
Distributed

    Computing 

SwitP : Mobile Application for
Real-Time Swimming Analysis

Semester Thesis

Daniel Wirzberger Raimundo

wirdanie@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Darya Melnyk, Simon Tanner
Prof. Dr. Roger Wattenhofer

June 22, 2020



Acknowledgements

First of all, I want to thank Darya Melnyk and Simon Tanner for the insights they
gave me during our weekly meetings and their feedback concerning this thesis.

I also want to thank the Aquatic Masters Team (AMT) Zürich for their flex-
ibility, patience, and interest in this project. Special thanks go to their "coach"
Beat Schilt, who was always ready to adapt the training to have more relevant
data on the watch.

i



Abstract

Smartwatches in the Pool (SwitP) is an Android Wear application that imple-
ments the convolutional neural network (CNN) developed by Brunner et al. [1] to
recognize swimming styles. Basing on the measurements from acceleration, ro-
tation, and magnetic field sensors, this neural network can reliably predict what
swimming style was swum.

The neural network itself is adapted to this mobile environment by using
the Tensorflow Lite framework [2], which integrates both the conversion and
prediction functions. Preprocessing functions, optimized for both embedded per-
formance and adaptability to other functions, filter and resample the raw sensor
data to make it usable by the CNN.

Using the resampled sensor data as well as the classification results, the ap-
plication determines the number of lengths and the number of strokes that the
swimmer has swum. A user interface gives live feedback and control to the swim-
mer and is designed to be used in the pool.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 General Network Structure . . . . . . . . . . . . . . . . . . . . . 3

2.2 Training Method and Data . . . . . . . . . . . . . . . . . . . . . 4

3 SwitP Application 6

3.1 General Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Preprocessing of the Sensor Data . . . . . . . . . . . . . . . . . . 7

3.3 Adaptation to a Mobile Application . . . . . . . . . . . . . . . . 9

3.4 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Testing 13

5 Conclusions 15

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Bibliography 17

iii



Chapter 1

Introduction

Nowadays, smartwatches allow for the recognition of complex human activity,
one of which being swimming in the pool. Traditionally (in commercially avail-
able sports watches), this is done using classical processing methods on the signals
generated by the different sensors in the watches. This approach provides accept-
able results but lacks some robustness and adaptability to the swimming abilities
of the watch wearer. For example, if the swimmer has to slow down in a crowded
lane, such methods might recognize one lap too much. Or if the swimmer has a
weak wall push-off (often encountered in beginners), the watch might count one
lap less. Furthermore, swimming style recognition is often limited, and the user
often has to specify manually what style he is swimming.

The known flexibility of neural networks, and the possibility to improve their
performance for a specific user, neural networks can provide a good solution to
the swimming recognition problem. Recent progress in training methods and
neural network integrability for low-power embedded devices, make them also a
viable solution for real-time mobile applications.

Multiple works (some of them are introduced in Section 1.1) have investigated
the recognition performance of such networks, but generally in an offline, high
performance, artificial setup.

In this specific project, the main goal is to be able to tell what the actual
swimming style is in realtime on a smartwatch available on the public market,
as well as count how many laps have been swum, while having a user-friendly
interface. The neural network used for this project was designed and trained by
Brunner et al. [1] (detailed in Section 2), and will be adapted to this embedded
application.

The app designed during this thesis, and the project in general (which mainly
consists of the app) will be referenced by SwitP, an abbreviation of Smartwatches
in the Pool.

1



1. Introduction 2

1.1 Related Work

SwitP is mainly a continuation of the work presented in [1]. This paper presents a
method to acquire swimming data from a wrist-worn smartwatch, and structure
it to train a specific neural network, which in turn can predict the swimming style
with high precision. Furthermore, this work introduces a method to count laps
based on the class predictions, which will also be used in SwitP. While this thesis
aims to extend this project to provide real-time (on the smartwatch) classification
and post-processing of the data, some modifications were brought to the original
approach, they will be detailed in the upcoming chapters.

Wang [3] also based on [1] and aimed to extend the recognition capabilities
beyond swimming styles and the pool, in the more general context of Human
Activity Recognition (HAR). It also provided some insights as to what channels
and sampling rates are relevant, as well as some alternative solutions for data-
augmentation and stroke-counting methods. Furthermore, it has shown some
limitations of the sensors available on the smartwatch.

