
High-speed Traffic Generation

Semester Thesis

Author: Leonardo Rodoni

Tutor: Tobias Bühler

Supervisor: Prof. Dr. Laurent Vanbever

March 2020 to June 2020

Abstract

In recent years, the overall Internet traffic has been increasing considerably, along with a constantly
rising number of connected devices, but mostly due to the usage paradigm shifting towards larger
utilization of video streaming services and conference calls. Commodity hardware manufacturers
managed to keep up with this trend, as nowadays standard servers can support multiple 40Gbps
and 100Gbps Ethernet Interfaces. This paves the way for the development of applications and
devices which run at very high bandwiths, such as routers and switches but also firewalls, proxies
or packet-inspection tools. These appliances then require extensive testing before deployment,
and this is a typical use-case where a high-speed traffic generator comes in handy. This thesis
analyses and compares software-based solutions for Internet traffic generation that can cope with
these extremely high bandwidths. We will introduce the Data Plane Development Kit (DPDK),
which is the technology enabler for these tools to be able to process Internet packets at such high
speeds. One of the traffic generators that we tested, Moongen, manages to saturate a 10Gbps
glass-fiber link with 60 byte sized Ethernet packets by utilizing a single CPU core, which would be
unimaginable even to think of for a standard Linux program.

i

Contents

Contents ii

1 Introduction 1

2 Background and Related Work 3
2.1 Traffic Generators . 3

2.1.1 Modern Software Traffic Generators . 4
2.2 Related Work . 6

3 Analysis of Traffic Generators 7
3.1 Moongen . 7

3.1.1 Link Saturation . 8
3.1.2 Supported Protocols and other Testing Setups 10
3.1.3 Packet Capture . 10
3.1.4 Packet Timestamping and Latency Measurements 12

3.2 WARP17 . 13
3.2.1 Memory Settings . 14
3.2.2 Link Saturation . 14
3.2.3 TCP Stack . 16
3.2.4 Periodical Output of Statistics . 16
3.2.5 Internet-Mix Traffic . 17

3.3 T-Rex . 17
3.3.1 Stateful Mode . 18

3.3.1.1 Link Saturation . 19
3.3.1.2 Internet-Mix Traffic . 20

3.3.2 Stateless Mode . 21
3.3.3 Advanced Stateful Mode . 22

4 Results 23
4.1 Stateless Traffic Generation . 23
4.2 General Comparison . 24
4.3 Common Deployment Scenarios . 26

5 Summary and Outlook 28
5.1 Future Work . 28

Bibliography 30

ii

CONTENTS iii

A Hardware and Software Specifics I

B Declaration of Originality II

Chapter 1

Introduction

A network traffic generator is a specialized tool used to create Internet packets and inject them into a
network. Traffic generation tools aim to mimic real Internet traffic, thus in industry and among the
research community they are employed to benchmark the performance of newly developed devices
and applications. Packet generators are implemented either as software programs or over hardware
platforms, with the latter being faster and more precise. However, hardware solutions are usually
very expensive and limited in configurability and range of offered features. Moreover, modern
software traffic generators are programmed on top of fast IO frameworks, such as DPDK, which
enables them to reach very high packet rates with commodity NICs on standard Linux servers,
hence without the need to buy costly additional specialized hardware. Processing and generating
high amounts of traffic is very resource intensive, especially for small sized packets, and with the
standard Linux Kernel’s networking stack it was previously impossible to saturate 100Gbps links
with software running on a single server. Nowadays, DPDK-based programs can cope with these
speeds with standard server CPUs.

Over the recent years the Internet has undergone a huge rise in global traffic, and this trend is
set to continue. One of the most influential reasons for this increase is video streaming, which makes
up 60% of the global Internet traffic. To handle these enormous volumes, the hardware industry
is constantly improving the packet processing technology. Nowadays servers can support multiple
40Gbps and 100Gbps Ethernet interfaces, and the Ethernet Alliance’s 2020 Technology Roadmap1

expects even higher speeds up to 1.6Tbps to become standard in the years to come. This opens
the way for the development of new devices and applications that support these extremely high
bandwidths. New appliances then require extensive testing before deployment, and this is where
high-speed traffic generators come into play.

In our work we have thoroughly explored, tested and finally compared three modern software
DPDK-based packet generators: Moongen, Warp17 and T-Rex. These tools, thanks to DPDK, are
able to saturate multiple high-speed links up to 200Gbps when running on a single server. We have
been able to completely fill a 10Gbps link with small 60 byte sized UDP packets with Moongen
using two CPU cores and with T-Rex using 4 cores. Warp17 instead, is a stateful tool, focused on
generating and managing the state of TCP flows at high speeds. Warp17 is capable of handling tens
of millions of TCP sessions per second, which would not be feasible with standard Linux software.

This thesis aims to provide the reader with sufficient insight and information to be able to
choose among these tools which one suits best for his use case. The rest of the report is organized
as follows: Chapter 2 provides the reader with the required background knowledge in the topic
of Internet traffic generation. Chapter 3 offers an in-depth presentation of Moongen, Warp17 and

1https://ethernetalliance.org/technology/2020-roadmap/

1

https://ethernetalliance.org/technology/2020-roadmap/

CHAPTER 1. INTRODUCTION 2

T-Rex by explaining some of the main features and illustrating performance results based on our
tests. Chapter 4 presents the more relevant and interesting results of our work by laying out a broad
comparison of the tools. As previously mentioned, we aim at providing the reader with sufficient
information to choose a traffic generator, thus we try whenever possible to offer insight on the
programs utilization and functionalities based on our personal experience. Table 4.1 summarizes
some of our results and serves as a quick reference for comparison. Finally, Chapter 5 briefly
summarizes the thesis and illustrates possible ideas for continuation of our work in the future.

Chapter 2

Background and Related Work

This chapter aims to provide the reader with the required background knowledge in the topic of
Internet traffic generation. In Section 2.1, we introduce traffic generators, along with the basic
ideas behind them and their more common use cases. Then, in Section 2.1.1 the attention will shift
towards modern software traffic generation tools, on which this work is based. In this regard, we
introduce the Data Plane Development Kit (DPDK [8]), upon which most of the modern high-speed
traffic generators are built. Finally, in Section 2.2 we present some interesting papers describing
related work comparing high-speed traffic generators.

2.1 Traffic Generators

Traffic generation systems, or packet generators, are specialized tools used to inject Internet packets
in the network in a controlled way [4]. Network engineers and researchers rely on traffic generators to
analyse the performance of a device or a newly developed application [1], which may also be referred
to as ”Device Under Test” (DUT) respectively ”System Under Test” (SUT). A packet generator
allows to evaluate the performance of the DUT or SUT by generating and sending packets through
specific ports. It also provides a way to output important statistics for each interface, usually as
CLI output, such as bandwidth (transmitting and receiving rates), latency, lost packet counts, and
a bunch of other statistics depending on the tool [3]. This statistics then enable the user to generate
a benchmark of his device or application, define its limits in terms of workload and identify some
possible design flaws.

Validating a new apparatus under different loads to determine its performance in terms of
throughput (maximum bandwidth at which none of the frames are dropped by the device [25]) and
latency is a crucial step in the production life-cycle [1]. Traffic generators provide users with a
way to mimic actual network traffic at high rates, with which a new network can be stress-tested.
This may help identify any vulnerable areas or devices, that if subject to high load operation may
experience packet loss or drop connections, giving users a clear understanding of what their network
can manage, where the areas of concern are, and what points of the network are at a higher risk of
becoming congested [7].

For these reasons, one of the main goals when it comes to traffic generators development is for
the tool to be able to replicate realistic Internet traffic patterns, so that the performance of the
network can be evaluated in an accurate manner. Moreover, as in the past few years the networks
have become extremely diverse in terms of protocols, applications, and connected devices, it is
increasingly important that traffic generators allow for high flexibility [4]. A packet generator
should enable each user to efficiently produce specific traffic patterns that match the required

3

CHAPTER 2. BACKGROUND AND RELATED WORK 4

network conditions where the DUT will be put into operation.
Packet generators can be implemented as software but also over hardware platform, e.g. on

an FPGA [1, 5]. The latter are faster and more accurate, as the packet processing functionality
is directly implemented on hardware, but they are typically proprietary devices and thus closed-
source and very expensive. Hardware based solutions for traffic generation are also in many cases
inflexible, as providing high configurability in a hardware based product results in high costs [5].
Software-based traffic generators, on the other hand, have lower performance and accuracy, but
provide a much higher degree of configurability and more importantly are usually open-source [1].
Moreover, in recent years, the rise of fast IO frameworks (such as DPDK [8]) is making software
packet generators even more attractive, as they can reach very high packet rates on commodity
NICs [1]. For these reasons, in our work we have only considered software based packet generators.

There are many software traffic generators and they can be distinguished in two different classes,
depending on the network stack that they utilize: traditional software packet generators and mod-
ern software packet generators. Traditional packet generators, such as trafgen [27] and Packet-
Sender [21], rely on the network stack implemented in the operating system’s kernel. Using the
standard kernel IO interface allows for high compatibility, as the tool can simply use all the features
implemented in the kernel’s network stack, and all protocols already supported by the OS do not
need to be re-implemented [1]. However, the OS network stack is mainly optimized for stability and
compatibility with all other network stack implementations. It is therefore not specifically designed
to generate high amounts of traffic at high speeds, and this results in strongly reduced performance
for the tool when it comes to generate traffic at more that 1Gbps (especially with small packets).

In recent years the available bandwidth for commodity hardware has been increasing rapidly, and
nowadays normal servers can support multiple 40Gbps and 100Gbps Ethernet interfaces. As of early
2016, core router platforms from Cisco, Juniper and other major manufacturers support 400Gbps
full duplex data rates per slot [26]. In 2019, 200Gbps Ethernet cards have been standardized by
the IEEE, and the Ethernet Alliance’s 2020 technology roadmap [12] expects speeds of 800Gbps
and 1.6Tbps to become standard possibly between 2023 and 2025 [26]. At these huge bandwidths,
traditional traffic generators are simply of no use, and thus modern high-speed software traffic
generators were developed.

