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Abstract

In order to develop wireless sensor network (WSN) applications on embedded
systems, a testbed infrastructure is required. Some well known examples of
such testbeds are Flocklab, Motelab or Twist. Among those, FlockLab offers
the most advanced services like GPIO actuation and tracing, highly accurate
timing information and the possibility to profile and control power usage. The
newer version FlockLab 2 released in March 2020 improves FlockLab in many
ways including more accurate power profiling, GPS-based time synchronization
and native SWD debugging. Previously debugging could only be done by using
the GPIO pins or printf statements sent over the serial port. These options
either limit the complexity of the output or require software instrumentation.
To mitigate these limitations, alternative debugging options based on SEGGER
J-Link are explored and analyzed in this thesis. The most suitable solution is
implemented and integrated in the FlockLab 2 testbed. The result is a debugging
feature that lets the user non-intrusively trace up to four variables and take PC
snapshots on specified events. The debugger is capable of tracing variables with
up to 77 kHz and the accuracy has been measured to be as good as 1 ms for a
30 min test duration. The timestamps in the trace are all taken with reference
to the global GPS-synchronised time. This allows to compare the data traces
from different observers making the feature a truly distributed debugger.
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Chapter 1

Introduction

To develop the protocols and applications running on wireless embedded
devices, a testing and debugging infrastructure is required. Testbeds provide the
necessary functionalities and let the developers closely observe what happens
on every node in a network. As of today many such testbeds exist. Some well
known examples are FlockLab [1], Motelab[2] or Twist [3]. These testbeds all
offer many services but often have limited debugging options. In the case of
FlockLab for example the tracing features are limited to printf debugging over
the serial port, setting digital GPIO pins and power tracing.
Printf-style debugging is a very flexible method because the user can extract
arbitrary information at virtually any point in the program execution. The
drawback of this feature is that it is intrusive, meaning it requires software
instrumentation which introduces significant delays in the execution of a
program. This can lead to Heisenbugs. These are bugs appearing only when
debugging the program [4]. Therefore this method is not suitable for time
sensitive debugging.
GPIO instrumentation is much more performant in terms of timing overhead.
To set a GPIO pin only a few microprocessor instructions are required which
results in a delay of about 0.05 µs [5]. The drawback of this method is that the
user can only extract limited information from a GPIO pin. The pin is either set
or not set (binary information). Another drawback of this debugging method is
that the code needs to be recompiled after changing the observed variables.
Finally, power tracing can also help in debugging but is limited in the way that
a user cannot obtain information about the internal state of the microcontroller.

In the past several solutions to mitigate these drawbacks like CD-TRS
[6], HATBED [7] or MINERVA [5] have been presented. These tools are all
based on the hardware debugging features built into modern MCUs. The
Cortex-M4 used on the targets of FlockLab 2 for example offers features like
breakpoints, watchpoints or instruction and data tracing. In order to access
these functionalities a debug probe is required. FlockLab 2 includes a SEGGER
OB on-board probe that will be used to debug the target processors. In this
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1. Introduction 3

work the DPP2 LoRa ComBoard 1 [8] will be used to implement and test
the debugging feature. This is a single representative platform and the same
debugging concept applies to all ARM Cortex-M processors.
As part of this semester thesis the powerful debugging features presented in
the HATBED and MINERVA papers will be integrated on an observer of
the FlockLab 2 testbed. Using the CoreSight [9] features available on ARM
microprocessors, it will be possible to do flexible non-intrusive tracing on the
targets. The proposed solution will further improve the services of FlockLab 2.

1.1 Related Work

In this section several debugging solutions for WSN testbeds are presented with
a focus on debugging capabilities.

1.1.1 CD-TRS

CD-TRS stands for Cross-device Testing and Reporting System for Large-scale
Real-Time Wireless Networks [6]. The debugging service of this system is based
on a logging approach: previously defined events and device status are sent over
the J-Link log interface as streams during runtime. Logs from several nodes are
sent to the analyzer simultaneously. The analyzer will parse the streams and
convert them back into events that are then sorted by the Absolute Slot Number
(ASN). CD-TRS also offers automatic comparison of the analyzer output with a
simulation result based on a specified topology and device tasks.

1.1.2 HATBED

HATBED stand for Hardware Assisted Testbed for Non-invasive Profiling of IoT
Devices [7]. HATBED offers three debugging services:

• Network-Wide Remote Debugging: This feature offers non-intrusive trac-
ing and global breakpoints and assertions. This is achieved by using remote
Serial Wire Debugging (SWD).

• Flexible Software Tracing: This is similar to printf debugging but uses
the ITM message output instead of UART. This solution greatly reduces
the timing overhead of the UART protocol.

• Non-invasive Software Profiling: This feature uses DWT unit to enable the
user to set watchpoints in the code. This makes it possible to capture the
changes of important variables or to sample to Program Counter (PC) and
detect when a specific function is executed.

1https://gitlab.ethz.ch/tec/public/dpp/-/wikis/
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HATBED uses OpenOCD and a FT2232HL IC which offer similar debugging
capabilities as J-Link. For remote debugging OpenOCD builds a local server
and then GDB running on the observer can connect to it.

1.1.3 Minerva

Minerva is a testbed developed specifically for distributed debugging and there-
fore offers the most advanced features compared to the other platforms [5].
Software and hardware in Minerva are the same as on HATBED. Namely an
FT2232HL IC and OpenOCD is used to create a remote debug target to which
GDB can connect to. Minerva offers the following debugging features:

• Tracing of the internal state: Minerva implements a polling system
where the observer periodically polls a specified memory location in the
target (Opal platform) and informs the controller (central server) whenever
the value changes. This tracing with JTAG does not cause any timing
overhead compared to GPIO or printf.

• Ability to halt the whole testbed: For this functionality the controller
sends a halting command over UDP to the observers. The observers will
then make the target enter debugging mode which will stop its processor
clock. Due to jitter of around 100 ms in the arrival of the UDP packets
this can result in inconsistencies for timing-sensitive applications.

• Snapshots of memory regions: This feature enables the user to read
out the SRAM through the JTAG port even when the microprocessor is
running.

• Real-time assertions: Minerva offers distributed assertions. These are
conditions on global variables that need to be true on all nodes. In case
the assertion fails, the user can specify the program to be halted and enter
debug mode or to continue running and set a flag in memory based on the
assertion.

Most features of the Minerva testbed are not useful for time-critical, low-level
code which was also stated by the authors.



Chapter 2

Background

In this chapter, first the basic debugging mechanism on ARM platforms are
described in section 2.1. Then the FlockLab 2 architecture and the DPP2 LoRa
ComBoard are introduced in sections 2.2 and 2.3. Finally, section 2.4 lists the
possible clock sources that can be used on the ComBoard.

2.1 Hardware Assisted Tracing on ARM

Hardware assisted tracing is a functionality that lets a user observe the program
execution without impacting the performance of the CPU. The tracing is done
by special hardware modules on the microprocessor such that no CPU cycles are
spent on debugging. For ARM processors this technology is called CoreSight.
ARM Cortex-M controllers include three Trace Units to enable hardware assisted
tracing: A Data Watchpoint and Trace (DWT), an Internal Trace Macrocell
(ITM) and an Embedded Trace Macrocell (ETM) all shown in Figure 2.1
The DWT offers features like data tracing and PC sampling. Data tracing is
a feature that allows the user to observe the value of a global variable during
program execution. When PC sampling is enabled, the current value of the PC
is sent to the debug port of the microprocessor with a predefined frequency.
The implementation of these functionalities is based on debug events such as
exception events and data watchpoint events. Upon an event a data packet is
generated in the DWT and sent to the ITM where it is timestamped. The ITM
timestamps the said packets and also handles Software Instrumentation (SWIT)
events which are custom printf-style statements specified in the code. The
ETM provides cycle accurate instruction trace that can be used to analyze the
execution history or to do code coverage analysis [10]. Instruction trace is a
trace that will include every single assembly instruction that is executed on the
microprocessor.
Apart from the printf-style debugging with the ITM, the described features are
all so-called non-intrusive methods. This means, that the microprocessor does
not use any additional CPU cycles for debugging.

5



2. Background 6

Figure 2.1: The hardware debugging modules built into a Cortex-M4 processor
[12]

The mentioned hardware modules are also used by debugging software like GDB.
GDB stand for GNU Debugger and is a widely used debugger for Linux systems.
It allows to start and stop execution, place breakpoints and watchpoints or in-
spect the execution trace. Breakpoints can be further categorized in hardware
and software breakpoints. Hardware breakpoints do not change the content of
the memory on the target but passively listen to the internal bus. Whereas when
a software breakpoints is set, the instruction where it is placed on is replaced
with 0xffff. This will cause an exception that the debugger can catch and then
halt the execution. For hardware breakpoints comparators built into the DWT
will compare the breakpoint address with the PC address and stop the execution
when they match. This limits the number of breakpoints to the number of com-
parators. The implementation of watchpoints is very similar but here a variable
or memory location is compared to the current variable value instead of the PC
[11].
Breakpoints and watchpoints are intrusive debugging methods since the execu-
tion is halted once the condition is true.
The debugging hardware of the FlockLab 2 architecture is described in more
detail in section 3.1

2.2 The FlockLab 2 Architecture

FlockLab 2 is the successor of FlockLab, a Wireless Sensor Network (WSN)
testbed developed by the Computer Engineering and Networks Laboratory. It
is based on three Layers: a system layer, an observer layer and a server.