Mooney et al. [4] provide an overview of different papers (87 in total) on
swimming data acquisition and interpretation. This work shows some of the
extensive research carried out in sensor selection and placement and compiles
insights for the post-processing methods (lap detection and stroke counting will
be discussed in Section 3.4).

Siirtola et al. [5] use discriminant analysis of the first and second-order to do
an offline classification of swimming styles. They also show that depending on
the sensor placement (on the upper back instead of the wrist), the estimation
accuracy of specific swimming parameters can be increased. [5] also deals with
lap and stroke counting, which will be discussed in 3.4.

Pansiot et al. [6] also use another sensor placement, on the swimmer’s goggles.
The analysis is done offline, after uploading the data stored in the accelerometer
to another device. The swimming styles are recognized using k-Means clustering
basing on the body angle values, computed from the acceleration values.

Further works and their solutions to specific problems will be introduced in
the Sections which are most closely related to them.



Chapter 2

Background

The majority of the background is contained in [1], which is a paper detailing
the data acquisition methods as well as the general Neural Network structure,
training methods, and evaluation processes.

This chapter aims to summarize the main elements on which this project is
based.

2.1 General Network Structure

The neural network structure used for this work is detailed in [1, ch.4]. Briefly,
the input tensor is a n_channels×n_samples data frame, which is then passed
through four convolutional layers accompanied by ELU activations and max-
pooling, increasing the feature map depth to 64, progressively reducing the height,
but keeping a width of n_channels. Between these layers, 3×1 convolution filters
ensure data is not mixed between sensor channels. The last convolutional layer
is connected to a 128 units ELU-Activated fully connected layer, which is then
connected to a softmax-activated n_classes units fully connected layer, used as
an output for class probabilities.

1 64 64 64 64

n_ch n_ch n_ch n_ch n_ch

n_sa 59
19

5
1

128
n_cl

Input layer Conv. layer 1 Conv. layer 2 Conv. layer 3 Conv. layer 4 F.C. layer Classification

3x1 conv. 3x1 conv. 3x1 conv. 3x1 conv. Fully Conn. Fully Conn.
ELU ELU ELU ELU ELU Softmax

3x1 max-pool 3x1 max-pool 3x1 max-pool 3x1 max-pool

Figure 2.1: Structure of the CNN used for recognition [1]

3



2. Background 4

The specific layer dimensions are primarily defined by the watch capabilities,
but are also highly adaptable to the context:

• n_ch, the number of sensor channels used as an input, is dependent on the
sensors available on the watch, and on the number of channels each of them
has (some of them returning a 3-axis triplet). As shown in [3], networks
based on fewer channels do not necessarily show worse precision.

• n_sa, the number of samples used to build the input frame, can be deter-
mined by the sampling rate of the incoming signals (possibly resampled
between sensors and neural network input), and the considered length of
the input. In this project, the timing parameters were kept as in [1], namely
n_sa = 180 samples, and a sampling rate of 30 Hz for each channel, effec-
tively making 6 s windows.

• n_cl, effectively the number of classes to be recognized at the output, is
defined by the user, as the number of classes one wants to recognize. Here,
we used n_cl = 5, with the following classes (the enumeration numbers
correspond to the output tensor ordering):

0. Null: Default class, corresponding to resting periods and turns;

1. Freestyle: for classifying crawl;

2. Breaststroke;

3. Backstroke;

4. Butterfly.

2.2 Training Method and Data

Acquisition The training data is acquired by equipping swimmers with the
watch. During their training, the data provided by the different available sen-
sors is stored on the watch, and generally, a person overseeing the training logs
what specific swimming styles were swum (this can also be done by the swimmer
himself, especially if he/she follows a specific program).

Labeling In a second step, the data is first resampled and then manually la-
beled; each timestamp of the signal is assigned one of the previously mentioned
classes. This is done by using a graphical tool (which has also been expanded
during this project) to increase user-friendliness.