The following section presents an overview of existing modern traffic generation tools, illustrat-
ing the basic concepts and ideas behind them and introduces the DPDK framework.

2.1.1 Modern Software Traffic Generators

Modern software traffic generators bypass the entire OS network stack and use another framework,
or IO API1, to access the interfaces [1]. This way the tools can be optimized for high speeds and
low latency, as now the overhead on packet processing from the OS kernel’s network stack has been
removed. The Linux kernel’s network stack is interrupt-driven, and thus creates a high number of
context switches when a lot of packets need to be processed. This context switches are costly in
terms of performance, especially at high bandwidth rates. By using these special frameworks that
are polling based, such as DPDK [8] or PF_RING ZC [22], most of the expensive context switches
can be avoided, and higher computing efficiency and packet throughput can be achieved. Polling
refers to continually sampling the status of an external device as a synchronous activity [24].
In our work we will thoroughly test three DPDK-based traffic generation tools: Moongen [19],
WARP17 [35] and Cisco’s T-Rex [28].

DPDK, or the Data Plane Development Kit, is an open-source software project managed by
the Linux Foundation which provides a set of data plane libraries and NIC polling mode drivers

1Input/Output Application-Programming-Interface

CHAPTER 2. BACKGROUND AND RELATED WORK 5

for offloading packet processing from the operating system’s kernel to processes running in the user
space [11]. This concept is illustrated in Figure 2.1.

Figure 2.1: Difference between applications that use the Linux kernel only and
application that integrate the DPDK framework to access NICs. In the latter
case, the kernel doesn’t step in at all during interactions between the application
and the network interfaces: these are performed via the DPDK libraries and
drivers. (image source: [9])

The data plane consists basically of a routing table, and its job is to make decisions on the actions
to be taken when packets arrive at an inbound interface, i.e. drop or forward the packets [3]. The
DPDK framework operates by creating an Environment Abstraction Layer (EAL) that contains a
set of libraries for specific hardware and software environments. This abstraction layer hides the
specifics of the environment, such as huge-pages setup and multi-thread support, and provides a
standard programming interface to libraries and other hardware or operating system elements [11].
Developers can then link to the library to create software applications built on DPDK.

As briefly mentioned above, DPDK implements a low overhead run-to-completion model (schedul-
ing model in which each given task must run until it finishes) by accessing interfaces via different
drivers than the ones used by the OS kernel and with a set of libraries. The DPDK drivers and
libraries are optimized for polling, thus eliminating the performance overhead of interrupt process-
ing [11], and busy waiting, which allows for precise timing and thus increases packet transmission
accuracy. Busy-waiting, or spinning, is a technique in which a process repeatedly checks to see if
a certain condition is true [6], e.g. if an interface just received packets that need to be processed.
The libraries further implement a memory manager, which pre-allocates huge-pages so that mem-
ory access is as fast as possible during program execution. A queue manager, a buffer manager
and other packet processing helper libraries are also implemented [11]. DPDK spawns threads that
handle the receiving and processing of packets from the assigned queues [10] and they do this on
a time loop, therefore anything interrupting these threads (including Linux kernel tasks) might
cause packet loss. For this reason when possible it should run on dedicated CPU cores for better
performance.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

DPDK is the most widely used high-speed IO API, mainly because of its high compatibility,
as it supports all major CPU architectures and NICs from multiple vendors [8]. Besides Intel,
which is the creator of the project, many companies contribute to the DPDK development. Intel,
Mellanox and Broadcom also periodically test their NICs with the newest DPDK versions and
publish performance reports2. This highlights the fact that interest on DPDK is growing among the
telecommunication industry. In fact it has many possible applications, apart from traffic generators,
and in some cases (e.g. firewalls, deep-packet-inspection or caching) it can replace traditional
hardware solutions in the Internet Backbone, where extremely fast packet processing is the main
requirement [10].

2.2 Related Work

The goal of this work is to test, analyse, evaluate and compare three high-speed DPDK-based
software traffic generation tools. In this section we present similar studies that have been previously
performed on this subject.

In particular, Soumya Mahalakshmi et al. [3] in 2016 have tested and compared four DPDK-
based traffic generators: T-Rex, Pktgen [23], MoonGen and Ostinato [20]. The paper places par-
ticular emphasis on explaining the essential functionalities and architectural details of T-Rex, then
provides a basic analysis of the other tools. The main goal is to provide an efficient framework and
present methodology insights for fast packet processing in data plane applications. In this regard,
the four software packages have been tested and compared. One of the main results presented in
the paper is that MoonGen and Pktgen have the best efficiency and compatibility. In our work we
have tested Moongen against two other modern traffic generators, and we also observed that when
it comes to generating stateless Traffic, Moongen is indeed the more efficient tool.

Another relevant study was conducted by Emmeric et al. [1] in 2017. Their work investigates
the properties and performs a comparative analysis of several high-performance software packet
generators. The paper aims to “highlight the actual limitations in high-performance software packet
generation, thus helping the research community to build better tools”. Among the tools that have
been tested are MoonGen and Pktgen, both DPDK-based, but also tools based on other high-speed
IO APIs and some traditional packet generators. They focus on implications on precision when a
given traffic pattern needs to be reliably generated at high rates. This is extremely relevant because
if the generated pattern is not accurate, it can influence the observed performance of the System
Under Test. They discovered that modern traffic generators easily satisfy performance requirements
in terms of bandwidth (tests were conducted on a 10Gbps link), however precision problems start
to arise for packet rates above 1Mpps (million packets per second). In our work, we also observed
that with DPDK based tools it’s fairly easy to fully saturate a 10Gbps link, and in most cases
it’s already possible by utilizing one or two CPU cores. Additionally, they inspected the latency
measurement feature of modern packet generators, which thanks to the fast IO frameworks can be
performed via hardware timestamping. This feature was discovered enabling better accuracy and
reliability than any other pre-existing software-based solution.

In addition to the papers mentioned above, other studies exist, that consider traditional software
packet generation tools operating at high-speed, such as Srivastava et al. [4] (2014), which compares
the performance of three Linux-kernel-based packet generators over a 10Gbps link.

2https://core.dpdk.org/perf-reports/

https://core.dpdk.org/perf-reports/

Chapter 3

Analysis of Traffic Generators

This chapter offers an in-depth presentation of the three modern software-based packet generators
that we consider in our work: Moongen (Section 3.1), Warp17 (Section 3.2) and T-Rex (Section 3.3).
The tools have been thoroughly tested on a server equipped with two 10Gbps Ethernet interfaces,
back-to-back connected with a glass fiber link. The hardware specifics of the server and the software
versions that we deployed for testing are summarized in Appendix A.

The chapter is structured in the following manner: for each traffic generator we first give an
introduction, describing how it works and what the developer’s claims are in terms of performance
and possible use cases. Then we explain in detail some of the important functionalities that in our
opinion are relevant to better understand the tool capabilities. To this regard we already present
relevant results from our tests. We also attempt to offer insights and useful intuition regarding the
program use based on our experience.

3.1 Moongen

Moongen [19] is a flexible high-speed packet generator, that runs on top of the DPDK framework.
It’s claimed to “every so often” be able to saturate 10Gbps Ethernet links with minimum-sized
packets [2] using a single core. Furthermore, thanks to the linear multi-threading scalability of
DPDK, extremely high bandwidths and packet rates can be achieved by simply utilizing more
cores. This is possible mainly thanks to the DPDK feature that allows to allocate multiple queues
per NIC. Each configured queue is then statically assigned to a single CPU core. Since cores operate
on independent queues, losses due to concurrent operations are avoided and performance scales up
linearly with the number of cores. The tool developers have been able to test Moongen up to speeds
of 178.5Mpps at 120Gbps [2].

Moongen is controlled through its API, and not by configuration files like for most software
packet generators. Warp17 and T-Rex on the other hand, are both controlled by configuration files.
The API makes DPDK packet processing capabilities available to user-controlled Lua scripts. Lua1

is a lightweight, high-level programming and scripting language, primarily designed for embedded
use in applications [18] and suitable for high-speed packet processing tasks at high packet rates [2].
This approach enables flexibility, as users can modify the Lua scripts to be called upon program
execution (called “userscript”) in a way that best suits their needs. In the userscript we can define
more threads and initialize more queues, in order to scale up the available processing power. It’s
also possible to craft personalized packets to be sent or perform packet processing on the received
packets [2].

1https://www.lua.org/home.html

7

https://www.lua.org/home.html

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 8

In order to test and evaluate functionalities of Moongen in an efficient way we have prepared
some bash scripts to automate parsing of certain arguments at program start-up. Some parameters
like bandwidth, packet size and execution time can directly be passed as CLI arguments when
running the tool. However, others like the number of CPU cores, whether to include latency
measurement, or whether to send packet in full-duplex mode or in simplex mode, can only be
changed by actively modifying the userscript. This is a downside of allowing for high flexibility,
but thanks to the complete examples provided in the Moongen’s Github repository we have found
it quite easy and straightforward to adjust the userscript to our needs. We also think that for
the purposes of stress-testing a device or application with Moongen, these parameters need to be
decided only once at the beginning (given bandwidth and traffic pattern requirements), but then
don’t need to be changed anymore. The scripts we prepared are available in our Gitlab repository2,
to allow for quick replication of our tests.

3.1.1 Link Saturation

In this section, we evaluate the performance of Moongen in terms of maximal achieved bandwidth
and packet rates on our testing setup. According to the developer’s claims, the program should be
able to saturate a 10Gbps link with 64 byte sized packets on a single CPU core [2]. We have found
this claim to be true, by setting up the tool to generate one-directional traffic of raw Ethernet
packets from one interface to the other via the 10Gbps glass fiber link on our server. A single
thread, running on a single CPU, is able to fully saturate the link with 64 byte raw Ethernet
packets, at a rate of 14.88Mpps.