The system layer describes the nodes of the WSN, also referred to as tar-
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gets. The user can upload code to the nodes and observe power usage, GPIO
pins and the serial output during the execution.

The monitoring is done by the observer layer consisting of more powerful
nodes based on the BeagleBone Green (BBG) platform. The observers use
GPS-based time synchronization such that the GPIO tracing and power
profiling is comparable between nodes. Most importantly, every node features
a SEGGER J-Link OB debug probe allowing to use most of the Cortex-M4
debugging features. Section 3.1) elaborates on the exact debugging hardware
available on FlockLab 2.

The server is the third layer of the FlockLab architecture. It schedules
and starts the tests, the user uploaded. After the test, the server collects the
tracing data from the observers and makes it available to the user.

2.3 The DPP2 LoRa ComBoard

The Dual Processor Platform 2 (DPP2) is an architecture template that allows
to separate communication tasks from sensing, actuation and data processing
[8]. This is achieved by mapping the different tasks to two microcontrollers,
both optimized for the respective task. The communication between the two
processor happens over the stateful interconnect BOLT [13].
For this work the ”DevBoard”, A low-power development board based on a
MSP432, is used for the processing task 1. The communication task is done on
a low-power communication board based on a SX126x 2.

2.4 Clock Configuration on the DPP2 LoRa Com-
Board

Since debugging is often a very time sensitive task, it is important to understand
the different clock sources the target may use. In the following all the possible
clock configurations for the DPP2 LoRa ComBoard are listed. The list includes
internal clocks of the STM32L433CC but also external oscillators which are fitted
on the ComBoard and can be used with STM32L433CC.

• 12 MHz high-speed external crystal oscillator (HSE): This source
is often just referred to as ”crystal” or ”crystal oscillator”. It is not built
into the STM32L433CC but is situated on the ComBoard. It is the most

1https://gitlab.ethz.ch/tec/public/dpp/-/wikis/Application/DevBoard
2https://gitlab.ethz.ch/tec/public/dpp/-/wikis/Communication/DPP2CC430
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accurate clock with an advertised ppm of ± 15 at 25 degrees Celsius and
± 25 in the operating range [14].

• Multi-speed internal RC oscillator (MSI): this oscillator is built into
the STM32L433CC. It supports speeds from 100 kHz to 48 MHz. This is
an RC oscillator (Resistor, Capacitor) which means it is fast to startup,
cheap but also less accurate. The drift over temperature is -3.5% to 3%,
drift over voltage is -1.6% to 1% [15].

• 16 MHz High-speed internal RC oscillator (HSI16): This clock
source runs at 16 MHz and has the following specifications: The drift over
temperature is -1% to 1%, drift over voltage is -0.1% to 0.05% [15].

• 32 kHz internal low-power RC oscillator (LSI): This clock source
runs at 32 kHz and is made for low power use. The datasheet does not
contain any information about its accuracy.

• 32 kHz external low-speed crystal oscillator (LSE): The LSE has a
ppm of ± 20 for a temperature of 25 ±3 degrees Celsius [16].

In this work the HSE crystal and the MSI are used and tested as clock sources.
They allow to test the debugging feature with an example of a high-accuracy
and a low-accuracy clock. In general, the timestamps on debugging events suffer
from less drift over time when crystals are used instead of RC oscillators.



Chapter 3

Exploration of Debugging
Features

This chapter describes debugging architectures and their features. The first
section describes the debugging hardware on FlockLab 2 and possible debugging
architecture. The following sections 3.1.1 and 3.1.2 describe the components
of the debugging architecture in more detail. Finally sections 3.2 and 3.3 list
features that can be implemented using a combination of different debugging
components.

3.1 The FlockLab 2 Debugging Architecture

A debugging system consists of three modules. A target, a debug probe and an
observer as shown in Figure 3.1.

The target is the Microcontroller unit (MCU) or platform we would like
to extract information from for debugging. On FlockLab 2 the target platforms
are the DPP2 SX1262 LoRa ComBoard and the nRF52840 Dongle. Both use a
Cortex-M4 processor. The target offers debugging features like breakpoints that
can be accessed with the debug probe. Section 3.1.1 describes these in more
detail.

The debug probe is connected to the target’s processor and handles the
trace streams and configures the CoreSight modules for debugging. The
observers on FlockLab 2 use a SEGGER J-Link OB on-board debug probe. The
communication between the target and probe happens over Serial Wire Debug
(SWD). SWD is a hardware interface that allows to directly access the MCU’s
memory bus making it useful for debugging. It is the alternative debug interface
to JTAG and is developed and used by ARM. Compared to JTAG, SWD only
requires two pins instead of four. One pin is used for a clock signal that can

9
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Figure 3.1: Possible debugging architectures. Software and protocols are shown
in red, hardware in cyan

be input or output from the device (SWCLK) and the other one serves as a
bidirectional data line (SWDIO). In addition to SWD, the observer hardware
also features a Serial Wire Output (SWO) pin. It can be used for unidirectional
data transfer from printf statements or variable tracing.

The observer is a more powerful node based on the BBG [17]. There are
various software solutions and libraries to access a debug probe from the ob-
server. For example J-Link specific software like JLinkExe or JLinkGDBServer,
GDB or the Python library pylink. When GDB is used, it connects to a local
server set up on the observer that communicates with the debug probe. The
other tools use a Dynamic Link Library (DLL) offered by J-Link. This library
offers functions to control the target and for example set breakpoints or start
tracing the execution.
In order to use the tracing features provided by the ETM, a trace probe like
J-Trace would be required. (FlockLab 2 only features a J-Link OB debug
probe).

3.1.1 Debugging Features of the Cortex-M4 Processor

This section lists all the available debugging features of the Cortex-M4 processor
and limitations of the available debug probe. An overview of the features is
shown in Figure 3.2.
Most debugging features of the Cortex-M processor make use of the SWO pin.
On the FlockLab 2 PCB the J-Link OB module is connected to the target over
an SWD interface including the SWO line which makes the use of these features
possible. Note that when using the DPP2 DevBoard [18] and a J-Link mini
debug for testing the SWO pin is not connected.

The SEGGER J-Link OB debug probe supports the hardware tracing
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Figure 3.2: Debugging Functionalities of the ARM Cortex-M processors (based
on [19])

features of the DWT and the software trace capabilities of the ITM. Solely the
ETM instruction tracing features cannot be used with this debug probe. To
process the trace stream generated by the ETM a SEGGER J-Trace probe would
be required. However, it is possible to read the last few executed instruction
from the ETB once the execution is halted.

In the following the debugging features based on ITM, DWT and ETM
module of the Cortex-M4 processor are listed:

• Serial Wire Viewer (SWV) features using the ITM (Software trace):
The ITM offers a feature that uses port 0 of the ITM to send printf-style
messages over the SWO pin. In order to use it we need to overwrite the
write function in software code running on the MCU which is debugged

such that the printf function uses the ITM instead of UART. The other
ports can be used to transmit further information.
A disadvantage of this method is that it is not hardware based i.e. we still
need to call a function to print over ITM which puts a small load on the
CPU.

• SWV features using the DWT (Hardware trace):
The DWT offers several features for tracing variables and the execution:
It is possible to trace the following events and exceptions: Cycles per in-
struction, sleep cycles, folded instructions, exception overhead, load store
unit cycles and trace exceptions. This functionality can be used to measure
the execution time of a function by checking how many cycles have passed
from start until function termination. However this costs CPU cycles since
the register with the number of cycles stored must be read.
A second function is PC sampling with different resolutions of cycles per
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sample.
The most powerful feature are the four comparators. They can be config-
ured as a hardware watchpoint, an ETM trigger, a PC sampler and event
trigger or a data address sampler event trigger. This allows to track a
variable or address and store the value with or without the current PC.
If the PC is also stored, it is possible to find the function that wrote to a
specific memory address given only the write event at the address.

• ETM tracing: The ETMv3 module on Cortex-M4 processors allows to
record a complete instruction trace. This data is then either streamed to
a PC with a J-Ttrace module (not available) or saved in the Embedded
Trace Buffer: A small amount of internal RAM used as an ETM trace
buffer (ETB). Once the system is halted, this trace buffer can be read
out to backtrace any operation. Due to the limited memory of an ETB,
SEGGER recommends to use a streaming capable probe like the J-Trace.
However it is possible to use the ETB without access to a J-Trace module
which might enable some features for the debugging service.

3.1.2 Debugging Software

This section describes a selection of debugging software that can be used on the
BeagleBone single-board computer with the J-Link OB debug probe. Note that
not all software can be used to access all debugging features of the Cortex-M
core. Table 3.2 provides more information on possible combinations.
The installation and use of these tools is described in the appendix C.

• J-Link Commander (JLinkExe): This is a very basic command line
tool supporting J-Link probes only. Apart from simple commands like
memory dump, halt, step and go the J-Link Commander can also be used
to read DWT and ITM packets sent over the SWO pin.