Training To train the network, windows of sensor data of size n_ch × n_sa
are prepared. At this step, the following methods are applied to increase the
robustness of the algorithm, in this order:



2. Background 5

• time-scaling : two copies yα(t) of the original data x(t) are generated, using
yα(t) = x(αt), and with α ∈ {0.9, 1.1};

• window-cutting : at this step, the 3 (original and time-scaled) versions are
separated into n_ch×n_sa windows. To always have a window having its
center close to the classified timestamp, the windows overlap by 5

6 · n_sa;

• normalization: to avoid magnitude variations between swimmers, sensors
and watches, each channel of each window is normalized;

• noise addition: zero-mean Gaussian noise with a standard deviation of 1%
is added to each normalized window;

• measurement reversal : to simulate the user wearing the watch on the other
wrist, the additive inverse of channels accx, magx, gyroy,z is used with a
probability of 50%;

• measurement rotation: for the tridimensional sensors, the windows are ro-
tated by an angle θ uniformly sampled from the interval [−π

6 ,
π
6 ], approxi-

mating the signals obtained by using a loosely worn watch.

Other techniques could be applied for further improvements, like time-reversal,
some of them have been tested in [3].

Finally, the neural network is trained by minimizing the negative log-likelihood
on mini-batches consisting of 64 windows stratified across users and classes. All
the available and valid (with one dominant class, and no unlabeled parts) win-
dows are then used to train the network.



Chapter 3

SwitP Application

The main result of this project is the application that will be presented in this
chapter. It implements the original classification method, a graphical user inter-
face as well as pre- and post-processing functions.

During development, priority was given to develop a user-friendly interface,
keep the code simple and relatively efficient, as well as to make the implemented
solutions compatible with other Android smartwatches. To avoid freezing the UI
by overloading the main thread, and allow the scheduler to load balance across the
multiple cores constituting the CPU (4 cores for the Snapdragon 2100 used in the
Nixon the Mission), the computationally intensive tasks are run asynchronously
in different threads.

The application was developed from scratch on a Nixon The Mission smart-
watch [7], which at the time runs Wear OS 2.17 and stock (non-unlocked nor
rooted) Android 8.0.0. The code is developed on Android Studio and stored/versioned/built
(using continuous deployment) on:

gitlab.ethz.ch/disco-students/fs20/smartwatches_swimming_daniel

This repository also gives information on how to install the application on
the watch. In the following, an overview of SwitP is given.

3.1 General Structure

The UI of the system, which also controls the whole backend, is mainly based on
two screens (named activities in Android).

Figure 3.1 gives an overview of how these two activities are linked, as well
as what parts are related to which activity. The first activity appears on the
launch, just shows start/exit buttons, and a sliding drawer menu. This options
menu allows to choose if data has to be "simulated" (use data from a specific file
on the watch), what parameters have to be exported, as well as set up the length
of the pool. The second one is related to the recording, and the only user input
is whether the recording has to be stopped. This activity manages the backend

6

gitlab.ethz.ch/disco-students/fs20/smartwatches_swimming_daniel


3. SwitP Application 7

lifecycle as and refreshes swimming parameters (number of strokes, of laps, total
time) shown on the watch.

The GUI is also discussed in Section 4.

Figure 3.1: General SwitP flowchart

The backend has been divided in multiple parts, which do the pre- and post-
processing of the data, and also handle the neural network. The chart shown in
Figure 3.1 synthesizes the data flow going through the different steps, which are
explained in the upcoming sections.

Figure 3.2: Backend structure

3.2 Preprocessing of the Sensor Data

The preprocessing step mainly aims to format the input data to make it usable by
the neural network. One main concern is that the sample rates can vary across
devices and even sensors. Furthermore, the Android sensor stack [8] does not



3. SwitP Application 8

allow precise setting of the sampling frequency (just a delay is given) and limits
the performance of the embedded sensors [9]. To keep the program adaptable to
other devices, this hardware abstraction layer was kept, and another abstraction
layer, to preprocess the sensor data, is added.

For this project, the depth of the windows was defined (see Section 2.1) as 180
normalized samples at 30 Hz, which is what constrains the resampler output. In
this specific case, the system was limited to three 3D sensors / 9 channels, namely
accelerometer, gyroscope, and magnetometer, which are available on most com-
mercial smartwatches (unlike light or pressure sensors), and have shown good
precision in [3] and [1]. Furthermore, keeping a small number of channels re-
duces power consumption, not only by actively polling fewer sensors but also by
performing fewer tensor operations when using the neural network.