At this point, it’s important to make a consideration on the achieved bandwidth when the
link is near full utilization. In fact the real bandwidth (measured on the sent Ethernet packets)
is smaller than the bandwidth observed on the link, and this is particularly relevant for small-
sized packets. Moongen clearly shows this in the real-time live CLI statistics by outputting two
values: real bandwidth (based on packets sent by the tool) and “bandwidth with framing”, which
represents the actual bandwidth observed on the link. The graph in Figure 3.1 plots the maximal
real bandwidth, or “bandwidth without framing”, versus different packet sizes, and it helps to
clarify this concept.

Framing, or frame synchronization, is the process of identification of frame alignment signals,
which are sequences of bits or symbols that have the purpose of indicating to the receiver the
beginning and end of the data within the stream of symbols or bits it receives [14, 13]. Then the
receiver can extract only the data bits to be decoded or re-transmitted if necessary. As illustrated
in Figure 3.1, to reach a bandwidth of 10Gbps with small packets, we need to send a high number
of packets, thus in total there will be a lot more framing bits that need to be pushed in the link.
This explains why for 64 byte sized packets we can only reach up to 7.6Gbps of “real” bandwidth
with a fully saturated 10Gbps link.

As a next step, we have tested Moongen with streams of UDP packets instead of raw Ethernet
packets. This caused some overhead, as expected, and the tool was no longer able to saturate the
link with a single CPU core. Figure 3.2 shows the respective measurement results. This overhead
comes from the real-time processing of the UDP header, which is implemented in the userscript to
be called upon Moongen startup.

2https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/

MoonGen

https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/MoonGen
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/MoonGen

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 9

0 200 400 600 800 1000 1200 1400
Ethernet packet size (bytes)

7.5

8.0

8.5

9.0

9.5

10.0

Ba
nd

wi
dt

h
wi

th
ou

t f
ra

m
in

g
(G

bp
s)

Figure 3.1: The “real” bandwidth, or “bandwidth without framing”, which is
measured in terms of packets actually being sent by Moongen to the sending
interface, is plotted here versus different packet sizes. During all these mea-
surements the link is always completely filled, meaning that the “bandwidth
with framing”, or link bandwidth, is reaching 10Gbps for all packet sizes. This
means that the plotted bandwidth is the maximal achievable real bandwidth
on a 10Gbps link. We immediately notice that for small packets a lot of the
link bandwidth is taken up by framing bytes.

60 65 70 75 80 85 90 95 100
packet size (bytes)

80

85

90

95

100

fu
ll

lin
k

ut
iliz

at
io

n
(%

)

1 core
2 cores

Figure 3.2: The link utilization, or “bandwidth with framing” as referred
to above, for a stream of UDP packets is plotted here versus different packet
sizes. With 2 CPU cores, Moongen manages to saturate the 10Gbps link also
with small sized packets. Otherwise with a single core, it’s able to fill up
the link only with packets bigger than 90 bytes. For 60 byte sized packets (the
minimum packet size that Moongen can generate), the observed link bandwidth
is 7.8Gbps.

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 10

3.1.2 Supported Protocols and other Testing Setups

Moongen supports in theory all existing protocols, as they can be manually implemented in the
Lua scripts. The tool currently provides example scripts for UDP, TCP, ICMP, IPsec, and ARP
traffic [2]. However, even though it can send TCP packets and any other manually crafted packets
of existing stateful protocols, it is a purely stateless tool, as no TCP stack is implemented. It could
be employed to simulate a TCP syn-flood attack (an example script about this is provided in the
official Github repository), but it won’t acknowledge any incoming packets nor keep any state for
outgoing ones. It’s worth mentioning that it’s in theory possible to implement a TCP stack in Lua,
however the performance would likely be bad, or at least much worse than an implementation in
C such as the one of Warp17.

Moongen can also be deployed on a single DPDK-binded interface (directly by only declaring
a single port as CLI argument). This can be useful for example when one needs to generate a
traffic flow between two different physical servers, or to stress-test an application running on the
OS kernel. In the latter case, the tool could be used to generate a stream of packets at high rates
directed towards the application, to see how well it operates under heavy load conditions or under
a possible DOS attack.

Given that Moongen does’t have a TCP stack, deploying it on the receiving interface only
doesn’t make a lot of sense, as it will only detect but not react to any incoming packets. One
possible use case for this setup (other than just a packet counter) is to employ the program as
a packet capturing tool. The next section explains and illustrates the performance of Moongen’s
pcap functionality, which we have thoroughly tested in our work.

3.1.3 Packet Capture

Another interesting feature integrated in Moongen is the ability of capturing packets (or “dumping”
packets). Like all other packet processing related operations in Moongen, this functionality needs
to be implemented in the userscript that is called upon program execution. In order to integrate it
with a standard UDP stream generation between the two interfaces, we had to include a dumper
function (which was available as an example script in Moongen’s Github repository), and we added
some additional threads exclusively dedicated to capturing packets. This approach was fairly
complicated and not so versatile, as in practice we had to merge two scripts into one to build the
userscript. However this seems a fair solution, since due to how DPDK works, there cannot be
two separate instances trying to access the NICs at the same time. In fact it’s not possible to run
two separate program tasks that access the same DPDK-binded interface, because DPDK needs to
reset the NIC’s queues and register each time at startup.

Figure 3.3 shows the evolution of the percentage of captured packets for different one-directional
UDP packet streams. We have setup 4 threads to generate the UDP traffic and 2 threads to capture
packets at the receiving interface. All the scripts are available in our Gitlab repository and can be
used to replicate our tests. In order to compute the percentage of captured packets we have used
the summarizing statistics of Moongen, which are outputted at the end of program execution. The
total number of packets seen at the receiving interface is provided, and each dumper thread also logs
the total amount of successfully captured packets. Each data point is an average over 5 different
measurements, in each one of which we captured between 20 and 70 million packets (approximately
2-3 seconds of capture at 7Gbps, 5-6 seconds at 5Gbps and 9-10 seconds of at 2Gbps). We did this
to ensure we had a fair and reliable measurement, because every time the percentage of captured
packets slightly changed, especially with high bandwidths like 7Gbps.

In general we expected some performance loss also with respect to the ability to generate packet

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 11

100 200 300 400 500
packet size (bytes)

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f p

ac
ke

ts
 c

ap
tu

re
d

(%
)

2Gbps UDP traffic
5Gbps UDP traffic
7Gbps UDP traffic

DPDK Driver

Port 0 Port 1

Ubuntu Server

10Gbps fiber optics link

Client Packet Capture

DPDK Driver

Moongen

Figure 3.3: The percentage of captured packets by Moongen’s pcap tool versus
UDP streams with different packet sizes and bandwidths is plotted here (left).
The UDP traffic bandwidth stands for the “real” bandwidth, measured on sent
packets (“bandwidth without framing”). Packets are sent in a one-directional
manner from one interface to the other. We can see that for 2Gbps UDP streams
the dumper threads manage to capture all packets even for small 64 byte sized
packets. For higher bandwidths, the tool starts to struggle with small packet
sizes, but anyway it still manages to capture 85% of the traffic for a stream of
64 byte sized packets at 5Gbps. The diagram on the right side illustrates the
testing setup.

streams at high rates, since now there are a lot more lines of code in the userscript, but this resulted
to be true only at very high bandwidths. We were able to reliably reach bandwidths of 7Gbps even
for small packet sizes, which means that for 64 byte sized packets the link is almost saturated
(we have seen before that for 64 byte sized packets, the link is already fully saturated at 7.6Gbps
of “real” bandwidth due to framing).

A last consideration on Figure 3.3 concerns the performance loss that we observe when capturing
500 byte sized packets. We initially speculated that this was because it takes more effort to write
larger packets to a pcap file. However, Moongen provides an option to set a “snap-length” in bytes,
which makes sure that we capture only the first part of each packet (e.g. only the headers) and the
rest is discarded. We tried this option, but we obtained the same performance drop for 500 bytes
packets. The issue might still come from a difficulty to process larger packets, but we weren’t able
to precisely determine the cause.

As a next step we compared Moongen’s pcap tool with the classical t-shark3 packet capturing
software, which runs on the Linux OS networking stack. In order to achieve that we run Moongen
as a client only instance generating a flow of UDP packets directed towards an interface binded to
our server’s OS kernel. This setup is illustrated in Figure 3.4 (right).

Figure 3.4 (left) plots the percentage of packets captured by t-shark versus UDP packet flows
of different sizes. With this setup we weren’t able to reliably generate traffic at 7Gbps, due to
resource limitations. What happened is probably that t-shark was trying to use more threads,
when stressed with a high amount of traffic, and these threads then entered in competition with
Moongen. Because of this, in our tests, Moongen managed to generate 7Gbps traffic only for the
first few seconds of execution, but then when t-shark started requesting more resources, Moongen’s

3https://www.wireshark.org/docs/man-pages/tshark.html

https://www.wireshark.org/docs/man-pages/tshark.html

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 12

performance reduced and it was no longer able to generate 7Gbps traffic anymore. Therefore we
only have measurements for 2Gbps and 5Gbps traffic. This time, to compute the percentage of
captured packets we used Moongen’s statistics for the total number of sent packets, and the t-shark
statistic for the amount of successfully captured packets.

100 200 300 400 500
packet size (bytes)

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ac

ke
ts

 c
ap

tu
re

d
(%

)

2Gbps UDP traffic
5Gbps UDP traffic

DPDK Driver Linux Kernel Driver

Port 0 Port 1

Ubuntu Server

10Gbps fiber optics link

Moongen
Client

t-shark

Figure 3.4: The percentage of packets captured by t-shark versus UDP streams
with different packet sizes and bandwidths is plotted here (left). Again, packets
are sent in a one-directional manner from one DPDK-binded interface to the
other kernel-binded interface. We observe that t-shark manages to capture all
the packets for a 2Gbps UDP stream with packet size bigger than 350 bytes.
The diagram on the right side illustrates the testing setup.