+ The tool can receive DWT and ITM packets

− It is challenging to automate interaction with the tool since it has a
command line interface that is not optimized for automation

− The tool cannot parse all DWT packets

− The tool cannot be extended or customized since the source code is
unavailable

• JLinkGDBServerCLExe with gdb-multiarch: The
JLinkGDBServerCLExe tool sets up a GDB server making it possible
for GDB to communicate with the target over a J-Link debug probe. The
server runs on the observer and the GDB process can run on the user’s
computer or even remotely.
To communicate with the J-link GDB server, gdb-multiarch must be used.
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In order to automate the interaction with GDB, the machine interface
interpreter (or GDB/MI) can be used. This command interpreter is
independent of the GDB-multiarch tool and can be selected with the option
--interpreter when launching GDB.
The possible commands include the basic GDB command set plus the
SEGGER-specific GDB protocol extensions. The latter include options for
simple tracing and SWO reading to the standard GDB commands.
Furthermore, a .gdbinit file can be used to automate the setup of the
GDB client.

+ It is possible to use the standard GDB environment

+ An automatic interaction is possible but limited

− Server and client communication adds overhead and delays

− It is not possible to parse DWT packets with the tool

− The tool cannot be extended or customized since the source code of
JLinkGDBServerCLExe and gdb-multiarch is not public

• Pylink: This is a Python library that provides Python functions using the
DLL from J-Link. The functions allow to use all debugging features of the
target if the required hardware is present.

+ pylink is very flexible and configurable and the source code is avail-
able

+ The interaction with J-Link can be integrated in a python script

+ It works with Python ≥ 2.7

− It is less popular than GDB

− It is not an official SEGGER product

• STM32CubeIDE: The STM32CubeIDE cannot be used on the BBG
board but is listed here since it is functionalities inspired the develop-
ment of the distributed debugging tool. The STM32CubeIDE allows to set
hardware breakpoints and watchpoints, trace variables, read ITM pack-
ets or trace the PC value. The IDE starts a J-Link GDB server and then
communicates with this server over a client also launched by the IDE. The
most powerful feature is the data tracing of global variables. The IDE does
this with a plugin that parses the received DWT packets and then plots
the variable value over time.

+ The tool is easy to use

− It can not be used on a BBG

− It can not extended or customized since source code unavailable
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3.2 Debugging Features of a Single Observer and Tar-
get

The features listed in this section are combinations of the debugging features of
the Cortex-M4, the debug probe and a software solution.
They are based on a single observer and section 3.3 lists possible distributed
debugging features using multiple observers.
An overview of the features can be found in Table 3.1. The table does not list
the STM32CubeIDE as a software solution when it could be used, since it is
not possible to run the IDE on the BBG board. However, it can be used on a
computer to set breakpoints and watchpoints, to configure and record a data
trace and for PC sampling.

3.2.1 Breakpoints and Watchpoints

As described in section 2 it is beneficial to use hardware breakpoints instead of
software breakpoints since the first method is non-intrusive. Watchpoints are al-
ways using the hardware mechanism. However, hardware breakpoints are based
on the four comparators in a Cortex-M4 processor which limits the maximum
number to four. The comparators, located in the DWT unit, will contain an
address that is compared to the current PC value and stop the execution on a
match. Hardware breakpoints can be set using the hardware breakpoint set

in pylink or hbreak in GDB.
Once a watchpoint or breakpoint is hit, the MCU is halted which makes it pos-
sible to read or write values into the memory or write values to the flash.
It is possible to restart the microprocessor immediately after stopping and read-
ing values from the memory. To automate this the .gdbinit file can be used
with the ”action” command or the restart function in pylink.

+ It is possible to define different conditions on every node

+ It is possible to read all register and memory once halted

− It is not possible to halt the whole testbed synchronously

− Once halted it is impossible to start the whole testbed synchronously again

− It is challenging to make the feature distributed

3.2.2 Read out and write into Memory

This is only possible when the microprocessor is halted as stated above. To read
or write into memory and write into flash the functions memory write32 and
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Table 3.1: Summary of the available debugging features
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flash write32 can be used in pylink. In GDB the command to read or write
is memU32. To read out the memory with the least impact on execution time,
two clients are connected to the server. Then one client will issue a continue
command and the other one will issue a memU32 command to read out or write
into the memory. This will stop the running target for a minimal amount of
time only. Another option is to use GDB trace points which implement the same
functionality of halting, reading and continuing.

+ It is possible to see the state of all registers and memory or manipulate
memory

− It is only possible to use this feature when the target is halted,

− 300 cycles are required to stop read and start again

− When using two GDB clients we do not know the state of the program when
reading out the memory

3.2.3 Data Trace

The data trace is also based on the functions of the four comparators in the
DWT unit. To use the data tracing feature the DWT and ITM configuration
registers have to be set to the correct value beforehand. This can be done in in
pylink, JLinkExe or GDB. Once this is done, the DWT will automatically output
a DWT data packet if a specified memory address is accessed (read or write).
The ITM will then put a timestamp on the packet and send it to the J-Link
module over the SWO line.
The user can specify if a packet should be generated on a read or write access
or for both. The packet can also be configured to include the data value, the
PC value when the variable was accessed or both. The timestamps can also be
turned off and a prescaler of 1, 4, 16 or 64 for the timestamps can be chosen.
The DWT data packets will be encoded according to the DWT packet protocol
specified in the ARM-v7-M Architecture Reference Manual [20] and must be
parsed by a tool on the observer. An example of a data trace in STM32CubeIDE
can be seen in Figure 3.3.

+ This feature is non-intrusive

+ It is possible to trace four data values with PC sample and get cycle accu-
rate timestamps

− It is complex to configure the microprocessor for data tracing

− It is necessary to parse DWT packets and the accurate timestamping of
the arriving packets is challenging
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Figure 3.3: A data trace in STM32CubeIDE [21]

3.2.4 Printf SWIT

This feature uses the ITM software tracing capabilities described in the first
point in section 3.1.1. The packets coming from the ITM have to be parsed on
the observer by J-Link Software or a script using pylink.

+ This feature is easy to use and very flexible

− When sending a printf statement sending 9 bytes an additional delay of
approximately 2200 cycles is introduced (at 80 MHz this is equal to 20.7 µs).
This is still better than sending it over UART requiring approximately
42000 cycles for the same number of bytes (at 80 MHz this is equal to 522
522 µs)

3.2.5 SEGGER’s Real Time Transfer (RTT)

RTT is a J-Link specific technology that allows to output information from the
target microcontroller as well as sending input to the application at a very high
speed.
Using RTT reduces the time taken for printf to a minimum. It uses background
memory access which allows the data and memory to be accessed simultaneously
in the background while the CPU is executing it is normal instructions. This
means that the microprocessor does not lose any cycles transmitting data to the
debug probe. However, the software must be instrumented with functions like
SEGGER RTT Write in order to write data into the output buffer which makes
RTT an intrusive debugging method. To receive RTT packets on the host it is
possible to create a connection to localhost:19021 with Telnet when connected
to J-Link.

+ This feature is very flexible debugging with printf-style messages

− It is slightly intrusive because data must be written into the output buffer
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3.2.6 Instruction Trace

Instruction trace is a feature that allows the user to record a very detailed trace
including all the executed assembly instructions. To make use of this feature
a SEGGER J-Trace probe would be required (not available on FlockLab 2 ob-
servers).
Instruction trace should not be confused with tracepoints in GDB. The latter fea-
ture allows the user to set tracepoints at different locations in the code where
the microprocessor will be stopped, some registers read out, and then restarted.
To access the instruction trace features either pylink or the GDB extension com-
mands from SEGGER together with GDB can be used. Before program execution
tracing has to be started and when the microprocessor is stopped, the trace
buffer can be read out.

+ This features allows to record a complete execution trace

− It generates a lot of data

− A J-Trace probe is required to get the full instruction trace stream. Read-
ing the ETB will only show the last few instructions executed previously
to the halt.

3.3 Distributed Debugging Features

This section describes possible distributed debugging features based on the
debugging features listed in 3.2. In subsection 3.3.4 the suitability of these
features for distributed debugging on FlockLab 2 is discussed.

3.3.1 Halt and start execution synchronously on whole testbed

This feature would allow a user to specify that for example after 60 seconds the
execution is stopped on all nodes. Once the program is halted all registers and
the memory can be read out on all nodes. Then all the targets are restarted
simultaneously.
Another possibility would be that the user can specify in real time when the
testbed should be halted and restarted (step trough execution).

+ It is possible to read register state and memory content

− This feature is intrusive

− There is some time jitter when halting and restarting the target.

− A user must be present for the real-time option of the feature
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3.3.2 Distributed Assertions/Watchpoints

This feature would allow to set an assertion at a specific location in the code
that has to be true for a set of nodes or all nodes when the line is executed. Once
the assertion fails, all targets would be halted and register and memory content
extracted.

+ This feature is very flexible and powerful

− Communication over server is required to inform all nodes

− The delay between the assertion fail and when all nodes are stopped is
several hundred microseconds long.

3.3.3 Global Data Tracing

For this feature every node configures the target for data tracing and then collects
and possibly parses the DWT data packets. Besides the variable value these
packets will also include the address of the instruction that changed the value
and a timestamp.
After the test completed, the collected information from every node is sent to
the server where the logs could be combined into a single log based on the
timestamps.

+ This feature is non-intrusive

+ It is possible to find the function that modified a variable

− Synchronisation of time in local data traces necessary

− Only four global variables can be traced per node

− It is not possible to trace variables that change with a high rate (every
cycle) when the PC is also traced. This is because the SWO bandwidth is
not high enough to send all the data produced by the DWT to the debug
probe.