Resampling - original approach Originally (in [1]), the sampling rate prob-
lem is addressed by using cubic interpolation on the raw sensor signals, sampled
at 100 Hz and 50 Hz. While this solution is simple to implement for the training
stage and still allows a good classification performance, it violates the Shannon-
Nyquist sampling theorem (it can be related to downsampling, which introduces
aliasing if not preceded by adapted filters).

Resampling - this thesis First, the sampling rate is set as low as possible
(while still ≥ 30 Hz). The actual sampling rates on the Nixon the Mission are
measured (by using the available timestamps) at 50 Hz for the magnetometer,
and 52 Hz for the accelerometer and gyroscope, which use the same measure-
ments. These frequencies are then used to design a resampler, which first up-
samples the signal, filters it (considering only the samples kept after decimation,
for efficiency) to the output Nyquist frequency (15 Hz in this case), and finally
downsamples it. To be able to use the old (saved) as well as the new recordings, a
few filters are designed for frequencies between 50 Hz and 104 Hz, corresponding
to the available sampling rates. These FIR equiripple filters are designed using
the FilterDesigner tool in MATLAB, with a passband ripple of 0.4 dB, a stop-
band attenuation of 20 dB, and transition frequencies depending on the specific
filter. For filters respecting these constraints with a small number of taps, the
specificity of the constraints is artificially increased beyond the aforementioned
characteristics to obtain a group delay of 195 ms ± 1 ms for all resamplers,
ensuring the sensor signals are all in phase after filtering.

Window creation A timer is used to create a new window every second, with
the latest available data using the latest available timestamp across all sensor
channels. This data is then normalized by channel, by computing the average
and standard deviation of the 180 selected samples. This step could be optimized,



3. SwitP Application 9

if the intermediate values needed for normalization were stored and updated, in-
stead of computing them from scratch every time. However, as the measurement
frequency can show small jitter, which in turn makes window length vary a bit,
this would need a more complex approach to compensate for border effects.

Resampling for stroke counting For stroke counting, the required sampling
frequency is much lower, as the stroke rate of swimmers is limited (between
50− 100 strokes per minute depending on the style and distance), and therefore
lower sampling rates retain most if not all of the necessary information. As the
measurement is done on one arm only, a maximal frequency of about 0.8 Hz is
expected, meaning the sampling frequency should be at least 1.6 Hz. Neverthe-
less, Davey et al. [10] use a frequency of 0.5 Hz to do peak detection in realtime,
while Chakravorti et al. [11] detect zero-crossings on a 1Hz sampling rate signal.
The work of Bächlin and Tröster [12] is based on the gradient of a signal with
a sampling rate of 2.56 Hz. Finally, Wang [3], using the same watch as the one
used for SwitP, shows that for cutoff frequencies between 1.5 Hz and 15 Hz,
also using different combinations of all the available sensors, the best results are
obtained with the lowest frequencies. For this project, the sampling frequency
of the signal used for stroke counting is set to 3 Hz, and a filter with the same
constraints as for the other resamplers is designed. To save on filter taps and
computational load, the signal is resampled from the 30 Hz signal instead of the
raw sensor output.

3.3 Adaptation to a Mobile Application

In [1], the neural network was designed to run on a fully-fledged Tensorflow install,
which is not available on embedded devices. The TFLite framework [2] allows
converting a Tensorflow model into a TFLite model, which uses different data
structures to store models, and is provided with interpreters to run it on mobile
devices. This framework also allows different levels of optimization, ranging from
the mentioned data structure optimization to detecting the range of activations
and quantizing them to uint8, using appropriate scale factor and intercept.

For this project, the classification speed of the watch was first evaluated using
the TFLite Model Benchmark Tool [13] which generates an executable running
the converted Neural Network with random inputs. While this is not a completely
representative test, it allows estimating inference performance without having the
preprocessing parts. For windows with 11 channels and 180 samples, the inference
time was under 7 ms per evaluation (while theoretically, the maximum available
time would be 1s to have every window ready exactly on time, without accounting
for the rest of the application).

This successful test showed that the default settings of TFLite, with no quan-



3. SwitP Application 10

tization, on the specific Nixon the Mission smartwatch, run the inference fast
enough to not require further optimizations.