From Figure 3.4 it is immediately clear that the performance of this capturing method is sig-
nificantly lower than our previous test with the Moongen pcap feature. However, this drop in
performance doesn’t come from t-shark as one could expect. In fact, after running t-shark with a
proper buffer size, no packet drop at all was signaled by the tool. With our setup, a 2GB buffer
was sufficient for t-shark to capture all the received packets without dropping them. Nonetheless,
a significantly high packet loss is detected: for a 64 byte sized packets stream at 5Gbps, only
8% of the packets arrive at t-shark! This means that most packets are previously dropped at the
interface, before even reaching the t-shark socket. The reason behind this is probably due to the
receiving interface being kernel-binded, thus much slower than a DPDK-binded interface, because
of its interrupt-driven operational mode. When stressed with a very high packet rate the interface
simply cannot keep up processing all the packets and some are dropped.

Also for this test, like we did with Moongen’s DPDK-pcap tool, we captured approximately for
9-10 seconds at 2Gbps and for 5-6 seconds at 5Gbps. It’s important to mention that, if we were
to capture for a longer time period, a 2GB t-shark buffer may not sufficient to accommodate all
packets. The fact that we had to increase the buffer size to avoid packet loss shows that t-shark
processes packets slower than they enter the buffer, thus the amount of packets that need to be
temporarily stored in it will constantly increase as long as there’s traffic incoming, eventually filling
the buffer up no matter its size.

3.1.4 Packet Timestamping and Latency Measurements

Besides the throughput, another essential performance characteristic of a system is latency. For
developers it’s crucial to determine the latency of different protocols on their new application
or device, because it influences user performance considerably. Moongen can perform extremely

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 13

precise latency measurements (up to a 64ns precision) by making use of modern NIC’s hardware
support for synchronization across networks [2]. This feature is however restricted to Ethernet and
UDP packets.

In order to measure the latency of a protocol, Moongen periodically sends Precision Time
Protocol (PTP) packets along with a UDP or Ethernet packet stream. These PTP packets need to
have specific activated flags, and serve as a signal to the interface that a timestamp measurement
needs to be performed for that packet. The NIC then, upon reception of a PTP packet, saves the
timestamp in a hardware register, which needs to be read back by Moongen to retrieve the accurate
timestamp. Most NICs in general write the time value in the register as late as possible in the
transmit path and very early in the receive path, so that the measurement is more precise. This is
also valid for the NICs that we utilized in our server [17]. Since the hardware clocks of the receiving
and sending interface are different, Moongen synchronizes them by reading and subtracting their
current clock time, before computing the latency. Since the clocks need to be synchronized there
can’t be more than one packet simultaneously on the fly, hence the PTP messages are configured
to be sent periodically up to a maximum rate of 1Pkt/RTT. They can also be crafted in a way
that they aren’t distinguishable from the normal UDP or Ethernet packets in the stream [2]. This
means that the latency measurement is effectively made on random packet samples in the traffic
stream, thus highly reliable. The values are then averaged and collected in histograms. For our
testing setup we have measured on average a 250-350ns latency for a UDP packet stream.

This hardware timestamping feature is very precise, however its use cases cannot be extended
much. Due to the way timestamps are retrieved, which is by reading back a value from a register on
the NIC, the maximal throughput of timestamped packets is limited. For this reason, timestamping
of packets by the dumper function is still implemented using software clocks.

We compared the precision of software timestamps for packets captured by t-shark with packets
captured by Moongen’s dumper tool. The comparison was performed on 100Mbps traffic, so that
both tools captured 100% of the sent packets with few CPU resources. Based on our observations,
t-shark appears to have a much more precise timestamping mechanism, going up to nanosecond pre-
cision, whereas Moongen’s dumper only records timestamps up to microsecond precision. However,
this probably only depends on the timing function called on the Lua scripts.

3.2 WARP17

Warp17 [35], or simply Warp, is a stateful traffic generator, suited for generating high volumes of
session-based traffic at very high session setup rates and data send rates. It runs on top of the
DPDK framework, hence it includes a full DPDK-based dedicated TCP stack. The reason why
this TCP stack was developed, is that the Linux kernel implementation cannot setup and manage a
high number of flows at high rates. Thanks to the DPDK-based TCP stack, Warp17 can handle up
to 17 million TCP sessions per second on a single server with 2 back-to-back connected interfaces
and 34 threads [35]. An NGINX server running on a similar setup with 32 threads cannot handle
more than 20k sessions per second, due to kernel software interrupts and thread processing (Linux
Kernel is the bottleneck and not NGINX) [34]. Even though Warp’s focus resides mainly on stateful
traffic, it supports UDP streams as well.

Warp17 works by having users initialize test cases and parameters via a CLI. Server and client
ports need to be initialized, along with many specific settings for each declared test case: TCP
options such as windows-size or retransmission timeout, setup and teardown rates, data sending
rate per connection, packet sizes, MTU, etc. It’s also possible to define all tests and parameters in
a configuration file to be passed as an argument when running the tool. Warp will then execute all

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 14

the lines in the file right away.
To speed up the testing process, analogously as we did for Moongen, we prepared some scripts to

automate the change of parameters in the configuration files. Otherwise, every slight modification
in the testing setup, such as increasing the packet size, connection setup rate or tweaking any other
parameter would require a manual change. All the scripts are available in our Gitlab repository4.

3.2.1 Memory Settings

Another important aspect of Warp17 is how it allocates memory to be used by its threads. On
Linux machines, by default the CPU allocates RAM to processes by chunks (or pages) of 4KB. If
a process requires a lot of RAM, then it needs to request many 4KB sized pages. For this reason,
memory access can suffer from an overhead due to having the program retrieve data stored in
various locations in the RAM. The CPU needs to remember the address of each page allocated
to each process, and if a process has many pages, then it takes time to find where the memory is
mapped [15]. Warp17, instead, requires the memory to be already split up in 1GB sized chunks.
The Linux kernel integrates a feature that makes it possible for the operating system to support
memory pages greater than the default 4KB size up to a maximum of 1GB, the so called Hugepages.
Using larger pages can greatly increase performance by reducing the amount of system resources
required to access page table entries [16]. Hugepages are especially convenient, since they allow
Warp to manage many TCP session states that are stored in memory in the most efficient way
possible. To allocate 32GB of RAM with 1GB Hugepages, the CPU simply needs to store 32
addresses for Warp’s processes. Each single TCP session state that needs to be stored in memory
requires 1KB of RAM, and an allocated TCB (Thread Control Block) to locate it. With 32GB
of memory, the CPU can allocate 32 million TCBs for Warp17, which means that the tool can
then efficiently manage up to 16 million live TCP connections (16 million clients and 16 million
servers) [35].

3.2.2 Link Saturation

This section evaluates the performance of Warp17 in terms of maximal achieved bandwidth with
respect to session data send rates on our testing setup. Since Warp17’s purpose is to generate
stateful traffic, we have attempted to saturate the 10Gbps link in our server with TCP traffic. For
the sake of comparison with the other traffic generators, we have also tested Warp’s performance
in generating UDP streams, and the results will be presented in Chapter 4.

In order to saturate the link, we defined a test case with a TCP client listening on one port and
another test case with a TCP server listening on the other port. We further defined a maximum
number of 200k TCP sessions with 10k setup rate and infinite data send rate. This way upon start
of the tests, Warp17 brings up 10k sessions per second up to a maximum of 200k and immediately
starts sending data packets from each session at the maximum possible rate, though only limited by
allocated system resources. We repeated the tests for multiple data packet sizes, also increasing the
number of utilized cores. Since the tool generates stateful traffic, we expected quite a performance
overhead compared to the Link Saturation testing we performed with Moongen (Section 3.1.1). In
fact for each TCP session Warp needs to store and manage a state in memory, acknowledge all
received packets, and retransmit some of them whenever required. The results we obtained are
illustrated in Figures 3.5 and 3.6.

4https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/

Warp17

https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/Warp17
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/Warp17

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 15

250 500 750 1000 1250 1500 1750 2000
packet size (bytes)

20

40

60

80

100

lin
k

ut
iliz

at
io

n
(%

)

2 cores
4 cores
6 cores (max)

Figure 3.5: This figure plots the percentage utilization of the 10Gbps link when
traversed by Warp17 generated TCP traffic. After the TCP sessions are es-
tablished, data packets of different sizes are sent only from the client to the
server as one-directional traffic flow. The tests have been repeated by launch-
ing the tool with 2, 4, respectively 6 cores dedicated to packet processing. Since
Warp17 always allocates 2 CPU cores for CLI management [35], in our testing
setup the maximum number of cores that can perform packet processing is 6.

500 1000 1500 2000 2500 3000
packet size (bytes)

40

50

60

70

80

90

100

lin
k

ut
iliz

at
io

n
(%

),
du

pl
ex

4 cores
6 cores (max)

Figure 3.6: This figure plots the percentage utilization of the full duplex 10Gbps
link when traversed by Warp17 generated TCP traffic. In this testing setup,
data packets are sent by both client and server at the maximum possible rate.
This time, the tests have been carried out by launching the tool with 4 and
6 cores dedicated to packet processing, since only 2 cores yielded a very low
performance.

From Figure 3.5 we denote that Warp manages to saturate the 10Gbps link with 750 byte sized
or bigger packets by using 4 cores. It’s also interesting to observe that the performance increase
if 6 cores are allocated instead of 4 is very little for our testing environment. On the other hand,
if only 2 cores are used, the tool manages to saturate the link only starting from 1250 byte sized
packets.

For the duplex tests in Figure 3.6, values are given in terms of utilization of the full duplex

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 16

link, which we have computed by averaging the percentage utilization of the link in both directions.
Warp’s live UI displays transmitting and receiving percentage utilization at both client and server
side. In general we observed that the tool is able to precisely balance system resources, such that
the link is always utilized by the same percentage in both directions, when duplex traffic with
equally sized data packets is generated. Regarding the performance, in this case we need at least
1350 byte sized data packets with 6 cores to be able to saturate the link.

3.2.3 TCP Stack

This section presents results of tests that we have performed on Warp’s TCP stack implementation.
One of the goals was to verify that all the main TCP features were implemented and correctly
functioning. We were also interested in checking whether Warp’s TCP implementation could work
against another TCP implementation, such as the Linux kernel’s stack. In order to achieve these
goals, we have tested Warp17 as client against a small and simple python TCP server (also available
in our Gitlab repository), which makes use of the Linux TCP stack. Warp17 can very easily be
deployed as client only, by declaring one client test-case for a single interface.