3.3.4 Selection of a Distributed Debugging Feature

In order to implement the first debugging feature, a mechanism to start and
stop all nodes simultaneously would be required. However, it is challenging to
implement such a mechanism since even if the stop command is issued by all
observers simultaneously, the targets will stop the execution at different times.
This is due to the high level nature of Python and scheduling conflicts in the
Linux user space.
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Distributed assertions or watchpoints are also a powerful feature but not suitable
to use with time synchronised applications. This is because it is not possible to
stop all targets immediately once an assertion fails. The information about a
possible failure has to be sent to the server and then back to all nodes which
takes several hundred milliseconds.
The last option is to trace variables globally. This feature is non-intrusive and
does not pose the same synchronisation problem as the previously mentioned
solutions. It also offers a flexible way of debugging and it is feasible to implement
it on the FlockLab 2 hardware. Therefore this option was chosen to implement
and test in this semester thesis.



Chapter 4

Implementation

As described in section 3.3.3 global data tracing is the most suitable among the
possible features and was therefore selected for the implementation on FlockLab
2. Regarding the software, pylink was the only tool capable of data tracing
that was flexible enough and could be integrated in the FlockLab 2 architecture.
This is why the feature was implemented as Python functions using the pylink

module. The setup of observer and target is illustrated in Figure 4.1.

The data tracing can be split into four basic steps which are all implemented
in a separate functions:

1. Configure the target processor for the desired data tracing.

2. Read out the data from the SWO buffer on the debug probe while the
target executes the code. This function will be referred to as SWO reader.

3. Parse the SWO data packets.

4. Remove the time jitter in the python timestamps by calculating a regression
with the local timestamps from the target.

These functions are described in more detail in sections 4.1, 4.2, 4.3 and 4.4.
Section 4.5 describes how the three modules are integrated in the FlockLab 2
architecture.

4.1 Target Configuration

In order for the Cortex-M4 processor to generate DWT data packets, several
CoreSight registers must be configured before starting the execution. This
is done by using the pylink function memory write. The most important
register are the Trace Control Register (ITM TCR), the Comparator register
(DWT COMPn) and the Comparator Function register (DWT FUNCTIONn).
The exact description can be found in the ARMv7-M Architecture Manual, the

21
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Figure 4.1: Setup for configuration and SWO reading

following explains just the settings of interest for the presented data tracing
feature.

ITM TCR: Bits 0 to 3 in this register are all set to 1 in order to enable
the ITM, local timestamping, synchronisation packets and the Trace Port
Interface Unit (TPIU). Bits 8 and 9 can be set to 0, 1, 2 or 3 to set a prescalers
of 1, 4, 16 or 64 for the local timestamp clock.

DWT COMPn: The Comparator register provides provides the refer-
ence value to be used by the comparator n (0 to 3). In the case of data
tracing the function will write the variable’s address into this register. For
hardware breakpoints a PC value will be written into the DWT COMPn register.

DWT FUNCTIONn: The Comparator Function register controls the
operation of comparator n. In the case of data tracing seven different functions
summarized in Table 4.1 can be chosen.
The settings read, write and read/write define upon which event a data packet
is generated. For example when read/write is chosen, the DWT unit generates
a packet when the traced variable is accessed with a read or a write operation.
The options Data+PC, PC and Data describe what the generated packet should
contain. For example when choosing Data+PC, the DWT unit will include the
current value of the PC and the traced variable in the generated packet.

4.2 SWO Buffer Reading

After configuring the debugging hardware, the microprocessor is started and
the SWO buffer on the debug probe is periodically checked for packets.
Those packets are first written into the the DWT output buffer by the DWT
and ITM unit and then sent to the J-Link debug probe at SWO frequency. On
the J-Link debug probe they are stored in another larger buffer with a default
size of 4 MB. The possible SWO frequencies are 4000000, 2000000, 1945946,
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Table 4.1: Possible configuration of the Comparator Function register

Traced values read write read/write

Data + PC 0xe 0xf 0x3

PC n/a n/a 0x1

Data 0xc 0xd 0x2

1333333, 1309091, 1014085, 1000000, 972973, 960000 and 808989 Hertz. For the
implementation a default frequency of 4 MHz was chosen.
For the communication over SWO either Manchester or Non-return-to-zero
(NRZ) encoding can be used. Manchester has less overhead but is not supported
by the J-Link debug probe which is why NRZ has to be used [22].

To read from the probe buffer pylink provides the two functions swo num bytes

and swo read which return the number of bytes in the buffer and read a specified
number of bytes from it, respectively. Section 5.4 describes the use of these two
functions in more detail. After every read from the buffer, a timestamp is taken
in Python with the function time. Since the BBG system time is synchronised
on all observers, timestamps from different observer nodes can be compared
with each other.
The DWT packets are saved in a file together with the timestamp taken in
Python for parsing in a the next step after the execution. A typical structure
of this file can be seen in Figure 4.2. All the values are written in base 10. The
first line starts with a data packet (header 143), which is followed by a local
timestamp (header 192) and another data packet and timestamp. The second
line is the global timestamp taken in Python. Because the SWO out put is a
stream of bytes it can happen, that a global timestamp appears in the middle
of a packet.
The third line is a special local timestamp packet since it does not come after
a data packet. It was generated because of an overflow of the local timestamp
counter. The overflow happens at a value of 1999999 cycles which corresponds
to roughly 25 ms without a prescaler and microcontroller clock frequency of
80 MHz. The remaining lines are similar to the first four.
Besides the timestamp counter, also the DWT output buffer can overflow. This
happens when the comparators generate too many packets. The microprocessor
will then send a packet with a value 112 to indicate such an overflow. In the
case of such a high load it can also happen that the local timestamp packet is
sent with a delay to the corresponding data packet. In this case the timestamp
header has a value of 208, 224 or 240 depending on the exact situation. More
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Figure 4.2: The typical structure of the file written by the SWO reading function

details of the buffer overflow limits are described in section 5.3.
Unfortunately, the J-Link module does not generate an interrupt when receiving
a DWT packet, therefore the buffer needs to be periodically polled for SWO
outputs. This polling frequency can not be arbitrarily high since this would
result in 100% CPU usage on the BBG. On the other hand it can not be too low
since this would strongly reduce the timestamp precision. Section 5.4 provides
a detailed analysis of this trade-off.

4.3 DWT Packet Parser

The parser function reads the content of the file created by the SWO reader and
parse the contents. The parser is based on the ”Debug ITM and DWT Packet
Protocol” specified in the ARMv7-M Architecture Reference Guide [20].
The current implementation supports overflow packets, local timestamp packets,
instrumentation packets and hardware source packets from the DWT. The hard-
ware source packets can contain the variable value or the PC value from any of
the four comparators (see Figure 4.3). A PC value or variable of type integer
always use all four payload bytes. It has not been tested if smaller variables use
fewer payload bytes.
The parser takes the data value and PC if available and writes these values to-
gether with the corresponding global and local timestamp and comparator ID
in a new line in a pandas dataframe (Python). It also indicates if the operation
causing the packet generation was a read or a write access (operation) of the
variable. Once all packets are parsed, the dataframe is converted into a CSV file
that will be used by the next function in the workflow. An example of an output
from tracing 3 variables without PC is shown in Figure 4.4.

4.4 Time Correction with Regression

As described in section 4.2, the read function measures the arrival time of
packets on the observer by taking a timestamp with the Python function time.
This timestamp will be referred to as ”global timestamp” in the following text.
It is useful when comparing the arrival time with timestamps of other observers,
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Figure 4.3: Structure of a DWT data packet

Figure 4.4: Structure of the CSV file the parser outputs

but it suffers from time jitter. This jitter has two sources: the first one is due to
the high level nature of Python and scheduling conflicts in the Linux user space,
which leads to unpredictable delays and execution times. The second jitter is
due to the delay in the loop. It could happen that a packet becomes available
right after the buffer was polled, which means the packet will only be read and
timestamped in the next loop iteration after the delay. In order to eliminate
the jitter we can use so called local timestamps. These local timestamps are
generated by the ITM unit and are sent to the observer over SWO together
with every data packet. Their value indicates the difference in cycles since the
last timestamp/data packet was sent.
Given the local and global timestamps it is possible to calculate a regression
and then project the global timestamps onto it. This removes the time jitter,
assuming that jitter is distributed symmetrically around the true value and
drift does not change rapidly over time. The regression will have the global
timestamps on the y-axis and the summed up value of the local timestamps on
the x-axis. This procedure is visualized in Figure 4.5.
This method works mostly well when using the external crystal as a clock source
on the target but there are challenges (described in section 5.1) when using the
MSI clock. In order to solve these problems two additions were made to the
regression calculation:

Outlier correction: An outlier is a data point that differs strongly from the
rest of the data. In this case an outlier has a global timestamp that deviates
significantly from the expected value due to jitter in Python (see Figure 4.6).
The deviation is always positive since an outlier occurs when the timestamp
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on the observer was taken much too late. This results in the global timestamp
being much larger than the local timestamp which means that the data point
lies far above the regression.
Especially when a limited amount of data points is used for the regression
calculation, an outlier strongly influences the parameters of the regression
resulting in errors in the timestamp correction. To avoid this, outliers must
be detected and the regression calculated without these values. After the
regression was calculated, also the global timestamps of the outlier point are
projected onto it to correct them. The effect of outliers on the regression
can be seen in Figure 4.7. The Figure shows a zoom in on the deviation
from the regression when outliers are included for the calculation (left)
and when they are excluded (right). We can see that when the outliers are
included the regression will have an unwanted slope and will not fit the data well.

