust the motion handling as a user. This allows a
user to integrate more robustness into the people counter. Also, the interaction
of the motion packets coming from the two different Permamotes brings a higher
degree of complexity. While the light intensity, as well as the voltage level is only
interesting with respect to the device from which it originates, the information
about motion events of the different Permamotes have to be handled together,
to relate motion to people counting in our implementation. This motivates this
task to be handled in an additional Thread. Every time the motion handling
Thread is called, the following steps are processed:

1. The stored packet’s timestamp of the motion storage ID 1 are compared
to stored packet’s timestamp of the motion storage ID 2. If two packets
have been found, with their timestamps lying within a certain range to
each other, these two packets are removed from the storage and registered
as a person entering or leaving the controlled environment through the
gate. A counter either counts an additional person inside the controlled
environment, or a person is being removed. This decision is based upon
which ID’s timestamp has the higher value. The removed packets are stored
as one event inside of the motion archive.

2. After having removed all paired motions in the first step, the remaining
packets in the active motion storage, which have for sure only occurred on
one side, need to be moved to the archive as well. If this step would not be
performed, the active storages would grow bigger over time, which would
increase the amount of time to find pairs. Without a question, if one or both
of the permamotes operate in low-power mode (Section 4.2), it is possible
for them not having sent all packets yet. Therefore one cannot simply trash
all remaining packets in the storage, as pairs to some of the packets could
still be received in the future. A simple procedure is followed to remove the
correct packets: Take the packet with the biggest timestamp of both IDs.
Archive all packets of the ID list, that has the smaller biggest timestamp.
We can do this step, because we already have all the information from the
sensors before their latest timestamps. Therefore, all pairs of the ID with
smaller timestamp have already been found. Of the list with the larger
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timestamp, archive only the packets that have timestamps smaller then
the largest one of the other list.

Figure 4.6: Multi-Thread

Robustness Implementation Above, the implementation of the motion han-
dler was explained. However, this is a very simple implementation and shows
room for improvement to make the system more robust. As mentioned, the mo-
tion handler’s Thread provides the flexibility to optimize the way the motion is
handled. After implementing the version above, we have decided to implement a
more robust motion handler. This implementation is meant to show one way of
improving the system within this Thread. It is up to the user to come up with an
even more robust version, optimized to his needs and system setup. The robust
motion handler implementation aims to correct two common errors happening
when using the simple motion handler. Firstly, the robust implementation cor-
rects some miscounts. If the system shows zero people or a negative amount
of people present, the robust implementation tries to correct this. The Thread
is implemented such that it only corrects this error, if it is certain that some-
body is inside of the room. ‘Somebody inside’ is defined, if at least two motions
within a user-define time span have occurred in the monitored area. Secondly,
the implementation aims to correct counts of people, even though nobody has
left or entered the room. This mistake is common if in both sensor range a per-
son is standing. This triggers a lot of motion events on both sensors with their
time stamps being within close margin. The normal system then often count
somebody as leaving or entering the room. The robust implementation reduces
this error as follows: Let us assume motion of the sensor inside of the monitored
room to be motion of type A, while motion of the sensor outside is of type B. If
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a motion pattern of kind ABA or BAB occurs, normally the first two motions
of this triple would be matched as somebody entering or leaving the room. In
the robust implementation, if all time stamps of this triple are within a certain
range to each other, the first two motions are not considered as a person leaving
or entering the room. This improves the robustness, if it is more likely that two
people are within range instead of entering of leaving the room, in case of such
a triple motion event occurring. To forestall, this increased the accuracy of the
system, as will be explained in the results, in Chapter 5.

After having discussed the three main Threads running in parallel, it is to be
mentioned that a fourth small co-process is also running at the same time. This
fourth process has the simple task of storing all archived data from time to time
to CSV-files. This allows to store the data in a safe way, as well as using them
within some other program - or to analyze them further later-on.