Warp17 is implemented in a way that request (data packets send by client) and response (data
packets sent back by server) sizes need to be declared in both client and server test-cases. After
each request sent to the server, if the client doesn’t receive back a response with the expected
size, then it won’t sent the next request. For this reason, if a Warp17 client interacts with a TCP
server than upon reception of a request sends back packet of an unexpected size, Warp17 client will
acknowledge again the previously received packet (stating that it received a wrong packet), and
will stop sending requests. To circumvent this problem we had to code the python TCP server such
that upon reception of a request, it replied back with the rightfully sized packet. Another solution,
though only applicable to one-directional traffic, is to set the response size to 0 bytes when defining
the test-case parameter. This way Warp17 doesn’t expect a response from the server and continues
to send requests.

In order to check the correctness of the sessions, we inspected the packets by capturing with
t-shark at the server interface. In general we observed that Warp17 as a client-only is perfectly able
to interact with another TCP server implementation. The TCP sessions are correctly established,
acknowledgements from the python server are successfully received, and sessions are also tore down
in the proper way (when specified in the test-case). One thing we observed is that when previously
terminated session are reopened, the exact same packet flow as before is sent again (all new packets
have equal sequence and acknowledgement numbers). In fact Wireshark identifies these resumed
sessions as TCP retransmission, signaling a potential replay attack. However this is not a problem
in terms of correctness of the TCP state machine implementation.

As a next step, we looked into the performance of Warp17’s packet retransmission. Already
when trying to setup 100 sessions with the python server, some retransmissions occurred. This can
be explained by the fact that Warp’s timer is set at a default value of 50ms. Due to the Linux kernel
overhead, upon reception of 100 SYN packets in a short time span, the python server might take
longer than 50ms to respond. Nevertheless, all 100 sessions were successfully established, which
suggests us that Warp’s TCP retransmission mechanism works correctly.

3.2.4 Periodical Output of Statistics

This section introduces a way to periodically log specific output statistics into a file, to make test
data also available after the tool stops. Warp provides a User Interface, which can be called with
a simple CLI command, and outputs live statistic on link utilization, established connections, data

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 17

send rate, etc. However, for real-life testing purposes one would like to be able to run long tests
without needing to periodically check the UI to collect data.

Warp17 allows users to define some conditions to determine whether tests were successful or not
(e.g. if a certain number of connection was successfully established). This can be useful, but after
running a long test it would be better to also have more statistics from the test during execution.
To solve this, there are some python scripts in the Github repository, created as an attempt to
automate Warp’s operation. Some of these scripts apparently provide a way to generate a periodic
output log of statistic. However, we found these scripts poorly explained and not documented, and
we haven’t been able to successfully run them on our server setup.

For the reasons explained above, we have integrated in our testing scripts5 the optional feature
to collect statistics by periodically writing Warp’s CLI output in a text file. This is possible since
Warp allows for different statistics and operational information to be manually dumped from the
CLI (as an alternative of running the live UI). The script can be modified such that it outputs any
statistics available among the CLI commands, and the scraping period can also be passed as an
argument.

3.2.5 Internet-Mix Traffic

An important feature of a traffic generator, when it is to be employed for real-life testing, is that
it should be able to generate realistic traffic patterns. This is possible with Warp, by declaring
multiple test cases with different parameters in the configuration file. To illustrate how it can be
done, we prepared a configuration file with 8 client test cases and 3 server test cases. Together, the
clients establish 2.6 million TCP sessions, some of which going up and down periodically. Various
flows of different data packet sizes and rates are then sent from the established sessions. We also
attempted to integrate some UDP test cases but for some reason these tests did not work when
merged with the TCP tests. The configuration file is available in our Gitlab repository and can
further be expanded as needed.

In conclusion, we found this approach a bit complicated since each test case along with its
parameters needs to be manually defined in the configuration file. If one would like to generate
many test cases, such as 50 or more, in order to e.g. realistically replicate the traffic going through
an Internet-core router, this approach would require a lot of time. A possible solution would be to
create a script that would automate the writing of test cases in configuration files.

3.3 T-Rex

T-Rex [28] is an open source, low-cost, traffic generator fuelled by DPDK. It can scale up to
200Gbps with one server. It has three operational modes: stateful, stateless, and advanced stateful
mode. Throughout our work we have concentrated mostly on stateful mode, but we also performed
a few tests on stateless mode. Therefore in this chapter we principally focus on explaining the
functionalities and presenting testing results on stateful T-Rex. Nevertheless for completeness
we also provide a description and some insight on the other two modes, as they both have very
interesting features.

We have tested T-Rex on a server with two back-to-back connected interfaces, like we did for
Moongen and Warp17, but the tool can be operated also as a client only or server only instance.
This can be achieved by tweaking the main T-Rex configuration file and setting a dummy port (port

5https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/

Warp17/tests/test1_tcp_sessions.sh

https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/Warp17/tests/test1_tcp_sessions.sh
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/Warp17/tests/test1_tcp_sessions.sh

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 18

not connected to an interface on the local machine) for either client or server side. This feature is
particularly useful when the DUT, e.g. a link or a router, resides between two different physical
servers. Or else it could be simply deployed as a client only traffic generator for stress-testing an
application built upon the Linux Kernel stack.

In order to perform all our tests, we have created many configuration files, some taken or adapted
from T-Rex’s examples and some specifically written for our pcap files. All the yaml configuration
files and pcaps we used can be accessed in our Gitlab repository6, as to allow for quick replication
of all tests.

3.3.1 Stateful Mode

T-Rex in stateful mode, or stateful T-Rex, is a traffic generator based on pre-processing and smart
replay of real traffic templates [28]. More precisely it’s a flow generator, as it makes use of one or
multiple pcap files containing TCP or UDP flows, which it will then replay multiple times with
new ip addresses and ports for client and server [30]. It’s important to note that even though it
generates stateful traffic, T-Rex only replicates pcap files with manually crafted or captured stateful
flows, but it does not implement a full TCP/IP stack. Even though it can in principle work as a
standalone client or server, the tool won’t be able to interact with another TCP implementation.
A TCP stack is implemented in the advanced stateful T-Rex mode, which we will introduce in
Section 3.3.3.

The pcap file location and and the address pool range from which T-Rex takes the ip addresses
to replicate the flows are both specified in a yaml configuration file, which is given as an argument
when running the tool. In a pcap file there can be only one single flow, but many pcaps can be
declared in the same configuration file. Along with each pcap, the respective cps (connections-
per-seconds) rates needs to be specified, and these rates determine the total bandwidth that the
test will generate. It’s best practice to normalize the bandwidth of the file, i.e. tweaking the cps
parameters such that it generates e.g. 1Gbps of traffic. T-Rex allows for an argument “-m” to
be specified when running the program, which acts as a multiplication factor for the yaml file’s
bandwidth.

Since stateful T-Rex works with pcap files, this implies that the user has great flexibility in
terms of what kind of traffic he wants to generate. A lot of examples are provided in the official
package, such as single test cases for emulating VoIP calls, simple HTTP browser requests or Video
Streaming flows. Moreover, T-Rex also provides Internet-Mix traffic examples, created with capture
files from SFR7 (French Internet Provider), that emulate real traffic going through core Internet
routers. More information about this aspect is given in Section 3.3.1.2. In our work we have also
often manually generated or extracted new pcap files to use for testing, as we’ll explain throughout
the next sections of this Chapter.

A limitation of this mode is that only TCP or UDP packets can be contained in the pcap files.
Moreover, if a pcap contains a UDP packet flow, which is a stateless flow, T-Rex in stateful mode
will simply take the pcap and replicate it up to a specified number of times specified by the cps
parameter in the yaml file, as it does for TCP packets. This is called mimicking stateless flows,
but in practice T-Rex is generating UDP streams each time with new IP addresses and ports (and
even storing state information in memory), thus actually treating them like stateful flows. More
flexibility with respect to these issues is given by the stateless mode, where UDP traffic can be

6https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/

TRex
7https://www.sfr.fr/

https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/TRex
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/TRex
https://www.sfr.fr/

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 19

generated as a stateless stream of packets, and where all kinds of protocols can be integrated by
manually crafting packets with Scapy8.

A final aspect worth mentioning regards the tool’s statistic output. T-Rex provides a live UI
where link and port statistics are displayed live, but it doesn’t give a way to periodically drop
statistics into a file during program execution. This could be achieved with a similar approach
as we did for Warp17 (Section 3.2.4). However, in the T-Rex distribution there are programs
specifically built to simulate T-Rex’s execution on a yaml file and produce a verbose statistics
output or if requested even a whole pcap file containing the traffic that would be generated by
running the main T-Rex tool.

3.3.1.1 Link Saturation

This section illustrated the results of our attempts to saturate the 10Gbps link on our testing
setup with T-Rex traffic. Given that we are considering a tool specifically built to generate stateful
traffic, we have first tried to saturate the link with TCP flows. To allow for a comparison with
Warp17, we have captured some Warp-generated TCP flows with various data packet sizes to replay
with T-Rex. It’s important to bear in mind that this doesn’t allow for a direct comparison, since
T-Rex simply replicates the flows in the pcap files with a fix number of captured data packets. We
captured Warp17 flows with 1 TCP session sending at 10Mbps rate for an average of 10s, generating
pcap files with 200 to 600 packets. Warp17 on the other hand would send many more data packets
until the TCP session is closed. However, we think this should give an idea on the performance of
T-Rex handling stateful flows. The test results are plotted in Figure 3.7 for a one-directional flow
of data packets.

200 400 600 800 1000 1200 1400
packet size (bytes)

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

ba
nd

wi
dt

h
wi

th
ou

t f
ra

m
in

g
(G

bp
s)

2 cores
4 cores
6 cores (max)
max achievable bandwidth

Figure 3.7: The bandwidth without framing (refer to Section 3.1.1 to under-
stand framing) is plotted here for one-directional TCP flows with various data
packet sizes. The black dotted line represents the maximum achievable band-
width without framing on the 10Gbps link.