Local regressions: Due to the drift of the MSI oscillator, it is not de-
sirable to calculate a regression over all data points but rather calculate
regressions over smaller intervals (reasons described in 5.1). For this the data
points are split up in smaller sets of configurable length and a regressions is
calculated based on the points in these sets. Then the points in a set are
projected onto the corresponding regression. Figure 4.8 gives an illustrative
example of how local regressions are calculated with an interval size four.
A drawback of this method is that it may correct timestamps in a way such
that the order of events is not preserved. That is, an event B might have a
lower timestamp than event A even thought it happened after event A. This can
happen when event B and event A lie on different regressions. This could be
avoided by imposing additional conditions on the calculation of regressions. In
Figure 4.8 such a case is illustrative with the data points labeled with A and B.
In order to have enough data points for local regressions, the local timestamp
prescaler was set to 16. This results in a counter overflow every 0.4 s at 80 MHz
clock speed which guarantees at least 150 data points every minute. This rate
is sufficient to create regressions small enough to account for the speed of drift
change of the MSI clock source.

4.5 Implementation on the FlockLab 2 Architecture

After testing the data trace feature on the observer, the implementation was
integrated in the FlockLab 2 architecture. This allows to use the data tracing
feature with tests running on FlockLab 2. Figure 4.9 illustrates how the data
tracing is integrated. In order to use data tracing with a test run on FlockLab
2, the user has to specify which configuration he or she would like to use in the
XML test configuration file. This is done by defining a <debugConf> block with
the configuration elements shown in Table 4.2 and 4.3. In the <mode> element a
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Figure 4.5: The global timestamps are corrected by projecting them onto the
linear regression. gts and lts stand for global and local timestamp, respectively

Figure 4.6: Deviation from regression for a 20 min test with the external crystal
oscillator

combination of R, W, RW and PC separated by space can be specified. Specifying
only R, W or RW will trace the variable upon a read, write or for both operations.
When PC is specified in addition, also the PC value is listed in the trace for the
specified operation. When only PC tracing is chosen the data tracing is turned
off and only the PC value is saved upon read and write operations on the variable.
An example of a possible configuration is given in Figure 4.10.
The parser on the FlockLab 2 server will then extract the configuration values
from the XML. These values are passed to the observer which will feed them
to the configuration function. Before the test is started, the observer calls the
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Figure 4.7: Deviation from the regression with outliers (left) and without (right).
In the left figure we can see that, towards the end, the deviation tends to be
negative instead of being randomly distributed around zero as in the right figure.

Figure 4.8: Correction of global timestamps by using local regressions. The data
points labeled A and B illustrate the problem of mixing the order of events.
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SWO-read function which will run as a daemon process during the whole test.
After the end of the test, the log file is sent back to the server where it is parsed.
In a last step the global timestamps are corrected on the server with the function
described in 4.4. The CSV file with the timestamps and variable values can then
be downloaded by the user with the other test results from the FlockLab 2 server.

Figure 4.9: Complete workflow on FlockLab 2

Table 4.2: Configuration elements of the <debugConf> block. (* for mandatory
elements)

Element Description Format

<obsIds> *
One or more observer IDs for
which this service should be

used

ID(s) of the
observer(s) to use

<dataTraceConfig> *
1-4 blocks containing

configuration for a variable
See Table 4.3
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Table 4.3: Configuration elements of the <dataTraceConfig> block. (* for
mandatory elements)

Element Description Format

<variable> *
The name of the
variable to trace

Name of the variable

<mode> *

The desired access
modes of R and W,
and whether the PC

should be traced

The desired mode separated
by a space: R, W or RW and

PC if PC tracing is chosen
additionally. Only specifying
PC sets the mode to RW an

traces only the PC

Figure 4.10: A Possible configuration to trace the variable ”counter” upon a
write operation. Additionally, upon a read or write operation on the variable
”status”, the current PC value is recorded.



Chapter 5

Performance Measurement

In this chapter the performance of the data trace debugging service is evaluated.
The metrics include accuracy of the timestamps on data packets, CPU usage
and maximal supported frequency of variable updates. Every section is divided
into the subsections Methodology, Results and Discussion.

5.1 Influence of target clock source on the timestamp
accuracy

As described in section 4.4 it is possible to calculate a regression based on local
timestamps from the target and global timestamps taken on the observer in order
to eliminate jitter in the global timestamps. In this part it is evaluated how well
this method works when using the MSI and external crystal on the target. (For
information on these clock sources refer to section 2.4).

5.1.1 Methodology

In order to determine how well the regression fits the recorded values, several
tests with duration between 30 and 60 minutes and different clock sources were
conducted on a FlockLab 2 observer. For all tests a single variable that was in-
creased with varying random frequency was used. The prescaler for local times-
tamps was set to 64 (average error of 64 cycles). The settings for the delay in
the read loop and the clock source were varied for different tests. Namely, delays
of 2, 10 and 100 ms were chosen in combination with the use of the MSI and the
external crystal oscillator.
To analyze the regression the recorded trace from the experiment was parsed
and then a regression was calculated in LibreOffice Calc. The datapoints are the
global timestamps (y-axis) and local timestamps (x-axis) reported by the parser.
Then the residuals were determined and plotted.
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Figure 5.1: Deviation from the regression for 2 ms delay in read loop and a 60
min test (MSI as clock source)

5.1.2 Results

The results for a delay of 2, 10 and 100 ms when using the MSI are depicted
in Figures 5.1, 5.2 and 5.3, respectively. The details marked with an orange
rectangle are shown in Figure 5.4.
The results from tests with the crystal are shown in Figure 5.5. From the MSI
test results we can clearly see that there is a varying drift during the test. It
causes the residuals to be as high as 130 ms. This drift is independent of the
delay in the SWO read loop. When look at the details of the traces in Figure
5.4 another distribution, depending on the delay, can be seen. This smaller
jitter strongly depends on the chosen delay. The maximal difference between
two residuals is always very close to the delay.

5.1.3 Discussion

The results let us conclude that the MSI clock used for this test has a strong
drift. The smaller jitter is most probably due to the jitter of the SWO read loop
and the timestamping. This claim is supported by the results from tests with
the crystal. We can see that there the stronger, global drift is eliminated and
the jitter remains the same.
Given these results we can conclude that it does not make sense to calculate a
global regression when the MSI is used. The result would be that the global
timestamps are corrected by up to 130 ms when projecting them onto the regres-
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Figure 5.2: Deviation from the regression for 10 ms delay in read loop and a 60
min test (MSI as clock source)

Figure 5.3: Deviation from the regression for 100 ms delay in read loop and a 45
min test (MSI as clock source)
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Figure 5.4: A zoom-in on the Figures of the deviation from the regression for a
delay of 2 ms (a), 10 ms (b) and 100 ms (c)
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Figure 5.5: Deviation when using the crystal and a delay of 2 ms (a), 10 ms (b)
and 100 ms (c)
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sion. This projection would correct the MSI drift but not the jitter. In order to
only remove the jitter from the global timestamps we would have to calculate a
local regression based on a subset of datapoints. The performance of this method
is determined in the next section 5.2.

5.2 Accuracy of the Corrected Timestamps

5.2.1 Methodology

In this test, the accuracy of the corrected timestamps of variable changes was
measured. For this a GPIO pin was toggled right before an incrementation
of the traced variable (see Figure 5.6). This generated a GPIO trace that was
recorded and timestamped on the FlockLab 2 observer. These timestamps served
as ground truth for the timestamps on the data packets from the debugging.
Theoretically the timestamps should differ less than a microsecond since in the
program code running on the microcontroller the GPIO event and variable in-
crementation happens within less than 0.25 microseconds.
In order to have realistic test conditions, a random delay in a range of 10 ms to
1.2 s between variable increases was used in the code running on the target. For
the tests the MSI and crystal were used in combination with delays of 2, 10 and
100 ms in the read loop. When the MSI served as a clock source several local
regressions were calculated in addition to the outlier correction. When using the
crystal oscillator only outlier correction was done.
In order to understand how the regression corrects the timestamps, the difference
between uncorrected and corrected timestamps and the difference between un-
corrected timestamps and the GPIO pin timestamps was plotted. It is expected
that the first difference is similar to the latter difference. This would mean that
the correction of the timestamps will eliminate the error between uncorrected
and GPIO timestamps.

Figure 5.6: The loop used to compare the timestamps reported by the debugger
and the real time of change in variable value
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5.2.2 Results

Crystal Oscillator as a Clock Source:
In Figure 5.7 it is visible that the two differences are very similar apart from
an offset and a drift. This means that in the corrected timestamps we expect
offset and a drift when comparing them to the actual time of the GPIO event.
This assumption is confirmed when we look at the difference between corrected
timestamps and GPIO event (Figure 5.8). This Figure also shows that the
drift is similar for different delays (2 ms left, 100 ms right), meaning that it is
possible to use a higher delay with lower CPU usage on the BBG and still get
a good timing accuracy. The drift is 1 ms and 2 ms over a test duration of 20
and 30 minutes, respectively. The offset of the error is 5.2 and 3.2 ms for read
loop delays of 2 ms and 100 ms, respectively.