3.4 Postprocessing

Lap counting A method for lap counting basing on the probability p0 of the
Null class is proposed in [1, Ch. 4], and can be synthesized as follows:

First the clear (with marked transitions) laps are detected:

1. Generate binary signal r(t) by thresholding p0 with threshold τp = 0.5
(active high);

2. Filter out transitions for which the contiguous r(t) < t
(transition)
min = 6 s;

3. Filter out laps (for which r(t) = 0) which are shorter than t(lap)min = 22 s;

This removes most of the false positives which can be detected when the swimmer
is resting, or if the neural network predicts the Null class for a singular time point
in the middle of a lap. However, it also removes turns which are too short, and
also turns in which the network is less confident (p0 small). This can lead to
predictions of very long laps.

To avoid this, an upper bound of t(lap)max = 75 s is introduced, and if the time
between two detected laps is higher than this bound, the lap is recovered by
progressively reducing t(transition)min and τp, until the thresholding gives a new lap.

The original implementation of this method is designed to be run offline,
meaning the initial three steps were applied to all timestamp-probability pairs
first, and then missing transitions are detected for the whole signal. For this
project, however, the goal is to have it running in real-time, so this setup was
converted to a finite state machine, illustrated in Figure 3.3

Figure 3.3: Finite State Machine for Lap Detection



3. SwitP Application 11

If no laps have been detected for too long, a "missing lap detector" is started
with the data that is missing turns (according to t(lap)max = 75 s) as input, running
asynchronously in the background.

Stroke counting Basing on the 3 Hz-resampled z-channel of the accelerome-
ter, different approaches can be used to extract the number of strokes a swimmer
does.

The main goal is to have a computationally inexpensive approach which still
shows robustness to changing swimming styles, intensities, and even watches.

Multiple authors use classical approaches for this task. Siirtola, et al. [5]
use measured data to determine a threshold level for detecting strokes, and re-
move spurious results by limiting the stroke rate to realistic values. Bächlin and
Tröster [12] compute the gradient in a 0.2 s sliding window, and then use its max-
imums to determine both wall pushes and arm strokes. Chakravorti et al. [11]
stream the data to a computer, which then filters the data and uses zero-crossing
detection to find strokes. N.Davey, M.Anderson et al. [10] approach this task by
first calculating the mean, finding minimas / maximas below / above the mean,
and discarding false positives by removing peaks of same polarity not separated
by a peak of opposite polarity.

Methods based on learning the data have also been developed, and use dif-
ferent approaches. Wang [3] first filters the data, performs Principal Component
Analysis to find the most useful channels, and then tunes a peak detector by
using grid search against the manually counted strokes. Schmidt et al. [14] use a
convolutional neural network to detect peaks and the baseline in a more general
signal processing context. They do so by using the available data to tune a "fil-
ter" constituted of a CNN, followed by a non-linear readout layer, and show its
performance in synthetic contexts is better than optimized continuous wavelet
filtering methods.

All the mentioned approaches make a compromise between hard-coding some
thresholds, or needing specific data to optimize them during training. The
method proposed in this project adds an adaptive component, also eliminat-
ing the need for a supplementary normalization layer. It is based on computing
the z-Score, which is a statistical value indicating how far (in term of standard
deviations σ) a specific sample x is from a population with mean µ. It is defined
as:

z =
x− µ
σ

Intuitively, having a large absolute value of the z-Score means the sample x is an
outlier, or part of a peak. To use this on real-time data, Van Brakel [15] proposed
an adaptive method, which takes 3 parameters:

• td: dynamic threshold, number of standard deviations necessary to consider



3. SwitP Application 12

a sample as an outlier;

• l: lag, size of the window used for the computation of µi and σi;

• q: influence, between 0 and 1, a parameter for filtering the effect of new
measurements.

A parameter ts was added for SwitP, which adds some noise tolerance by ensuring
a minimum, non-adaptive, acceleration threshold has to be passed before a peak
is signaled. xi is used to denote the ith input sample , while yi indicates if it
is an outlier, and pi if it is considered as a peak (because groups of outliers can
be contained in a single peak). Mathematically, the algorithm can be written as
follows:

x̃i =

{
xi, i ∈ {0, . . . , l − 1};
q · xi + (1− q) · xi, otherwise.