4.5 GUI Interface - Dash

A GUI interface is implemented to accompany the people detection application
with a visualization of the gathered data. The GUI interface was built using the
Dash web application framework, based on the plotly library of Python2. It
can be found as a Python script, called gui people detector.py. The interface is
indirectly connected to the packet analyzer by reading its produced CSV-files
and displays the gathered results inside the GUI, as as shown in Figure 4.7
shows. The program can be run in parallel to the packet analyzer and refreshed
manually, using the ’Update all Graphs’-button. This allows to visualize the
data ’live’, meaning that always the newest available events that have occurred
can be monitored.

2https://dash.plotly.com/introduction
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Figure 4.7: GUI-interface



Chapter 5

Results

This chapter presents a verification of the final system of the people detec-
tion implementation. The goal of the results are to show that the implemented
application works as a complete system. While this was the main goal, at the
same time the implementation was tested for how well it generally performs. In
Section 5.2, additional tests that were conducted are shown, aiming to find out
the current limitations of the implementation, that can be improved in future
work.

5.1 Testing Scenarios

Verification Setup

For verifying the application, different scenarios are tested as shown in Figure
5.1. The scenarios present different detection periods of the Permamote. The
detection time defines the period between the sensor triggered by some motion,
until it reenters its low-power sense state. In the low-power sense state, the
sensor can be triggered at any time by some motion occurring. This implies,
that the maximum number of people that can be counted by the system has an
upper limit given by the detection period per person. For each scenario, three
test cases have been conducted. The test cases vary the time interval between
the persons entering and leaving the room one after another, as can be seen in
the middle of Figure 5.1. For each test case, three test persons are entering and
leaving the room, with the respective time interval between each other. The
aim is to find a lower bound of the detect period, for which the system can still
distinguish between the different test persons.

Results

The different scenarios, together with the different test cases per scenario are
classified for their reliability of correctly counting the number of test persons.

32
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Figure 5.1: Setup for verifying the implemented system

The results of the classification are shown in Table 5.1. The highest reliability
over multiple measurements has been achieved with the scenario of 5 second
detection period and 7 second time interval between people. Some important
and interesting results of different cases are presented in the following Figures
5.2 to 5.5, showing different detection periods and time intervals between the
people entering and leaving the room.

Scenario Time interval between test person Reliability

5 seconds detection period
7 seconds
5 seconds
3 seconds

high
medium

low

4 seconds detection period
7 seconds
5 seconds
3 seconds

high
high
low

3 seconds detection period
7 seconds
5 seconds
3 seconds

medium
low
low

Table 5.1: Reliability of different tested scenarios

Discussion

The results show that the implemented system functions as it is expected to.
As already mentioned, the aim of this thesis was to implement the system and
provide the foundation to relate people counting to harvestable energy. This
has clearly been achieved and the different scenarios show very promising first
results. However, in terms of finding the best implementation on how to handle
gathered data is a non-trivial task. To find the best solution is a task on its
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Figure 5.2: 5 seconds detection, 7 second time interval

own and should be considered as the next and final step to take, before relating
the results to the hypotheses. The current limitation for the tested setup can
be best seen in Figure 5.3. Here, three people were expected to enter the room,
before the three people leave it again. The figure shows 1 person entering the
room, while 5 are leaving it afterwards. As one can observe, the detection period
has the same length as the time interval between the people. This causes the
whole time-axis to be filled with detection period after detection period, which
explains why false-measurements are probable: If one sensor reacts a little slower
to motion within its range, compared to the other, the sensor cannot recover from
this event. The reason for that is, because after the 5 seconds of detection, the
next person is already within the range of the sensor - the error is carried on, or
might even be increased by a second detection that is too late. This might cause
the timestamps of the two sensors to mistakenly swap. Figure 5.4 shows, that
by simply lowering the detection period to 4 seconds, people walking in with an
interval of 5 seconds behind each other could be detected without any problem
again.