From Figure 3.7, we see that the tool can almost saturate the link with one-directional traffic for
data packet sizes bigger than 200 bytes with 4 cores, and it can do it easily with 6 cores. Utilizing
only 2 cores, T-Rex is able to generate traffic at 6.3Gbps for 200 bytes packets, which is around
70% full link utilization. With 2 cores, it manages to saturate the link for packets bigger than
750bytes. Comparing with the Warp17 results, it’s immediately clear that T-Rex performs much

8https://scapy.net/

https://scapy.net/

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 20

more efficiently. However, this is mainly due to the fact that it doesn’t have any overhead coming
from TCP stack operations. Warp17 in fact needs to manage a real TCP state for each session,
which takes time in terms of CPU operations.

As previously mentioned, stateful T-Rex can mimic stateless UDP traffic streams. In the interest
of performing a comparison with the other traffic generators, we have also tested stateful T-Rex’s
performance in generating UDP streams, and the results will be presented in Chapter 4.

3.3.1.2 Internet-Mix Traffic

In this section we illustrate how stateful T-Rex can be employed for generation of realistic traffic
patterns at high speeds. As previously mentioned, the T-Rex package comes with various examples,
and some of them are specifically constructed to generate Internet-Mix traffic, which is meant to
be a realistic reproduction of real traffic traversing core Internet routers. The pcaps utilized by
these examples are extracted from traces provided to T-Rex by SFR, a French Internet Provider.
In order to construct the configuration files, the T-Rex developers first analysed the SFR traffic to
determine the percentage of appearance of specific flows. They found that on average 70% of the
total bandwidth is made of TCP packets and the other 30% are UDP. The average packet size is
580 bytes, and each flow has on average 50 packets. Furthermore they observed that around 30% of
the traffic belongs to Video Streaming, 20% to HTTP Browsing and the rest to other HTTP traffic
or other protocols [32]. Based on this information, they constructed a yaml file that replicates the
SFR distribution, and normalized the file’s bandwidth at 1Gbps. In our work we have tested some
of these Internet-Mix SFR examples, and we were able to saturate the 10Gbps link using 2 cores.
We have found this to be a very efficient and simple way to generate realistic traffic patterns at
high bandwidths.

As a next step we have decided to personally construct our yaml and pcap files to generate
realistic traffic. In order to do that we have extracted some TCP flows from a CAIDA9 trace
containing 100 million packets. Since in the trace only the header of packets is available (the payload
has been snapped away to save space), we also had to manually add a random payload, which we
could easily do with Scapy. All the python files we used to find and extract the flows are available
in our Gitlab repository10. Most of the flows in the CAIDA trace are unidirectional, meaning that
the other direction passes through another router, and very few of them were complete. Also, most
of them are very small flows (few packets). Based on these observations, we then constructed a
yaml file with the new pcaps, and tweaked the cps parameters accordingly. It’s important to note
that this was a rough estimate, far from a precise calculation of the percentage occurrence of flows.
This said, with our approach we aim at providing some ideas and hints on how people can build
their own personalized yaml file for real-life traffic generation. Our scripts can be extended on
many aspects, such as building a more precise mapping of the traffic going through the CAIDA
router, or integrating support for UDP packets and other protocols.

A problem that we encountered while writing the yaml configuration file, was that T-Rex
provides no way to delay the start of replication of certain pcap files. Through the parameters,
it’s only possible to specify the rate at which the pcap should be replied, but not the time instant
when the tool should start replying it. Upon T-Rex execution, the tool starts generating traffic
from all pcaps at the same time. This could be an issue if someone would like to run a long test
with variations on the generated traffic over time. We have found no solution to address this issue
with T-Rex, thus we suggest to use Warp17 if this feature is particularly required.

9https://www.caida.org/home/
10https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/

TRex/caida

https://www.caida.org/home/
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/TRex/caida
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/tree/master/code/TRex/caida

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 21

3.3.2 Stateless Mode

T-Rex in stateless mode, or stateless T-Rex, focuses on generating streams of packets without
storing any state in memory. The developers claim it can generate about 10-22 million packets per
second per core. Furthermore, it supports multiple traffic profiles per interface, which in turn can
contain multiple parallel streams (up to 10k). The traffic profiles need to be defined in a python
script, which will then be called upon T-Rex’s execution, and contains the declaration of streams,
bandwidth rates, and other options such as whether to collect statistics, change the packet on the
fly, or send bursts of packets instead of a continuous flow. Stateless T-Rex is extremely flexible in
terms of packets and protocols that can be generated. Packets can be either imported from a pcap
file as in the stateful mode, or they can be generated directly with Scapy in the python file. Thus,
any protocol can be easily implemented, and malformed or incomplete packets can be included in
a stream as well [33]. Stateless T-Rex enables L2/L3 testing, mostly relevant to test a switch or a
router, but it doesn’t provide the ability to emulate a L7 application.

In order to try out the tool, we have attempted to saturate the 10Gbps link on our server with
stateless T-Rex traffic. We have created some python scripts, adapted from T-Rex’s examples,
importing UDP packets from pcaps that we already had available since used for previous testing.
The scripts generate a one-directional UDP stream of packets with varying size. The results are
presented in Figure 3.8.

0 200 400 600 800 1000 1200 1400
packet size (bytes)

2
3
4
5
6
7
8
9

10

ba
nd

wi
dt

h
wi

th
ou

t f
ra

m
in

g
(G

bp
s)

1 core
2 cores
4 cores
max achievable BW

Figure 3.8: The bandwidth without framing is plotted for a one-directional
UDP stream with varying packet size. The black dotted line represents the
maximal achievable bandwidth without framing for the 10Gbps link.

From Figure 3.8 we observe that the tool is able to saturate the link with small sized packets
only with 4 or more cores. With one core, stateless T-Rex is able to saturate the link only with
UDP streams with 400 byte sized packets or bigger. We can directly compare this results with the
testing performed on Moongen, and we immediately see that for small packets Moongen is much
more efficient. In fact, it could saturate the 10Gbps link with a single core and 90 byte sized packets
and already with 2 cores and 60 bytes packets. The reason for this may be that T-Rex has a lot
more libraries and dependencies, which can cause an overhead in packet processing. Also, as it can
be seen in the Appendix A, the version of T-Rex that we tested utilizes a newer DPDK version,
which has been found being slower than the older versions, due to increased overhead [1].

In Chapter 4 the performance of this mode will be also compared with the other packet gener-
ators that we have analysed in our work.

CHAPTER 3. ANALYSIS OF TRAFFIC GENERATORS 22

3.3.3 Advanced Stateful Mode

T-Rex in advanced stateful mode (ASTF) is a packet generator which supports a user space TCP
stack for emulating L7 protocols, such as HTTP [29]. The TCP stack is implemented on top of
DPDK for better performance, as it was the case for Warp17. The developers claim it can reach
up to 200Gbps of bandwidth for realistic flows, i.e. with around 600 bytes of average size and
1500 bytes maximal size. Some possible use cases are testing a router, a firewall or a deep-packet-
inspection (DPI) engine. Furthermore, like the stateless mode, it runs via python scripts and thus
allows for high flexibility in terms of packet processing and integration of functionalities. It also
seems to have a nice automation support, which would be a great advantage if compared to Warp17.

In our work we haven’t tested T-Rex in this mode, and it could be interesting as a future work.
It’s important to note, however, that this mode is still under heavy development. As stated in the
official documentation11, the tool is under constant improvement and many features have not yet
been integrated.

11https://trex-tgn.cisco.com/trex/doc/trex_astf.html

https://trex-tgn.cisco.com/trex/doc/trex_astf.html

Chapter 4

Results

This Chapter presents the more relevant and interesting results of our work. For this purpose, we
lay out a broad comparison of the three modern software traffic generator tools that we analysed
and thoroughly introduced in Chapter 3. We aim at providing the reader with sufficient information
to choose the traffic generator which best suits his use scenario, thus we try whenever possible to
offer insight on the programs utilization and functionalities based on our personal experience. In
Section 4.1 we compare the performance of the tools when it comes to generating stateless traffic,
whereas in Section 4.2 we provide a general comparison of various features and aspects with the
help of Table 4.1. Finally, in Section 4.3 we give insight on which tool suits best for some common
deployment scenarios.

4.1 Stateless Traffic Generation

This Section analyses and compares the capability of the programs to generate stateless traffic. All
the packet generators that we have considered in our work are able originate UDP streams, which
is a useful feature to stress-test devices or applications. These tools can be used to benchmark
the performance of a newly developed application or device when subject to heavy traffic loads, by
flooding it with packet streams at high rates.

Figure 4.1 provides a comparison of the performance of the three programs when generating
UDP streams with a single CPU core. We measure performance in terms of percentage filling of the
10Gbps back-to-back link on our server. Warp17 and Moongen directly output the link utilization
as statistics in their live UI during program execution. T-Rex, on the other hand, only displays the
bandwidth without framing (real bandwidth measured based on packets generated by the tool).
Therefore, in order to compute the link utilization percentage, we have divided this value by the
maximal achievable bandwidth without framing on the 10Gbps link for all packet sizes.

From Figure 4.1 we observe that Moongen has clearly the best performance. In fact it is able
to saturate the link with 1 core and packet sizes of 90 bytes or bigger. With 64 byte sized packets
it manages to fill 80% of the 10Gbps link. All the other tools can only fill the link up to 20% or
less with packets of 64 bytes using 1 core. The two T-Rex modes, stateful and stateless, perform
similarly (with stateless mode having a slightly better performance), and they manage to saturate
the link with 350-400 byte sized packets. Warp17 has the lowest performance, and can saturate
the link with UDP flows only with 800 byte sized or bigger packets.