MSI Oscillator as Clock Source:
The error between corrected timestamps and the GPIO timestamp for various
regression interval sizes can be seen in Figure 5.9. Note that the scale of the
y-axis varies between the subfigures. The results show errors of 150 ms, 20 ms
and 14 ms for different interval sizes. The average error without correction is at
around 12 ms but outliers are present.

5.2.3 Conclusions

Crystal Oscillator as a Clock Source:
The drift in error is most probably due to the slight drift of the crystal
oscillator (1 ms on 20 min). It is possible to reduce the drift by approximately
20% when using local regressions with outlier correction. On the other hand,
local regressions could lead to the timestamps not being in order anymore.
Therefore it might be better to accept a slightly bigger drift but have consistent
timestamps.
The offset most probably originates from the communication delay between
target and debug probe and observer. The higher offset for a higher loop delay
can be explained by the fact that the buffer contains more data after a longer
delay and therefore more time is required to transfer the content. Additional
tests are required to determine the exact dependence of the offset on the read
loop delay, packet frequency and test duration.

MSI Oscillator as Clock Source:
It is clear that by using smaller intervals, the error can be reduced by an order of
magnitude. The drawback of this method is that it may lead to order inversion
for timestamps of adjacent regression intervals. However, this could be avoided
by imposing boundary conditions on the calculation of regressions. Another
approach would be to just the uncorrected timestamps. The problem with this
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Figure 5.7: Difference between uncorrected and corrected (left) and difference
between uncorrected and GPIO timestamps (right)

Figure 5.8: Difference between corrected and GPIO timestamps for delays of 2
ms (left) and 100 ms (right)



5. Performance Measurement 39

Figure 5.9: The error between corrected and GPIO timestamp for interval size
of all values, 200, 50 and without correction

method is that outliers are not corrected and that for higher loop delays of for
example 100 ms the error will increase to approximately 100 ms (here 10 ms
were used which is why the error is approximately 10 ms). To conclude, either
further conditions on the regression have to be introduced or errors in the order
of the loop delay have to be accepted when using the MSI as a clock source.

5.3 Maximal Tracing Frequency

5.3.1 Methodology

In this section it was tested how fast a variable can be updated repeatedly
without loosing packets. Basically, the SWO frequency determines at which
speed packets from the DWT unit can be sent to the J-Link debug probe. When
they arrive faster at the DWT output buffer, it will overflow and packets will
get lost. In order to predict and understand the results we must have a model
of the flow of DWT data packets:
The source of the packets are the four comparators in the DWT unit that send
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the generated packets to the DWT output buffer. Buffer overflows can either
occur due to one comparator generating to many packets or all of them combined,
it does not make a difference. Based on the conducted experiments it is assumed
that when the buffer is full and another packet arrives, the last packet in the
buffer is overwritten and an overflow packet (0x70) is generated to indicate the
it.
In the test the maximal variable update frequency for the three SWO frequencies
4MHz, 2MHz and 1MHz were experimentally determined and compared with the
theoretical maximal speed. For the theoretical maximal speed calculation the
typical size of packets was first observed in a series of tests. These showed that
there is always three data packets, each of size 5 bytes, and then a timestamp
packet of size 2 bytes. This adds up to a total of 136 bits. Between the data
packets there would be a period that we denote as δ, so a total of 136 bits during
3δ. Given the SWO frequency in bits per second we can determine the minimal
period δ necessary between the packets:

δ ≥ 136

3 ∗ fSWO
(1)

For the experimental determination of the limit, a loop with 10000 increases
of a traced variable was implemented in C and flashed on the target. The period
between the loop iteration was first set to a value of 1 ms and then decreased in
every iteration until an overflow occurred. To detect overflows the log file was
scanned for overflow packets with the parser script.

5.3.2 Results

In Table 5.1 the theoretical value calculated with formula (1) and the experi-
mentally determined minimal δ are listed.

Table 5.1: Minimal necessary period between data packets

SWO frequency [Hz] 4000000 2000000 1000000

Minimum period [cycles]
(experimentally)

1024 2019 3998

Minimum period [us]
(experimentally)

12.94 25.24 49.98

Minimum period [us]
(theoretically)

11.33 22.66 45.33
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5.3.3 Discussion

The results of the test show that the achieved minimal period between variable
updates is close to the theoretical limit. This confirms the model for buffer
overflows. The difference between the theoretical value and the result can be
explained by the overhead of the NRZ communication over SWO. The results
also show that it is best to use a high SWO frequency if possible in order to loose
as few packets as possible.
The maximal frequency for variable updates can be read from the table and is
approximately 77kHz. (no PC tracing and fSWO=4MHz)

5.4 CPU Usage

In order to read the traced data from the J-Link buffer, the observer must reg-
ularly check if there are new values in the buffer and read them out. This is
implemented in form of an infinite loop in the swo read buffer function. How-
ever, we cannot just continuously read from the buffer since this would result in
100% CPU usage. Therefore we introduce a configurable delay with time.sleep

after every time the buffer is checked. In addition, the read loop is optimized
such that the CPU is used as little as possible.

5.4.1 Methodology

For the following test, delays of 2 ms, 10 ms and 100 ms and an efficient and
expensive loop design (Figure 5.11) were implemented. In the expensive loop,
swo read is always called which costs 1.4 ms on average. In the efficient loop,
it is first checked if there even is something to read with swo num bytes which
costs 0.3 ms, but in most cases saves the 1.4 ms from swo read.
It is expected that the efficient loop can reduce CPU usage significantly. But it
is also probable that the J-Link connection will put a relatively high load on
the CPU for a high SWO frequency of 4 MHz. The CPU usage was determined
with the Linux command line tool top. The setup is a typical application
scenario: We trace the two out of four possible variables that both change value
approximately every 1.8s (14 bytes every 1.8s). The DWT is configured to only
generate a packet upon a read operation on the variables. The prescaler for
the local timestamps was set to 64. This setting will be referred to as average
load. The CPU usage was also tested with maximal load. For this scenario the
variables are updated every 25 ms resulting in a data rate that uses the whole
SWO bandwidth of 4 MHz.
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Figure 5.10: efficient loop Figure 5.11: expensive loop

5.4.2 Results

The results of the test can be seen in Table 5.2. The settings SWO 4 MHz and
2 MHz describe the SWO frequency used in the respective test. Avg Load and
Max Load refer to the average and maximal load describe in the Methodology
section.

Table 5.2: CPU usage for different settings

Delay in read loop 2ms 10ms 100ms

Expensive loop, SWO 4
MHz, Avg Load

64.2% 43.3% 35%

Efficient loop, SWO 4
MHz, Avg Load

56.3% 39.1% 33.1%

Efficient loop, SWO 1
MHz, Avg Load

38.2% 16.1% 8.9%

Efficient loop, SWO 4
MHz, Max Load

79.4% 68.7% 67.4%

5.4.3 Discussion

The results show that using a more efficient loop can save up to 10% CPU usage
under average load. However, the usage is still relatively high for any delay. This
might be due to the J-Link connection using CPU cycles also for other tasks than
reading the buffer. Another observation is that a higher SWO frequency uses
substantially more CPU power which confirm that the usage is mostly due to
the J-Link connection.
At first it might seem that using a lower SWO frequency is the best solution but
as documented in section 5.3, a lower SWO frequency also reduces the maximal
tracing frequency.
Given that the CPU usage is lower for a higher delay, it is also desirable to choose
a delay of 10 or 100 ms in the read loop. As seen in section 5.2 the delay only
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has a minimal impact on the accuracy of the corrected timestamps.
To conclude, we can say that choosing a delay of 100 ms and an SWO frequency of
4 MHz is the best option to have a low CPU usage and a high tracing frequency.



Chapter 6

Future work and conclusions

6.0.1 Future work

This section lists all the limitations of the implemented data tracing feature
and proposes future improvements. Most limitations are directly related to the
limitations of the debugging features of the Cortex-M microprocessor. A note is
added if it is possible to improve a limitation by software.

• The maximal number of global variables that can be traced simultaneously
is four.

• The maximal frequency for variable updates of all four comparators com-
bined is 77 kHz

• The CPU usage is approximately 30% when using the crystal and 40%
when using the MSI as clock source

• The timestamp accuracy when using the crystal has been measured to be
below 1 ms for a test duration of 20 minutes.

• The timestamp accuracy when using the MSI has been measured to be
below 10 ms

• When using the MSI and running test with a duration of more than 3
minutes it is necessary to do local regressions. The use of a global regression
will introduce errors of up to 130 ms in the global timestamp values.

• Only the clock sources MSI and external crystal were tested so far. The
two other clock sources might require different regression calculations.