5.2 Further Tests

Long-Term Runs: The scenario with the highest reliability is the one with a
detection period of 5 seconds and a time interval of 7 seconds between the test
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Figure 5.3: 5 seconds detection, 5 second time interval

persons. This holds only for the setup that has been used during this verification
process. Therefore, this scenario was further used to conduct two long-term
measurements. The long-term measurements show the behavior of the system
in two different environments:
The first long-run monitored an office of mainly one person. The Permamotes
were set up in such a way, that it is unlikely for somebody remaining within the
range of the sensor. This means, that the Permamotes are mainly only crossed,
if somebody really walks in or out of the room. The second long-run scenario
observes a very open environment, where a lot of motion was to be expected on
both sides of the sensors. This test was conducted, monitoring a kitchen. One
Permamote was within the kitchen, covering about one fourth of the kitchen’s
area. The second Permamote outside was positioned next to the kitchen entrance
and also covered the dining area, hence a lot of motion is expected. This scenario
was meant to observe, how the system reacts if a lot of motion on both sides of
the sensor occurs.

The office environment shows very promising results. These results show, that
in an environment with clear crossings of the sensors and not too many people
interacting with it, the system always manages to count the number currently
within the room correctly. The test in the kitchen, however, shows that exact
people count becomes way harder, as soon as on both sides of the sensor motion
is to be expected. It is very hard for the system to predict, if the person has
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Figure 5.4: 4 seconds detection, 5 second time interval

entered or left the observed environment, because pairs of sensor readings are
much harder to combine. However, it has been shown, that a more robust motion
handler implementation can improve these kind of scenarios. In this way, a lot
of accuracy can be gained.

Robustness Tests: As explained in Section 4.4.2, a more robust version of
the motion handler was implemented. This implementation is tested for its
improvement, compared to the simple motion handler implementation. Figure
5.6 shows the count of people, using the simple implementation. Figure 5.7 shows
exactly the same data. However, the robust motion handler Thread is used
instead of the simple one. At time 19:44 to 19:45, the robust motion handler
counts -3 people, while the normal motion handler counts -5. Even though
both implemented handlers miscount, the error of the robust implementation
is smaller. After time 19:46, Figure 5.7 shows that the robust motion handler
corrected itself to at least one person being present. This correction happened,
as the system registered multiple motions inside of the observed area, which the
robust Thread interprets as somebody is present in that area. At the same time,
the normal motion handler keeps on miscounting. The robust motion handler is
by no means perfect, but the results show that already a simple implementation
of a robust motion handler improves the people count accuracy. By using long-
term data, statistical models, as well as machine learning, a lot of improvement
is achievable by going forward in this direction.
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Figure 5.5: 3 seconds detection, 7 second time interval

Figure 5.6: Normal people count
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Figure 5.7: More robust people count, reducing the error



Chapter 6

Conclusion

The focus of the first part of the thesis was to implement a system to count
people in an indoor environment with high accuracy. By counting the people
present with high accuracy, it becomes possible to relate both stated hypotheses.
Especially, the aim was to not only enable relating people presence to more
harvestable energy available, but even stronger to relate that an increase of
present people also increases the available harvestable energy to some extend.
The goal of counting the number of present people was achieved by using two
Permamote sensing devices.
During the second part of the thesis, a post-processor, as well as a GUI interface,
was implemented. The post-processor can handle all the data coming from the
different Permamotes. It is split into three main Threads working in parallel.
This separated structure has been shown to permit a user to improve the system
and for example implement a more robust motion detection. It has been shown
that improvements in the way the data are being handled can greatly influence
the accuracy of counting the number of people. The entire system is implemented
as a WSN, making it very scalable and allowing for a user to integrate additional
Permamotes in the future. The GUI interface further allows to analyze the
gathered data in an easy and visual way, allowing any user to visually verify the
motion handler implementation.

Future Work The implementation was tested in an environment with three
people interacting with the sensors at maximum. The next step would be to test
the system in an office environment, to gather additional data and evaluate its
performance. After gathering enough data, the accuracy of counting the exact
number of people can be increased significantly with two further approaches:
The first approach is to include statistical models, as well as machine learning, to
implement a more robust and reliable motion handler Thread as post-processor.
The second approach is to include a greater amount of Permamotes into the
system. Especially a third Permamote is expected to have a rather great influence
on the accuracy achievable. As the whole implementation is setup as a WSN,
the task of including additional Permamotes should be straightforward.
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