So far things are more or less as expected, with the two purely stateless tools having the best
performance. The overhead of Warp17 and stateful T-Rex can be explained by the fact that stateless
traffic generation is not the primary goal of the tool. UDP packets are sent using the exact same

23

CHAPTER 4. RESULTS 24

0 200 400 600 800 1000 1200 1400
packet size (bytes)

20

40

60

80

100

fu
ll

lin
k

ut
iliz

at
io

n
(%

)

Moongen
T-Rex stateless mode
T-Rex stateful mode
Warp17

Figure 4.1: The link utilization of the 10Gbps link on our server when traversed
by one-directional UDP streams is plotted here for various UDP packet sizes.
The measurements are performed for Moongen, Warp17, T-Rex in stateful mode
and T-Rex in stateless mode, and for all the tools we have allocated a single
CPU core (or hardware thread) to packet processing.

infrastructure with which TCP packets are sent, even with memory hugepages allocated.
The higher efficiency of Moongen with respect to the other tools might be related to its simplic-

ity, as more libraries and dependencies always come with an overhead on performance. Furthermore,
stateless T-Rex has many more directly configurable parameters and options for the traffic streams,
and this could explain the efficiency loss with respect to Moongen. In fact, to add more options or
features in Moongen, we would need to extend the Lua userscript, whereas for our testing we have
used a very simple script, which has a low overhead. A somewhat strange aspect is that we would
have expected stateless T-Rex to have a better performance, or at least show a more significant
improvement compared to stateful T-Rex, since it doesn’t need to allocate a state for each flow in
memory anymore. Instead, the efficiency of the two T-Rex modes when generating UDP streams
is very similar.

Another aspect that could influence the performance of the packet generators is the DPDK
version integrated with it. In their paper, Emmeric et al. [1] have found the later DPDK versions
to be slightly slower than the old ones due to increased overhead. Moongen uses an older version
of DPDK than T-Rex, which uses a more recent one, and this could add up to the reasons why
Moongen is more efficient. All the software versions and hardware specifics from our testing setup
are summarized in Appendix A for reference. Given these considerations we conclude that Moongen
is the more efficient tool to perform stress-testing of devices or applications with stateless traffic.

4.2 General Comparison

Table 4.1 summarizes and compares some of the most important aspects of the three traffic gener-
ators that we analysed throughout our work. It aims to serve as a quick reference to compare the
tools and help readers in choosing the best suited one for their benchmark use-case. In section 4.3,
we will also provide some real-life examples, along with suggestion on which packet generator to
deploy for each specific use-case.

CHAPTER 4. RESULTS 25

Feature Moongen Warp17 T-Rex

License MIT License (open-
source, free software).

BSD 3-Clause License
(open-source with some
clauses).

Apache 2.0 License
(open-source, but with
limitations).

Maximal BW 120Gbps Not specified. 200Gbps

Maximal
Packet Rate

>20Mpps per core. >20Mpps per core. 10-30Mpps per core.

Stateful Traffic
Generation

No. Yes. Yes in stateful and
ASTF mode.

TCP stack No. Yes. Only in ASTF mode.

Memory
Hugepages

Not required. Required (automated
hugepages-generating
script available).

Used, but the tool han-
dles allocation auto-
matically.

DPDK Latency
Measurement

Yes. Yes. Yes.

DPDK Packet
Capture

Yes. No. Only in Stateless
Mode.

Protocols
available

All existing protocols
can be defined via
Lua scripts. Already
implemented: Ether-
net, UDP, TCP, ICMP,
IPsec, and ARP.

TCP, HTTP, UDP. TCP and UDP in state-
ful mode. All exist-
ing protocols in state-
less and ASTF mode
(via Scapy or pcap file).

Traffic
Patterns

In theory everything,
via Lua scripts. Al-
ready implemented:
raw Ethernet and UDP
streams, TCP SYN
flood, Poisson bursts...

TCP flows, HTTP
flows, UDP streams.
Can also create traffic
mix by merging test-
cases and tweaking
parameters.

Everything, just need
to generate a pcap file
with the required pat-
tern.

Configurable
Options

Any desired option (de-
fined along with proto-
col in Lua script).

MTU, many TCP stack
settings, some IPv4
and VLAN options.

Any option, as packets
are built with Scapy or
taken from pcap file.

Scalability Yes, additional threads
need to be manually
declared in Lua script.

Yes, by passing core-
mask with -c parameter

Yes, by passing number
of cores with -c param-
eter

Project Status
(June 2020)

Currently not in devel-
opment, and not main-
tained.

Currently not in de-
velopment, but main-
tained (not very often
though).

Currently in active
development and
constantly maintained.

Table 4.1: Comparison of packet generators (1/2).

CHAPTER 4. RESULTS 26

Feature Moongen Warp17 T-Rex

Pros
• Simple tool, easy to

use.
• Very efficient in terms

of CPU utilization for
packet generation.

• Extremely flexible
thanks to Lua-script
based operation.

• TCP full stack with
many configurable pa-
rameters.

• Can be deployed as
client-only (standalone
DPDK-based TCP
client).

• Can replicate any exist-
ing traffic stream, via
pcap file or Scapy.

• Very well documented
and constantly main-
tained.

• Powerful Python au-
tomation.

Cons
• No automation, thus

for most modifications
and change of parame-
ters, e.g. scaling up the
number of cores, man-
ual modification of Lua
scripts is required. (ar-
gument parsing to Lua
can be implemented,
though).

• Documentation some-
times poorly explained.

• Extention of yaml file
to generate more traffic
patterns complicated.

• Limited modification of
traffic patterns allowed
(packet generation pro-
cess cannot be modi-
fied).

• Not so easy to use,
many operational
modes and long docu-
mentation.

• Many configuration pa-
rameters that can be
overwhelming.

Table 4.1: Comparison of packet generators (2/2).

4.3 Common Deployment Scenarios

Traffic generators are used to investigate the performance of network infrastructure, devices or
applications. To ensure platform resilience and resistance to heavy load condition and cyber attacks,
every newly developed software of hardware appliance should be subjected to rigorous stress tests
before deployment [31]. In general all the three tools that we analysed in our work can be used
to benchmark middle-box devices, e.g. a router, a switch, or a firewall, that can be connected to
two Interfaces on the same server in a back-to-back manner. This setup is illustrated in Figure 4.2.
Depending on the type of device that we want to benchmark, and which feature we specifically
want to test, a stateful or stateless solution may be selected.

A common use-case, especially relevant for security applications, would be generating traffic
which simulates cyber attack behaviour, such as a DDoS (Distribute Denial of System) attack. For
this specific scenario, a stateless packet generator is more than enough, as the tool doesn’t need
to interact with the DUT, but only flood it with DDoS traffic. Moongen provides examples to
generate UDP and TCP-SYN floods, which makes it a nice option for this use-case, also given the
fact that it is simple and easy to use. However, if we would like to generate a wider variety of DDoS
attacks based on other protocols, such as ICMP or DNS floods, Moongen is not a good solution,
as it would require these protocols to be implemented from scratch in the Lua scripts. Therefore,
in the latter case we suggest using T-Rex (either in stateful or stateless mode), as it comes with
many pcap files with multiple protocols, which can be amplified to generate the attack traffic.

CHAPTER 4. RESULTS 27

DPDK Driver

Port 0 Port 1

Server

Software Packet Generator

DPDK Driver

DUT
Middle-Box

Figure 4.2: Middle-Box testing setup.

Another common use scenario would be stress-testing a device or software application that alters
the connection, such as a proxy, reverse-proxy, firewall or DPI engine. To this purpose, we would
require the tool to generate “clean” traffic directed through the DUT. Furthermore, the packet
generator should be able to maintain the established connections and adapt the traffic depending
on how the device modifies it (e.g. if a firewall blocks some packets, it should retransmit them).
For this scenario, we need a traffic generator provided with a full TCP stack, such as Warp17 or
T-Rex in ASTF mode. To be more specific, Warp17 could be deployed to generate legit traffic at
high rates, from a specifically defined IP address range that a firewall should not filter. This would
allow us to measure the performance of the firewall when subject to heavy load condition.

Another example where a packet generator could be utilized is for stress-testing an application’s
TCP implementation. Again, we would require a traffic generator provided with a TCP stack,
which we would run as a client-only instance. The tool would then direct the traffic towards the
application, which can be running on a port on the same server, or also on another physical server.

One final scenario where a traffic generator can be utilized, is for measuring the latency of
protocols through a device or application. Latency is a very important performance characteristic,
as it has a great impact on user performance. All the three tools that we have considered in our
work implement a hardware-based approach for measuring latency via DPDK. This approach is
thoroughly explained for Moongen in Section 3.1.4. In our work, however, we haven’t tested this
feature on Warp17 and T-Rex, thus we cannot provide a comparison with respect to precision and
reliability of the measurement. This is illustrated as a possible future development of our work in
Chapter 5.

Chapter 5

Summary and Outlook

In our work, we have first thoroughly analysed then compared three high-speed DPDK-based
software traffic generators. We found these tools to be very efficient in terms of packet processing,
mainly thanks to the DPDK libraries and drivers on which they are built upon. Moreover, a simple
and stateless tool such as Moongen achieves the best performance in terms of maximal throughput,
as it manages to saturate a 10Gbps glass fiber link with 60 byte sized Ethernet packets. This shows
that a traffic generator’s performance is also greatly affected by the amount of packet processing
operations it needs to perform, options to configure and libraries to access. We also provided the
reader with an extensive table that compares some of the main features and aspects of the three
tools, and aims to serve as a guideline for choosing the ideal traffic generator to deploy. In the next
Section, we lay out some possible ideas for continuation of our work.

5.1 Future Work

A first possibility would be to scale up the testing to a server with 100Gbps Interfaces. All the tools
should in theory be able to fill up 100Gbps links without any major problems, since the packet
processing capability of DPDK scales linearly with the number of allocated cores. We have already
prepared a cheat-sheet, available on our Gitlab repository1, with some ready-to-run commands
to perform the link saturation testing with UDP packets on a 100Gbps link. This could serve
as a starting point, then one could extend the testing to stateful traffic generation and latency
measurements.