• The parsing for large debug trace files needs be done on the server since it
is a computationally intensive task.
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6.0.2 Conclusions

In this work, first various debugging solutions including different features of
the Cortex-M and different debugging software has been tested. All the advan-
tages and drawbacks of the tested features are documented in a comprehensive
overview.
Based on the results of this first part of this work, a solution using pylink and
the data trace functionality of CoreSight was selected to be implemented on
FlockLab 2. The feature is based on four Python functions that configure the
target, read data from the SWO line and then parse and correct the timestamps
of the output. The result is a data tracing service allowing the user to trace the
value of up to 4 variables. Using the PC tracing it is possible to also trace the
PC value when one of these 4 variables is accessed with a read, write or for both
operations.
The timestamps are taken on the observer which are time synchronised. There-
fore a distributed debugging is possible by directly comparing traces from dif-
ferent observers. A time correction scheme based on local timestamps is applied
such that negative effects of jitter are mitigated.
The evaluation has shown that variables and PC values can be traced with a
maximum speed of 77kHz.
When using external crystal oscillator, it was observed that the timestamp ac-
curacy can be as good as 1 ms for a 30 min test duration and a CPU usage of
30% on the observer.
In conclusion, the implemented data tracing feature is a powerful, completely
non-intrusive tool. A first version of a data tracing service has been integrated
and tested on the FlockLab 2 architecture.
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Appendix A

Schedule

• Concept: Search and read related work and related technical documents.
Get to know the FlockLab 2 platform (FlockLab Wiki).
Then also analyze the current usage and protocols tested on FlockLab in
order to adapt the debugging feature to the user’s needs.
In parallel start writing the ”Related work” part in the report
Based on the supported features of the J-Link OB debugger and the needs
of the users of FlockLab, generate a list of desired distributed debugging
features/services for FlockLab 2.

• Testing features: Test the most important debug service proposals from
the list of proposals with a Laptop, a J-Link EDU mini debugger and a sin-
gle device-under-test. Note down important observations and limitations.
Based on this, review the desired features and refine one of them for im-
plementation.

• Implementation: Implement debugging for a single device on FlockLab
first (remote or local debugging on the observer). Then implement the
distributed service on FlockLab
Learn how users specify test configurations over the XML file and how it
can be adapted to be used for debugging as well.
Then also think about a effective way how to record a trace or debugging
response that can be included with the other measurements.

• Testing Performance: With the provided FlockLab 2 observer hardware,
determine the performance limits of the implementation. This can be for
example timing overhead or power overhead caused by debugging.
Also write a demo program including bugs to best show the use of the
feature.

• Report: The report will allow a follow-up project to build upon the work,
understand the design decisions taken as well as to recreate the experimen-
tal results.
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February March April Mai

W8 W9 10 11 12 13 14 15 16 17 18 19 20 21 22

Concept

Related papers, docs

Current use

List debugging features

Testing Features

Test single device locally

Review/refine features

Initial Presentation

Implementation

Single device with observer

Implement distr. feature

Implement XML support

Implement trace support

Testing Performance

Measure performance

Reserve

Write report

Report rehearsal

Figure A.1: Schedule for the semester thesis
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1 Project Description
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Figure 1: FlockLab 2 Architecture.

Since 2012, the Computer Engineering Group (TEC) operates the Flock-
Lab testbed [7] for developing and evaluating wireless sensor network protocols.
A testbed helps to reduce the e↵ort of repeatedly deploying test networks when
developing protocols for wireless sensor networks. Furthermore, such a testbed
improves the reproducibility of experiments and allows to share infrastructure.

Currently, we are in the process of extending the existing short baseline distances
in FlockLab by adding additional nodes on rooftop locations and with significantly
larger spacing. The existing implementation of FlockLab is based on hardware
components which are no longer in production. Therefore, we developed the next
generation of the FlockLab, FlockLab 2. The new architecture is depicted in
Figure 1. Among other improvements, FlockLab 2 incorporates a Linux platform
with more performance (Beaglebone Green), more precise power tracing based on
the RocketLogger [8], as well as state-of-the-art debugging support (J-Link OB).

The J-Link debugger allows to influence the program flow by setting breakpoints
and to read out internal state of the microcontroller. Some information can be
traced in real-time without halting the processor. In a typical FlockLab test,
the devices-under-test (DUTs) interact with each other via wireless communication
links. Therefore, it is usually not enough to debug a single node of the network in
case a software bug has been observed. It would be useful to debug multiple nodes
simultaneously. However, a standardized way/tool to achieve such a distributed
debugging does not exist (yet).
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2 Project Goals

The goals of this project are:

• Exploration of di↵erent debug features of the J-Link OB used on FlockLab 2
in combination with SWD and the ARM Cortex-M architecture.

• Implementation and characterization of at least one debug service for the
distributed application scenario of FlockLab 2.

3 Project Tasks

• Formulate a time schedule and milestones for the project. Discuss and approve
this time schedule with your supervisors.

• Search and read related work and related technical documents. Some pointers
are provided as a starting point:

– Related Scientific Work: [9, 6]

– Related Technical Documents: [3, 2, 1, 5, 4]

– Important Keywords: ARM Serial Wire Debug (SWD), ARM SWO
trace port, System Trace Macrocell (STM), Embedded Trace Macrocells
(ETM), Instrumentation Trace Macrocells (ITM), ARM Cortex-M,
Segger J-Link.

• Based on the supported features of the J-Link OB debugger, generate a list of
desired distributed debugging features/services for FlockLab 2 which make use
of the J-Link OB in combination with SWD debugging of a ARM Cortex-M4
microcontroller. Examples are:

– Stop execution when meeting condition X (e.g. a breakpoint) and log the
internal processor state

– Continuously log the value-changes of variable Y

– etc.

• Test the most important debug service proposals from the list of proposals
with a Laptop, a J-Link EDU mini debugger and a single device-under-test.
Note down important observations and limitations.

• Select a service proposal from the list of proposals and implement it in a way
that it works in the distributed case of Flocklab 2. The interface for the service
is based on the existing interface of FlockLab: The user configures the debug
service before starting the FlockLab test via the FlockLab test configuration
(xml file) and obtains the corresponding results together with the other test
results after completion of the FlockLab test. Test the implementation with a
sample program which contains artificial bugs.

• Optional: If time allows, more than one service proposal can be implemented.

3
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• With the provided FlockLab 2 observer hardware, determine the performance
limits of your implementation.

• Document the project with a written report. As a guideline, your
documentation should be as thorough to allow a follow-up project to build
upon your work, understand your design decisions taken as well as recreate
the experimental results.

4 Project Organization

Deliverables

• Time schedule (2 weeks after start date)

• Initial presentation (3 min)

• Final presentation (15 min)

• Weekly report, which includes: current progress, problems encountered and
next steps.

• Code of implementation including documentation

• Final report, which includes: introduction, analysis of related work,
documentation of decisions, evaluation, description and HowTo guide of the
developed software.

O↵ers

• The supervisors o↵er the student the opportunity to do a rehearsal of the
initial and the final presentation. The supervisors o↵er to give feedback how
to improve the presentations.

• The supervisors o↵er to proof-read a draft of the final report. The draft is not
required to be complete. The draft should be handed in no later than 1 week
before the due date of the thesis.

General Requirements

• The project progress shall be regularly monitored using the time schedule.
Unforeseen problems may require adjustments to the planned schedule.
Discuss such issues openly and timely with your supervisors.

• Use the work environment and IT infrastructure provided with care. The
general rules of ETH Zurich (BOT) apply. In case of problems, contact your
supervisors.

• Code versioning is mandatory throughout the thesis and the student is
responsible for regularly pushing her/his contributions to the repository.

4
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Weekly Meeting

• At the beginning of the thesis, a time slot for the weekly meeting will be agreed
on. The weekly meeting is used to discuss the project’s progress based on a
schedule defined at the beginning of the project.

• The weekly report should be provided at latest at 23:59 on the day before the
weekly meeting.

Initial Presentation

Prepare the intial presentation which should include:

• Short introduction (e.g. name, origin, previous studies, current study status,
why you are interested in this topic)

• Short description of the project (What do we do, why do we do it and why is
it hard)

• Project goals (What do we want to achieve)

• Intended way to reach goals (How do we want to achieve it)

The presentation must not exceed 3 minutes (approx. 3 slides with content). A date
for the presentation will be assigned during the project.

Final Presentation

Prepare the final presentation which needs to include:

• Short project description and project goals

• Detailed presentation of the work done

• Detailed presentation of the results

• Conclusion and outlook on possible future work

The presentation must not exceed 15 minutes. A date for the presentation will be
assigned during the project.

Handing In

• Hand in a single PDF file of your project report via email. In addition, hand
in the signed declaration of originality on paper. A hard-copy of the report is
not required.

• Clean up your digital data in a clear and documented structure using the
provided GitLab repository. In the end, all digital data should be contained
in the student’s GitLab repository for the thesis. This includes: developed
software, measurements, presentations, final report, etc. An exception are
large amounts of measurement data which is stored separately (ask your
supervisors!).

5
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Appendix C

How To

This is a guide on how to install the required tools and use the developed
distributed debugging software on FlockLab 2.

C.1 Software installation

In order to use the distributed debugging tool you first need to install the J-Link
software and the pylink library. The respective installation procedure is docu-
mented in C.2.3 and C.2.4.
Section C.2.1 describes all the steps required to setup an observer for data trac-
ing. Section C.2.2 explains how to use the observer for development.