µi =
Σi
i−l+1x̃i

l
σi =

√
Σi
i−l+1

(
x̃i

2 − µi
)2

l − 1

zi =
x̃i − µi
σi

yi =

{
1, zi ≥ max(td · σi, ts);
0, otherwise.

pi =

{
1, yi − yi−1 = 1;

0, otherwise.

The small number of tests (discussed in Section 4) did not allow a precise
setting of the 4 parameters. Just as a baseline, values td = 2, ts = 0.25, l = 5, q =
0.15 were chosen.

Figure 3.4 visually shows how these parameters affect the computation of the
peaks, and the adaptive characteristics of the algorithm. It also shows how for
slower rising peaks, the first of the outliers is selected, which is not necessarily
the largest value.

Figure 3.4: Example of z-Score based stroke counting, with intermediate variables
used for peak detection



Chapter 4

Testing

The testing of the different parts of SwitP could not be done as foreseen, as
all pools closed before the app had been developed, and did not reopen for the
testing to be performed as planned. Nevertheless, the basic functionality could
be tested in multiple ways, which will be explained in this chapter.

A first testing method is to read existing recordings, unlabeled, and feed them
through the data pipeline shown in Figure 3.1 (replacing the "Measurement"
block). This is done by using the "simulate" option in the menu shown in Figure
4.2 (b). Specific data fields (selected using the same options menu) can then be
exported to a .csv file, making the data available for further analysis. As an
example, Figure 4.1 is based on a recording done in 2018, during which the 4
recognized swimming styles were swum over 50 m each, two times in a row.

Figure 4.1: Returned values on a 2 · 200 m medley

Figure 4.1 shows that the raw predicted classes are generally very close to
the manual labels for this user (which was excluded from the training set). The
predictions could be improved by implementing some smoothing, looking at es-
timations from window covering the same timespan, or by classifying more than

13



4. Testing 14

once a second, and also using some kind of averaging. The lower part of Figure
4.1 shows that for this training set, the laps were recognized correctly. The stroke
recognition part shows inconsistent results, but as discussed before, it needs some
fine-tuning to provide good results.

While the user interface could not get thoroughly tested and reviewed by
persons external to the project, it proved to be well usable in the pool. Figure
4.2 shows some of the most important menus appearing on the watch. The start
and stop buttons have to be pressed and held during a certain time, during which
a loading circle is displayed (as seen in (c)), after which a confirmation screen
like in (d) is shown, to ensure no false deactivations are made in the pool.

(a) (b)

(c) (d)

Figure 4.2: Screenshots of the SwitP application: (a) Start menu (b) Options
drawer (c) Recording screen (d) Confirmation screen

Per default, Android applications all support backswipe to change activities,
but also to exit an application. As this function can also be wrongly activated
by pool water passing on the screen, for SwitP backswipe is disabled, and the
exit button (as shown in (a)) is used to exit the application. The only physical
button available on the Nixon the Mission used for this project still has its default
function, namely returning to the main menu.

Finally, the last tests show that while putting the watch in airplane and
battery saver modes increases its autonomy by several days, it also temporarily
hangs the app and measurements, which should be addressed in the next iteration
of SwitP development.



Chapter 5

Conclusions

SwitP implements the convolutional neural network developed by Brunner et
al. [1] to recognize swimming styles on an Android smartwatch. Using only
the rotation, acceleration, and magnetic field sensors (available on most modern
devices), this neural network can reliably predict what swimming style was swum.

The conversion of the neural network for mobile applications is done by using
the Tensorflow Lite framework [2], which integrates both the conversion and
prediction functions. Beforehand, the raw data produced by the sensors is filtered
and resampled to be usable by the neural network, which is done by using an
implementation optimized both for embedded performance and for adaptability
to other watches.

The classification results as well as the resampled data are then used to de-
termine the number of lengths and the number of strokes that the swimmer has
swum. Finally, a user interface is added to the application, designed to be used
in the pool and giving live feedback to the swimmer.

5.1 Future Work

A structured user-test of SwitP would help improving the application. On one
hand, letting the interface be used by persons external to the project will test its
ergonomy. On the other hand, these tests are required to fine-tune the adaptable
parameters (e.g for stroke-counting) and get reliable results.