Another idea for future work, could be to conduct a deeper analysis of Warp17’s TCP stack
performance at high speeds. In fact, in our work, we have performed an in-depth comparison all the
tools when generating stateless traffic, but we have only compared Warp17’s TCP flows generation
capability against stateful T-Rex. As we mentioned in Chapter 3, this is not a fair comparison,
since T-Rex in stateful mode doesn’t have a TCP stack implemented, thus has much less packet
processing overhead. For this reason, it could be interesting to also try out T-Rex in advanced-
stateful mode, where a TCP stack is implemented on top of DPDK. This would allow for a fairer
comparison of Warp’s TCP stack implementation.

A final proposition for continuation of our work could be to confront the latency measure-
ment feature of the traffic generators. In Chapter 4, we mention that all three tools implement a
hardware-based approach for measuring latency via DPDK. It would be interesting to see if there

1https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/

100gbps_cheatsheet.txt

28

https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/100gbps_cheatsheet.txt
https://gitlab.ethz.ch/nsg/student-projects/sa-2020-06_traffic_generation/-/blob/master/code/100gbps_cheatsheet.txt

CHAPTER 5. SUMMARY AND OUTLOOK 29

are any differences in precision, accuracy and reliability of the latency measurement, even though
it is in theory implemented using the same procedure.

Bibliography

[1] Emmerich, P., Gallenmüller, S., Antichi, G., Moore, A. W., and Carle, G. Mind
the gap - a comparison of software packet generators. In 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS) (2017).

[2] Emmerich, P., Wohlfart, F., Raumer, D., and Carle, G. Moongen: A scriptable
high-speed packet generator. CoRR abs/1410.3322 (2014).

[3] Soumya Mahalakshmi A, Amulya B S, and Moharir, M. A study of tools to develop a
traffic generator for l4 – l7 layers. In 2016 International Conference on Wireless Communica-
tions, Signal Processing and Networking (WiSPNET) (2016).

[4] Srivastava, S., Anmulwar, S., Sapkal, A. M., Batra, T., Gupta, A. K., and Ku-
mar, V. Comparative study of various traffic generator tools. In 2014 Recent Advances in
Engineering and Computational Sciences (RAECS) (2014).

[5] Tockhorn, A., Danielis, P., and Timmermann, D. A configurable FPGA-based traffic
generator for high-performance tests of packet processing systems.

[6] Busy-waiting Wikipedia page. https://en.wikipedia.org/wiki/Busy_waiting. [Accessed
May-2020].

[7] Best network traffic generator and simulator stress test tools. https://www.dnsstuff.com/

network-traffic-generator-software. [Accessed May-2020].

[8] DPDK official website. https://www.dpdk.org/about. [Accessed May-2020].

[9] Introduction to DPDK: Architecture and principles. https://blog.selectel.com/

introduction-dpdk-architecture-principles/. [Accessed May-2020].

[10] Routing freak: Intel-DPDK. https://routingfreak.wordpress.com/tag/intel-dpdk/.
[Accessed June-2020].

[11] DPDK Wikipedia page. https://en.wikipedia.org/wiki/Data_Plane_Development_Kit.
[Accessed May-2020].

[12] Ethernet Alliance’s 2020 Technology Roadmap. https://ethernetalliance.org/

technology/2020-roadmap/. [Accessed May-2020].

[13] Frame Wikipedia page. https://en.wikipedia.org/wiki/Frame_(networking). [Accessed
June-2020].

[14] Lua Frame synchronization Wikipedia page. https://en.wikipedia.org/wiki/Frame_

synchronization. [Accessed June-2020].

30

https://en.wikipedia.org/wiki/Busy_waiting
https://www.dnsstuff.com/network-traffic-generator-software
https://www.dnsstuff.com/network-traffic-generator-software
https://www.dpdk.org/about
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://routingfreak.wordpress.com/tag/intel-dpdk/
https://en.wikipedia.org/wiki/Data_Plane_Development_Kit
https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/
https://en.wikipedia.org/wiki/Frame_(networking)
https://en.wikipedia.org/wiki/Frame_synchronization
https://en.wikipedia.org/wiki/Frame_synchronization

BIBLIOGRAPHY 31

[15] Debian Website on Hugepages. https://wiki.debian.org/Hugepages. [Accessed June-2020].

[16] Oracle Docs about Hugepages. https://docs.oracle.com/database/121/UNXAR/appi_vlm.
htm#UNXAR391. [Accessed June-2020].

[17] Intel 82599 10 Gigabit Ethernet Controller Datasheet. https://cdrdv2.intel.com/v1/dl/

getContent/331520. [Accessed June-2020].

[18] Lua Wikipedia page. https://en.wikipedia.org/wiki/Lua_(programming_language).
[Accessed June-2020].

[19] Moongen’s github page. https://github.com/emmericp/MoonGen. [Accessed May-2020].

[20] Ostinato Packet Generator. https://ostinato.org/. [Accessed June-2020].

[21] Packetsender github page. https://github.com/dannagle/PacketSender. [Accessed May-
2020].

[22] PF_RING ZC official website. https://www.ntop.org/products/packet-capture/pf_

ring/pf_ring-zc-zero-copy/. [Accessed May-2020].

[23] Ostinato Pktgen documentation. https://pktgen-dpdk.readthedocs.io/en/latest/. [Ac-
cessed June-2020].

[24] Polling (Computer science) Wikipedia page. https://en.wikipedia.org/wiki/Polling_

(computer_science). [Accessed May-2020].

[25] RFC 1242. https://tools.ietf.org/html/rfc1242. [Accessed May-2020].

[26] Terabit Ethernet Wikipedia page. https://en.wikipedia.org/wiki/Terabit_Ethernet.
[Accessed May-2020].

[27] Traf-gen Linux manual page. http://man7.org/linux/man-pages/man8/trafgen.8.html.
[Accessed May-2020].

[28] T-Rex’s official webpage by Cisco. https://trex-tgn.cisco.com/. [Accessed May-2020].

[29] T-rex Advanced Stateful mode Documentation. https://trex-tgn.cisco.com/trex/doc/

trex_astf.html. [Accessed June-2020].

[30] T-Rex’s official documentation. https://trex-tgn.cisco.com/trex/doc/trex_manual.

html. [Accessed June-2020].

[31] Imperva T-Rex vs Avalance Guide. https://www.imperva.com/blog/

trex-traffic-generator-software/. [Accessed June-2020].

[32] T-rex Stateful mode Presentation Slides. https://trex-tgn.cisco.com/trex/doc/trex_

preso.html#slide-11. [Accessed June-2020].

[33] T-rex Stateless mode Documentation. https://trex-tgn.cisco.com/trex/doc/trex_

stateless.html. [Accessed June-2020].

[34] Advanced Stateful T-Rex mode versus NGINX. https://trex-tgn.cisco.com/trex/doc/

trex_astf_vs_nginx.html. [Accessed June-2020].

[35] WARP17’s github page. https://github.com/Juniper/warp17. [Accessed May-2020].

https://wiki.debian.org/Hugepages
https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR391
https://docs.oracle.com/database/121/UNXAR/appi_vlm.htm#UNXAR391
https://cdrdv2.intel.com/v1/dl/getContent/331520
https://cdrdv2.intel.com/v1/dl/getContent/331520
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://github.com/emmericp/MoonGen
https://ostinato.org/
https://github.com/dannagle/PacketSender
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://pktgen-dpdk.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Polling_(computer_science)
https://en.wikipedia.org/wiki/Polling_(computer_science)
https://tools.ietf.org/html/rfc1242
https://en.wikipedia.org/wiki/Terabit_Ethernet
http://man7.org/linux/man-pages/man8/trafgen.8.html
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/trex/doc/trex_astf.html
https://trex-tgn.cisco.com/trex/doc/trex_astf.html
https://trex-tgn.cisco.com/trex/doc/trex_manual.html
https://trex-tgn.cisco.com/trex/doc/trex_manual.html
https://www.imperva.com/blog/trex-traffic-generator-software/
https://www.imperva.com/blog/trex-traffic-generator-software/
https://trex-tgn.cisco.com/trex/doc/trex_preso.html#slide-11
https://trex-tgn.cisco.com/trex/doc/trex_preso.html#slide-11
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://trex-tgn.cisco.com/trex/doc/trex_stateless.html
https://trex-tgn.cisco.com/trex/doc/trex_astf_vs_nginx.html
https://trex-tgn.cisco.com/trex/doc/trex_astf_vs_nginx.html
https://github.com/Juniper/warp17

Appendix A

Hardware and Software Specifics

The configuration of the server on which all the testing was performed:

• CPU Intel Xeon E5620 @ 2.40GHz

• 36GB of RAM

• 2 X 10GBps Intel 82599ES SFI/SFP+ Ethernet Interfaces

• Ubuntu 16.04.6 LTS

The software and DPDK versions that were deployed:

• Moongen: latest master branch with DPDK 17.08

• Warp17: dev/common branch with DPDK 17.11.6

• T-Rex: version v2.80 with DPDK 20.02.0

I

https://ark.intel.com/content/www/it/it/ark/products/47925/intel-xeon-processor-e5620-12m-cache-2-40-ghz-5-86-gt-s-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/41282/intel-82599es-10-gigabit-ethernet-controller.html
https://doc.dpdk.org/guides/rel_notes/release_17_08.html
https://doc.dpdk.org/guides-17.11/rel_notes/release_17_11.html
http://doc.dpdk.org/guides/rel_notes/release_20_02.html

	Contents
	Introduction
	Background and Related Work
	Traffic Generators
	Modern Software Traffic Generators

	Related Work

	Analysis of Traffic Generators
	Moongen
	Link Saturation
	Supported Protocols and other Testing Setups
	Packet Capture
	Packet Timestamping and Latency Measurements

	WARP17
	Memory Settings
	Link Saturation
	TCP Stack
	Periodical Output of Statistics
	Internet-Mix Traffic

	T-Rex
	Stateful Mode
	Link Saturation
	Internet-Mix Traffic

	Stateless Mode
	Advanced Stateful Mode

	Results
	Stateless Traffic Generation
	General Comparison
	Common Deployment Scenarios

	Summary and Outlook
	Future Work

	Bibliography
	Hardware and Software Specifics
	Declaration of Originality