C.2 Observer

C.2.1 Observer setup

1. Connect to the observer by first connecting to the ETHZ network over the
VPN and then using ssh to connect to the observer. (Your public key must
be configured on the observer)

$ ssh −p 2322 f l o c k l a b @ f l −12. ethz . ch

2. Install the J-Link software and pylink as described in sections C.2.3 and
C.2.4.

3. If parsing is done on the observer install pandas:

$ pip3 i n s t a l l pandas
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C.2.2 Observer use

To enable the observer and multiplexer and select the LoRa board (assumed to
be connected to target slot 1) use the tg ctrl.py script:

$ t g c t r l . py −e
$ t g c t r l . py −m 1
$ t g c t r l . py −s 1

To copy a file to the remote location first close all open connections then
from folder with file run:

$ scp −v −P 2322 BlinkLED . e l f f l o c k l a b @ f l −12. ethz . ch : /
home/ f l o c k l a b / l d a s c h i n g e r

To copy files from the remote to local, first disconnect and then run:

$ scp −v −P 2322 f l o c k l a b @ f l −12. ethz . ch : / home/ f l o c k l a b
/ l d a s c h i n g e r / swo read log /home/ user /Desktop

To flash an image to the target use the command:

$ tg prog . py −−image=[ image f i l e ] −−t a r g e t=dpp2lora

Another option is to use ”loadfile” in JLinkExe. This however only accepts
*.hex files. JRunExe does not download the program correctly. It somehow
stores the global variable somewhere else. The command would be:

$ JRunExe −dev i c e STM32L433CC − i f swd −speed 4000 < e l f
f i l e to f l a sh>

To manually debug an application JLinkExe can be used:

$ JLinkExe −dev i c e STM32L433CC − i f SWD −speed 4000 −
autoconnect 1

By typing ”?” inside JLinkExe the available commands are shown. For example
enter ”h” and then ”s” to halt and step trough the execution.
The section C.3 describes how other SEGGER software and GDB can use used.

The serial number of the J-Link module can be found with the following line
after enabling the pylink command with export:

$ py l ink emulator − l

C.2.3 J-Link software installation

On a computer with a J-Link edu mini debug probe:
In this case download the ”J-Link Software and Documentation pack for Linux”
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from SEGGER.

On the BBG
In this case download the ARM specific ”J-Link Software and Documentation
pack for Linux ARM systems” from SEGGER.

C.2.4 Pylink library installation

On the BBG:

1. Install the J-Link software packets as described in C.2.3

2. Install pylink at ./home/flocklab/.local/lib/python3.5/site-
packages/pylink by running:

$ pip3 i n s t a l l pyl ink−square

3. Now the DLL library of the J-Link Software package needs to be moved
to a place where pylink can find it.
From the folder where the J-Link software is installed (./op-
t/JLink Linux V662b arm/libjlinkarm.so):

$ sudo cp l i b j l i n k a r m . so / usr / local / l i b /

4. To be able to use the pylink command from the terminal during this
session do:

$ export PATH=$HOME/ . local / bin :$PATH

5. Then modify the library.py file as described in point 6. and 7. of the pylink
installation on a computer.

On a computer with a J-Link edu mini debug probe:

1. Install the J-Link software packets as described in C.2.3

2. If you want to use pylink with Python 3.7 install the following modules:

$ i n s t a l l python 3 .7
$ sudo apt−get i n s t a l l python3 .7−dev

3. install pip and pylink:

$ sudo apt i n s t a l l python−pip
$ pip3 i n s t a l l pyl ink−square
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It is also possible to use pylink with Python 2.7. For this use pip instead
of pip3 to install the package

4. Now the DLL library of the J-Link Software package needs to be moved
to a place where pylink can find it.
From the folder where the J-Link software is installed do:

$ sudo cp l i b j l i n k a r m . so / usr / local / l i b /

5. Then to be able to use the pylink command in the terminal do:

$ export PATH=$HOME/ . local / bin :$PATH

6. The library includes some errors. We have to change some code in the
library.py file to make it work properly.[23] This might however remove
the ability to debug several targets from one device running pylink.
The file is usually located at /home/user/.local/lib/python3.7/site-
packages/pylink/library.py

On line 85 change (version 0.6.1 of pylink)

JLINK SDK NAME = ’ l i b j l i n k a r m ’

to

JLINK SDK NAME = ’ j l inkarm ’

Furthermore the library might not find the path to the DLL. In this case
it is possible to hardcode the path.
Replace the line:

s e l f . path = path or s e l f . path

with

s e l f . path = ’ / usr / l o c a l / l i b / l i b j l i n k a r m . so ’

Then try if the library can find the DLL and works properly by connecting
the board and J-Link edu mini and running:

$ py l ink emulator − l

7. Only do this part if the library still does not work since it might break the
module.
Replace the lines 340 to 353 (version 0.6.1 of pylink) in library.py with

s e l f . temp = None
s e l f . l i b = ctypes . c d l l . LoadLibrary ( s e l f . path )
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Troubleshooting:
If you are unable to use ”pip install pylink-square” try to install the -dev version
of Python:

$ sudo apt−get i n s t a l l python3 .7−dev

C.2.5 GDB multiarch installation

In order to use GDB with a microcontroller the gdb-multiarch version is required.
To install it run:

$ sudo apt−get update −y
$ sudo apt−get i n s t a l l −y gdb−mult iarch

Then launch this version by typing ”gdb-multiarch” instead of just ”gdb”.

C.3 Software Use

In general always try 4000 and 4000000 in the applications as the communication
speed when the speed is 4000kHz
Also check if the application sets a default speed that is most probably wrong
or if need to specify 4000 or 4000000.

C.3.1 Pylink examples

The ”code” folder in the workspace of the project repository includes some ex-
ample scripts showing how to use pylink to set breakpoints, watchpoints and
read data from the SWO line (breakpoints.py, watchpoints.py and SWO.py).
The usage of these scripts on the observer is as follows: (The serial number of
the J-Link module can be found with the command described in section C.2.2)

$ python3 . 5 s c r i p t . py <dev i c e address> <commands depending on s c r i p t>

C.3.2 J-Link GDB server

The J-Link GDB server application JLinkGDBServerCLExe will create a GDB server
to which GDB clients can connect to and use the J-Link debugging functionalities.
The command line options for the application are specified in chapter 4.1 and
4.5 in the ”J-Link and J-Trace” manual.
To start server:

$ . / JLinkGDBServerCLExe −dev i c e STM32L433CC − i f swd
−t imeout 5000
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Then start a client from the directory where the *.elf file is located:

$ gdb−mult iarch −− i n t e r p r e t e r=mi

In the GDB client issue the following commands or use a gdbinit file:

( gdb ) f i l e <f i l ename >. e l f
( gdb ) t a r g e t remote l o c a l h o s t :2331
( gdb ) monitor r e s e t
( gdb ) monitor dev i ce = <dev i c e name>
( gdb ) load

The JLinkGDBServer supports SEGGER-specific GDB protocol extensions
like tracing and reading the SWO pin. These commands can be found in [24]
These commands need to be sent over maintenance commands:

( gdb ) maint packet <SEGGGER extens i on command>

Breakpoints and watchpoints:
For watchpoints the variable needs to be global since otherwise it will be on stack
and cannot be watched.
Setting a watchpoint is done with watch, rwatch or awatch for a halt when the
variable is written, read or for both. The usage is as follows:

( gdb ) watch [− l |− l o c a t i o n ] expr [ thread threadnum ] [
mask maskvalue ]

If you want to watch an address you need to reference and dereference it since
GDB does not watch constants like addresses directly:

( gdb ) watch ∗( i n t ∗) 0x600850

Reading memory
In order to read from memory in the least intrusive way, launch the execution
from one client and use the GDB protocol commands from a second client to read
out memory. The command memU32 can also be used to write into memory. For
this specify a value as a second argument after the address.

( gdb ) memU32 <address> [= <value >]

The video JLinkGDBServerCLExe memory readout mem32.mp4 in the
video collection shows how two GDB clients can be connected to one server.

SWO tracing with extension commands
Note that the target needs to be configured first, before it will generate DWT
and ITM packets. After configuration these commands can be used to receive
data DWT packets in GDB:
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( gdb ) maint packet qSeggerSTRACE : GetSpeedInfo : 0
( gdb ) maint packet qSeggerSWO : s t a r t : 0 x0 : 0 xfa0

Let the application run for some time then:

( gdb ) maint packet qSeggerSWO : stop
( gdb ) maint packet qSeggerSWO : read : 0 x4

GDB tracepoints Note that this does requires a J-Trace probe. GDB trace-
points are an intrusive method for debugging.

( gdb ) ( f ) t r a c e printf
( gdb ) ( f ) t r a c e ∗0 x2117c4 .
( gdb ) a c t i o n s
( gdb ) c o l l e c t $regs , $ l o c a l s
( gdb ) end
( gdb ) t s t a r t
( gdb ) continue
( gdb ) t s top
( gdb ) t f i n d s t a r t
( gdb ) tdump

C.3.3 JLinkExe

To manually debug an application JLinkExe can be used:

$ JLinkExe −dev i c e STM32L433CC − i f SWD −speed 4000 −
autoconnect 1

By typing ”?” inside JLinkExe the available commands are shown. For example
enter ”h” and then ”s” to halt and step trough the execution.

C.3.4 JLinkSWOViewer

Use the JLinkSWOViewer to receive and parse ITM printf messages on port 0:

$ . / JLinkSWOViewerCLExe −dev i c e STM32L433CC −i tmport
2331 −itmmask 0x1
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