The adaptability of the preprocessing system can be increased, by automat-
ically choosing the optimal sampling rates and resampler settings. This will re-
move the necessity to change these parameters between watches. As mentioned
in Section 3.2, the window creation method can be made more efficient by imple-
menting a "rolling" system, instead of computing everything from scratch every
time.

The convolutional neural network itself can be improved in multiple ways.
First, using more training data, the kicking exercises done by swimmers might

15



5. Conclusions 16

be recognizable as a new class. Secondly, more data augmentation techniques,
such as those tested by Wang [3], could increase its precision.

Finally, the training experience could be improved by allowing programming
of stuctured workouts, with a live training progress indicator in the watch UI.



Bibliography

[1] G. Brunner, D. Melnyk, B. Sigfússon, and R. Wattenhofer, “Swimming style
recognition and lap counting using a smartwatch and deep learning,” in
ISWC ’19, London, United Kingdom, Sep. 2019.

[2] tensorflow.org. Tensorflow Lite. [Online]. Available: https://www.tensorflow.
org/lite

[3] Y. Wang, “Swimming activity recognition with smartwatches and deep learn-
ing,” Master’s thesis, ETH Zürich, Oct. 2019.

[4] R. Mooney, G. Corley, A. Godfrey, L. R. Quinlan, and G. ÓLaighin, “Inertial
sensor technology for elite swimming performance analysis: A systematic
review,” Sensors, vol. 16, no. 1, Dec. 2015.

[5] P. Siirtola, P. Laurinen, J. Röning, and H. Kinnunen, “Efficient
accelerometer-based swimming exercise tracking,” in 2011 IEEE Symposium
on Computational Intelligence and Data Mining (CIDM), 2011, pp. 156–161.

[6] J. Pansiot, B. Lo, and G. Yang, “Swimming stroke kinematic analysis with
bsn,” in 2010 International Conference on Body Sensor Networks, 2010, pp.
153–158.

[7] Nixon. The Mission. [Online]. Available: https://www.nixon.com/ch/en/
mission-support

[8] Android. Sensor stack. [Online]. Available: https://source.android.com/
devices/sensors/sensor-stack

[9] L. Sigcha, I. Pavón, P. Arezes, N. Costa, G. De Arcas, and J. López, “Oc-
cupational risk prevention through smartwatches: Precision and uncertainty
effects of the built-in accelerometer,” in Sensors, vol. 18, no. 3805, 2018.

[10] N. Davey, M. Anderson, and D. A. James, “Validation trial of an
accelerometer-based sensor platform for swimming,” Sports Technology,
vol. 1, no. 4-5, pp. 202–207, 2008. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/jst.59

[11] N. Chakravorti, T. Le Sage, S. E. Slawson, P. P. Conway, and A. A. West,
“Design and implementation of an integrated performance monitoring tool
for swimming to extract stroke information at real time,” IEEE Transactions
on Human-Machine Systems, vol. 43, no. 2, pp. 199–213, 2013.

17

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.nixon.com/ch/en/mission-support
https://www.nixon.com/ch/en/mission-support
https://source.android.com/devices/sensors/sensor-stack
https://source.android.com/devices/sensors/sensor-stack
https://onlinelibrary.wiley.com/doi/abs/10.1002/jst.59
https://onlinelibrary.wiley.com/doi/abs/10.1002/jst.59


Bibliography 18

[12] M. Bächlin and G. Tröster, “Swimming performance and technique evalua-
tion with wearable acceleration sensors,” Pervasive and Mobile Computing,
vol. 8, pp. 68–81, 02 2012.

[13] tensorflow.org. Tensorflow Lite Benchmark Tool. [Online]. Avail-
able: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
lite/tools/benchmark

[14] M. N. Schmidt, T. S. Alstrøm, M. Svendstorp, and J. Larsen, “Peak detection
and baseline correction using a convolutional neural network,” in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 2757–2761.

[15] J.-P. van Brakel. Smoothed z-score algorithm. [On-
line]. Available: http://stackoverflow.com/questions/22583391/
peak-signal-detection-in-realtime-timeseries-data

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
http://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
http://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 General Network Structure
	2.2 Training Method and Data

	3 SwitP Application
	3.1 General Structure
	3.2 Preprocessing of the Sensor Data
	3.3 Adaptation to a Mobile Application
	3.4 Postprocessing

	4 Testing
	5 Conclusions
	5.1 Future Work

	Bibliography

